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We investigate the prospects for detecting violations of Lorentz symmetry in unpolarized deep inelastic
electron-proton scattering in the context of the future electron-ion collider. Simulated differential cross-
section data are used to place expected bounds on a class of quark-sector coefficients for Lorentz violation
that induce sidereal time dependence in the scattering cross section. We find that, with 100 fb−1 of
integrated luminosity, the expected bounds are in the 10−5–10−7 range and are roughly two orders of
magnitude stronger than those that can be extracted from existing HERA data. We also discuss the
possibility of extracting bounds on the remaining time-independent coefficients.
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I. INTRODUCTION

Lorentz invariance is a global symmetry of the standard
model (SM) of particle physics and a local symmetry of
general relativity.While both theories have been fantastically
successful in describing physics at currently attainable
energies, it is widely expected that a fully quantum-
theoretical descriptionof all knownphysics includinggravity
will emerge at the Planck scale. One interesting possible
consequence of this unification is the violation of Lorentz
invariance. It was first shown by Kostelecký and Samuel in
Ref. [1] that the mechanism of spontaneous symmetry
breaking could generate Lorentz violation in string theory.
In this setting, the low-energy limit of this theory gains terms
in its Lagrange density that take the general form [2]

LLV ∼
λ

mk
P

hTi · ψ̄Γði∂Þkχ þ H:c:; ð1Þ

where λ is a dimensionless coupling constant, k is an integer
exponent, and mP is the Planck mass. The object hTi is a
nonzero vacuum expectationvalue (vev) of a tensor field with
suppressed spacetime indices, and Γ is a generic gamma-
matrix structure. The fields ψ , χ are generic four-dimensional
fermion fields. In Eq. (1), Lorentz symmetry is spontaneously
broken by thevev hTi,which has orientation dependence (i.e.,
it is not a scalar). Note that the underlying theory is Poincaré
invariant, thus preserving microcausality, the spin-statistics

theorem, the positivity of energy, power-counting renor-
malizability, standard quantization, and observer Lorentz
invariance. Moreover, if hTi is a spacetime constant,
energy-momentum conservation is also preserved.
To date, all high-precision tests of theLorentz symmetry in

the SM and gravity give no indication of Lorentz violation.
Nevertheless, as we explained above, it is reasonable to
entertain the possibility that Lorentz invariance is sponta-
neously broken at Planckian scales. The huge gap between
these scales and those currently accessible at colliders
(roughly 15 orders of magnitude) makes it impossible to
detect directly the degrees of freedom responsible for the
potential breaking of Lorentz symmetry. An alternative
approach is to search for suppressed signals at attainable
energies. Probing Nature in this way suggests the use of a
low-energy, effective quantum field theorywhich completely
accounts for all possible residual Lorentz-violating effects
that presumably originate from mechanisms in a more
fundamental theory. This framework exists and is known
as the standard model extension (SME) [3–5]. For some
accessible reviews of the SME, we refer the reader to
Refs. [6,7] and references therein. By construction, the
SME contains the field content from all known fundamental
physics with the addition of all possible terms built from
fundamental fields that break Lorentz and CPT symmetry.
These additional terms take the form of coefficients con-
tracted with products of SM and gravitational fields. As an
example, consider the quantum-electrodynamics (QED)
extension of the SM [4]:

Lext
QED ¼ 1

2
iψ̄ΓνD

↔

νψ − ψ̄Mψ −
1

4
FμνFμν

−
1

4
ðκFÞκλμνFκλFμν þ 1

2
ðκAFÞκϵκλμνAλFμν; ð2Þ
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where

Γν ¼ γν þ cμνγμ þ dμνγ5γμ þ eν þ ifνγ5 þ
1

2
gλμνσλμ;

M ¼ mþ aμγμ þ bμγ5γμ þ
1

2
Hμνσ

μν: ð3Þ

Here, the coefficients forCPT and Lorentz violation are aμ,
bμ, cμν, dμν, eν, fν, gλμν, Hμν in the fermion sector and
ðκAFÞκ; ðκFÞκλμν in the photon sector. These coefficients are
real quantities that can be thought of as coupling constants
or vevs [see Eq. (1)]. An important property of the
coefficients for Lorentz violation is that they transform
as tensors under general coordinate transformations, called
Lorentz observer transformations, but as scalars under
transformations of the physical system itself, called
Lorentz particle transformations [3]. Because these coef-
ficients represent preferred directions in spacetime, their
presence implies a violation of Lorentz symmetry. For local
quantum field theories, CPT symmetry is related to
Lorentz symmetry through the CPT theorem [8]. This
means that CPT-violating effects are also completely
parametrized by the SME. Thus, the SME can be under-
stood as a general phenomenological framework used to
search for CPT- and Lorentz-violating suppressed signals
arising from a more fundamental theory. We remind the
reader that the SME parametrizes all possibleways Lorentz
and CPT symmetry can be violated in terms of known
physical fields under the assumption of preserved locality
and hermiticity. Therefore, in light of Eq. (1), there are in
principle an infinite number ofCPT- and Lorentz-breaking
operators with an increasing number of derivatives. At
energies well below a prescribed high-energy scale (e.g.,
the Planck mass), it is sufficient to restrict attention to
operators of mass dimension four or less so that power-
counting renormalizability and gauge invariance are sat-
isfied. This subset of the SME is referred to as the minimal
SME (mSME). The mSME thus has all of the properties of
the usual SM except that Lorentz invariance is broken by
particle Lorentz transformations, and CPT is violated in
the presence of CPT-odd operators—see Ref. [3,4] for a
complete listing of all of terms appearing in the mSME.
Constraints on many coefficients for Lorentz violation

across all sectors of the SME have been placed to date [9].
Despite the large amount of work that has been carried
out thus far, comparatively little attention has been paid to
the quantum-chromodynamics (QCD) sector of the SME.
This is primarily due to the difficulties in bypassing the
observed spectrum of states to access the fundamental
degrees of freedom of QCD. Very recently, there has been
a push toward exploring Lorentz violation in this sector
[10–15]. Much of this work may ultimately be relevant
to the proposed electron-ion collider (EIC) [16], which
is expected to usher in a new era of precision QCD studies
of the hadrons and nuclei. The collider itself expected
to be constructed at either the Thomas Jefferson National

Laboratory (JLab) or Brookhaven National Laboratory
(BNL). Once built, it will be the only collider capable of
controlling the polarization of both the lepton and ion
beams, which will enable an unprecedented understanding
of the nucleon’s spin content and tomography. Current
design parameters for the JLab EIC (JLEIC) and BNL EIC
(eRHIC) suggest a similar reach in terms of kinematical
phase space [17,18]. In this regard, the main distinction
between the two currently proposed designs is that the
JLEIC is expected to have a lower center of mass (CM)
energy range than the eRHIC, but a higher luminosity.
Whether the EIC is built at JLab or BNL, each design will
be capable of being upgraded to a comparable CM energy
and luminosity. Thus, in principle the only distinction
between the two proposed designs is their geographic
location and colliding beamline orientations. In the con-
text of Lorentz violation, these traits become relevant.
In this work we explore some of the consequences of these
facts. Since the EIC will have a unique ability to study
QCD, it is interesting to consider the prospects for detecting
effects emanating from Lorentz-violating QCD. This is the
basis for the current document, which examines the pros-
pects for detecting Lorentz violation at the EIC through
the process of unpolarized electron-proton deep inelastic
scattering (e-p DIS).

II. LORENTZ-VIOLATING EFFECTS
IN UNPOLARIZED DIS

A. General setup for unpolarized DIS

We now turn our attention to the process of inclusive
e-p DIS, which is illustrated in Fig. 1. The observable
of interest is the differential cross section. This can be
written as

dσ¼
X
X

Z
dΠXð2πÞ4δ4ðpþk−k0−pXÞ

d3k0

ð2πÞ32E0
jMj2
F

;

ð4Þ

FIG. 1. Inclusive e-p DIS in the one-photon exchange approxi-
mation. An electron e− with momentum k interacts and recoils
with momentum k0 from a proton P with momentum p through
the exchange of a photon γ producing a generic final hadronic
state X.
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where M denotes the spin-averaged scattering amplitude,
and F is the flux factor for the colliding particles. The rest
of the expression is the phase-space element, which
includes a sum over all possible (unobserved) hadronic
states X carrying a net momentum pX and the outgoing
final-state electron density of states. We first focus on the
properties of the amplitude M. For the DIS process
depicted in Fig. 1, the amplitude consists of the lepton
vertex, intermediate propagator, and hadronic vertex.
The structure of the former two are well understood.
The hadronic contribution to the scattering amplitude
takes the form of a hadronic neutral current JμðxÞ inserted
between the initial proton jPi and final hadronic jXi state:

Mhad ∼ ϵμhXjJμð0ÞjPi; ð5Þ

where ϵμ is the associated polarization vector to the current
JμðxÞ. Here, the hadronic tensorWμν is defined as the spin-
averaged, squared modulus of the matrix element in Eq. (5)
combined with the total hadronic contribution to the phase-
space element of Eq. (4). Namely,

Wμν ≡
X
spins

X
X

Z
dΠXð2πÞ4δ4ðpþ k − k0 − pXÞ

× hPjJμð0ÞjXichXjJνð0ÞjPic
¼

X
spins

Z
d4xeiq·xhPj½JμðxÞ; Jνð0Þ�jPic: ð6Þ

This result is arrived at by considering the completeness
of hadronic states, translation invariance, and the timelike
positivity of q0. The subscript c denotes connected matrix
elements. For simplicity, we have suppressed the additional
quantum numbers labeling the states since they are unim-
portant for our discussion. The hadronic tensor can be
related to the Compton amplitude Tμν through the optical
theorem in the special case of forward scattering:

2Im½Tμν� ¼ Wμν; ð7Þ
where the Compton amplitude Tμν is defined as

Tμν ¼ i
X
spins

Z
d4xeiq·xhPjTJμðxÞJνð0ÞjPic: ð8Þ

The advantage in working with Tμν is that it is more
straightforward to calculate by virtue of the time-ordered
product of currents, in addition to needing only the
imaginary part. Given all of this, the structure of the
hadronic current in terms of its constituents is still
unknown. A way to circumvent this issue is to focus on
the case of largemomentum transfer−q2 ≡Q2 ≫ M2, with
M being the proton mass. In fact, in this limit the matrix
element in Eq. (8) can be calculated in a twist expansion
using an operator product expansion or, equivalently, the
parton model (see Ref. [15] for an in-depth discussion of

this point). In the following we adopt the parton-model
picture in which interactions among the partons within the
proton can be neglected due to asymptotic freedom. Under
these assumptions, the exchanged boson interacts with an
asymptotically free parton of flavor f carrying a longi-
tudinal momentum fraction ξ of the proton’s momentum p
that has decohered from its surrounding environment. This
allows one to assume the condition of incoherent scattering.
The forward Compton amplitude Tμν in the parton model
can thus be written as

Tμν ≈ i
X
spins

X
f

Z
dξffðξÞ

Z
d4xeiq·x

× hqfðξpÞjTJμðxÞJνð0ÞjqfðξpÞic; ð9Þ

where ffðξÞ are the parton distribution functions (PDFs).
We now proceed to the discussion of how Lorentz violation
affects the calculation of Eq. (9) and the other physical
quantities that appear in the cross section, Eq. (4).

B. Lorentz-violating effects

Lorentz-violating effects in unpolarized e-p DIS were
first studied in Ref. [15] in the context of HERA collider
data [19], and we refer the reader to these documents to
complement the discussion that follows. As in Ref. [15],
we use the mSME to describe the inclusion of Lorentz-
violating tree-level effects that control the hard interaction
in unpolarized e-p DIS. For simplicity, we focus on effects
emanating in the high-energy regime of the mSME with the
restriction of electron and u, d quark flavor content, the
latter consideration owing to the dominant flavor content
of the proton. Note that, in the hard interaction, the vector
boson is exchanged in a t-channel diagram, implying a
suppression of the Z boson contribution; this situation is
radically different in, e.g., the Drell-Yan processes in which
the vector boson is exchanged in the s-channel (q2 > 0).
In light of this, we neglect altogether Z boson effects. The
dominant Lorentz-violating terms we consider are then

LSME ⊃
1

2
icμνQ Q̄γμD

↔

νQþ 1

2
icμνU ŪγμD

↔

νU þ 1

2
icμνD D̄γμD

↔

νD

−
1

4
κκλμνF FκλFμν −

1

4
κκλμνG Ga

κλG
a
μν; ð10Þ

where D
↔

ν ¼ ∂↔ν þ 2iQ̂Aν, Q̂ is the charge operator, Q
denotes the left-handed SUð2Þ quark doublet, U and D are
the SUð2Þ singlets, κκλμνF;G and cμνf (f ¼ Q, U, D) are the
photon/gluon and quark coefficients for Lorentz violation,
respectively. Wework in a scenario in which the coefficients
for Lorentz violation are generated far above the electroweak
symmetry breaking scale, implying that all the mSME terms
we consider have to be expressed in terms of SUð2Þ ×Uð1Þ
multiplets.
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It is important to mention that not all coefficients that
appear in the SME are observable because the theory is
invariant in form under spacetime-dependent field redefi-
nitions and a change of coordinates [3,4,20,21]. As an
example, the fermion field redefinition of the form ψðxÞ →
exp ½ifðxÞ�ψðxÞ with fðxÞ ¼ aμxμ can be used to remove
completely the term −aμψ̄γμψ which appears in Lext

QED in
Eq. (2). However, in the presence of more than one fermion
species, it is in general not possible to remove all aμf terms
and some combination of them remains observable. Of
more relevance to us, fermion field redefinitions of the form
ψðxÞ → ½1þ vðxÞ · Γ�ψðxÞ with Γ ¼ fγα; γ5γα; σαβg can be
used to eliminate the antisymmetric part of all cμνf terms that
appear in Eq. (10); moreover, it should be pointed out that
these coefficients can be taken to be traceless because terms
proportional to the Minkowski metric ημν do not violate
Lorentz symmetry.
The question of coordinate choice is more subtle. It is

straightforward to show that the coordinate transformation
xμ → xμ − 1

2
καμανxν (where κ is a generic constant tensor)

implies

ðκF;GÞαμαν → ðκF;GÞαμαν − καμαν; ð11Þ

cμνf → cμνf þ 1

2
καμα

ν: ð12Þ

Taking into account that the traces ðκF;GÞαμαν contain all the
independent components of the tensors κF;G, it is clear that
this change of coordinates can be used to remove com-
pletely one amongst the tensors κF, κG and cf (where f
includes all fermion species). In our analysis, we choose
coordinates in which the photon coefficient κF vanishes.
With this choice of coordinates the electron and proton
coefficients1 are experimentally tightly constrained [9] and

have negligible impact on e-p DIS. We then focus on
effects due to the cμνf coefficients for u and d quarks while
ignoring, at the present time, the effect of Lorentz violation
in the gluon sector (κG).
Below the electroweak scale it is customary to express

the fields Q, U and D in terms of the usual Dirac fields ψu
and ψd. The model Lagrange density in the massless limit is
then given by

L ¼
X
f¼u;d

1

2
ψ̄fðγν þ cμνf γμ þ dμνf γ5γμÞiD

↔

νψf; ð13Þ

with

cμνu ¼ ðcμνQ þ cμνU Þ=2; cμνd ¼ ðcμνQ þ cμνD Þ=2;
dμνu ¼ ðcμνQ − cμνU Þ=2; dμνd ¼ ðcμνQ − cμνD Þ=2: ð14Þ

As discussed above, these coefficients control the magni-
tude of Lorentz violation and can be taken as traceless and
symmetric [20,21]. For simplicity, we also assume they are
constants in a given inertial observer frame, which ensures
energy-momentum conservation through invariance under
time translations. At leading order in the coefficients, the
fermion propagator takes the form2

ð15Þ

where σμν ¼ i
2
½γμ; γν� and the associated vertex rule is shown

in Fig. 2. As in the Lorentz-invariant case, each vertex
contributes a momentum-conserving delta function δ4ðΣpÞ

by virtue of preserved translational invariance in the mSME.
In general, it is not possible to consider scenarios in which
just one of the four coefficient combinations in Eqs. (14)
is present. However, in the particular case of unpolarized
scattering mediated by a virtual photon, the coefficients dμνf
do not produce observable effects. This is because the
leptonic contribution to Eq. (4) yields the usual symmetric
lepton tensor Lμν ¼ 2ðkμk0ν þ kνk0μ − ðk · k0ÞημνÞ. Due to
the presence of an explicit γ5 in Eq. (15), the terms propor-
tional todμνf produce an antisymmetric tensorwhich vanishes
once contracted Lμν. Note that the coefficients dμνf can

2The calculation of the inverse is most easily performed using
the fact that ðpþ γ5d

γp
f Þðp − γ5d

γp
f Þðp − γ5d

γp
f Þðpþ γ5d

γp
f Þ ¼

ðp2 þ 2γ5d
pp
f Þðp2 − 2γ5d

pp
f Þ ¼ p4 up to higher orders in dμνf .

This leads to the second term in the round bracket.

1The proton cμν coefficients appear in the low-energy effective
Chiral Lagrangian in which the proton is represented by a
fundamental field (see also the discussion in Ref. [11]).

FIG. 2. Quark (qf) interaction vertices from the model Lagrange
density, Eq. (13). The dot at the vertices denotes a modified vertex
rule in the presence of Lorentz violation.
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produce observable effects if the DIS process is mediated
by a Z boson or if polarized observables are of interest.
For our purposes, the only physically relevant coefficients
are cμνf and they can be considered independently from each
other. The unpolarized DIS process in the presence of
Lorentz violation within the parton-model assumptions is
thus depicted in Fig. 3.
What has yet to be considered of the differential cross

section Eq. (4) is the flux factor F and final-state electron
phase-space element. Extra attention must be taken in the
calculation of F since in the presence of Lorentz violation
F is frame dependent and particle trajectories are affected
due to a modified energy-momentum dispersion relation
and group velocity [22]. Since we are working in the DIS
limit and employing the parton model, the flux is calculated
between the electron and parton. Because we are only
considering modifications to freely-propagating partons in
the initial state, it is reasonable to neglect the group-
velocity modifications of F [15,22]. The flux then takes the
conventional form

F ≃ 4k · ξp ≃ 2ξs; ð16Þ

where s ≃ 2k · p. Note that the factor ξ that appears must be
included in the integrand of Eq. (9). The last remaining
piece of Eq. (4) is the phase-space element for the final-
state electron. A change of variables reveals

Z
d3k0

ð2πÞ3
1

2Ek0
¼

Z
dϕ
2π

Z
dxdy

ys
ð4πÞ2 ; ð17Þ

where we have introduced the canonical Bjorken variables
(neglecting electron and quark masses) x ¼ −q2=ð2p · qÞ≃
k · k0=p · q and y ¼ p · q=p · k. As we mentioned in the
caption of Fig. 3, the dependence on the final-state electron
scattering angle ϕ is now nontrivial, which is why we leave

the angular integral in Eq. (17). The triply differential cross
section can be shown to take the following form:

d3σ
dxdydϕ

¼ α2s
q4

X
f¼u;d;s;���

q2fxffðxÞ½1þ ð1 − yÞ2�

þ α2

q4
X
f¼u;d

q2fxffðxÞ
�
½C00� − 2ð1þ ð1 − yÞ2Þ

y

×

�
½C0� þ

�
1

x
þ d ln ffðxÞ

dx

�
½C�

��
; ð18Þ

where

½C� ¼ cμνf ½qμqν þ xðqμpν þ qνpμÞ þ x2pμpν�;
½C0� ¼ cμνf ðpμqν þ pνqμ þ 2xpμqνÞ;

½C00� ¼ 2y
x
½C� þ cμνf

�
4ðk0μpν þ pμk0νÞ þ

4

x
ð1 − yÞkμkν

þ 4ð1 − yÞðkμpν þ pμkνÞ − 4xypμpν −
4

x
k0μk0ν

�
:

ð19Þ

The first line of Eq. (18) is the leading-order Lorentz-
invariant contribution. Note that the sum for this portion
includes all parton species. The second line, which is
proportional to cμνf , is the contribution from the dominant
Lorentz-violating effects on the u and d quarks. The
appearance of nontrivial dependence on the final-state
electron azimuthal angle ϕ as well as scaling violations is
now transparent. In addition, the cross section now depends
separately on the electron and proton energies and not just on
the CM energy s ¼ 4EeEp. This can be made more clear by
defining the kinematics in the laboratory frame with the
choice of electron propagation direction defining the labo-
ratory z axis. The four momentum of the incident electron,
proton, and scattered electron then take the form kμ ¼
Eeð1;þẑÞ, pμ ¼ Epð1;−ẑÞ, and k0μ ¼ E0

eð1; k̂0Þ with k̂0 ¼
ðsin θ cosϕ; sin θ sinϕ; cos θÞ, respectively.

C. Sidereal time dependence and the sun-centered
celestial-equatorial frame

We are now in the position to pick a frame in order to
estimate attainable bounds on the coefficients cμνf . In
choosing a frame to analyze an expression like Eq. (18),
special care must be taken because the coefficients for
Lorentz violation depend on the choice of observer frame.
This implies that an Earth-based experiment will exhibit a
sidereal time dependence in the cross section. It is therefore
important to work initially in a suitable (approximately)
inertial frame. The standard choice of frame used for
reporting bounds on the coefficients for Lorentz violation
is known as the Sun-centered celestial-equatorial frame
(SCF) [9,23,24]. This frame is effectively inertial over the

FIG. 3. Parton-model DIS with Lorentz-violating effects. A
parton carrying a momentum fraction x0f ¼ x − xf propagates in a
Lorentz-violating medium and interacts with an electron (see
Ref. [15]). These features affect the azimuthal scattering angle ϕ
of the final-state electron. Dots indicate modified vertices and
propagator insertions.
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timescale of most Earth-based experiments. We remind the
reader that we take the coefficients to be constant in
this frame. The transformation from the SCF frame to
the laboratory frame is reasonably approximated and
achieved by a series of rotations [23,24]. The net rotation
is given by the product of the following matrices [15,22]:

R ¼

0
B@

�1 0 0

0 0 1

0 ∓ 1 0

1
CA
0
B@

cosψ sinψ 0

− sinψ cosψ 0

0 0 1

1
CA

×

0
B@

cos χ cosω⊕T⊕ cos χ sinω⊕T⊕ − sin χ

− sinω⊕T⊕ cosω⊕T⊕ 0

sin χ cosω⊕T⊕ sin χ sinω⊕T⊕ cos χ

1
CA:

ð20Þ

In this expression, ω⊕ ≃ 2π=ð23 hr 56 minÞ is the Earth’s
sidereal frequency which accompanies the local sidereal
time T⊕ [25]. The angle χ and ψ refer to the colatitude of
the laboratory and the orientation of the electron beam
momentum k̂ relative to the East cardinal direction,
respectively. The last rotation involving only unit and null
entries is an inversion of coordinates to orient the Earth-
frame z direction, which is initially perpendicular to the
surface of the Earth prior to this rotation, along the direction
of the electron beam momentum. The consideration of two
potential orientations as indicated by the � and ∓ will be
useful for the analysis of EIC simulated data in Sec. III.
Under the rotation of Eq. (20), the coefficients cμνf are
transformed via the standard transformation rules:

cμνf;lab ¼
(
RikRjlcfkl; μ; ν ¼ i; j ∈ f1; 2; 3g
Rikcfk

0; μ; ν ¼ i; 0;
ð21Þ

where the sum over repeated indices is implied. In view of
this transformation, it is clear that once the coefficients have
been transformed to the laboratory frame, time dependence
in the differential cross section becomes manifest. Direct
observation reveals that sinusoidal oscillations involving
the first and second harmonics of ω⊕ accommodate some
of the coefficients under this transformation. This implies
the differential cross section given in Eq. (18) oscillates
around the (shifted) SM result at the first and second
harmonics of ω⊕ and therefore represents a distinct signal
for Lorentz violation. Considering the properties of cμνf and
further inspection of Eq. (21) reveals that, for a given flavor
f, only six combinations of the nine independent compo-
nents of cμνf contribute to the inherited time dependence of
the cross section. More specifically, the coefficients cTXf ,
cTYf , cXZf , and cYZf involve first harmonics of ω⊕, while cXYf
and the combination cXXf − cYYf involve second harmonics
of ω⊕ where fT; X; Y; Zg ¼ f0; 1; 2; 3g. The other three

combinations, cTZf , cZZf , and cTTf ≡ cXXf þ cYYf þ cZZf con-
tribute only as constant offsets to the SM result. As such,
these coefficients will not be relevant to our primary
analysis, but we will provide rough estimates of their
influence in Section III C. The first estimates of bounds on
the time-dependent coefficients attainable from existing
HERA data were discussed in Ref. [15]. In the next section
we perform a similar analysis, but using simulated data to
provide predictions for the sensitivities to Lorentz violation
at the future EIC.

III. ESTIMATED CONSTRAINTS FOR THE EIC

A. Collider details and bound extraction procedure

The expected sensitivities to the quark-sector coefficients
for Lorentz violation cμνf can be calculated by means of
simulated data describing the kinematical coverage and
experimental uncertainties of the proposed EIC designs. To
start the discussion in this section, we briefly discuss the
relevant features of the JLEIC and eRHIC with regards to
our numerical analysis. The current baseline JLEIC design
concept features a new figure-eight collider ring with two
interaction points and a beam luminosity on the order of
1034 cm−2 s−1 [16]. The projected beam energy range for
the electrons and protons is 3 ≤ Ee ≤ 12 GeV and
20 ≤ Ep ≤ 100 GeV, respectively, leading to a CM energy
range of roughly 15 ≤

ffiffiffi
s

p
≤ 70 GeV. The collider colati-

tude is χ ≈ 52.9° with electron beam orientations ψ ≈ 47.6°,
−35.0° North East (NE) that we henceforth refer to as
JLEIC1 and JLEIC2, respectively. The baseline eRHIC
concept, in contrast, utilizes the existing relativistic heavy-
ion collider ring with interaction points at the STAR
and PHENIX detectors and a luminosity on the order of
1033 cm−2 s−1 [18]. The projected beam energy range for
the electrons and protons is 5 ≤ Ee ≤ 20 GeV and
50 ≤ Ep ≤ 250 GeV, respectively, leading to a CM energy
range of roughly 30 ≤

ffiffiffi
s

p
≤ 140 GeV. The colatitude of

the collider is χ ≈ 49.1° and electron beam orientations
are ψ ≈ −78.5°, −16.8° NE for the PHENIX and STAR
detectors, respectively, and we henceforth refer to these
configurations as eRHIC1 and eRHIC2, respectively.
As suggested in Sec. II, our primary interest is to explore

the sensitivities of the 12 coefficients that induce sidereal
time dependence in the differential cross section given by
Eq. (18). The focus on this subset of coefficients is mainly
due to two reasons. On one hand, the fits which yield the
PDFs are performed using several time-averaged cross
sections for several processes, including e-p DIS: any
Lorentz-violating effects on the time-averaged cross section
would be (at least partially) reabsorbed into the fitted PDFs.
It is, therefore, difficult to extract reliable bounds on
coefficients which contribute to time-averaged quantities.
On the other hand, the extraction of bounds from time-
dependent effects is favored because the SM-induced
sidereal time variation is exactly null and 100% systematic
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uncertainties do not affect, to a very good extent, the
resulting bounds. The reason for this latter fact is that
100% correlated errors will move all sidereal time bins in the
same direction without inducing any spurious time depend-
ence (which is obviously generated by statistical uncertain-
ties). In particular, both systematic theory and experimental
uncertainties are almost 100% correlated; this is especially
relevant for the former because they can be sizable. We
should mention that it will be necessary to monitor carefully
the time dependence of the luminosity measurement in order
to obtain the sidereal bins integrated luminosities with
correlated uncertainties. In general, systematic uncertainties
emanating from day/night differences are distinguishable
from sidereal effects because the former undergo an shift
of approximately 4 min/day. If the data are taken over a
longer time period (i.e., of order one year), as is typical for
these kinds of experiments, the day/night systematics can be
well suppressed compared to the sidereal counterpart.
Otherwise, it may be possible to separate and distinguish
these effects in the data.
The method of analysis used to place bounds is similar to

what was done in Ref. [15] (to which we refer the reader for
further details), but has a few key differences. The starting
point in Ref. [15] were the combined Zeus/H1 DIS results
presented at fixed x andQ2. Note that experiments measure
cross sections in bins of x andQ2 and ascribe the average to
the center of the two-dimensional bin. For each x and Q2

value, we generated 1000 Gaussian-distributed pseudoex-
periments, each of which describes the potential outcome
of splitting the HERA data set into four bins in sidereal
time. We also required the weighted average of the binned
cross sections to be identical to the measured one: in this
way, each pseudoexperiment simulates what the actual
splitting of the (already observed) events in sidereal bins
might look like. The expected upper limit on the coef-
ficients for Lorentz violation of interest is then given by the
median of the upper limits calculated for each pseudoex-
periment. We extract the latter by building the following
chi-square:

χ2i ðx;Q2; cμνf Þ ¼
Xnbins
n;m¼1

½σthðx;Q2; cμνf ; nÞ− σiexpðx;Q2; nÞ�

×C−1
nm½σthðx;Q2; cμνf ;mÞ − σiexpðx;Q2;mÞ�;

ð22Þ

where nbins is the number of sidereal time bins,
σthðx;Q2; cμνf ; nÞ is the theoretical cross section integrated
over the nth sidereal time bin, σiexpðx;Q2; nÞ is the
corresponding experimental cross section as it appears in
the ith pseudoexperiment, and Cnm is the nbins × nbins
covariance matrix. The latter is the sum of two contribu-
tions: the statistical part is diagonal and is rescaled by a
factor equal to the square root of the number of bins with

respect to the statistical error of the original measurement,
and we consider the two extreme cases of 0% and 100%
correlation for the systematic contributions. In contrast, for
this analysis there are no existing data for the EIC and we
simply sample the SM cross section in each sidereal time
bin. We use the software MANEPARSE [26,27], and the
CT10 set [28] in particular, for the quark PDFs. Each
coefficient is bounded independently by setting the others
to zero, which is in accordance with accepted procedure [9].
In addition to the extraction of bounds based on a chi-
square for each individual measurement, we also construct
a global chi-square over the entire data set for each collider
and the two respective detector locations and orientations:

χ2i ðcμνf Þ ¼
X
x;Q2

χ2i ðx;Q2; cμνf Þ: ð23Þ

B. Numerical results: Individual and global
bounds for time-dependent coefficients

Data sets of simulated reduced cross sections with
associated uncertainties over a range of ðEe; EpÞ values
characteristic of the JLEIC and eRHIC are used to extract
the individual and global bounds. The data sets where
generated using HERWIG 6.4 [29,30] at next-to-leading
order (NLO) and estimates of detector systematics were
based off of the HERA collider [19]. The JLEIC data set
comprises a total of 726 measurements covering the range
x∈ ð9×10−3;9×10−1Þ, Q2 ∈ ð2.5; 2.2 × 103Þ GeV2 with
electron beam energies Ee ¼ 5, 10 GeV and proton beam
energies Ep ¼ 20, 60, 80, 100 GeV. The DIS cross
sections have been evaluated at NLO including power
corrections stemming from higher twist and target mass
effects [31]. These data correspond to an integrated
luminosity of 100 fb−1, which represents roughly one
year of data taking for the JLEIC. These data come with an
overall point-to-point systematic uncertainty of 0.5% for
Bjorken x < 0.7 and 1.5% for x > 0.7 as well as a 1%
luminosity error. The data set for the eRHIC comprises
1488 measurements covering the range x ∈ ð1 × 10−4;
8.2 × 10−1Þ, Q2 ∈ ð1.3; 7.9 × 103Þ GeV2 with electron
beam energies Ee ¼ 5, 10, 15, 20 GeV and proton beam
energies Ep ¼ 50, 100, 250 GeV. The integrated lumi-
nosity is 100 fb−1 and represents roughly 10 years of data
taking when accounting for the eRHIC luminosity. These
data come with an overall 1.6% point-to-point systematic
uncertainty and a 1.4% luminosity error. This data set
allows an investigation into a wider kinematical range.
Taking the JLEIC and eRHIC data as a whole, the CM
energy range is in total approximately 28 ≤

ffiffiffi
s

p
≤

141 GeV, which is fairly representative of the expected
full CM energy range of the EIC as discussed in Sec. I.
Our main results are given in Table I where we present

a compilation of the best individual and global bounds
for both the JLEIC and eRHIC. A detailed breakdown of
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the bounds we obtain is presented in Tables II–III and in
Figs. 4–7. In Tables II–III, we present the best individual
limits for the 12 coefficients inducing sidereal time
dependence for the entire JLEIC and eRHIC data sets.
To illustrate how these bounds vary over each of the data
sets, we show as an example the distribution of best
individual limits for the cTXu coefficient for JLEIC1 in
Fig. 4, and eRHIC1 in Figs. 5–6. The dependence of our
sensitivity on x, y andQ2 is shown in Fig. 7 for both JLEIC
and eRHIC.
We begin with a discussion of the JLEIC results. Table II

shows a general trend of increasing sensitivity (i.e., smaller
bounds) for both cases of uncorrelated and 100% correlated
systematic uncertainties with increasing Ep and decreasing
Ee, as well as most sensitivity to the u quark coefficients
containing ð0; 3Þ ¼ ðT; ZÞ indices. The latter fact can be
inferred as a direct consequence of the rotation properties in
Eq. (21) and by considering the difference in the u, d quark
charges. The former feature of an increasing sensitivity for
larger values of Ep at fixed Ee implies more sensitivity at

larger s, which is expected from considerations of the form
of Eqs. (18) and (19). In principle, we expect increased
sensitivity at large Ee as well, but this effect is shadowed
by the experimental acceptance cut which requires a lower
bound y > yc (with yc ∼ 10−2) and the corresponding bound
Q2 ¼ sxy > sxyc ¼ Q2

c. This lower bound implies that, at
fixed x, lower Ee allow points with smaller Q2 which, all
else being equal, yield much larger cross sections (remember
that the electromagnetic contribution scales as Q−4), smaller
statistical uncertainties and an increased sensitivity to
time-dependent Lorentz-violating effects. Interestingly, there
is an even split between JLEIC1/JLEIC2 in terms of which
configuration has better sensitivities, although the differences
are small overall which is to be expected. Since all
coefficients show a similar trend of increasing sensitivity
at larger Ep, inspecting Fig. 4 for the cTXu coefficient for a
given orientation (JLEIC1 shown) is sufficient to determine
the overall kinematical regions of most sensitivity. Generally
speaking, the bounds showing the most sensitivity appear to
come from the large x, lowQ2, and low y region of the phase

TABLE I. Expected best individual and global bounds for the
JLEIC and eRHIC. All bounds are given in units of 10−5. The
bounds with brackets correspond to the case of uncorrelated
systematic uncertainties between binned data, and the bounds
without brackets correspond to assuming 100% correlation
between systematic uncertainties. For each coefficient magni-
tude, we give the bounds for both electron beam orientations (see
the caption in Tables II–III for further information).

JLEIC JLEIC eRHIC eRHIC

Individual Global Individual Global

jcTXu j 0.04 [0.2] 0.03 [0.1] 0.1 [0.5] 0.04 [0.3]
0.04 [0.2] 0.02 [0.1] 0.09 [0.3] 0.03 [0.2]

jcTYu j 0.04 [0.2] 0.03 [0.1] 0.1 [0.5] 0.04 [0.3]
0.04 [0.2] 0.02 [0.1] 0.09 [0.3] 0.03 [0.2]

jcXZu j 0.07 [0.4] 0.05 [0.2] 0.2 [0.7] 0.05 [0.4]
0.08 [0.4] 0.05 [0.3] 0.4 [2.0] 0.1 [0.8]

jcYZu j 0.07 [0.4] 0.05 [0.2] 0.2 [0.7] 0.05 [0.4]
0.09 [0.4] 0.05 [0.3] 0.4 [2] 0.1 [0.8]

jcXYu j 0.3 [1] 0.2 [0.9] 0.5 [2] 0.1 [1]
0.1 [0.7] 0.08 [0.4] 0.2 [0.7] 0.06 [0.4]

jcXXu − cYYu j 0.2 [1] 0.1 [0.7] 1.0 [5] 0.4 [3]
0.2 [1] 0.2 [0.8] 0.9 [4] 0.3 [2]

jcTXd j 0.7 [4] 0.3 [2] 1 [10] 0.4 [4]
0.7 [3] 0.3 [2] 0.9 [6] 0.3 [3]

jcTYd j 0.7 [4] 0.3 [2] 1 [9] 0.4 [4]
0.6 [3] 0.3 [2] 0.9 [7] 0.3 [3]

jcXZd j 1 [6] 0.6 [4] 2 [10] 0.5 [5]
1 [7] 0.7 [5] 4 [30] 1 [10]

jcYZd j 1 [6] 0.6 [4] 2 [10] 0.5 [5]
1 [8] 0.7 [5] 4 [30] 1 [10]

jcXYd j 5 [20] 2 [10] 5 [30] 1 [10]
2 [10] 1 [7] 2 [10] 0.5 [6]

jcXXd − cYYd j 4 [20] 2 [10] 10 [100] 4 [40]
4 [20] 2 [10] 10 [70] 3 [30]

TABLE II. Summary of all expected bounds for the JLEIC
given in units of 10−5. The five columns denote the laboratory
frame electron and proton energies ðEe; EpÞ in GeV. The bounds
with brackets correspond to the case of uncorrelated systematic
uncertainties between binned data, and the bounds without
brackets correspond to assuming 100% correlation between
systematic uncertainties. For each coefficient magnitude, we
give the bounds for both electron beam orientations: ψ ¼
47.6° followed by ψ ¼ −35.0° NE.

JLEIC (10, 20) (10, 60) (10, 80) (10, 100) (5, 100)

jcTXu j 1 [8] 0.8 [4] 0.7 [1] 0.5 [0.9] 0.04 [0.2]
1 [7] 0.7 [4] 0.6 [1] 0.4 [0.8] 0.04 [0.2]

jcTYu j 1 [8] 0.8 [4] 0.7 [1] 0.5 [0.9] 0.04 [0.2]
1 [7] 0.7 [4] 0.6 [1] 0.4 [0.8] 0.04 [0.2]

jcXZu j 2 [10] 1 [6] 1 [2] 0.8 [2] 0.07 [0.4]
2 [20] 2 [8] 1 [2] 1 [2] 0.08 [0.4]

jcYZu j 2 [10] 1 [6] 1 [2] 0.8 [2] 0.07 [0.4]
2 [20] 2 [8] 1 [2] 1 [2] 0.09 [0.4]

jcXYu j 7 [50] 5 [20] 4 [7] 3 [6] 0.3 [1]
3 [20] 2 [10] 2 [3] 1 [3] 0.1 [0.7]

jcXXu − cYYu j 6 [40] 4 [20] 4 [6] 3 [5] 0.2 [1]
7 [50] 4 [20] 4 [6] 3 [5] 0.2 [1]

jcTXd j 20 [100] 7 [60] 6 [20] 6 [10] 0.7 [4]

10 [100] 6 [60] 5 [20] 5 [10] 0.7 [3]
jcTYd j 20 [100] 7 [70] 6 [20] 6 [10] 0.7 [4]

10 [100] 6 [60] 5 [20] 5 [10] 0.6 [3]
jcXZd j 20 [200] 10 [100] 9 [30] 9 [20] 1 [6]

30 [300] 10 [100] 10 [40] 10 [30] 1 [7]
jcYZd j 20 [200] 10 [100] 9 [30] 9 [20] 1 [6]

30 [300] 10 [100] 10 [40] 10 [30] 1 [8]
jcXYd j 90 [900] 40 [400] 40 [100] 40 [90] 5 [20]

40 [400] 20 [200] 20 [50] 20 [40] 2 [10]
jcXXd − cYYd j 80 [700] 40 [400] 30 [90] 30 [70] 4 [20]

80 [800] 40 [400] 30 [100] 30 [70] 4 [20]
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TABLE III. Summary of all expected bounds for the eRHIC. Bounds for the electron beam orientations ψ ¼
−78.5° followed by ψ ¼ −16.8° NE are shown. See the caption in Table II for further details.

eRHIC (5,50) (5,100) (5,250) (10,50) (10,100) (10,250)

jcTXu j 0.1 [0.9] 0.2 [0.8] 0.1 [0.5] 0.6 [3] 0.6 [2] 0.4 [0.9]
0.09 [0.6] 0.1 [0.5] 0.09 [0.3] 0.4 [2] 0.4 [1] 0.3 [0.6]

jcTYu j 0.1 [0.9] 0.2 [0.7] 0.1 [0.5] 0.6 [3] 0.6 [2] 0.4 [0.9]
0.09 [0.6] 0.1 [0.5] 0.09 [0.3] 0.4 [2] 0.4 [1] 0.3 [0.6]

jcXZu j 0.2 [1] 0.2 [1] 0.2 [0.7] 0.8 [4] 0.9 [2] 0.5 [1]
0.4 [3] 0.5 [2] 0.4 [2] 2 [9] 2 [5] 1 [3]

jcYZu j 0.2 [1] 0.2 [1] 0.2 [0.7] 0.9 [4] 0.9 [2] 0.5 [1]
0.4 [3] 0.5 [2] 0.4 [2] 2 [9] 2 [5] 1 [3]

jcXYu j 0.5 [3] 0.6 [3] 0.5 [2] 2 [10] 2 [6] 1 [3]
0.2 [1] 0.2 [1] 0.2 [0.7] 1 [4] 1 [3] 0.6 [1]

jcXXu − cYYu j 1 [9] 2 [8] 1 [5] 6 [30] 7 [20] 4 [9]
0.9 [7] 1 [5] 1 [4] 5 [20] 5 [10] 3 [7]

jcTXd j 2 [20] 2 [10] 1 [10] 6 [60] 6 [30] 4 [20]
1 [10] 1 [10] 0.9 [6] 4 [40] 4 [20] 2 [10]

jcTYd j 2 [20] 2 [10] 1 [10] 6 [60] 6 [30] 4 [20]
1 [10] 1 [10] 0.9 [7] 4 [40] 4 [20] 2 [10]

jcXZd j 3 [20] 2 [20] 2 [10] 7 [70] 8 [40] 5 [20]
6 [60] 5 [50] 4 [30] 20 [200] 20 [100] 10 [50]

jcYZd j 3 [20] 2 [20] 2 [10] 7 [70] 8 [40] 5 [20]
6 [60] 5 [50] 4 [30] 20 [200] 20 [100] 10 [50]

jcXYd j 7 [70] 6 [50] 5 [30] 20 [200] 20 [100] 10 [60]
3 [30] 3 [20] 2 [10] 8 [90] 9 [50] 5 [30]

jcXXd − cYYd j 20 [200] 20 [200] 10 [100] 60 [600] 70 [400] 40 [200]
10 [100] 10 [100] 9 [70] 40 [400] 50 [200] 30 [100]

[15,50] [15,100] [15,250] [20,50] [20,100] [20,250]

jcTXu j 1 [2] 1 [3] 0.8 [2] 1 [6] 1 [4] 1 [2]
0.7 [2] 0.8 [2] 0.5 [1] 0.8 [4] 0.8 [3] 0.8 [1]

jcTYu j 1 [2] 1 [3] 0.8 [2] 1 [7] 1 [4] 1 [2]
0.7 [2] 0.7 [2] 0.5 [1] 0.8 [4] 0.8 [3] 0.8 [1]

jcXZu j 1 [3] 1 [4] 1 [2] 2 [9] 2 [6] 2 [3]
3 [7] 3 [10] 3 [5] 4 [20] 4 [10] 4 [6]

jcYZu j 1 [3] 1 [4] 1 [2] 2 [9] 2 [6] 2 [3]
3 [7] 3 [10] 2 [5] 4 [20] 4 [10] 4 [6]

jcXYu j 3 [8] 4 [10] 3 [6] 4 [20] 4 [20] 4 [8]
1 [3] 2 [5] 1 [3] 2 [10] 2 [7] 2 [3]

jcXXu − cYYu j 10 [20] 10 [30] 8 [20] 10 [70] 10 [50] 10 [20]
7 [20] 8 [20] 6 [10] 9 [50] 9 [30] 9 [20]

jcTXd j 4 [10] 10 [20] 7 [30] 5 [40] 5 [60] 10 [40]
3 [7] 7 [10] 5 [20] 3 [20] 3 [40] 8 [30]

jcTYd j 4 [9] 10 [20] 7 [30] 5 [40] 5 [60] 10 [40]
3 [7] 7 [10] 5 [20] 3 [20] 3 [40] 8 [30]

jcXZd j 5 [10] 10 [30] 10 [40] 6 [50] 6 [80] 20 [50]
10 [30] 30 [60] 20 [100] 20 [100] 10 [200] 40 [100]

jcYZd j 5 [10] 10 [30] 10 [50] 6 [50] 6 [80] 10 [50]
10 [30] 30 [60] 20 [100] 20 [100] 10 [200] 30 [100]

jcXYd j 10 [30] 40 [70] 30 [100] 20 [100] 20 [200] 40 [100]
6 [10] 20 [30] 10 [50] 7 [50] 7 [90] 20 [60]

jcXXd − cYYd j 40 [100] 100 [200] 80 [300] 50 [400] 50 [600] 100 [400]
30 [70] 80 [100] 50 [200] 30 [300] 30 [400] 80 [300]
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space, which is also consistent with the features of Eqs. (18)
and (19). These observations are further supported by
examining the top panels in Fig. 7, which shows correlations
between these variables for the special case of the cTXu
coefficient also for the JLEIC1 configuration. To summarize,
for the JLEIC data set we find that the highest sensitivities
to the coefficients emanate near the kinematical boundary
Q2 ¼ sy for lowQ2, y, and for the smallest and largest value
of Ee and Ep, respectively.

In regards to the eRHIC results, we begin by consulting
Table III. The first observation we make is that overall, the
level of sensitivity of roughly 10−5–10−6 for the u quark
coefficient magnitudes and 10−3–10−4 for the d quark
coefficient magnitudes is comparable with the JLEIC
levels, especially for the matching cases of ðEe; EpÞ ¼
ðð5; 10Þ; 100Þ GeV as expected. There appears to be a
preference for the eRHIC2 configuration, but as with the
JLEIC comparison the preference is not significant in the

FIG. 4. Distribution of jcTXu j correlated upper limits for JLEIC1. The median value for the collection of pseudoexperiments is plotted
against the variables x, Q2, y for electron energies Ee ¼ 5, 10 GeV and proton energies Ep ¼ 20, 60, 80, 100 GeV.
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FIG. 5. Distribution of jcTXu j correlated upper limits for eRHIC1. The median value for the collection of pseudoexperiments is plotted
against the variables x, Q2, y for electron energies Ee ¼ 5, 10 GeV and proton energies Ep ¼ 50, 100, 250 GeV.
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FIG. 6. Distribution of jcTXu j correlated upper limits for eRHIC1. The median value for the collection of pseudoexperiments is plotted
against the variables x, Q2, y for electron energies Ee ¼ 15, 20 GeV and proton energies Ep ¼ 50, 100, 250 GeV.
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sense that there is not more than an order of magnitude
more sensitivity for any coefficient. What is perhaps most
interesting about these results is that they further expose
and support the feature of increased sensitivity to Lorentz
violation at lower Ee for a fixed Ep. Additionally, these
bounds do not seem to be heavily influenced by an
increasing Ep. Furthermore, while the highest sensitivities
ultimately come from large x, low Q2, and large y, which
is consistent with the JLEIC results, a sizable portion of
the best limits come from the contrasting low x, large y
regions, with Q2 still relatively small; in other words, near
the boundary Q2 ¼ sx. This can be observed from the
analogous plots of correlations between these variables for
the eRHIC data sets as shown in the lower panels of Fig. 7.
This region of sensitivity is consistent with the results of
Ref. [15] which, generally speaking, involved measure-
ments at larger

ffiffiffi
s

p
. Though the bounds that we find here

(for the large x, low y) region are roughly one to two
orders of magnitude more sensitive than what was found
in Ref. [15], the main point is that we have now identified
two regions in the kinematical phase space of comparable
sensitivity to Lorentz violation: low to moderately low Q2

with low x, large y; or high x, low y.
Establishing definitive statements about the patterns in

the eRHIC results is not as easily accomplished as
compared to the JLEIC results. This is partly due to the
greater variability in the eRHIC data set, coupled with the
fact that the systematic errors are calculated differently
between the two sets, leading to different patterns in the
correlated bounds between the two sets. For instance, the
pattern of increasing bound sensitivities in Ep for a fixed Ee
is only present for the case of uncorrelated uncertainties and
for Ee ¼ 5, 10 GeV. Since the smallest bounds in this case

come from data points that maximize the kinematical
preference while minimizing the total uncertainty (which
is dominated by systematics and, thus, not strongly reduced
by increased statistics), it appears that lower electron
energies do not produce competition that changes the trend
in more sensitivity to larger Ep. Even for Ee ¼ 5, 10 GeV,
with exception for cμνd with Ee ¼ 5 GeV, the correlated
uncertainties do not follow a pattern of increasing sensi-
tivity with increasing Ep. As we indicated, some of these
features can be understood by comparing the differences in
correlated uncertainties (systematics) between the JLEIC
and eRHIC data sets. Taking a closer look at the bounds for
Ee ¼ 15, 20 GeV in Table III shows that the pattern of
increasing sensitivities to larger Ep begins to dissolve, even
for the case of solely uncorrelated errors. Consulting Fig. 6,
we see that the larger values of Ee introduce areas of
heightened sensitivity in the low x, large y regime, as well
as flattening the distribution of bounds overall. Within a
given set of fixed Ee, we can clearly see how increasing Ep

shifts the distribution of bounds from the low x to high x
region, directly exposing the additional dependence on Ee
and Ep individually in the cross section. This feature is not
seen in the JLEIC data sets because Ee is not large enough
to introduce the additional region of low x sensitivity.
The compilation of the best individual and global bounds

extracted for both the JLEIC and eRHIC are displayed in
Table I. As mentioned, the best individual bound sensitiv-
ities for the JLEIC occur for both the cTXu and cTYu
coefficients at ðEe; EpÞ ¼ ð5; 100Þ GeV in the region of
large x, low Q2, and low y. The global limits, which are
extracted by minimizing the combined data set χ2 distri-
bution, are consistently smaller for all coefficients as
expected. Again, there is an even split in which

FIG. 7. Upper limits for jcTXu j displaying (x, Q2, y) correlations. Red, Green, Blue and Black dots corresponds to bounds below the
10−5, 10−4, 10−3 and 10−2 level, respectively. Upper and lower panels correspond to JLEIC1 and eRHIC1, respectively. All upper limits
assume 100% bin-to-bin correlation between experimental systematic uncertainties.
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configuration (JLEIC1 or JLEIC2) produces the greatest
sensitivities when considering all 12 coefficients. For the
eRHIC, the best individual bounds follow roughly the same
pattern as the equivalent JLEIC bounds. This indicates,
since the colatitudes of the two colliders are very similar,
that the effect of the electron beam orientation through the
angle ψ is not particularly significant. The JLEIC bounds
are found to be slightly more sensitive than those of eRHIC,
which we find is predominantly due to the small differences
in the supplied ðEe; EpÞ ¼ ð5; 100Þ GeV data sets.
Lastly, we return to the issue of potentially finding smaller

bounds at lower values of Ee for fixed values of Ep, which
is what we find for the JLEIC and some of the eRHIC
configurations. To illustrate this feature, we consider for
example the JLEIC data sets corresponding to Ep ¼
100 GeV and Ee ¼ 5, 10 GeV. Speaking purely from the
point of view of kinematics, there is an enhancement in the
sensitivity to the coefficients for Ee ¼ 10 GeV over Ee ¼
5 GeV as we explained above. However, in this case this
preference is trumped by the reduction in the relative
uncertainty for the equivalent points that yield the best
limits. Here, these points correspond to the same values of x.
Therefore, the lower kinematical cut in y with a lower value
ofEe with a fixedEp will enable a smaller minimum value of
Q2, which in turn corresponds to a larger value of the cross
section as we also explained above. Generally speaking, the
larger the value of cross section, the smaller the correspond-
ing statistical uncertainty. This example alone reveals the
delicate balance between energetic preferences and exper-
imental uncertainties in the bound extraction procedure.

C. Individual and global bounds for
time-independent coefficients

In this section we discuss the estimated bounds that can
be placed for the six time-independent coefficients cTTf ,
cTZf , and cZZf for f ¼ u, d. We again remind the reader that
these coefficients only contribute constant offsets to the
leading-order SM result. Here, bounds are extracted by
simply finding the data points which minimize the ratio of
the square root of the total error to the total numerical factor
multiplying the coefficient of interest. Unlike the time-
dependent bounds that we discussed in Sec. III, these
bounds are controlled by the total uncertainty which
includes theoretical (mainly emanating from PDFs and
evaluated following Ref. [32]), statistical and experimental
systematic contributions. We present the expected best
individual and global bounds for both configurations of the
JLEIC and eRHIC in Table IV.
Overall, the bounds on these coefficients are of a similar

magnitude to the time-dependent bounds—see, e.g.,
Table I. An interesting feature emerges from the coeffi-
cients cZZf in particular—it is observed that these bounds
for the JLEIC case vary by roughly an order of magnitude
between JLEIC1/JLEIC2, whereas the equivalent eRHIC

bounds do not. This is due to the fact that, under the
rotation given in Eq. (20), the coefficients cZZf inherit a
factor proportional to cosð2ψÞ. It turns out that the JLEIC1
configuration with ψ ≃ 47.6° is the only one of the four
configurations which is near the “least optimum” angle
possible, which in turn generates the largest bound. In any
case, we caution the reader in the interpretations of these
bounds. Unlike in the case of the coefficients which
generate sidereal time variation in the cross section (some-
thing that no mechanism in the SM can do), constant shifts
in the conventional SM result could be argued to emanate
from a number of factors. What may be most pressing of
an issue here is the fact that, if these effects of Lorentz
violation are indeed present, they may already be contained
within, e.g., the PDFs which we have used to extract the
bounds. If so, this would generate an inconsistency in the
bound extraction procedure. Since it is currently unknown
whether or not this is the case, we cannot ascribe a reliably
meaningful result to these bounds. We leave a more in
depth study of these details for a future work.

IV. CONCLUSIONS

In this work we have explored the potential constraints
on Lorentz-violating unpolarized e-p DIS with the two
currently proposed EIC designs. Our results indicate that
both the JLEIC and eRHIC can offer increased sensitivities
to the coefficients for Lorentz violation which induce a
sidereal time variation in the scattering cross section by
revealing a new kinematical regime in which these effects,
as encapsulated by Eq. (18), are enhanced by roughly one
to two orders of magnitude over previous estimates [15]
which focused on HERA data. We also provided predic-
tions for the six coefficients which contribute as constant
offsets to the leading-order SM cross section.

TABLE IV. Expected time-independent best individual and
global bounds for the JLEIC and eRHIC. All bounds are given
in units of 10−5. For each coefficient magnitude, we give the
bounds for both electron beam orientations (see the caption in
Tables II–III for further information).

JLEIC JLEIC eRHIC eRHIC

Individual Global Individual Global

jcTTu j 0.5 0.3 0.6 0.3
0.5 0.3 0.5 0.3

jcTZu j 0.5 0.3 0.5 0.3
0.7 0.4 2 1

jcZZu j 30 20 2 1
3 2 2 1

jcTTd j 8 4 10 5
8 4 10 4

jcTZd j 9 5 10 4
10 6 30 10

jcZZd j 500 300 40 20
60 30 30 10
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In light of our results, it is reasonable to suggest that
the EIC can be a useful tool for studying deviations from
exact Lorentz symmetry in unpolarized e-p DIS and
related processes. Future studies focusing on the large
x, low Q2, and low y region of the phase space at low
electron energies with more refined ðx;Q2Þ binning could
be performed to give a more realistic idea of what bounds
could be achieved in an actual experiment where the time
stamps of the events culminating in a measurement are
known. Though we have checked that increasing the
number of sidereal time bins does not yield a substantial
improvement in regards to the extracted limits, it may be
the case that a larger number of bins might be required
to wash out potentially sizable day/night effects (which
are periodic with period T ¼ 24 hr). However, the size
of these effects can only be estimated once the collider
is operational. Additionally, given that one of the main
motivations behind the EIC is to explore polarization

effects in the structure of hadrons, one could conceivably
investigate the prospects for testing Lorentz symmetry in
related processes such as polarized DIS. In any event, we
view this work as further support that the EIC will be a
promising and important tool for searches for new physics
beyond the standard model.
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