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Current dark matter detection strategies are based on the assumption that the dark matter is a gas of
noninteracting particles with a reasonably large number density. This picture is dramatically altered if there
are significant self-interactions within the dark sector, potentially resulting in the coalescence of dark
matter particles into large composite blobs. The low number density of these blobs necessitates new
detector strategies. We study cosmological, astrophysical and direct detection bounds on this scenario and
identify experimentally accessible parameter space. The enhanced interaction between large composite
states and the standard model allows searches for such composite blobs using existing experimental
techniques. This includes the detection of scintillation in MACRO, XENON and LUX; heat in calorimeters
such as CDMS; acceleration and strain in gravitational wave detectors such as LIGO and AGIS; and spin
precession in CASPEr. These searches leverage the fact that the transit of the dark matter occurs at a speed
∼220 km=s, well separated from relativistic and terrestrial sources of noise. They can be searched for either
through modifications to the data analysis protocol or relatively straightforward adjustments to the
operating conditions of these experiments.
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I. INTRODUCTION

Identifying the nature of dark matter is one of the great
open challenges in physics. Discovery of the nongravita-
tional properties of dark matter would provide a portal into
a new sector of particle physics and may shed light on its
unique role in structure formation. All current dark matter
detection strategies, ranging from direct detection efforts in
the laboratory to indirect signals from the annihilation (or
decay) of dark matter, are based on the assumption that the
dark matter is distributed around the Universe as a gas
of free particles with a reasonably large number density.1

This large number density yields a high enough flux of dark
matter enabling the detection of rare dark matter events.
This picture of dark matter as a gas of free particles

naturally emerges if self-interactions within the dark
sector are weak. What if the dark sector had strong

self-interactions? In this case, much like the standard
model undergoing nucleosynthesis and producing com-
posite nuclei, the dark sector will also undergo a nucleo-
synthesis process in the early Universe that may be highly
efficient since it need not suffer from the accidents of
nuclear physics in the standard model that inhibit the
production of heavy elements. As a result, individual dark
matter particles could coalesce to form very large
composite states [1–3].2 (See also Refs. [4,5] for further
examples of dark matter nucleosynthesis resulting in more
modestly sized states.) Observational constraints on these
self-interactions are weak. The most stringent constraints
arise from observations of the bullet cluster, restricting
these self-interaction cross sections to be less than approx-
imately 1 cm2=gm [6,7]. Since this bound is based on the
dark matter distribution today, it is significantly weakened
if the dark matter is clustered into heavy composite states
with a low number density. There could also be constraints
on dark matter self-interactions from small scale structure,
such as the formation of dark disks [8,9], but as it is
nontrivial to map model-specific interactions to small scale
structure constraints, we focus only on the bullet cluster
constraints.
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1The exceptions are searches for dark matter with astrophysical
scale mass, such as primordial black holes.

2Note that this requires a particle-antiparticle asymmetry in the
dark sector [1,2].
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In this paper, we study observational limits on such large
composite states of dark matter and propose generic
experimental strategies that could be employed to search
for them in the laboratory. We will henceforth refer to these
states as dark blobs. Our investigation is restricted to dark
blobs with mass less than 1033 GeV, so at least one dark
blob passes through the Earth in a year, enabling the
possibility of direct detection.3 The challenge in detecting
this type of dark matter arises from the fact that their
number density is low, necessitating detectors of large
volume. However, the large number of constituents in the
blob enhances the scattering cross section between the blob
and a detector—in particular, significant enhancements are
possible if the scattering is coherent—see Ref. [12] for a
detailed study of direct detection form factors. This
potentially enables multiple observable interactions of
the dark blob with the standard model. Our detection
strategy will leverage the fact that the transit of dark matter
occurs at a speed v ∼ 10−3, characteristic of dark matter.
This speed lies in an interesting window between terrestrial
sources of noise and the relativistic speeds of cosmic ray
events. Moreover, events induced by the dark matter should
also lie along a straight line, enabling an additional back-
ground discriminant.
We model the blob as a composite state of dark matter,

consisting of a large number of dark matter particles bound
by some self-interaction in the dark sector. We assume that
the total mass of the blob that contains NX constituents,
hereby labeled as χ, of mass mχ is MX ¼ NXmχ . The Bohr
radius of the constituents in the bound state is Λ−1

χ . The
scale Λχ (through a form factor) determines the momenta
that can be exchanged between the blob and the standard
model. The binding energy of χ to the blob is also a
function of Λχ , though this energy will not play as direct a
role in our phenomenology (see e.g., Refs. [1,13,14] for
a study of large composite state structure).
The primary objective of this paper is to explore the

qualitative features of the phenomenology of these blobs
and to establish the robustness of the parameter space that
could be experimentally accessed. We establish these by
studying a restricted range of parameters, where these
qualitative features can be unambiguously seen. Therefore,
in this paper, we limit our investigation to interactions
between blobs and nuclei, though the mediator may directly
couple to either nucleons or photons. Moreover, we
will mostly only study the parameter space where
10 keV ⪅ Λχ ⪅ 10 MeV. This is because the maximum
momentum that can be exchanged between χ and a probe is
the smaller of Λχ and the momentum of the probe.4 In a

terrestrial experiment, a probe nucleus will collide with the
blob with a momentum ∼10 MeV. The phenomenology of
the blobs whenΛχ ⪆ 10 MeV should thus be similar to that
of the case where Λχ ∼ 10 MeV and will thus not be
separately analyzed. The lower limit Λχ ∼ 10 keV is
imposed for convenience. As we will see below, this limit
makes it easier to treat the coherent scattering of a bosonic
blob in high density matter. Moreover, it also enables us to
ignore inelastic excitations of the blob due to its inter-
actions with the standard model. Finally, for simplicity, in
this paper we only consider the case where Λχ≊mχ .
The phenomenology of the blob changes drastically

depending upon whether the constituents χ are bosonic
or fermionic. The size of a bosonic bound state is
independent of the number of constituents in that state,
while Pauli exclusion forces the fermionic blob to increase
its size as it grows in mass. We thus study the bosonic and
fermionic cases separately, in Secs. II and III, respectively.
In each section, we begin our analysis by computing the
scattering cross section between the blob and the standard
model. This cross section is used to compute observational
bounds on the blob from terrestrial, astrophysical and
cosmological observations. We assume that the constituents
χ of the blob and the standard model interact with each
other through a mediator ϕ of mass μ. When the mediator
has a range shorter than the de Broglie wavelength of the
standard model probe, the interaction has to be described
using quantum mechanics. Long-range mediators can be
treated classically.
Irrespective of the microphysics of the blobs, there are

only four possible experimental signatures of the inter-
action of the dark blob with nucleons. For short-range
mediators, the only possible effect is the deposition of
energy by the blob when it collides with nucleons. This
energy may be sufficient to ionize the standard model probe
or may simply dump energy into acoustic modes. Energy
can also be similarly deposited if the blob exerts long-range
forces on nuclei. In addition to energy deposition, a
classical field can have three other physical effects: it
can induce precession of spins, accelerate matter and
change the values of fundamental constants. Of these
experimental signatures, ionization is presently searched
for in a number of experiments and is well constrained. We
propose new experimental techniques to search for the
other effects in Sec. IV.
An important phenomenological property of blobs is that

the sensitivity of these detection methods is generally
insensitive to what fraction of dark matter is blobs. In
general, the number of blobs of mass MX, which comprise
a fraction fX of the total DM energy density, ρDM, that
pass through a detector of fiducial volume V that runs for
a time T is

NðMXÞ ∼ v

�
fXρDM
MX

�
V2=3T ð1Þ

3Blobs in this mass regime cannot be detected gravitationally
since their mass and radii, as compared to the Schwarzschild
radius, are far too small to induce any noticeable gravitational
lensing effect [10,11].

4This arises from bound state form factors; see the Appendix
and Ref. [12].
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where v ∼ 10−3 is the typical DM velocity in the
Milky Way. As long as NðMXÞ≳ 1, the experiment, in
general, has a sensitivity to the coupling to the dark sector
that is independent of fX. This insensitivity to fX is because
blobs are guaranteed to interact with every SM probe that
they encounter, as either the cross section is larger than the
atomic cross section (short-range mediator) or the inter-
action is completely classical (long-range mediator), as will
be detailed in later sections. Therefore, as long as the blob
either passes through the detector or passes within the range
of the mediator, a scattering event is guaranteed to happen.
This independence is in direct contrast to traditional
particle dark matter searches, such as those for weakly
interacting massive particles (WIMPs), where the sensi-
tivity decreases as a function of fWIMP, the fraction of the
DM energy density due to WIMPs.

II. BOSONIC BLOB

We consider a blob of mass MX consisting of NX ¼
MX=mχ particles, each ofmassmχ . This blob is spread over a
distance Λ−1

χ . A model-independent bound can be placed on
NX by demanding that the mass confined withinΛχ does not
form a black hole—this mass is ∼M2

Pl=Λχ ≫ 1033 GeV, the
largest mass that is of interest in a terrestrial detector,
for Λχ ⪅ 10 MeV. After computing the scattering cross
section between the blob and the standard model in
Secs. II A and II B, we discuss the bounds on the mediator
and evaluate observational constraints on this kind of blob in
Sec. II C.

A. Short range

We assume that χ interacts with the standard model
through a scalar mediator ϕ through the Lagrangian:

L ⊃ gχmχϕχ
�χ þ gNϕΨ̄NΨN ð2Þ

whereΨN represents a nucleon. Upon integrating out ϕ, the
effective interaction is described by a contact operator, Oc,

Oc ∼
gχgNmχχ

�χΨ̄NΨN

μ2
ð3Þ

where μ is the mass of the mediator. The coupling between
the dark matter and the mediator induces an analogous self-
interaction in the blob, which limits the number of
constituents in a stable blob. Specifically, this coupling
leads to a quartic self-interaction term g2χm2

χ=μ2χ4 between
the constituents. In order for the blob to be stable, the
energy induced by this quartic term must be smaller than
the energy arising from the quadratic term, i.e.,

ðg2χm2
χ=μ2Þχ4s ≲m2

χχ
2
s χs ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMX=m2

χÞΛ3
χ

q
ð4Þ

where χs is the classical field value of χ in the blob.
Assuming mχ ∼ Λχ , we find that gχ is constrained to be

gχ ⪅ ðμ=ΛχÞN−1=2
X : ð5Þ

Note that there may be ways to model-build around this
constraint by introducing additional interactions, though
we do not pursue this in this paper.
There are two important effects that determine the

scattering cross section between a blob and nucleus.
First, the scattering occurs between the constituents (χ)
in the blob and the nucleon, and therefore the momentum q
that can be transferred in such a process is determined by
the bound state wave function of the constituent; such form
factors have been studied in the context of blobs in [12].
This inhibits momentum transfers q ≫ Λχ . Second, the
scattering cross section between the blob and the nucleon
can be coherently enhanced by the number of constituents
in the blob. The details of this calculation are summarized
in the Appendix. Using this result, the differential scatter-
ing cross section off a nucleon is

dσ
dΩ

¼ N2
X

�
g2χg2Nm

2
N

μ4

�
FBðq=ΛχÞ ð6Þ

where FB is a form factor that suppresses momentum
transfers between the blob and the nucleons that are bigger
than the Bohr radius Λ−1

χ . This scattering cross section is
coherently enhanced by N2

X as long as the momentum
transfer and the de Broglie wavelength of the probe nucleon
are larger than Λ−1

χ . By choosing Λχ ⪆ 10 keV, this
condition is satisfied for a typical terrestrial detector, where
one might consider the collision of a nucleus at temper-
atures ∼300 K with the blob. For a short-range mediator,
the above coherently enhanced cross section is cut off by
the geometric size of the blob. Hence, the total scattering
cross section between the blob and a nucleon is

σ ≃Min

�
N2

X

g2χg2Nm
2
N

μ4
Λ2
χ

m2
Nv

2
χ
;
1

Λ2
χ

�
ð7Þ

where the suppression factor Λ2
χ=ðm2

Nv
2
χÞ arises from the

fact that the form factor suppresses momentum transfer
larger than Λχ , leading to a reduction in the phase space
available for scattering.
In this paper, we limit our investigation to the parts of

parameter space where σ ¼ Λ−2
χ , with the maximum

momentum transferred set by q ∼ Λχ. This parameter space
is shown in Fig. 1. In this range, when a blob transits a
medium of number density ηm, the energy deposited per
unit length in this medium is

dE
dx

∼
Λ2
χ

mp

1

Λ2
χ
ηm ∼

ηm
mp

∼ keV=cm

�
ηm

1022=cm3

�
ð8Þ

where mp is the mass of the probe. In this limit, when the
de Broglie wavelength of the probe is larger than the
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geometric size of the blob, the total energy deposited by
the blob is independent of the physics of the blob.
However, the form in which the energy is deposited
depends critically on Λχ . For Λχ ⪆ MeV, the energy
deposited in an individual collision is large enough to
cause ionization. These signals can be searched for in
conventional WIMP detection experiments, particularly in
low threshold detectors. But, when Λχ ⪅ MeV, the energy
deposition occurs through a number of soft scatterings,
none of which is sufficient to cause ionization. These soft
scatters require a qualitatively different class of dark matter
detectors, some of which we discuss in Sec. IV.
When the de Broglie wavelength λp of the probe is

smaller than the geometric size ∼Λ−1
χ of the blob, as

discussed in the Appendix, coherent enhancements to
the cross section are possible, but the enhancement is
limited by the de Broglie wavelength λp of the probe. This
leads to suppressed energy deposition in the medium, and
we do not consider this case for bosonic constituents.

B. Long range

A long range field sourced by the blob can directly cause
accelerations, induce spin precessions and change the
values of fundamental constants. To analyze these, we
consider the Lagrangian

L ⊃ gχmχϕχ
�χ þ gNϕΨ̄NΨN|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

O1

þ ∂μϕ

fN
Ψ̄Nγ

μγ5ΨN|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
O2

þ ϕ

αEMM
FμνFμν|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

O3

ð9Þ

where the operator O1 leads to accelerations, O2 causes
spin precessions andO3 changes the value of αEM, the fine-
structure constant.5

Similar to the short-range case, the coupling between
the constituents and the mediator induces additional self-
interactions in the blob itself. When the blob contains a
large number of particles, the forces from the classical field
sourced by the constituents can destabilize the blob. As a
consistency check, we demand that the energy shift caused
on a single χ due to the Nχ particles in the blob is less than
Λχ , i.e., Nχ ⪅ 1=g2χ . In our sensitivity estimates, shown in
Figs. 2–4 and explained in detail in Secs. II C and IV, we
demarcate the regions where the blob satisfies this self-
consistency check. Note that we also show parameter
space that violates this check, as a blob that fails this
check might have more complicated dynamics (e.g., addi-
tional stabilizing forces) yet lead to similar observational
phenomenology.
As previously mentioned, one way of detecting dark

blobs is by looking for the energy deposited by a blob
during its transit through a medium. This energy deposited
depends not only on the density of the medium ηm but also
on the speed of the blob and the speed of sound in the
medium. In the terrestrial context, the speed of the blob is
much larger than the speed of sound in materials, so the
energy deposited in this transit can be calculated using the
instant approximation (similar to calculations of dynamical
friction), leading to energy loss of

FIG. 1. Reach on coupling gχ for a bosonic blob of massMX ¼
1016 GeV and Bohr radius Λχ ¼ 100 keV, as a function of short-
range mediator mass μ. We have set gN ¼ 1. For this value of Λχ ,
energy deposition is due to many soft scatterings that are
insufficient to cause ionization, yet still be detected in CDMS.
The lower bound on gχ arises from our requirement that the cross
section saturate the geometric cross section bound, i.e., σ ∼ 1=Λ2

χ .

FIG. 2. Reach on coupling gχ for a bosonic blob with Bohr
radius Λχ ¼ 10 keV and a 200 km-range scalar mediator, as a
function of blob mass MX . Without additional model building,
only AGIS is sensitive enough to probe the extremely weak
coupling between the mediator and the dark sector. The different
shading for this atomic interferometer reach is explained in
Sec. V.

5Dilatons can also change electron and nucleon masses; these
effects can be similarly analyzed.
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dE
dx

∼ 2π

Z
1=μ

0

dr r ηmMN

�
FðrÞ
mp

r
v

�
2

ð10Þ

where FðrÞ is the force experienced by a probe at a distance
r from the blob.
When the sound speed in medium is much larger than the

speed of the dark blob relative to the medium, such as in
the early Universe, Eq. (10) must be modified. In particular,
the relative velocity vC between the blob and the medium
is significantly smaller than the speed of sound cs during
baryon acoustic oscillations. The drag force in this limit can
be estimated through the following argument: a baryon of
mass mp at a distance r from the blob experiences a force
FðrÞ. The response time of the medium due to this force

is ∼r=cs. The velocity gained by the baryon within this
response time is ∼ðFðrÞmp

r
cs
Þ. For there to be a drag force on

the blob, there must be an asymmetry in the response of the
medium to the blob—this arises due to the relative velocity
vC between the blob and the medium. For baryons at a
distance r from the blob, the asymmetry due to the motion
of the blob in the response time ∼r=cs is ∼vC=cs. Thus, the
energy deposited is

dE
dx

∼ 2π

Z
1=μ

0

dr r ηm mp

�
FðrÞr
mpcs

�
2
�
vC
cs

�
: ð11Þ

For a systematic analysis of this drag force, see [15].
In addition to energy depositions, the operators O2 and

O3 induce spin precession and strain, yielding qualitatively
new experimental signatures. In a terrestrial experiment, the
net change in a sample caused by the transit of the blob
can also be calculated using the sudden approximation: the
impulse from the transit leads to an instantaneous, poten-
tially observable, change to the state of the system. For
example, consider a spin at a distance 1=Λχ ⪅ r ⪅ 1=μ
from the blob, i.e., a spin that is well outside the geometric
size of the blob but within the range of ϕ. This spin rotates
by an angle

δθ ∼
gχNX

fNrv
ð12Þ

due to the transit of the blob. As will be discussed in
Sec. IV D, the change in the spin orientation leads to a
change in magnetization of a sample that can then be
picked up by a SQUID. The operator O3 changes the fine-
structure constant, inducing strain in materials bound
together by electromagnetism. A probe, again at a distance
1=Λχ ⪅ r ⪅ 1=μ, experiences a strain

h ∼
gχNX

rM
ð13Þ

due to the blob. The observable consequences of this strain
depend upon the probe, though, in general, such strains can
be looked for by experiments built to detect gravitational
waves. Note that the force induced by O3 arises from the
electromagnetic contribution to the nuclear mass (of charge
Z and atomic mass A) and is

F ∼
Z2

4π

1

A1=3 fm

αEM
M

∇ϕ: ð14Þ

We discuss in greater detail the methods to search for these
novel effects caused by the operatorsO2 andO3 in Sec. IV.

C. Constraints

There are three classes of bounds on this specific dark
matter scenario, for both short-range and long-range

FIG. 3. Reach on coupling gχ for a bosonic blob with Bohr
radius Λχ ¼ 10 keV and a pseudoscalar mediator with a 6000 km
range, as a function of blob massMX . Due to the highly compact
nature of the bosonic blob, the blob cannot deposit much energy
as it passes through detectors that look for either ionization or
heat deposition. The different shading for the reach of a NMR-
type experiment is explained in Sec. V.

FIG. 4. Reach on coupling gχ for a bosonic blob with Bohr
radius Λχ ¼ 10 keV and a 200 km-range dilaton mediator, as a
function of blob mass MX. The different shading for the reach of
both interferometer experiments is explained in Sec. V.
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mediators. The first class arises from constraints on the
mediator ϕ due to its interactions with the standard model.
The second class arises from direct collisions of the blob
with terrestrial experiments. The last class involves astro-
physical and cosmological bounds. We discuss these
bounds in the following subsections.

1. Mediators

The interactions of ϕ with the standard model are
constrained by a multitude of experiments. As above, we
consider two different mediator mass ranges. For long
range interactions with the standard model, we consider
mediators that have an interaction length scale ranging
from a micrometer up to the radius of the Earth:
μm≲ 1=μ ≲ 6000 km. In this range, scalar and dilaton
couplings are constrained by searches for new forces in the
laboratory [16], while pseudoscalars are limited by astro-
physical constraints on stellar cooling, such that fN ⪆
1010 GeV [17] (see [18] for a recent update on this coupling
in a much higher mediator mass range). For short-range
interactions, we simply take gN , gχ ∼Oð1Þ with μ ⪆ TeV,
whence μ satisfies collider constraints. Note that the short-
range scattering cross section is geometric (i.e., σ ∼ Λ−2

χ ) as
long as

MX ⪆ 108 GeV

�
vχ
10−3

��
μ2

TeV2

��
10 keV
Λχ

�
; ð15Þ

which is easily satisfied in our parameter range.
The above choice for the mediator range is largely made

for simplicity—we wish to demonstrate the experimental
viability of this parameter space. A more detailed analysis of
the bounds [19] could reveal additional parts of parameter
space where significant scattering might be possible.

2. Direct detection

The most stringent direct detection constraint on this
scenario arises from the MACRO experiment due to its
large operating volume [20–22]. MACRO is sensitive to
ionizing interactions that deposit energies of at least
6 MeV=cm. The energy deposited by short-range media-
tors in our scenario is around keV=cm, and these dark
matter blobs with bosonic constituents are not constrained
by MACRO. Long-range interactions are able to deposit
energies of around 10 eV=Å; these do cause ionization6

and are constrained by MACRO, as shown in Figs. 2–4.
For lower energy deposition, the blob will lead to
multiple scattering events in direct detection experiments
and can be searched for using an optimized search.
CDMS has performed searches similar in spirit to this

event topology—the aim was to search for lightly ionizing
particles (LIPS) [24]. However, the LIPS search requires
the events to have a profile (in ionization/phonon yield)
similar to electron recoils—a restriction that blinds it to
blobs depositing energy through nuclear collisions.
It is important to note that even with an energy

deposition of around 10 eV=Å, for blob masses larger
than ∼1010 GeV, the blob will be able to penetrate more
than a km of rock overburden and thus lead to signals in
these experiments.

3. Astrophysical and cosmological bounds

In addition to these direct limits, there are also astro-
physical and cosmological bounds on these dark blobs. The
blobs have large self-interaction cross sections that are
bounded by observations of merging clusters to be no
greater than approximately 1 cm2=gm. For bosonic bound
states interacting through a short-range mediator, this
bound is satisfied as long as

MX ⪆ 10−4 GeV3=Λ2
χ ; ð16Þ

which is trivially satisfied in our parameter space. In the
case of a long-range mediator, the cross section for the
scattering to change the momentum of the blob by Oð1Þ is
the smaller of μ−2 and the Coulomb scattering momentum
transfer cross section. The latter can be approximated as
1=R2

C, where RC is the classical turnaround point,

RC ¼
W
�
g2χN2

X
πvχ

μ
MX

�
μ

∼
g2χN2

X

πv2χMX
; ð17Þ

where WðxÞ is the Lambert W-function, also known as
a product logarithm. Note that the relative velocity is
vχ ∼ 10−2 in the bullet cluster merger [25]. Additionally,
measurements of the cosmic microwave background con-
strain the energy that can be transferred to the blob in the
early Universe, such that the momentum exchange rate

1
MXvC

dE
dx between the dark matter and the baryons is smaller

than the Hubble scale at a redshift factor of z≊105 [26].
Using the calculations of the deposited energy in Eqs. (8)
and (11), it is easy to verify that these cosmological bounds
are satisfied.7 It is important to note that these astrophysical
and cosmological bounds apply only if the blobs con-
stituted all of the dark matter. If the blobs were less than
10% of the dark matter, the effects of their scattering would
not be observable in these measurements.

6We do not include the effect of ionization efficiency for low
energy nuclear recoils in making our projections; this can be of
order ⪅ 0.1 [23].

7We note that the expression in (11) applies also to the case of
spin-dependent interactions in the unpolarized medium of the
CMB. This is because the spin-polarizability of the medium is
high, enabling spins to independently respond to the forces
created by the blob.
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Given the complexities of a dark sector with strong self-
interactions, it is not unreasonable to expect that only a
fraction of the dark matter ends up in blobs within the mass
range of interest to us. In our assessment of experimental
reach, we will thus consider parts of parameter space where
these bounds are violated—it is understood that in this part
of parameter space, the expected density of the blobs is
∼1=10 the ambient dark matter density, i.e., fX ∼ 1=10. In
these regions, the only effect of having blobs be subcom-
ponent dark matter is that the maximummass that a specific
experiment can probe goes down by an order of magnitude;
the sensitivity to the coupling gχ remains the same. For
example, if blobs made up the entirety of the DM energy
density, MACRO can place constraints on blobs of a
maximum mass of ∼1024 GeV; if blobs make up only
10% of the dark matter, MACRO is sensitive to a maximum
mass of only ∼1023 GeV. We demarcate the regions of
parameter space where SIDM constraints require blobs of a
specific mass MX to be subcomponent on all the sensi-
tivity plots.
It is also possible to place bounds on these scenarios

through the accumulation of dark matter blobs in compact,
high density objects such as white dwarfs [27,28] and
neutron stars [29]. Over the lifetime of these stars, the
accumulated dark matter could trigger explosive processes
such as the initiation of runaway nuclear fusion in white
dwarfs or the gravitational collapse of the dark matter into a
black hole within the star. It is difficult to place model-
independent bounds on our scenario through these phe-
nomena. The density of the accumulated dark matter in
such objects could be much larger than the densities in the
blob. This larger density could trigger new processes
(through higher dimension operators) within the dark sector
(e.g., cause a bosenova), causing the destruction of the
object well before it accumulates enough matter to affect
the star. Thus, we do not consider potential bounds from
these phenomena in this paper.

III. FERMIONIC BLOB

In this section, we consider the case where the constitu-
ents χ of the blob are fermions. Due to Pauli exclusion, such
a blob has a larger geometric size than the bosonic case. We
consider a blob of mass MX consisting of NX ¼ MX=mχ

particles, each of massmχ . These particles are held together
by a strong force Λχ , and the blob has a radius

RX ∼ N1=3
X =Λχ . In our analysis, we take Λχ ∼mχ , and thus

the phenomenology of our blobs should be similar to that of
nuclear physics.8 These types of blobs could be formed in
the early Universe via fusion reactions, similar to how small
SM nuclei are formed during big bang nucleosynthesis.
The ability to form blobs of a certain mass via early

Universe fusion is heavily dependent on the mass of blob
constituents, the strength and range of the binding force
(equivalent to the Yukawa interaction that results from one
pion exchange in the standardmodel), aswell as the existence
of bottlenecks. The effect of fermionic blob microphysics is
explored in great detail in Refs. [3,12,14]. In general, lower
constituent masses increase themaximumblobmass that can
be synthesized.However, in this paper, our focus is on how to
detect any large composite dark matter object, regardless of
how it formed in the earlyUniverse.We therefore do not limit
ourselves to the mass ranges found in these works.
In our range 10 keV ⪅ Λχ ⪅ 10 MeV, the geometric

size of the heaviest blobs we consider, MX ∼ 1033 GeV,
range from 10−2 m–102 m, scales that are comparable to
the dimensions of a lab-scale experiment. It is also
straightforward to verify that Fermi degeneracy is sufficient
to prevent such blobs from collapsing into black holes.
Similar to our analysis of the bosonic blobs, we compute
the scattering cross section between the blob and the
standard model in Secs. III A and III B, and discuss the
bounds on the mediator and evaluate observational con-
straints on this kind of blob in Sec. III C.

A. Short range

Similar to the bosonic case, we assume χ interacts with
the standard model through the Lagrangian

L ⊃ gχϕχ̄χ þ gN;eϕΨ̄N;eΨN;e: ð18Þ

Upon integrating out the mediator ϕ, the effective inter-
action between χ and the standard model is again captured
by the dimension 6 contact operator

gχgN;eχ̄χΨ̄N;eΨN;e

μ2
ð19Þ

where μ is the mass of the mediator. In the fermionic case,
since the size of the blob grows with the number of
constituents, coherent scatterings are less effective in
transferring energy. As discussed in the Appendix, when
the size of the blob is larger than the de Broglie wavelength
λp of the probe, the maximum momentum that can be
coherently transferred is 1=λp. Due to this limitation, it is
important to consider incoherent scattering between the
blob and the standard model probe, as well as coherent
scattering.
In incoherent scattering, the momentum transferred can

be as large as Λχ . The energy deposited in a medium of
number density ηm is

dE
dx

¼ ηmΛ3
χ
MX

mN

g2χg2N
μ4v2χ

8<
:

1 Λχ < mNvχ
m4

Nv
4
χ

Λ4
χ

Λχ > mNvχ
ð20Þ8It would be interesting to study the “atomic” case, where

Λχ ≪ mχ . We leave this exploration for future work.
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whereas the energy deposited through coherent scattering is

dE
dx

¼ ηmMX

ffiffiffiffiffiffiffi
T
mN

s
g2χg2NΛ2

χ

μ4v2χ
ð21Þ

where T is the temperature of the medium, yielding the de
Broglie wavelength ∼1=

ffiffiffiffiffiffiffiffiffiffi
TmN

p
(i.e., the wave-function

extent) of the nuclear probe, and we assume that the
geometric cross section is not yet saturated. In both cases,
the cross section is suppressed by phase space factors
emerging from the fact that only momenta ∼Λχ and 1=λp
can be transferred to the nucleus in the incoherent and
coherent scattering cases, respectively. The above formulas
are valid in the regime where the scattering cross section is
smaller than the geometric size of the blob—for μ ⪆ TeV,
this criterion is satisfied.

B. Long range

Similar to the bosonic case, a fermionic blob sources
long-range fields that can directly cause accelerations,
induce spin precessions and change the values of funda-
mental constants. We consider the Lagrangian

L ⊃ gχϕχ̄χ þ gNϕΨ̄NΨN|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
O1

þ ∂μϕ

fN
Ψ̄Nγ

μγ5ΨN|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
O2

þ ϕ

M
FμνFμν|fflfflfflfflfflffl{zfflfflfflfflfflffl}
O3

ð22Þ

where the operator O1 leads to accelerations, O2 causes
spin precessions and O3 changes the value of the fine-
structure constant.
Much like the bosonic blob, the fermionic blob also

sources a classical ϕ field. Due to our choice of
Λχ ⪆ 10 keV, the bosonic blobs were always physically
smaller than the de Broglie wavelengths of the standard
model particles used to probe them. In the fermionic case,
the blobs can be significantly larger, ∼10−2 m–102 m, for
the most massive blobs. For simplicity of analysis, we take
the range of the mediator to be longer than the radius of the
blob. This long-range mediator gives rise to a force that can
destabilize the blob. For a repulsive force, the coherent
force due to the mediator can decrease the bound state
energy such that the blob is no longer stable.9 This occurs
when the repulsive force ∼g2χN2

χ=R2
χ between two parts of

the blob is larger than the attractive surface forces ∼N
2
3
χΛ2

χ

holding the two parts together. This leads to the condition
Rχ ⪅ 1

gχΛχ
. For an attractive force, we demand that the

hydrodynamic pressure at the center of the blob is less

than Λ4
χ , also yielding Rχ ⪅ 1

gχΛχ
. Assuming that the radius

of the blob obeys geometric scaling, the dark matter
coupling constant is bounded by

gχ ⪅
1

N1=3
X

; ð23Þ

where NX is the number of constituents in the blob. As with
the bosonic case, we demarcate the parts of parameter space
that obey these self-consistency checks in the sensitivity
plots in Figs. 6–10. Blobs where these conditions are
violated may still be found in nature, but they would need
additional stabilizing forces.
This classical field can be used to determine the energy

deposition dE=dx, spin rotation δθ and strain h induced by
the transit of this blob through the standard model,
calculated using the impulse approximation techniques
of Sec. II B. A key difference in the phenomenology of
the fermionic blob is that, by assumption, the bosonic blob
is always smaller than the atomic scale, permitting the
entire blob to coherently act on standard model particles
during its transit. This is not the case for the fermionic
blob—standard model particles can be inside the blob, in
which case the force they experience is diminished. The
phenomenological change due to this effect is significant—
for example, fermionic blobs do not ionize matter as easily,
avoiding constraints from the MACRO experiment.

C. Constraints

The bounds on the mediator depend solely on the
standard model—thus, they are the same for the bosonic
and fermionic cases. The key difference between the
bosonic and fermionic cases is that the physical size of
the fermionic blob grows with its mass. As in the bosonic
case, we take the short-range mediator to have a mass ⪆
TeV and restrict ourselves to long-range mediators in the
mass range μm−1 − ð6000 kmÞ−1. For the long-range case,
to simplify our analysis, for a given blob we only consider
mediators whose range is longer than the size of the blob.
The physical size of the blob dilutes constraints that rely

on localized energy deposition such as MACRO since
standard model particles are subjected to a smaller force
from the blob. On the other hand, bounds from the bullet
cluster can get stronger since the geometric size of the blob
is now larger. The self-scattering cross section per unit mass
(σ=M) of the fermionic blob is ∼R2=MX ∼ 1=ðMXΛ8

χÞ13,
using R ∼ N1=3

X =Λ and NX ∼MX=Λ. Unless the blob is a
subdominant component of dark matter, the bound from the
bullet cluster requires

MX ⪆ 1013 GeV

�
MeV
Λχ

�
8
�
1 cm2=gm

σ=M

�
3

: ð24Þ
9This mirrors the standard model exactly, where 56Fe is the

most stable nuclei and large nuclei are unstable due to Coulomb
repulsion between the protons.

GRABOWSKA, MELIA, and RAJENDRAN PHYS. REV. D 98, 115020 (2018)

115020-8



This bound is independent of any additional long-range
interaction between the blobs.

IV. DETECTION METHODS

The transit of the blob is a rare event due to its low
number density. However, the accumulation of dark matter
in the blob allows for these rare transits to cause observable
transients in terrestrial detectors. A search for these signals
requires methods to distinguish it from backgrounds. There
are two potential handles that could be exploited to achieve
this goal. First, the dark matter moves with a speed
∼220 km=s, significantly faster than any terrestrial source
of noise, but significantly slower than the speed of light,
placing it in a unique range of speed between terrestrial and
cosmic ray induced events. If the signal from the dark
matter is large enough to be observed at multiple locations
in a detector that also has sufficient temporal resolution, it
should be possible to distinguish this signal from other
background transients. These events should also lie along
a straight line, enabling further background rejection.
Second, the dark matter has the ability to pierce through
shields and interact in its own unique way with standard
model sensors. Thus, in a setup that is monitored with a
variety of precision sensors, the collective information from
all sensors could potentially be used to reject standard
model backgrounds. This latter option is technically chal-
lenging, but it is similar in spirit to WIMP detection
experiments that use data from multiple channels to veto
standard model events. Similar protocols could also be
employed in experiments such as LIGO which monitor a
variety of potential noise sources.
In the following, we describe the reach of current and

proposed detectors to the transient signals caused by dark
matter blobs. These estimates are made using the statistical
sensitivity of the detectors, assuming that systematics can
be combated with the above handles.

A. Ionization

Energy depositions ∼ eV=Å that cause ionization are
constrained by the MACRO experiment [20–22]. At
weaker coupling, multiple scattering events are still pos-
sible in a detector. These scattering events can occur
through the collision of the blob with nuclei, depositing
energy in detection channels often searched for in conven-
tional WIMP detection experiments [30–32]. This is similar
in spirit to recent CDMS searches for lightly ionizing
particles [24].

B. Acoustics

Collisions between nuclei and soft blobs (with
Λχ ⪅ MeV) can lead to significant energy depositions,
even though the deposited energy is too small to cause
ionization. The heat deposited in such a collision could
potentially be detected using two different techniques.

First, the localized heat deposition can produce phonons
or sound waves that could be detected using sensitive
acoustic detectors. Such a signal would be visible in
acoustic detectors such as CDMS where the total energy
deposited in the detector is large enough to enable
calorimetry. For example, energy depositions ∼ keV=cm
are measurable in CDMS’s calorimeters. Since these
events do not cause ionizations, traditional techniques
cannot be used to distinguish these events from noise.
However, the transit of the blob will lead to a line of hot
cells, which should enable signal recognition. These sound
waves could also potentially be searched for in networks
of hydrophone sensors, particularly for ultraheavy blobs
(MX ⪆ 1020 GeV) that require large volume detectors.
A quick estimate of the reach of hydrophone networks
can be made using the formalism of [33] which shows that
energy depositions dE=dx ∼ 10 keV=Å spread within an
area ⪅ ð1 mmÞ2 can be observed with hydrophones with a
sensitivity ∼10−4 dynes=ðcm2HzÞ at frequencies ∼100 kHz
out to distances ∼100 m. We leave a detailed analysis of
this detection method for future work [34]. The estimated
reach is shown in Fig. 5.
The second possibility would be to make use of in situ

amplification where the localized energy deposition leads
to an amplified material response. Single-molecular mag-
nets [35], where heat deposition (∼10 meV=Å) triggers an
amplified magnetic avalanche, have recently been identi-
fied as possessing properties favorable for low threshold
dark matter detection. If successfully developed, these
detectors can also search for these soft collisions.

C. Acceleration

The blob can cause an acceleration on a test body
through the long-range force exerted by it or through
direct collisions with the body as it transits through it.
In the case of a long-range force, the force is effective when

FIG. 5. MX − Λχ parameter space for a fermionic blob, assum-
ing a short-range mediator of mass μ ¼ TeV. Both CDMS and
hydrophones look for total energy deposition, while MACRO
looks for ionization and scintillation signals.
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the dark matter is within the range μ−1 of the force. The test
body will respond freely to this force for a time that is the
shorter of the transit time ∼1=ðμvχÞ and the period tr of the
restoring forces supporting the test body (i.e., the time
period ∼0.025 s of LIGO’s mirrors, the free fall time ∼1 s
in an atom interferometer). The displacement during this
time should be compared to the position sensitivity of the
sensor integrated over the transit time to obtain the reach of
the experiment. For concreteness, we estimate the reach of
LIGO [36] with a position sensitivity of Oð10−17 m=

ffiffiffiffiffiffi
Hz

p Þ
(around 100 Hz) in Figs. 6 and 7 and the reach of AGIS [37]
with a position sensitivity of Oð10−18 m=

ffiffiffiffiffiffi
Hz

p Þ in Fig. 7
(around 1 Hz).
For short-range interactions, the energy deposited by the

blob during its transit is largely expended into phonons.
This energy is not detected by accelerometers, which are
sensitive to the center-of-mass displacement of the test

body. For a test body of mass M and length L, the energy
deposited in the transit is ∼ðdE=dxÞL, leading to a
displacement ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdE=dxÞL=Mp ðL=vχÞ. In order to be
detectable at LIGO, whose mirrors have a mass M ∼
40 kg and L ∼ 10 cm, the energy deposition needs to be
dE=dx≳MeV=cm. LIGO is thus not as sensitive to these
collisions as dedicated calorimeter experiments such
as CDMS.

D. Spin precession

The classical field from the blob can induce a torque on
nucleon and electron spins causing them to precess. This
precession changes the magnetization of a sample and can
be measured using precision magnetometers such as a
SQUID. The spins will freely precess for a time that is the
shorter of the transit time 1=ðμvχÞ, the spin relaxation time
T2 and the Larmor period of the sample. Since electron
spins at high density have short T2 relaxation times, it is
advantageous to search for these effects in nucleons. Of
particular interest are spin precession experiments using
liquid xenon (such as CASPEr-Wind [38]) where T2 ≈
1000 s have been demonstrated. Moreover, CASPEr-ZULF
[39] has also demonstrated the capability to operate nuclear
magnetic resonance (NMR) experiments in liquid Xe at
zero or ultralow magnetic fields, giving rise to Larmor
periods as long as one second. In this paper, we limit the
range of the mediator to be ⪅ 6000 km, giving rise to
transit times ∼10 s. Since this is within the range of
estimated CASPEr-ZULF capabilities, we will assume that
the spin precession is limited by the transit time of the blob.
The sensitivity of the experiment to the blob is then
estimated by demanding that the change in the sample
magnetization is larger than the noise in the SQUID
(∼0.1 fT=

ffiffiffiffiffiffi
Hz

p
) integrated for the transit time ∼1=ðμvχÞ.

The estimated reach in an approximately ð10 cmÞ3 liquid
Xe sample is shown in Fig. 8.

FIG. 6. Reach on coupling gχ for a scalar mediator of range
20 km coupling to a fermionic blob with Λχ ¼ 1 MeV, as a
function of blob mass MX. The different shading for the reach of
both interferometer experiments is explained in Sec. V.

FIG. 7. Reach on coupling gχ for a scalar mediator with a
200 km range coupling to a fermionic blob with Λχ ¼ 1 MeV, as
a function of blob massMX . The different shading for the reach of
both interferometer experiments is explained in Sec. V.

FIG. 8. Reach on coupling gχ for a fermionic blob with Λχ ¼
MeV and a 6000 km-range pseudoscalar mediator, as a function
of blob mass MX . The different shading for the reach of NMR-
type experiments is explained in Sec. V.
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E. Strain

The blob can source dilatonic or moduli fields that
directly change the values of fundamental constants such as
the mass and charge of the electron. For concreteness, we
consider a charge modulus. The transit of such a blob can
directly exert forces on standard model particles, leading to
accelerations that can be measured using experiments such
as LIGO, as discussed in [40]. The estimated reach for these
forces is shown in Figs. 9 and 10. There is, however, a more
direct effect. Changes to fundamental constants lead to
shifts in atomic energy levels or Bohr radii causing shifts in
the lengths and transition frequencies of physical systems.
These can be measured in gravitational wave bar detectors
[41,42], LIGO [36] and atomic clock systems [37].
For simplicity, we make estimates only for systems

where the range μ−1 of the modulus is longer than the
length of the sensing apparatus. For a bar detector, the

strain in Eq. (13) leads to a direct change in the length of
the bar. In LIGO, the change to atomic transitions will
change the frequency of the output laser. But, this effect is
common to both arms of the interferometer and is thus
canceled in the differential measurement. However, the
physical length of LIGO’s arms will also change due to
the modulus. The gradient in the sourced modulus field
causes these arm lengths to change differently, leading to
a measurable signal. This reach is plotted in Figs. 9
and 10. In atomic clock systems, there are two effects.
First, two local clocks whose transitions depend upon
different powers of αEM can be compared. The blob will
shift the energies of these transitions differently, causing
a signal. Second, the modulus field sourced by the blob
will change atomic transitions differently over a baseline.
This leads to a signal in single-baseline atomic gravitational
wave detectors such as AGIS. In all of these cases, the reach
is estimated by comparing the signal with the noise in
the detector at a period equal to the transit time of the blob.
This reach is plotted in Fig. 10.

V. RESULTS AND DISCUSSION

A. Bosonic blob reach

We begin by exploring the parameter space of a bosonic
blob, first considering the case of a short-range mediator
between χ and the standard model, resulting in the contact
operator given in Eq. (3). In Fig. 1 we show the region of
gχ , defined through Eq. (2), accessible as a function of
mediator mass μ, for a blob of mass 1016 GeV and a Bohr
radius Λχ ¼ 100 keV. We consider the case gN ¼ 1,
whence the cross section, Eq. (7), saturates the geometric
cross section bound, i.e., σ ∼ Λ−2

χ . For a Bohr radius of
Λχ ¼ 100 keV, the blob cannot impart enough momentum
to a nucleus to cause ionization; for higher values of Λχ , the
total energy deposition per unit length is below the detector
sensitivity of MACRO. Therefore, only the CDMS calo-
rimeters are sensitive to bosonic blobs interacting only via
short-range interactions, at least in this blob mass range.
Moving next to long-range mediators, we consider three

different possible interactions between the blobs and the
standard model, as described by the operators O1 (scalar),
O2 (pseudoscalar) and O3 (dilaton) in Eq. (9), each of
which can be probed using the novel experimental searches
described above. Additionally, energy deposits arise in all
three scenarios, which require qualitatively different search
strategies depending on whether they are ionizing or not.
In detailing the reach of various experiments, we maximize
the parameters gN , fN , andM that appear in this Lagrangian
to a value consistent with the existing experimental con-
straints, described in Sec. II C 1: gN takes values 7 × 10−21

and 2 × 10−21 for mediator ranges of 20 km and 200 km,
while fN ¼ 5 × 109 GeV and M ¼ 1014 GeV.
For the case of a scalar mediator, interacting via O1,

we consider parameter space in the gχ −MX plane, shown

FIG. 9. Reach on coupling gχ for a dilaton mediator with 20 km
range for a fermionic blob with Λχ ¼ 1 MeV, as a function of
blob mass MX . The different shading for the reach of both
interferometer experiments is explained in Sec. V.

FIG. 10. Reach on coupling gχ for a dilaton mediator with range
of 200 km for a fermionic blob with Λχ ¼ 1 MeV, as a function
of blob mass MX. The different shading for the reach of both
interferometer experiments is explained in Sec. V.
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in Fig. 2 for a Bohr radius Λχ ¼ 10 keV, and a mediator
range of 200 km. The parameter regions labeled Mag.
Crystals and MACRO show the sensitivity of those experi-
ments to the energy deposited in them during a blob transit,
as calculated by Eq. (10) with the force FðrÞ that of a
scalar-scalar interaction, convolved over the blob. For the
magnetic crystals we estimate sensitivity to a dE=dx ¼
10−3 eV per angstrom, and require one such event per year;
for MACRO we require an energy of 10 eV to be imparted
to an individual nucleus per unit length of the detector, such
that ionization occurs, and require one transit per 10 years
(the runtime of the experiment). The purple regions labeled
LIGO and AGIS show the sensitivity of these experiments
to the acceleration of the test particles caused by the transit
(Sec. IV C). Here, the gradient in the field over the
experiments causes the test masses to move different
distances during the transit time of the blob. Note that
for LIGO, the gradient is ∼ð4 km=200 kmÞ, the mass of
test mass is 40 kg and the period of the test mass is 1=40
seconds; for AGIS, the gradient is ∼ð1 km=200 kmÞ and
the test mass is ∼90 GeV. To estimate the reach, we require
at least one event per year and that the relative movement
of the test masses be that of the position sensitivity of the
experiment at a frequency of approximately the inverse
transit time.
For light blob masses, we introduce an artificial cutoff

to simplify the reach analysis. The lighter shaded region
enclosed by a dashed line denotes that the reach includes
an artificial cutoff: we demand that the blob does not pass
through the detector, even though for such masses, there
can be multiple blobs that pass through the detectors every
year. Blobs passing closer to the detector, particularly
inside the detector itself, would result in a more compli-
cated signal than the one we estimate here, dependent on
the detector geometry; we expect that a detailed study of
such events would lead to improved sensitivity in this
parameter region, but this is beyond the scope of the current
exploratory work. The lower bound on the blob masses is
due to the requirement that there only be one blob passing
close to the detector during the experimental integration
time, in order to have an unambiguous signal. Similarly,
multiple blobs interacting with the detector at the same time
would lead to a more complicated signal with a potentially
better handle on background discrimination, but a study of
such events is beyond the scope of this work. The artificial
cutoffs for a mediator with a 200 km range are 5 km and an
integration time of 100 s for AGIS and slightly less than
200 km and a 10 s integration time for LIGO. The stability
bound, Eq. (5), and the bounds on self-interactions
described in Sec. II C 3 are also shown.
For the case of a pseudoscalar mediator, interacting via

O2, we show in Fig. 3 the estimated sensitivity in gχ −MX

parameter space for a blob with Bohr radius Λχ ¼ 10 keV
and a mediator with range R ∼ 6000 km, the radius of
the Earth. Again, the regions labeled Mag. Crystals and

MACRO show the sensitivity of these experiments to
energy deposits (we require the same dE=dx per blob
transit as in the scalar case). In this case, the standard model
interaction with the mediator is via a dipole force, which
enters into Eq. (10). This force can be calculated using the
potential of the standard model spin m in an effective
magnetic field sourced by the blob

Beff ∼ gNgχNχ

�
−
μ

r
þ 1

r2

�
e−μr r̂ ð25Þ

as F ¼ −∇ðm ·BeffÞ. The green region labeled NMR
estimates the sensitivity of the CASPEr-ZULF experiment
to the spin precession caused by the blob transit, as
described in Sec. IV D. Using Eq. (12) to obtain the angle
shift of the spins during a transit, we compare the resulting
shift in magnetization for a spin density of 1022 cm−3,
and require that this shift is observable within a spin
relaxation or Larmor time of 10 s, assuming a sensitivity
of 0.1 fT=

ffiffiffiffiffiffiffi
HZ

p
. As above, the lighter shaded region with

dashed borders indicates a (conservative) artificial cutoff
in our estimate: we require that the blob does not transit
within a region 10 m around the detector (so we can ignore
detailed geometry) and that there be only one blob
interacting with the detector during a period of twice the
spin relaxation time. The stability and self-interaction
bounds are calculated as described above for the scalar
mediator case.
Finally, for the case of a dilaton mediator, interacting via

O3, we show in Fig. 4 the estimated sensitivity in gχ −MX

parameter space for a blob with Bohr radius Λχ ¼ 10 keV
and a mediator with range 200 km. In this case, the force
that enters into the calculation of the dE=dx sensitivities of
magnetic crystals and MACRO is that induced from the
change in the electromagnetic contribution to the nuclear
mass, Eq. (14). The purple curves labeled LIGO and AGIS
show the parts of parameter space accessible to these
experiments via the mechanism described in Sec. IV E.
The sensitivities were estimated by equating the strain due
to the shift in bond length induced by the variation of αEM,
Eq. (13), to the experimental position sensitivity and
requiring at least one such event per year. The lighter
dashed regions again denote regions with our imposed veto
on blobs passing within a certain distance of the detector
and during a certain integration time; these cutoffs are the
same as for the scalar case described above. The stability
and self-interaction bounds are calculated as described
above for the scalar mediator case.

B. Fermionic blob reach

We begin our analysis of the fermionic blob by studying
the case of the short-range mediator, described by the
Lagrangian in Eq. (18). In Fig. 5 we fix the mass of
the mediator μ ¼ TeV, fix gχ ¼ gN ¼ 1, and study the
MX − Λχ parameter space. We estimate the sensitivity to

GRABOWSKA, MELIA, and RAJENDRAN PHYS. REV. D 98, 115020 (2018)

115020-12



energy deposits in MACRO, CDMS, and a hydrophone
experiment, as described in Secs. IVA and IV B.
The region of parameter space for CDMS and hydrophones
is bounded from above by requiring one event per year in
the experimental volume—we assume a hydrophone
tank of ð500 mÞ3; for MACRO we require one event in
the 10 year runtime. We calculate the energy deposited,
dE=dx, using Eq. (20), valid for the range shown,
10−4 GeV≲ Λx ≲ 1 GeV. Requiring this energy deposit
to be above keV=cm and 10 keV=angstrom for CDMS
and hydrophones, respectively, results in the negative
slope that bounds their sensitivity region from the left;
for MACRO, as in the bosonic case, we require a
dE=dx ∼ MeV=cm, as well as an energy deposition into
individual nuclei that is sufficient to ionize, resulting in a
sharp vertical cutoff at Λχ ∼ 1 MeV. The “V” shape of the
boundary comes from the fact that the maximum transfer is
the minimum of Λχ and the momentum of the standard
model probe, mNvχ , as detailed in Eq. (20). Note that the
energy deposition is mostly due to incoherent scattering.
The self-interaction constraints, discussed in Sec. III C, are
also shown.
Turning to the case of a long-range mediator, with the

Lagrangian given in Eq. (22), our calculation of the viable
parameter regions mirrors that of the bosonic case—as
mentioned, the only technical difference comes from the
size of the fermionic blob. This affects the various calcu-
lations of energy deposit in each experiment, described
above for a bosonic blob in the case of a scalar, pseudo-
scalar, and dilaton mediator, entering the calculation of
FðrÞ in Eq. (10), which is a superposition of the individual
classical fields sourced by each χ within the blob. For
example, for a scalar mediator, the total energy deposition
ΔEtot is related to the maximum energy transferred to a
single standard model probe, ΔEmax, by

ΔEtot ≈
�
RX

R0

�
2

ΔEmax ð26Þ

where RX is the radius of the blob and R0 is the radius of
the standard model atom, approximately an angstrom. This
approximate relation results from the observation that all
the standard model probes that pass within the radius of the
blob receive approximately the same momentum kick, so
the total energy deposition per unit length is enhanced by
the total number of probes that pass through the blob.
Modulo this change, which can be implemented numeri-
cally, all calculations proceed as in the bosonic blob case.
We note that this modification of dE=dx weakens the
bounds from MACRO, which requires ionization. We also
include in the fermionic case the projected sensitivity from
energy deposits in a hydrophone-rigged ð500 mÞ3 tank of
water, requiring one event per year with dE=dx ¼ 10 keV/
angstrom. The plots we show are the parameter regions in
the gχ −MX plane for constituents of mass Λχ ¼ 1 MeV.

Note that we use the same shading convention as in the
bosonic case. The artificial cutoffs are as follows: 14 km
and 10 s for the LIGO sensitivity reach in Figs. 6 and 9;
5 km and an integration time of 100 s for AGIS and slightly
less than 200 km and a 10 s integration time for LIGO
in Figs. 7 and 10; and 10 m with a 20 s integration time
for Fig. 8.
For all types of mediators, and for both the bosonic and

fermionic blobs, we find interesting and experimentally
accessible parameter space.

VI. CONCLUSIONS

Self-interactions can cause the dark matter to accumulate
into large composite states necessitating new experimental
search strategies.10 In this paper, we have argued that the
challenge of detecting the small number density of these
composite states can potentially be overcome in current
(XENON, LUX, CDMS and LIGO) and planned (CASPEr,
AGIS) detectors by leveraging the fact that the speed of the
dark matter lies in a unique window between relativistic
and terrestrial sources of noise. The enhanced interaction of
composite states with the standard model could lead to the
excitation of multiple detector modules. In concert with
precision timing, these excitations can be used to reject
noise and identify the dark matter signal. These signatures
can be identified either through changes to the data analysis
protocol or through relatively straightforward changes to
the way the experiments are run. In this paper, we identified
regions of parameter space that are consistent with current
observational bounds and can be experimentally probed.
This is by no means an exhaustive study—our goal was to
simply establish experimentally interesting targets. While
there are many theories of composite dark matter, we have
categorized their experimental signatures, enabling a sys-
tematic probe of this parameter space.
There are several aspects of the phenomenology of blobs

that deserve further study. For example, we have adopted an
agnostic approach towards the production of these blobs.
Exploration of the production of blobs in the early Universe
has focused on the case when the blobs primarily interact
with each other through contact interactions. In these cases,
the low velocity of the blob inhibits its subsequent growth.
It would be interesting to explore the evolution of these
blobs in the galaxy wherein they acquire significant virial
velocities potentially enabling an additional period of blob
growth. Moreover, long-range forces in the dark sector
could also lead to further growth in the dark sector. This, on
the other hand, is expected to be enhanced at low velocity;
see e.g., [44]. These additional interactions could poten-
tially resolve the tensions of the cold dark matter paradigm,

10This work focuses on composite states with densities similar
to standard model nuclear densities. Direct detection strategies
must also be modified if the dark matter forms loosely bound
clumps rather than blobs; see e.g., Ref. [43].
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particularly in the regime of small scale structure or dark
disc formation (see e.g., [8,45]).
In this paper, we focused on terrestrial direct detection

experiments. It would be interesting to explore the quali-
tatively different characteristics of dark blobs in indirect
detection experiments (see Ref. [44] for some recent results
in this direction)—for example, the collision of dark blobs
with each other would release a large number of high
energy particles in rare, localized bursts. Such collisions are
likely to exhibit different spatial and temporal statistical
features than the conventional expectations from annihilat-
ing and decaying dark matter. The entropy released in these
collisions could also lead to qualitatively new kinds of
cosmic rays—for example, such collisions might produce
complex antiparticle nuclei such as antideuterium that are
rarely produced by standard model or conventional dark
matter scenarios. These indirect detection signatures are
particularly relevant in searching for blobs with mass
greater than 1033 GeV, wherein the flux of the blob is
too small to transit through the Earth. In addition to cosmic
ray signatures, these collisions could also cause new
astrophysical phenomena (see Refs. [12,44]) such as
triggering the explosion of sub-Chandrasekhar mass white
dwarfs [27,28].
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APPENDIX: BLOB-NUCLEON SCATTERING

Scattering between a point particle and a composite
object is a well-known quantum mechanical problem,
assuming that the point particle may be treated as free.
In this case, the initial wave function is a plane wave, and
one may calculate the cross section using standard

methods. In this appendix we present a quantum mechani-
cal treatment that takes into account the localized extent of
the point particle’s wave function—in our case the standard
model nucleus—paying particular attention to how this
alters the coherent enhancement of the differential cross
section at low momentum transfer.
We begin by recalling the standard scattering story in

quantum mechanics, following e.g., Sakurai [46]. Define
jϕi as a plane-wave eigenstate of free particle Hamiltonian
H0, obeying

H0jϕi ¼ Ejϕi; ðA1Þ

and jψi as an eigenstate of the full Hamiltonian, obeying

ðH0 þ VÞjψi ¼ Ejψi; ðA2Þ

with V being a time-independent potential. The Lippmann-
Schwinger equation provides a solution jψ�i to the above
such that jψi → jϕi as V → 0,

jψ�i ¼ jϕi þ 1

E −H0 � iϵ
Vjψ�i: ðA3Þ

If H0 is the free Hamiltonian, this can be written in the
wave-function representation as

ψðxÞ ∼
�
1

2π

�
3=2

eix·k −
m
2πr

Z
d3x0e−ix0·k0

Vðx0ÞψðxÞ

k0 ¼ jkjx
r

ðA4Þ

where r ¼ jxj. The scattering cross section is extracted
from Eq. (A4) by casting it in the form

ψðxÞ ∼
�
1

2π

�
3=2

�
eix·k þ fðk0;kÞ e

ikr

r

�
; ðA5Þ

where fðk0;kÞ is the scattering amplitude, viz.

dσ
dΩ

¼ jfðk0;kÞj2: ðA6Þ

In the Born approximation, where the potential is suffi-
ciently weak, the scattering amplitude is

fð1Þðk;k0Þ ¼ −
m
2π

Z
d3x0eix0·ðk−k0ÞVðx0Þ ðA7Þ

and can be explicitly calculated for a multitude of scattering
potentials.
To see the origin of coherent enhancement at low

momentum transfer, take as an example a potential arising
from multiple scattering centers,
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Vðx0Þ ¼
XNS

i¼1

vðx0 − xiÞ ðA8Þ

where vðxÞ is the potential due to a single scattering center
and xi are the locations of the NS scattering centers.
Assume that the total scattering center is localized within
a radius R. For this potential, the scattering amplitude is

fð1Þfreeðk;k0Þ ¼ −
m
2π

Z
d3x0eix0·ðk−k0Þ XN

i¼1

vðx0 − xiÞ

¼ −
m
2π

XNS

i¼1

Z
d3x0eix0·qvðx0 − xiÞ ðA9Þ

where q ¼ k − k0 is the momentum transfer. When the
momentum transfer obeys qR ≪ 1, the exponential is
essentially unity and

fð1Þfreeðk;k0Þ ¼ NSf
ð1Þ
1 ðA10Þ

where fð1Þ1 is the scattering amplitude for a single scattering
center. Therefore, the differential cross section, in this
limit, is

dσ
dΩ

∼ N2
S
dσ1
dΩ

ðA11Þ

where dσ1=dΩ is the differential cross section for a
single scattering center. When qR≳ 1, the phases for the
different scattering centers cancel, so the cross section is
incoherent, i.e.,

dσ
dΩ

∼ NS
dσ1
dΩ

: ðA12Þ

The above treatment is valid even when the point particle
is not free, so long as the size of the particle’s wave packet
is larger than any other relevant length scale in the problem.
This is usually true in most scattering situations. However,
when a dark blob is much larger than an angstrom, one has
to take into account the localization of the standard model
particle’s wave function.
Simple reasoning provides a heuristic picture as follows.

Let us take H0 to now include the potential of an infinitely
deep three-dimensional square well, so as to idealize the
localization of the wave function of the standard model
particle. In this case,

H0 ¼ −
1

2m
∇2 þ VWðxÞ VWðxÞ ¼

�
0 jxij < L

2

∞ jxij > L
2
:

The Lippmann-Schwinger equation, Eq. (A4), still holds,
and we can follow the formal steps in exactly the same way
as above, first projecting into position space

hxjψ�i ¼ hxjϕi þ
Z

d3x0hxj 1

E −H0 � iϵ
jx0ihx0jVjψ�i

¼ hxjϕi þ
Z

d3x0d3kd3k0hxjkihkj 1

E −H0 � iϵ
jk0ihkjx0ihx0jVjψ�i

¼ hxjϕi þ
Z

L=2

−L=2
d3x0d3k

eiðx−x0Þ·k

ð2πÞ3 hkj 1

Eþ 1
2m∇2 � iϵ

jk0ihx0jVjψ�i

¼ hxjϕi þ
Z

L=2

−L=2
d3x0d3k

eiðx−x0Þ·k

ð2πÞ3
1

E − k2
2m � iϵ

hx0jVjψ�i

¼ hxjϕi −m
eikr

2πr

Z
L=2

−L=2
d3x0e−ix0·k0

Vðx0Þψ�ðx0Þ ðA13Þ

where in the last line we use the same assumptions as in the
standard case that the detector is very far away from the
scattering centers, i.e., jxj ≫ R.
Equation (A13) is formally then very similar to the case

where H0 is simply the free Hamiltonian, except that the
effect of VW is to restrict the Fourier integral in the position
domain. In analogy with the free scattering case, we can
define a scattering amplitude ,

fð1Þlocðk;k0Þ ¼ −
m
2π

Z
L=2

−L=2
d3x0eix0·ðk−k0ÞVðx0Þ: ðA14Þ

Note that, for L > R, i.e., the wave-function extent is

larger than the size of the scattering center, fð1Þlocðk;k0Þ ¼
fð1Þfreeðk;k0Þ, as we would expect. However, if L < R, then
only the part of the scattering center that overlaps with the
scattered particle’s wave function contributes to the scatter-
ing; that is, NS in the above is replaced by NSL3=R3.
Explicitly, when qL ≪ 1, the total cross section is

�
dσ
dΩ

�
Coh

¼
�
NS

L3

R3

�
2
�
dσ1
dΩ

�
free

ðA15Þ
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and when qL≳ 1, the total cross section is

�
dσ
dΩ

�
Incoh

¼
�
NS

L3

R3

��
dσ1
dΩ

�
free

ðA16Þ

where ðdσ1=dΩÞfree is the single scatterer cross section,
calculated in the plane-wave approximation.
This result, that only the scattering centers with a

nonzero overlap with the scattered particle’s wave function
contribute to the scattering cross section, is the basis of
Eqs. (20) and (21).
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