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Anomalies in several short-baseline neutrino oscillation experiments suggest the possible existence of
sterile neutrinos at about the eV scale that have appreciable mixing with the three known neutrinos. We find
that if such a light sterile neutrino exists, through a combined study of the leptonic decays of μ−, τ−, π−, and
K−, some semileptonic decays of τ− and the invisible decay width of the Z boson, it is possible to constrain
the relevant mixing matrix elements. Furthermore, we compare the constraints, derived by using the method
presented here, with the experimental results obtained from short-baseline neutrino oscillation experiments.
We find that a single light sterile neutrino cannot satisfy the existing short-baseline neutrino oscillation
constraints and explain the anomalies mentioned above. Along the way we provide a number of
experimentally clean observables which can be used to directly study the light sterile neutrino independently
of the neutrino oscillation experiments.
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I. INTRODUCTION

Sterile neutrinos, first hypothesized by Pontecorvo [1],
are electrically neutral fermions of either Dirac or Majorana
nature with no standard weak interaction albeit mixing with
the existing active neutrinos. Mathematically, sterile neu-
trinos are singlets under the gauge symmetry of the
standard model (SM) of particle physics. The theoretical
studies of sterile neutrinos deal with many diverse new
physics scenarios which may include a multitude of sterile
neutrinos with masses ranging from below the eV scale to
close to the Planck mass scale. In this paper we shall focus
only on light sterile neutrinos which have masses near the
eV scale and we discuss how information from non-
oscillation experiments can be used to constrain the mixing
matrix elements of active-sterile neutrino mixing.1

The existence of one or more light sterile neutrinos near
the eV scale can help resolve some of the intriguing

“anomalies” observed in short-baseline (SBL) neu-
trino oscillation experiments, such as the LSND [4],
MiniBooNE [5], and Gallium [6] anomalies.2 In this paper
we assume that there exists only one light sterile neutrino νs
in addition to the three known active neutrinos (νe, νμ, ντ),
all of which can be written as linear combinations of four
neutrino mass eigenstates (ν1, ν2, ν3, ν4):

να ¼
X4
i¼1

Vαiνi; ð1Þ

where α ¼ e; μ; τ; s. We assume that the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [1,12], the 3 × 3 matrix
that deals with the mixing of νe, νμ, ντ with ν1, ν2, ν3,
remains unitary in the presence of the sterile neutrino νs,
while the 4 × 4mixing matrix V (which might be unrelated
to any seesaw mechanism for generating neutrino mass)
can be, in general, nonunitary [13]. In this case, the effects
of sterile neutrinos will become manifest in the observables
associated to charged-current interactions of leptons [here
repeated labels indicate summation, l ¼ e, μ, τ, and
γ̂μ ≡ γμð1 − γ5Þ],
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1For detailed discussions on the kinds of new physics
possibilities which include light sterile neutrinos, we refer the
reader to the reviews in Refs. [2,3] and the references contained
therein. 2It should be noted that the previously known reactor neutrino

anomaly [7] may not require any explanation in terms of light
sterile neutrinos in view of the recent paper from the Daya Bay
collaboration [8]. However, other experiments such as NEOS [9]
and DANSS [10] still suggest the presence of this reactor neutrino
anomaly. For a global analysis of these SBL results we refer the
reader to Ref. [11].
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LCC
W ¼ −

g

2
ffiffiffi
2

p
X

l¼e;μ;τ

½l̄ γ̂μ νl�Wμ þ H:c:

¼ −
g

2
ffiffiffi
2

p
X

l¼e;μ;τ

X4
i¼1

Vli½l̄ γ̂μ νi�Wμ þ H:c:; ð2Þ

as well as in neutral-current Z-boson decays into neutrinos,

LNC
Z ¼ −

g
4 cos θW

X
l¼e;μ;τ

½ν̄lγ̂μνl�Zμ

¼ −
g

4 cos θW

X
l¼e;μ;τ

X3
i¼1

½ν̄iγ̂μνi þ jVl4j2ν̄4γ̂μν4

þ ðV�
liVl4ν̄iγ̂μν4 þ VliV�

l4ν̄4γ̂μνiÞ�Zμ; ð3Þ

where g is the weak coupling constant and θW is the weak
mixing angle. The above expression follows from the
unitarity of the 3 × 3 PMNS matrix. It is important to note
that to keep our discussion general we consider the 4 × 4
mixing matrix to be nonunitary. In some new physics
scenarios the sterile neutrino can have a different origin
than the active neutrinos, leading to the nonunitarity of the
mixing matrix (for a specific model realizing this scenario
see, for instance, Ref. [13]). This violation of unitarity,
if observed, would imply the presence of unknown new
physics.
Taking the Lagrangians of Eqs. (2) and (3) into account,

we shall explore the effects of this hypothetical light sterile
neutrino in some precision observables and try to set
constraints on its mixing with the known flavor eigenstates.
Our purpose is to identify observables that turn out to be the
most sensitive ones and present a clean way to determine
the mixing matrix elements. Given the lightness of this
sterile neutrino, its effects on the different observables
considered in this analysis will manifest as an overall
normalization factor. Ratios of decay rates turn out to be
very useful since they are independent of weak couplings,
quark mixings, and hadronic form factors. The effects of
the sterile neutrino do not cancel in such ratios as long as
they do not satisfy lepton universality, which in our case
implies jVe4j ≠ jVμ4j ≠ jVτ4j.
Our paper is organized as follows. In Sec. II we provide a

comprehensive analysis of the relevant weak decays, with
particular attention to the constraints on active-sterile
neutrino mixing matrix elements. We do a combined study
of the leptonic decays of μ−, τ−, π−, and K−, some
semileptonic decays of τ−, as well as the invisible decay
of the Z boson. We provide all of the observables that can
be used to constrain the mentioned mixing matrix elements.
In Sec. III we perform a numerical study using all available
experimental data and also look for further predictions that
can be tested in oscillation and nonoscillation experiments.
Finally, we conclude in Sec. IV, emphasizing the results and
the uniqueness of our approach.

II. PROBING jVl4j VIA WEAK DECAYS

Lepton flavor is an absolutely conserved quantum
number in the SM with massless neutrinos. In this limit,
we can identify the flavor of neutrinos (or antineutrinos)
produced in processes induced by charged weak currents
by identifying the flavor of the associated charged lepton,
as in the case, for example, of μ− → e−ν̄eνμ decay. However,
if neutrinos are massive particles, lepton-flavor-violating
(LFV) processes like μ− → e−νlν̄l are possible via a Z
penguin or box diagram at the one-loop level. Strictly
speaking, the observable processwhen neutrinos aremassive
is μ− → e− þ “missing” because the flavor of neutrinos is
not identified.3 In general, since the light sterile neutrinos
(like the active ones) remain undetected at their place of
production, anyweakdecayof the typeX → Y þ aνl þ bν̄l0
is practically X → Y þ “missing”, where X and Y are some
initial and final particle(s), respectively, l;l0 ¼ e, μ, τ, and
a, b ¼ 0, 1. We shall assume that the unobserved neutral
fermions produced in such weak decays under consideration
are either active or sterile neutrinos (or antineutrinos). As we
shall show, this allows us to set bounds on the mixing matrix
elements jVl4j, provided the more sensitive observables to
these effects are conveniently chosen.

A. Leptonic decays of μ− and τ −
Let us first consider the leptonic μ− decay as the

reference process. In the presence of a single sterile
neutrino, there are four possible contributions to muon
decay: μ− → e−ν̄eνμ; e−ν̄eν4; e−ν̄4νμ, and e−ν̄4ν4, all of
which contribute to μ− → e− þ “missing”. The corre-
sponding rate for the μ− → e− þ “missing” is given by

Γμ ¼
ðG0

FÞ2
192π3

ρμeΣμe: ð4Þ

We have defined

ρμe ¼ m5
μfðm2

e=m2
μÞfWðmμÞfewðmμÞ; ð5Þ

where ml denotes the mass of the charged lepton l, G0
F is

the Fermi constant if we were to assume no sterile neutrino,
fðxÞ ¼ 1–8xþ 8x3 − x4 − 12x2 ln x, fWðmlÞ ¼ 1þ 3=5
ðml=mWÞ2 is the finite W mass correction stemming from
the W-boson propagator, and fewðmlÞ are the remaining
radiative corrections to the decay rate. Including the effects
of the finite mass of the electron and the Oðα2Þ radiative
corrections, numerically we have fewðmμÞ ¼ 0.995802
[14]. The effect of the sterile neutrino is encoded in the
factor Σμe:

3In practice, the LFV contribution to the muon rate is
unobservably small.
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Σμe ≡ ð1þ jVe4j2Þð1þ jVμ4j2Þ: ð6Þ

The measured value of the effective Fermi constant is
given byGF ¼ G0

FðΣeμÞ1=2 ¼ 1.1663787ð6Þ × 10−5 GeV−2

[14], obtained from a comparison of the muon decay rate in
Eq. (4) and the measured muon lifetime τμ ¼ 1=Γμ. As can
be realized, it is not possible to quantify the effect of the
sterile neutrino from Γμ measurements alone without an
independent and precise measurement of G0

F.
A similar expression holds for the decay rates of τ− →

l− þ “missing” decays (with l ¼ e, μ), which in the
presence of an additional sterile neutrino becomes

Γl
τ ¼ ðG0

FÞ2
192π3

ρτlΣτl; ð7Þ

with

ρτl ¼ m5
τfðm2

l=m
2
τÞfWðmτÞflewðmτÞ; ð8Þ

where we have a similar expression for the Στl factor as
in Eq. (6), under the corresponding replacement of flavor
indices. The numerical values of the radiative corrections
are feewðmτÞ ¼ 0.995722 and fμewðmτÞ ¼ 0.995960 [14]. If
we compute the ratio between Eqs. (4) and (7), we obtain

Γl
τ

Γμ
¼ ρτl

ρμe

Στl

Σμe
: ð9Þ

If we take the ratio of Γe
τ and Γμ

τ using Eq. (7), we get

Γe
τ

Γμ
τ
¼

�
ρτe
ρτμ

��
1þ jVe4j2
1þ jVμ4j2

�
: ð10Þ

It is clear from Eqs. (9) and (10) that if there is no lepton
universality, i.e., jVe4j ≠ jVμ4j ≠ jVτ4j, we can find some
observables that can probe the active-sterile mixing, with-
out being worried about the extraction of the Fermi
constant G0

F. Since all the mixing matrix elements jVl4j2
are positive and do not exceed unity, we have 1=2 ≤
Στl=Σμe;Στe=Στμ ≤ 2. In practice, given the good agree-
ment of the SM with experimental data for the leptonic
decays of τ, we would expect to have Στl=Σμe very close
to 1.
Note that we can always express the partial decay rates

of the decays of τ− in terms of branching ratios [denoted
by Brðτ− → l− þ “missing”Þ] and the mean lifetime of
τ− (denoted by ττ): Γl

τ ¼ Brðτ− → l− þ “missing”Þ=ττ.
In this way we obtain the following observables, which
are ratios involving the mixing matrix elements jVl4j:

Rτ=e ≡ 1þ jVτ4j2
1þ jVe4j2

¼ Brðτ → μþ “missing”Þ
Brðμ → eþ “missing”Þ

τμ
ττ

ρμe
ρτμ

;

ð11aÞ

Rτ=μ ≡ 1þ jVτ4j2
1þ jVμ4j2

¼ Brðτ → eþ “missing”Þ
Brðμ → eþ “missing”Þ

τμ
ττ

ρμe
ρτe

;

ð11bÞ

Re=μ ≡ 1þ jVe4j2
1þ jVμ4j2

¼ Brðτ → eþ “missing”Þ
Brðτ → μþ “missing”Þ

ρτμ
ρτe

:

ð11cÞ

These three observables are not independent, by definition,
since Rτ=eRe=μ ¼ Rτ=μ. Therefore, only two out of these
three ratios would be useful for our numerical analysis and
we would need some extra independent observable(s) in
order to constrain the three active-sterile mixing matrix
elements.
It is important to note that the ratio observables Rτ=e,

Re=μ, and Rτ=μ actually probe the unitarity of the 4 × 4

mixing matrix. If we were to relax the assumption that the
3 × 3 PMNS matrix is unitary, the ratio observables take
the form

Rl=l0 ¼
�X4

i¼1

jVlij2
���X4

j¼1

jVl0jj2
�
; ð12Þ

where l ≠ l0 and l;l0 ¼ e, μ, τ. It is clear from Eq. (12)
that Rl=l0 ¼ 1 only when both

P
4
i¼1 jVlij2 ¼ 1 andP

4
j¼1 jVl0jj2 ¼ 1. It should be noted that if one were to

consider an n × n active-sterile mixing matrix with n > 4
in some new physics model, then the summations in
Eq. (12) would run from 1 to n. Thus, Rl=l0 can also
probe the unitarity of such an active-sterile mixing matrix
in the most general scenario.4

B. Semileptonic decays of τ − and leptonic
decays of π − and K −

Ratios of semileptonic decays of τ− and leptonic decays
of π− and K− can also be useful to constrain the mixings of
a light sterile neutrino. Let us consider the τ− → P−ντ and
P− → l−ν̄l decays (P ¼ π or K mesons and l ¼ e or μ),
which are the most precisely measured processes of this
type. In the presence of a light sterile neutrino, the decay
rates of these processes are given by

Γτ→Pν ¼
ðG0

FÞ2jVuqj2
16π

f2Pm
3
τ

�
1 −

m2
P

m2
τ

�
2

δPτ ð1þ jVτ4j2Þ;

ð13Þ

4It is important to note that here we are not considering the
possibility of any sterile neutrinos being kinematically inacces-
sible to our decay modes under consideration. If such heavy
sterile neutrinos are experimentally found to exist, it is beyond the
scope of our analysis and Rl=l0 cannot probe the unitarity of the
full active-sterile neutrino mixing matrix.
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and

ΓP→lν ¼
ðG0

FÞ2jVuqj2
8π

f2Pm
2
lmP

�
1 −

m2
l

m2
P

�
2

δlPð1þ jVl4j2Þ:

ð14Þ

In the above expressions, fP denotes the decay constant
of the P− meson which can be calculated from lattice
QCD, Vuq [with q ¼ dðsÞ for P ¼ πðKÞ mesons] is the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element, and
δPτ (or δlP) denotes the radiative corrections to τ → Pν
(or P → lν) decay.
The ratio of the these decays,

Γτ→Pν

ΓP→lν
¼ m3

P

2m2
lmτ

�
m2

τ −m2
P

m2
P −m2

l

�
2
�
δPτ
δlP

��
1þ jVτ4j2
1þ jVl4j2

�
; ð15Þ

is independent of the parameters related to the hadronic
vertex and can provide clean information about the active-
sterile mixing matrix elements provided there is no lepton
universality. Furthermore, the ratio of electron and muon
channels in P-meson decays,

ΓP→eν

ΓP→μν
¼ m2

e

m2
μ

�
m2

P −m2
e

m2
P −m2

μ

�
2
�
δeP
δμP

��
1þ jVe4j2
1þ jVμ4j2

�
; ð16Þ

can also be used to study the active-sterile mixing matrix
elements since it is independent of hadronic inputs and
common terms of radiative corrections also cancel in
the ratio.
The radiative corrections can be split into short-distance

(SD) and long-distance (LD) parts: δ ¼ δðSDÞ þ δðLDÞ.
The dominant contribution to SD corrections in τ and
P-meson decays is given by

δYXðSDÞ ¼ 1þ 2α

π
ln

�
mZ

mX

�
: ð17Þ

The computation of the LD parts are more difficult to
evaluate, since they depend on the details of the strong
interactions in the transition regime (1–2 GeV), which
involves using phenomenological models including con-
tributions from possible resonances as well as scalar QED,
so that one can consider the meson-photon interactions
beyond the point-meson approximation [15–17]. For
numerical analysis we shall use the ratio of radiative
corrections in the semileptonic τ decays as given in
Ref. [16]:

δPτ
δμP

¼
�
1.0016� 0.0014; for P ¼ π−;

1.0090� 0.0022; for P ¼ K−:
ð18Þ

Similarly, the ratio of OðαÞ radiative corrections for
P-meson decays is given by [17]

δeP
δμP

¼
�
0.9625� 0.0001; for P ¼ π−;

0.9642� 0.0004; for P ¼ K−:
ð19Þ

Once again, by rewriting the partial decay rates in terms
of branching ratios and lifetimes, we can define [using
Eqs. (15) and (16)] the equivalent ratio observables as in
Eq. (15):

Rτ=e ¼
Brðτ → PνÞ
BrðP → eνÞ

τP
ττ

2m2
emτ

m3
P

�
m2

P −m2
e

m2
τ −m2

P

�
2
�
δeP
δPτ

�
; ð20aÞ

Rτ=μ ¼
Brðτ→PνÞ
BrðP→ μνÞ

τP
ττ

2m2
μmτ

m3
P

�
m2

P−m2
μ

m2
τ −m2

P

�
2
�
δμP
δPτ

�
; ð20bÞ

Re=μ ¼
BrðP → eνÞ
BrðP → μνÞ

m2
μ

m2
e

�
m2

P −m2
μ

m2
P −m2

e

�
2
�
δμP
δeP

�
: ð20cÞ

It must be noted that each ratio defined above has two
values: one corresponding to P ¼ π and the other to
P ¼ K. Even though we did not get any extra observables
here, we can probe the same observables from a different
set of decays than the purely leptonic decays of μ and τ
as given in Eq. (11). In fact, if we consider only those
decays that are mediated by charged-current interactions,
we shall be constrained to consider decays of the type
X → Y þ aνl þ bν̄l0 , with l;l0 ¼ e, μ, τ and l ≠ l0, a,
b ¼ 0, 1, and X, Y are appropriate particles. From such
decays we can only extract the ratios Rτ=e, Rτ=μ, and Re=μ

unless we use some other independent information, such
as G0

F, hadronic form factors, or CKM matrix elements.
For this reason, considering the weak neutral-current
processes can be useful.

C. Invisible width of the Z boson and the number
of light active neutrinos

In the presence of a light sterile neutrino, the contribu-
tions to the “invisible” decay width of the Z gauge boson
that stem from Eq. (3) are ν̄lνl; ν̄lν4; ν̄4νl, and ν̄4ν4.
Therefore, the invisible width of Z is given by

Γinv ¼
G0

Fm
3
Z

12
ffiffiffi
2

p
π

X
l¼e;μ;τ

ð1þ jVl4j2Þ2; ð21Þ

where mZ denotes the mass of the Z boson. It is interesting
to note that the Fermi constant used in Eq. (21) is extracted
from the muon decay, which under our assumption of one
sterile neutrino leads to Eq. (4). Therefore, in terms of the
measured Fermi constant GF, the invisible width of Z is
given by

Γinv ¼
GFm3

Z

12
ffiffiffi
2

p
π

1ffiffiffiffiffiffiffi
Σμe

p X
l¼e;μ;τ

ð1þ jVl4j2Þ2: ð22Þ
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If we consider Vl4 ¼ 0, we get the expression for ΓSM
inv

which is the invisible width of the Z boson in the SM. It is
well known that the number of light neutrinos (Nν) is
extracted from the observed invisible width of the Z boson
by using the expression

Nν

3
¼ Γinv

ΓSM
inv

: ð23Þ

Thus, we can express Nν in terms of the active-sterile
mixing matrix elements as follows:

Nν ¼
1ffiffiffiffiffiffiffi
Σμe

p X
l¼e;μ;τ

ð1þ jVl4j2Þ2: ð24Þ

It is clear that Nν can now be used in conjunction with the
ratio operators Rτ=e, Rτ=μ, and Re=μ to constrain the active-
sterile mixing matrix elements. From Refs. [14,18], the
number of light neutrinos is Nν ¼ 2.9840� 0.0082.

D. Energy spectrum of the charged lepton
in leptonic tau decay

Until now we have considered fully phase-space-
integrated partial decay rates for some well chosen decays
as a means to constrain the active-sterile mixing. It is
interesting to ask whether differential partial decay rates or
distributions can be used to look for signatures of the sterile
neutrino. In the presence of one light sterile neutrino,
the energy distribution of the final charged lepton l in the
decay τ → lþ “missing” is modified as follows:

dΓðτ→ lþ “missing”Þ
dEl

¼
�
32mτ

ρ0μeτμ

�
ð3ElEmax

l −m2
l − 2E2

lÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
l −m2

l

q �
Στl

Σμe

�
; ð25Þ

where ρ0μe ¼ m5
μfðm2

e=m2
μÞ and Emax

l ¼ ðm2
τ þm2

lÞ=2mτ,
with l ¼ e, μ. This expression does not contain the effects
of radiative corrections to the lepton spectrum. It is
important to note that this is not a normalized distribution
since in that case the effect of sterile neutrinos will cancel
during normalization. In Fig. 1 we plot the energy dis-
tribution of the muon in τ− → μ− þ “missing” decays. We
have chosen 0.9 ≤ Στμ=Σμe ≤ 1.1 as an example for the
range of the free parameter. The effect of the sterile neutrino
is the same over the whole spectrum although it is more
discernible at the end point of the energy spectrum. It is
important to note that in order to get a prediction for the
effect of the sterile neutrino on the energy spectrum as per
the present data, we must first constrain the individual
mixing matrix elements using our set of observables.

E. Analytical solutions for jVl4j2 in terms
of observables

We have four observables (Rτ=e, Rτ=μ, Re=μ, and Nν)
which can be defined in terms of three active-sterile mixing
matrix elements (jVe4j2, jVμ4j2, and jVτ4j2), as shown in
Eqs. (11) and (24). Since the three ratio observables of
Eq. (11) are not independent, we can always consider Nν

and any two out of the three ratios to solve for the mixing
matrix elements. This gives rise to three closely related
schemes of analytical solutions. In Sec. III we shall present
our numerical analysis following all three schemes.
Scheme A: In this scheme we shall use Rτ=μ, Re=μ, andNν

to solve for the mixing matrix elements. From Eqs. (6),
(11b), and (11c) it is straightforward to get

Σμe ¼ Re=μð1þ jVμ4j2Þ2; ð26aÞ
jVτ4j2 ¼ Rτ=μð1þ jVμ4j2Þ − 1; ð26bÞ
jVe4j2 ¼ Re=μð1þ jVμ4j2Þ − 1: ð26cÞ

Substituting Eq. (26) into Eq. (24) and simplifying, we get

jVμ4j2 ¼
Nν

ffiffiffiffiffiffiffiffiffi
Re=μ

p
1þ R2

e=μ þ R2
τ=μ

− 1: ð27Þ

Finally, substituting Eq. (27) into Eqs. (26b) and (26c),
we get

jVτ4j2 ¼
NνRτ=μ

ffiffiffiffiffiffiffiffiffi
Re=μ

p
1þ R2

e=μ þ R2
τ=μ

− 1; ð28aÞ

jVe4j2 ¼
NνR

3=2
e=μ

1þ R2
e=μ þ R2

τ=μ

− 1: ð28bÞ

FIG. 1. Muon energy spectrum in τ− → μ− þ “missing” decays
for values of Rτ=e ¼ Στμ=Σμe in the range (0.9,1.1) using Eq. (25).
We have considered lepton nonuniversality here, i.e., jVe4j ≠
jVμ4j ≠ jVτ4j, as otherwise Rτ=e ¼ 1 even for the case of one
sterile neutrino.
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Thus, Eqs. (27) and (28) express the active-sterile mixing
matrix elements in terms of the observables Rτ=μ, Re=μ,
and Nν.
Scheme B: In this scheme we shall use the observables

Rτ=e, Re=μ, and Nν. The expressions for the active-sterile
mixing matrix elements in this scheme are obtained
from Eqs. (27) and (28) by making use of the identity
Rτ=μ ¼ Rτ=eRe=μ. Thus, in this scheme we have

jVe4j2 ¼
NνR

3=2
e=μ

1þ R2
e=μð1þ R2

τ=eÞ
− 1; ð29aÞ

jVμ4j2 ¼
Nν

ffiffiffiffiffiffiffiffiffi
Re=μ

p
1þ R2

e=μð1þ R2
τ=eÞ

− 1; ð29bÞ

jVτ4j2 ¼
NνRτ=eR

3=2
e=μ

1þ R2
e=μð1þ R2

τ=eÞ
− 1: ð29cÞ

Scheme C: In this scheme we shall use the observables
Rτ=e, Rτ=μ, and Nν. The expressions for the active-sterile
mixing matrix elements in this scheme are obtained from
Eqs. (27) and (28) by making use of the identity Re=μ ¼
Rτ=μ=Rτ=e. Thus, in this scheme we have

jVe4j2 ¼
NνR

3=2
τ=μ

ffiffiffiffiffiffiffiffiffi
Rτ=e

p
R2
τ=e þ R2

τ=μ þ R2
τ=eR

2
τ=μ

− 1; ð30aÞ

jVμ4j2 ¼
NνR

3=2
τ=e

ffiffiffiffiffiffiffiffiffi
Rτ=μ

p
R2
τ=e þ R2

τ=μ þ R2
τ=eR

2
τ=μ

− 1; ð30bÞ

jVτ4j2 ¼
NνR

3=2
τ=eR

3=2
τ=μ

R2
τ=e þ R2

τ=μ þ R2
τ=eR

2
τ=μ

− 1: ð30cÞ

It is important to note that the ratio observables can be
determined by using either Eq. (11) or Eq. (20). In the
numerical analysis ahead in Sec. III we shall consider both
of these options. Once we know the values of jVl4j2 it
would be interesting to know their impact on short-baseline
neutrino oscillation experiments.

F. Impact of jVl4j on short-baseline neutrino oscillation

In SBL neutrino oscillation experiments, where the
active-sterile neutrino oscillations are easier to observe,
the effective probability of neutrino oscillations from an
initial flavor state να to a final flavor state νβ is given by

PðSBLÞ
αβ ≃

����δαβ − sin22θαβsin2
�
Δm2

SBLL
4E

�����; ð31Þ

where L is the distance between the neutrino source and the
detector, E is the energy of the neutrino beam,Δm2

SBL is the

new squared-mass difference corresponding to oscillations
between the sterile and active neutrinos, and the oscillation
amplitude is given by

sin2 2θαβ ¼ 4jVα4j2jδαβ − jVβ4j2j: ð32Þ

We are interested in sin2 2θμe, sin2 2θee, and sin2 2θμμ
which can be easily constrained once we know jVe4j2
and jVμ4j2 by using our schemes A, B, and C, as discussed
before.

III. NUMERICAL ANALYSIS AND DISCUSSION

In order to numerically estimate the active-sterile mixing
matrix elements using the expressions obtained in the
previous section with schemes A, B, and C, we have used
all of the precise experimental results for branching ratios,
lifetimes, masses, radiative corrections, and the number of
light neutrinos Nν as reported by the Particle Data Group
[14]. In the numerical study we have used Eqs. (11), (20b),
and (20c) for the ratio observables considering both P ¼ π
and P ¼ K. We have done a simple propagation of errors
following the method of quadrature. Our numerical calcu-
lations give the following values for the ratio observables:

Rτ=e ¼ 1.00667� 0.00293 ½using Eq: ð11aÞ�; ð33aÞ

Rτ=μ ¼

8>><
>>:
1.00290�0.00287 ½using Eq: ð11bÞ�;
0.99406�0.00594 ½using Eq: ð20bÞ for P¼ π�;
0.97807�0.01443 ½using Eq: ð20bÞ for P¼K�;

ð33bÞ

FIG. 2. The un-normalized muon energy distribution in the
decay τ− → μ− þ “missing” considering Στμ=Σμe ¼ Rτ=e from
Eq. (33).
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Re=μ ¼

8>><
>>:
0.99626�0.00320 ½usingEq: ð11cÞ�;
0.99589�0.00324 ½usingEq: ð20cÞ for P¼ π�;
1.00436�0.00479 ½usingEq: ð20cÞ for P¼K�:

ð33cÞ

It is quite clear from these results that all of the estimates
for the ratio observables are consistent with 1 within 2σ.

This implies that the 4 × 4 mixing matrix is unitary irre-
spective ofwhetherwe consider the 3 × 3PMNSmatrix to be
unitary or not. Using the value of Rτ=e from Eq. (33), with
Eq. (25)we can plot the un-normalized energy distribution of
the muon in the decay τ− → μ− þ “missing”, as shown in
Fig. 2. It is clear from this distribution that the current data
from weak decays is consistent with the absence of light
sterile neutrinos. Since the search for light sterile neutrinos is
traditionally done via short-baseline neutrino oscillation

TABLE I. Predicted values for jVl4j2 (with l ¼ e, μ, τ) from weak decays following schemes A, B, and C. The pairs of ratio
observables used in these predictions are Rτ=μ and Re=μ for scheme A, Re=μ and Rτ=e for scheme B, and Rτ=μ and Rτ=e for scheme C. In all
of the schemes the observable Nν, the number of light neutrinos, is used.

(a)

Predicted values for jVe4j2
Scheme C

Re=μ Rτ=e

Eq. (20c)

Scheme A Eq. (11c) P ¼ π P ¼ K Eq. (11a)

Rτ=μ Eq. (11b) 0.01036� 0.00425 0.01067� 0.00428 0.00365� 0.00517 0.01036� 0.00276
Eq. (20b) P ¼ π 0.00450� 0.00549 0.00481� 0.00551 0.00222� 0.00623 0.01186� 0.00290

P ¼ K 0.00614� 0.01037 0.00583� 0.01038 0.01288� 0.01079 0.01478� 0.00386
Scheme B
Rτ=e 0.01036� 0.00277 0.01043� 0.00277 0.00905� 0.00283

(b)

Predicted values for jVμ4j2
Scheme C

Re=μ Rτ=e

Eq. (20c)

Scheme A Eq. (11c) P ¼ π P ¼ K Eq. (11a)

Rτ=μ Eq. (11b) 0.00665� 0.00337 0.00659� 0.00337 0.00798� 0.00342 0.00665� 0.00361
Eq. (20b) P ¼ π 0.00076� 0.00485 0.00070� 0.00485 0.00214� 0.00486 0.00067� 0.00565

P ¼ K 0.00992� 0.01007 0.00998� 0.01008 0.00848� 0.01003 0.01403� 0.01244

Scheme B
Rτ=e 0.00665� 0.00381 0.00634� 0.00383 0.01336� 0.00480

(c)

Predicted values for jVτ4j2
Scheme C

Re=μ Rτ=e

Eq. (20c)

Scheme A Eq. (11c) P ¼ π P ¼ K Eq. (11a)

Rτ=μ Eq. (11b) 0.00376� 0.00294 0.00370� 0.00294 0.00510� 0.00300 0.00376� 0.00278
Eq. (20b) P ¼ π 0.00670� 0.00342 0.00664� 0.00342 0.00806� 0.00349 0.00527� 0.00292

P ¼ K 0.01222� 0.00582 0.01216� 0.00582 0.01364� 0.00589 0.00821� 0.00389

Scheme B
Rτ=e 0.00376� 0.00279 0.00382� 0.00279 0.00244� 0.00284
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experiments, looking at the estimates of active-sterile mixing
matrix elements as well as the oscillation amplitude would
be very useful.
Using the values of the ratio observables as shown

in Eq. (33) we can predict the values for jVl4j2 (with
l ¼ e, μ, τ) following schemes A, B, and C. The pre-
dictions for jVe4j2, jVμ4j2, and jVτ4j2 are tabulated in
Tables I(a), I(b), and I(c), respectively. Taking the average
of these determined values, we get

jVe4j2 ¼ ð8.53� 5.36Þ × 10−3; ð34aÞ

jVμ4j2 ¼ ð6.73� 5.94Þ × 10−3; ð34bÞ

jVτ4j2 ¼ ð6.62� 3.65Þ × 10−3: ð34cÞ

Once again these values are consistent with 0, i.e., with
no active-sterile mixing, within 2σ. The upper limits for

TABLE II. Values for sin2 2θμe, sin2 2θee, and sin2 2θμμ predicted by using the values of jVe4j2 and jVμ4j2 [see Tables I(a) and I(b),
respectively] predicted from weak decays following schemes A, B, and C.

(a)

Predicted values for sin2 2θμe ¼ 4jVμ4j2jVe4j2
Scheme C

Re=μ Rτ=e

Eq. (20c)

Scheme A Eq. (11c) P ¼ π P ¼ K Eq. (11a)

Rτ=μ Eq. (11b) ð2.76� 1.80Þ × 10−4 ð2.81� 1.83Þ × 10−4 ð1.17� 1.72Þ × 10−4 ð2.76� 1.67Þ × 10−4

Eq. (20b) P ¼ π ð0.14� 0.89Þ × 10−4 ð0.14� 0.95Þ × 10−4 ð0.19� 0.68Þ × 10−4 ð0.32� 2.68Þ × 10−4

P ¼ K ð2.44� 4.80Þ × 10−4 ð2.33� 4.77Þ × 10−4 ð4.36� 6.33Þ × 10−4 ð8.29� 7.67Þ × 10−4

Scheme B
Rτ=e ð2.76� 1.74Þ × 10−4 ð2.64� 1.75Þ × 10−4 ð4.84� 2.30Þ × 10−4

(b)

Predicted values for sin2 2θee ¼ 4jVe4j2j1 − jVe4j2j
Scheme C

Re=μ Rτ=e

Eq. (20c)

Scheme A Eq. (11c) P ¼ π P ¼ K Eq. (11a)

Rτ=μ Eq. (11b) ð4.10� 1.67Þ × 10−2 ð4.22� 1.67Þ × 10−2 ð1.46� 2.05Þ × 10−2 ð4.10� 1.08Þ × 10−2

Eq. (20b) P ¼ π ð1.79� 2.18Þ × 10−2 ð1.92� 2.18Þ × 10−2 ð0.88� 2.48Þ × 10−2 ð4.69� 1.14Þ × 10−2

P ¼ K ð2.44� 4.10Þ × 10−2 ð2.32� 4.10Þ × 10−2 ð5.08� 4.20Þ × 10−2 ð5.82� 1.50Þ × 10−2

Scheme B
Rτ=e ð4.10� 1.09Þ × 10−2 ð4.13� 1.09Þ × 10−2 ð3.59� 1.11Þ × 10−2

(c)

Predicted values for sin2 2θμμ ¼ 4jVμ4j2j1 − jVμ4j2j
Scheme C

Re=μ Rτ=e

Eq. (20c)

Scheme A Eq. (11c) P ¼ π P ¼ K Eq. (11a)

Rτ=μ Eq. (11b) ð2.64� 1.33Þ × 10−2 ð2.62� 1.33Þ × 10−2 ð3.17� 1.35Þ × 10−2 ð2.64� 1.43Þ × 10−2

Eq. (20b) P ¼ π ð0.31� 1.94Þ × 10−2 ð0.28� 1.94Þ × 10−2 ð0.85� 1.94Þ × 10−2 ð0.27� 2.26Þ × 10−2

P ¼ K ð3.93� 3.95Þ × 10−2 ð3.95� 3.95Þ × 10−2 ð3.36� 3.94Þ × 10−2 ð5.53� 4.84Þ × 10−2

Scheme B
Rτ=e ð2.64� 1.50Þ × 10−2 ð2.52� 1.51Þ × 10−2 ð5.27� 1.87Þ × 10−2
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jVe4j2, jVμ4j2, and jVτ4j2 at the 90% confidence level are
1.73 × 10−2, 1.65 × 10−2, and 1.26 × 10−2, respectively.
From the SBL global fits [11] we find the following:
(i) jVe4j2 ≈ 0.010� 0.003, which is compatible with our
estimate; (ii) depending on the value of the squared-mass
difference Δm2

41, the upper limit of jVμ4j2 at the 90% C.L.
varies in the range [0.004, 0.007], which is smaller than our
estimate; and (iii) jVτ4j2 < 0.13 (at the 90% C.L.), which is
larger than our estimate. Nevertheless, we also compute
the values for sin2 2θμe, sin2 2θee, and sin2 2θμμ, which are
listed in Table II. Taking the average of the predicted values
of Table II, we get

sin2 2θμejavg ¼ ð2.53� 2.77Þ × 10−4; ð35aÞ

sin2 2θeejavg ¼ ð3.38� 2.11Þ × 10−2; ð35bÞ

sin2 2θμμjavg ¼ ð2.67� 2.34Þ × 10−2: ð35cÞ

These results are consistent with 0 within 2σ. The upper
limits for sin2 2θμe, sin2 2θee, and sin2 2θμμ at the 90%
confidence level are 7.07 × 10−4, 6.84 × 10−2, and
6.50 × 10−2, respectively. Thus, the presence of sterile
neutrinos cannot be inferred from the existing data on
charged-current weak decays and the invisible decay width
of the Z boson. Nevertheless, it is very interesting to note
that the 2018 MiniBooNE result [5] hints at the possibility
that there might exist a light sterile neutrino with appreci-
able mixing with light active neutrinos with a best-fit value
of sin2 2θ ¼ 0.894. This value is far above the value
predicted in Eq. (35). Thus, our prediction directly contra-
dicts the MiniBooNE result. On the other hand, if the
MiniBooNE result were correct we should observe the
effect of the sterile neutrino in the weak decays we have
discussed. We can also compare our estimates with the
best-fit values given by SBL global fit results [11]:

sin22θμe ¼
�
6.97 × 10−3 ðDaRÞ;
6.31 × 10−3 ðDiFÞ;

where DaR and DiF denote the fact that the global fit
includes neutrinos and antineutrinos produced from π
decay at rest and π decay in flight, respectively. These
values are larger than our estimates.

IV. CONCLUSION

In conclusion, we would like to emphasize that the
approach we elaborated in this paper can provide an

independent and robust probe of active-sterile neutrino
mixing in addition to the traditional approach of using
short-baseline neutrino oscillation experiments. Using the
precision measurements of the low-energy charged-current
processes—namely, leptonic decays of μ, τ, π, and K, and
semileptonic decays of τ—we defined three ratio observ-
ables. Along with these three ratio observables, which can
be easily studied experimentally, we also used the number
of light neutrinos from the invisible decay of the Z boson
which is also a very precise measurement. These four
quantities form the basis of our methodology. There are
three numerical schemes for finding all three active-sterile
mixing matrix elements, viz., jVl4j for l ¼ e, μ, τ. If there
exists a sterile neutrino having appreciable mixing with
active neutrinos, it would affect the precision measure-
ments used in our approach. Our approach, therefore, can
be used not only to discover a sterile neutrino, but also to
study the mixing very precisely. It is also important to note
that our approach is strictly valid if the 4 × 4 neutrino
mixing matrix is not unitary and if lepton universality is not
imposed a priori. Both assumptions are not in conflict with
currently existing experimental data. If one considers the
4 × 4 neutrino mixing matrix to be unitary, then the
nonoscillation observables considered in our approach
become redundant and do not constrain those mixings
and the sterile neutrino hypothesis cannot be tested with our
method. However, as is evident from our numerical results,
the 4 × 4 mixing matrix is consistent with being a unitary
matrix. Finally, we must note that our numerical analysis
considering the existing data is consistent with the no-
sterile-neutrino hypothesis. Nevertheless, in the event of
any future claim of the discovery of sterile neutrinos from
short-baseline neutrino oscillation experiments, it would
be necessary to test the claim with the method we have
presented here.
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