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We provide an asymptotically safe Pati-Salam embedding of the standard model. Safety is achieved by
adding to the theory gauged vectorlike fermions and by employing recently developed large number-of-
flavor techniques and results. We show that the gauge, scalar quartic and Yukawa couplings achieve an
interacting ultraviolet fixed point below the Planck scale. The minimal model is a relevant example of a
standard model extension in which unification of all type of couplings occurs because of a dynamical
principle, i.e., the presence of an ultraviolet fixed point. This extension differs from the usual grand unified
theories scenario in which only gauge couplings unify and become free with the remaining couplings left
unsafe. We find renormalization group flow solutions that match the standard model couplings values at
low energies allowing for realistic safe extensions of the standard model.
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I. INTRODUCTION

The recent discovery of four dimensional asymptotically
safe quantum field theories [1,2] has opened the way to safe
extensions of the standard model, starting with the envision
of a safe rather than free QCD [3], to scenarios in which the
gauge, the Yukawa and scalar quartic couplings are unified
by a dynamical rather than a symmetry principle [5–8]. On
the supersymmetric front, exact nonperturbative results and
constraints were first discussed coherently in [9], extending
and correcting the results of [10] while opening the way to
(non)perturbative supersymmetric safety in [11–13], and to
the first applications for super grand unified theory (GUT)
model building [11,14]. Simultaneously there has been
much advancement in our understanding of the nonsuper-
symmetric dynamics of large number of flavors gauge-
Yukawa theories [15–19]. This has led, e.g., to enrich the
original conformal window [20,21], reviewed in [22,23],
with a novel asymptotically safe region [24]. The discovery
led to the upgraded conformal window 2.0 of [24]. The
large Nf dynamics of gauge-fermion theories has been
extended to gauge-Yukawa theories starting with the

Yukawa sector [25–27] and for the first time to all
couplings in [28,29]. A gauge-less study appeared in
[30]. The results widened the palette of tools and theories
at our disposal for novel large Nf safe extensions of the SM
[7,28,31–33].
We use the acquired knowledge to construct a novel safe

Pati-Salam extension by adding vector-like fermions and
showing that all couplings acquire an UV fixed point at
energies that are far from the onset of quantum gravity. The
separation of scales allow us to investigate a condense-
matter-like unification of the SM couplings before having
to consider the gravitational corrections. The interplay with
gravity has been investigated in several recent works [34–
38] and it will not be considered here. Differently from the
usual grand unified scenarios [39] in which only the gauge
couplings unify because of their embedding into a larger
group structure and then they eventually become free, in the
present scenario we have that Yukawa and scalar self
couplings are intimately linked because of the safe dynam-
ics with their high energy behavior tamed by the presence
of an interacting fixed point.
The paper is organized as follows: In Sec. II we review

and introduce the Pati-Salam [40] extension of the SM and
build the minimal vector-like structure able to support a safe
scenario. We develop the renormalization group (RG)
equations and determine the couplings’ evolution in
Sec. III. Here we analyze and classify the UV fixed point
structure of the model. We discuss how to match the SM
couplings at low energies in Sec. IV. We offer our con-
clusions in Sec. V. In Appendix we summarize the one-loop
RG equations for the Pati-Salam model investigated here.
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II. PATI-SALAM EXTENSION OF
THE STANDARD MODEL

Consider the time-honored Pati-Salam gauge symmetry
group GPS [40]

GPS ¼ SUð4Þ ⊗ SUð2ÞL ⊗ SUð2ÞR; ð1Þ

with gauge couplings g4, gL and gR, respectively. Here the
gauge group SUð4Þ ⊃ SUð3ÞC ⊗ Uð1ÞB−L, where SUð3ÞC
denotes the SM color gauge group, and the corresponding
gauge couplings are related according to

g3 ¼ g4; gB−L ¼
ffiffiffi
3

8

r
g3: ð2Þ

The gauge fields of GPS can be written as follows:

ŴLμ ≡ 1

2

� W0
Lμ

ffiffiffi
2

p
Wþ

Lμffiffiffi
2

p
W−

Lμ −W0
Lμ

�
; ð3Þ

ŴRμ ≡ 1

2

� W0
Rμ

ffiffiffi
2

p
Wþ

Rμffiffiffi
2

p
W−

Rμ −W0
Rμ

�
; ð4Þ

Ĝμ ≡ 1

2

0
BBBBB@

G3μ þ G8μffiffi
3

p þ Bμffiffi
6

p
ffiffiffi
2

p
Gþ

12μ

ffiffiffi
2

p
Gþ

13μ

ffiffiffi
2

p
Xþ
1μffiffiffi

2
p

G−
12μ −G3μ þ G8μffiffi

3
p þ Bμffiffi

6
p

ffiffiffi
2

p
Gþ

23μ

ffiffiffi
2

p
Xþ
2μffiffiffi

2
p

G−
13μ

ffiffiffi
2

p
G−

23μ − 2G8μffiffi
3

p þ Bμffiffi
6

p
ffiffiffi
2

p
Xþ
3μffiffiffi

2
p

X−
1μ

ffiffiffi
2

p
X−
2μ

ffiffiffi
2

p
X−
3μ − 3Bμffiffi

6
p

1
CCCCCA: ð5Þ

In this parametrization, W0
Lμ and W�

Lμ correspond to the
electroweak (EW) gauge bosons, G3μ, G8μ, G�

12μ, G
�
13μ and

G�
23μ are the SUð3ÞC gluons, Bμ is the B − L gauge field,

and X�
1μ, X

�
2μ and X�

3μ are leptoquarks.
The SM quark and lepton fields are unified into the GPS

irreducible representations

ψLi ¼
�
uL uL uL νL

dL dL dL eL

�
i

∼ ð4; 2; 1Þi;

ψRi ¼
�
uR uR uR νR

dR dR dR eR

�
i

∼ ð4; 1; 2Þi; ð6Þ

where i ¼ 1, 2, 3 is a flavor index.
In order to induce the breaking of GPS to the SM gauge

group, we introduce a scalar field ϕR which transforms as
the fermion multiplet ψR, that is ϕR ∼ ð4; 1; 2Þ:

ϕR ¼
�
ϕu
R ϕ0

R

ϕd
R ϕ−

R

�
; ð7Þ

where the neutral component ϕ0
R takes a nonzero vev,

vR ≡ hϕ0
Ri, such that GPS→

νR SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY .

The hypercharge Y is a linear combination between the
diagonal generator of SUð2ÞR and the generator of B − L,
namely

Y ¼ 2IR þ ðB − LÞ; ð8Þ

with TrðI2RÞ ¼ 1=2 for the fundamental representation.
Then, the EW gauge couplings g2 and gY result:

g2 ¼ gL; gR ¼ gYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2g2Y=3g

2
3

p : ð9Þ

We also introduce an additional (complex) scalar field
Φ ∼ ð1; 2; 2Þ, with

Φ ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
≡

�
Φ1 Φ2

�
; ð10Þ

which is responsible of the breaking of the EW symmetry.

A. The scalar sector

The general scalar potential of the model defined above
is given by:

VðΦ;ϕRÞ ¼ −μ21TrðΦ†ΦÞ þ Re½μ212TrðΦ†ΦcÞ� − μ2RTrðϕ†
RϕRÞ þ λ1Tr2ðΦ†ΦÞ þ Re½λ2Tr2ðΦ†ΦcÞ�

þ Re½λ3TrðΦ†ΦÞTrðΦ†ΦcÞ� þ ðλ4 − 2Reλ2ÞjTrðΦ†ΦcÞj2 þ λR1Tr2ðϕ†
RϕRÞ þ λR2Trðϕ†

RϕRϕ
†
RϕRÞ

þ λRΦ1Trðϕ†
RϕRÞTrðΦ†ΦÞ þ Re½λRΦ2

TrðϕRϕ
†
RÞTrðΦ†ΦcÞ� þ λRΦ3Trðϕ†

RϕRΦ†ΦÞ: ð11Þ

The quartic couplings λ2;3 and λRΦ2, and the dimensional term μ12, carry a nontrivial phase in case CP symmetry is
explicitly broken. We have also introduced the conjugate field Φc ≡ τ2Φ�τ2, τ2 being the standard Pauli matrix.
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B. The Yukawa sector

The most general Yukawa Lagrangian for the matter
fields ψL=R is1

Lψ
Yuk ¼ yTr½ψLΦψR� þ ycTr½ψLΦcψR� þ H:c:: ð12Þ

In terms of the SM fermion fields Eq. (12) reads:

Lψ
Yuk ¼ yðtLtRϕ0

1 þ tLbRϕ
þ
2 þ bLtRϕ−

1 þ bLbRϕ0
2

þ νLνRϕ
0
1 þ νLτRϕ

þ
2 þ τLνRϕ

−
1 þ τLτRϕ

0
2Þ

þ ycðtLtRϕ0�
2 − tLbRϕ

þ
1 − bLtRϕ−

2 þ bLbRϕ0�
1

þ νLνRϕ
0�
2 − νLτRϕ

þ
1 − τLνRϕ

−
2 þ τLτRϕ

0�
1 Þ þ H:c:

ð13Þ

Electroweak symmetry breaking is induced by a nonzero
vev of Φ, which takes the form:

hΦi ¼
�
u1 0

0 u2

�
; ð14Þ

with generally u1 ≠ u2. From Eq. (13) we have the fermion
mass spectrum:

mt ¼ mντ ¼ ðy sin β þ yc cos βÞv;
mb ¼ mτ ¼ ðy cos β þ yc sin βÞv; ð15Þ

where v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

p
¼ 174 GeV and tan β≡ u1=u2. In

the case of a self-conjugate bidoublet fieldΦ≡Φc, one has
u1 ¼ u2 in Eq. (14) and equality between fermion masses is
enforced at tree-level, namely

mt ¼ mb ¼ mτ ¼ mντ : ð16Þ

In order to separate the neutrino and top masses in Eqs. (15)
and (16) we implement the seesaw mechanism [41–44] by
adding a new chiral fermion singlet NL ∼ ð1; 1; 1Þ, which
has Yukawa interaction

LN
Yuk ¼ −yνNLTr½ϕ†

RψR� þ H:c: ð17Þ

The latter generates a Dirac mass term MRNLνR, with
MR ≡ yνvR. The resulting Majorana mass term for the
neutral fermion fields reads:

Lν
mass ¼ −

1

2

�
νcR νR Nc

R

�0B@
0 mt 0

mt 0 MR

0 MR 0

1
CA
0
B@

νL

νcL
NL

1
CA

þ H:c: ð18Þ

with νcL=R ≡ Cν̄TR=L and Nc
R ≡ CNL

T . The mass spectrum
consists of one massless neutrino

ντL ¼ − cos θνL þ sin θNL; ð19Þ
with tan θ ¼ mt=MR, and one Dirac neutrino ND with mass
mD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t þM2
R

p
and chiral components:

PLND ¼ νL sin θ þ NL cos θ;

PRND ¼ νR: ð20Þ
By adding a Majorana mass term for the singlet fermionNL

LN
mass ¼ −

1

2
MNNc

RNL þ H:c: ð21Þ

the total lepton number is explicitly broken and the
spectrum consists of three massive neutrinos. Taking
MN ≪ mt, MR, the mass eigenstates result in one light
active Majorana neutrino ντ with mass

mντ ¼ MN
m2

t

m2
D

ð22Þ

and two quasidegenerate heavy Majorana neutrinos N1;2

with opposite CP parities and masses

M1;2 ¼ mD �MN

2

M2
R

m2
D
: ð23Þ

Threshold corrections may induce a sizable mass splitting
between mτ and mb in Eqs. (15) and (16), which depends
on the GPS breaking scale vR, see Ref. [45].

C. The minimal model

In the simplest scenario where the field Φ is self-
conjugate, the fermion spectrum is degenerate, see
Eq. (16), and the scalar potential in Eq. (11) consists of
the quartic couplings λ01, λR1;2 and λRΦ1;3 (here
λ01 ≡ λ1 þ λ3 þ λ4 − λ2). As discussed above, by adding
a new chiral fermion NL, which is a singlet under GPS, it is
possible to induce a hierarchy between the top quark and
neutrino masses via the seesaw mechanism, such that the
correct light neutrino mass scale can be accommodated.
Here, we further extend the matter content of the theory
with a new vector-like fermion F ∼ ð10; 1; 1Þ with mass
MF and Yukawa interactions:

LF
Yuk ¼ yFTrðFLϕ

T
Riτ2ψRÞ þ H:c: ð24Þ

1We consider for simplicity only Yukawa couplings to the third
fermion generation and we omit the flavor index i in ψL=R, see
Eq. (6).
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In terms of the SUð3ÞC representations, the field F can be
decomposed as

F ¼
�

S B
ffiffiffi
2

p

BT
ffiffiffi
2

p
E

�
; ð25Þ

where S, B and E denote a color sextet, triplet and singlet,
respectively. Then, from Eq. (24) the fields B and E mix
with the right-handed components of ψR, bR and τR,
respectively, giving the overall Dirac mass terms:

Lb
mass ¼

�
bL BL

�� mt 0

mB MF

��
bR
BR

�
þ H:c:; ð26Þ

Lτ
mass ¼

�
τL EL

�� mt 0ffiffiffi
2

p
mB MF

��
τR

ER

�
þ H:c:; ð27Þ

with mB ≡ yFvR=
ffiffiffi
2

p
. As a result of this mixing, the top

quark becomes naturally heavier than the other SM
fermions. In fact, in the limit mB ≫ mt, MF, the b quark
and τ charged lepton masses satisfy the tree-level relation:

mb ¼
ffiffiffi
2

p
mτ ≈

MFmtffiffiffi
2

p
mB

: ð28Þ

Analogously, we have a new vectorlike quark, B̂, and a new
vectorlike lepton, Ê, with corresponding masses MB and
ME, which satisfy the tree-level relation:

MB ¼ ME=
ffiffiffi
2

p
≈mB: ð29Þ

III. RENORMALIZATION GROUP ANALYSIS

In this section, we perform the RG analysis of the Pati-
Salam extension of the SM introduced above and discuss
the relevant phenomenological implications. The gauge,
Yukawa and scalar couplings in the minimal and extended
realizations are listed in Table. I. The corresponding RG
equations at one loop order are reported in Appendix.

A. Large-N beta function

In order to ensure asymptotic safety in the UV for all the
system in Table I, we employ the 1=NF expansion approach
developed in [15–17,46], first applied to the whole SM in
[31]. More specifically, we introduce NF ≫ 1 vector-like

fermions, which transform non-trivially under GPS. In this
framework, the RG equations receive a contribution at
leading order in the 1=NF expansion of the relevant
Feynman diagrams, which are resumed as shown in
Fig. 1 (only gauge coupling cases are shown). This non-
perturbative effect induces an interacting fixed point for
both the Abelian and non-Abelian gauge interactions of the
SM [31]. The fixed point is guaranteed by the pole structure
occurred in the expressions of the summation [16,17].
In the present scenario, we consider three sets of

vectorlike fermions charged under GPS, with the following
charge assignment:

NF4
ð4; 1; 1Þ ⊕ NF2L

ð1; 3; 1Þ ⊕ NF2R
ð1; 1; 2Þ; ð30Þ

where the NF2L
vectorlike fermions are chosen in the

adjoint representation of SUð2ÞL to avoid fractional elec-
trical charges. We have also chosen each set of vectorlike
fermions to have nontrivial charges only under one simple
gauge group to avoid the extra contributions in the
summation of semisimple group.

B. Large-N gauge beta function
and gauge coupling unification

To the leading 1=NF order for each set, the higher order
(ho) contributions (i.e., the bubble diagrams in Fig. 1) to the
RG functions of the gauge couplings are calculated in [17],
while for the abelian case they were first computed in [15].
Here we list a short summary of the results. The higher
order contributions are given by:

βhoi ¼ 2Aiαi
3

H1i
ðAiÞ

NFi

; αi≡ g2i
ð4πÞ2 ði¼ 2L;2R;4Þ; ð31Þ

with the functionsH1i and the t’Hooft couplings Ai given by

Ai ¼ 4αiTRNFi

H1i
¼ −11

2
Nci þ

Z
Ai=3

0

I1ðxÞI2ðxÞdx ðNci ¼ 2; 4Þ

I1ðxÞ ¼
ð1þ xÞð2x − 1Þ2ð2x − 3Þ2 sin ðπxÞ3

ðx − 2Þπ3
× ðΓðx − 1Þ2Γð−2xÞÞ

I2ðxÞ ¼
N2

ci − 1

Nci
þ ð20 − 43xþ 32x2 − 14x3 þ 4x4Þ

2ð2x − 1Þð2x − 3Þð1 − x2Þ Nci:

ð32Þ

The Dynkin indices are TR ¼ 1=2ðNciÞ for the fundamental
(adjoint) representation. The RG functions of the gauge
couplings (see Appendix) including the contributions of
bubble diagrams resummation are listed below:

TABLE I. Gauge, Yukawa and scalar quartic couplings of the
Pati-Salam model.

Gauge Couplings Yukawa Couplings Scalar Couplings

SUð4Þ∶ g4 ψL=R∶ y; yc ϕR∶ λR1; λR2
SUð2ÞL∶ gL NL∶ yν portal∶ λRΦ1

; λRΦ2
; λRΦ3

SUð2ÞR∶ gR F∶ yF Φ∶ λ1; λ2; λ3; λ4
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βtotα2L ¼
dα2L
dlogμ

¼β1loopα2L þβhoα2L ¼−6α22Lþ
2A2Lα2L

3

H12L
ðA2LÞ

NF2L

βtotα2R ¼
dα2R
dlogμ

¼β1loopα2R þβhoα2R ¼−
14

3
α22Rþ

2A2Rα2R
3

H12R
ðA2RÞ

NF2R

βtotα4 ¼
dα4
dlogμ

¼β1loopα4 þβhoα4 ¼−18α24þ
2A4α4
3

H14
ðA4Þ

NF4

;

ð33Þ

where the β1loopα2L , β1loopα2R , β1loopα4 are denoted as the original one
loop RG beta functions of the three gauge couplings without
bubble diagram contributions while βtotα2L , β

tot
α2R , β

tot
α4 are the

total RG beta functions including the higher order bubble
diagram contributions up to1=NF order. The reason that only
one loop RG beta functions of the gauge couplings are used
will be clear later on.
Thus, the UV fixed point for the gauge coupling

subsystem (g4, gL, gR) is guaranteed by the pole structure
in the bubble diagram summation. For all the non-Abelian
gauge groups, the pole in the functionH1i

, and thus the UV
fixed point of the non-Abelian gauge couplings, always
occurs at Ai ¼ 3. In particular, if one chooses the vectorlike
fermion representation with A2L ¼ A2R ¼ A4, gauge cou-
pling unification is guaranteed. This is shown in Fig. 2,

where we set NF2L
¼ 35 and NF2R

¼ NF4
¼ 140. The IR

initial conditions of gL, gR and g4 are obtained by using the
matching conditions of Eqs. (2) and (9) and the SM
couplings are running from the EW scale to the Pati-
Salam symmetry breaking scale. For simplicity, we have
assumed all the vector-like fermions were introduced at the
Pati-Salam symmetry breaking scale vR. The latter is most
strongly constrained by the kaon decay KL → μ�e∓ (see
e.g., [45,47]). Using the current upper limit
BrðKL → μ�e∓Þ < 4.7 × 10−12 provided in [48], we
obtain the lower limit vR ≳ 2000 TeV (see also e.g.,
[49]). In order to make closer connection to low energy
phenomenology, in this work we choose the Pati-Salam
symmetry breaking scale exactly at 2000 TeV.

C. Large-N Yukawa and quartic beta function

In the previous section, we have only considered the
bubble diagram contributions in the gauge couplings
subsystem. However, the bubble diagrams can directly
contribute also to the quartic and Yukawa beta functions
(see e.g., [25,29]). In the following, we provide a brief
review of the procedure following [29].
The bubble diagram contributions to known 1-loop beta

functions of quartic and Yukawa couplings can be obtained
by employing the following recipe. The Yukawa beta

FIG. 1. Feynman diagrams for gauge field renormalization at order 1=NF. Diagrams (a) and (b) are present in both the Abelian and
non-Abelian 2-point functions, while (c) and (d) only exist in the non-Abelian theory.
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function at large number of fermions can be written in the
compact form

βy ¼ c1y3 þ y
X
α

cαg2αIyðAαÞ; with

IyðAαÞ ¼ Hϕ

�
0;
2

3
Aα

��
1þ Aα

C2ðRα
ϕÞ

6ðC2ðRα
χÞ þ C2ðRα

ξÞÞ
�

HϕðxÞ ¼ H0ðxÞ ¼
ð1 − x

3
ÞΓð4 − xÞ

3Γ2ð2 − x
2
ÞΓð3 − x

2
ÞΓð1þ x

2
Þ ð34Þ

containing information about the resumed fermion bubbles
and c1, cα are the standard 1-loop coefficients for the
Yukawa beta function while C2ðRα

ϕÞ, C2ðRα
χÞ, C2ðRα

ξÞ are
the Casimir operators of the corresponding scalar and
fermion fields. Thus, when c1, cα are known, the full
Yukawa beta function including the bubble diagram con-
tributions can be obtained. Similarly, for the quartic
coupling we write

βλ ¼ c1λ2 þ λ
X
α

cαg2αIλg2ðAαÞ þ
X
α

c0αg4αIg4ðAαÞ

þ
X
α<β

cαβg2αg2βI
tot
g2
1
g2
2

ðAα; AβÞ; ð35Þ

with c1, cα, c0α, cαβ the known 1-loop coefficients for the
quartic beta function and the resummed fermion bubbles
appear via

Iλg2ðKαÞ¼Hϕ

�
0;
2

3
Aα

�

Ig4ðKαÞ¼Hλ

�
1;
2

3
Aα

�
þAα

dHλð1;23AαÞ
dAα

Itotg2
1
g2
2

ðAα;AβÞ¼
1

3
½Ig2

1
g2
2
ðAα;0ÞþIg2

1
g2
2
ð0;AβÞþIg2

1
g2
2
ðAα;AβÞ�

Ig2
1
g2
2
ðAα;AβÞ¼

1

Aα−Aβ

�
AαHλ

�
1;
2

3
Aα

�
−AβHλ

�
1;
2

3
Aβ

��
;

where

Hλð1;xÞ¼
�
1−

x
4

�
H0ðxÞ¼

ð1− x
4
Þð1− x

3
ÞΓð4−xÞ

3Γ2ð2− x
2
ÞΓð3− x

2
ÞΓð1þ x

2
Þ :

ð36Þ
Thus we have now the full quartic beta function including
the bubble diagram contributions when c1, cα, c0α, cαβ are
known. Following the above recipe, the bubble diagram
improved Yukawa beta function βy, e.g., can be written as

ð4πÞ2βy ¼
�
−
9

4
g2LIyðALÞ −

45

4
g24IyðA4Þ

−
9

4
g2RIyðARÞ þ 20y2c þ y2ν

�
yþ 12y3: ð37Þ

The bubble diagram improved quartic beta function
βλR1 reads

ð4πÞ2βλR1 ¼ 192λ2R1 þ λR1

�
−
45

2
g24Iλg2ðA4Þ − 9g2RIλg2ðARÞ

þ 192λR2 þ 8y2ν

�
þ 27

32
g24g

2
R ×

1

3
ðIg2

1
g2
2
ðA4; ARÞ

þ Ig2
1
g2
2
ð0; ARÞ þ Ig2

1
g2
2
ðA4; 0ÞÞ

þ 27

128
g44Ig4ðA4Þ þ

9

32
g4RIg4ðARÞ

þ 48λ2R2 þ 16λ2RΦ1 − 2y4ν: ð38Þ

D. UV fixed point solutions in the
gauge-Yukawa-quartic system

To prove the existence of a fixed point of the whole
system in Table I, we are entitled to assume the gauge
couplings at the UV fixed point as background values (i.e.,
constants in the RG functions of other couplings). This is so
because at the UV fixed point they only depend on the
choice of NF. By using the one loop RG functions in
Appendix augmented with the large-N corrections [i.e.,
Eqs. (34) and (35)], we can now set fβi ¼ 0g where i
denotes all the Yukawa and scalar couplings presented in
Table I. Our investigation and beta functions are consistent
with the large-N limit, computations and results established
in [29,31].

FIG. 2. We show a sample case of gauge unification,
where we have chosen NF2L

¼ 35, NF2R
¼ NF4

¼ 140.
The dashed line represents the Pati-Salam symmetry breaking
scale at 2000 TeV where all the vectorlike fermions are
introduced. The three couplings gY , g2, g3 at the left-hand side
of the dashed line are determined by the running of the
SM gauge couplings.
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We impose CP invariance, that implies: Imðλ2Þ¼
Reðλ3Þ¼ReðλRΦ2Þ¼0. This symmetry requires y ¼ �yc,
leading to top and bottom mass degeneracy, which is lifted
when including the new vector-like fermion F ∼ ð10; 1; 1Þ
[see Eq. (24)]. We have also checked that, when breaking
the CP symmetry safety is lost, because the overall RG
system is over-constrained.
The analysis unveils several UV candidate fixed points

for different choices of NF. For example, for NF2L
¼ 40,

NF2R
¼ 150, NF4

¼ 200, we discover 30 sets of UV
candidate fixed point. However the scalar potential is
unbounded for several candidates UV fixed points. We
therefore require the following vacuum stability conditions
(see e.g., [50]) to be satisfied:

λR1 þ λR2 > 0 λ1 − λ2 þ λ4 > 0; λ1 > 0: ð39Þ

These conditions are quite constraining, reducing to 5 the
original set of 30 UV fixed point candidates.
Consider the same value of the number of vectorlike

fermions discussed above (i.e., NF2L
¼ 40, NF2R

¼ 150,
NF4

¼ 200). We now select one sample UV fixed point
solutions summarized in Tab. II. The solutions listed in
Table II satisfy the vacuum stability condition Eq. (39). For
a different sample value of the number of vectorlike
fermions (NF2L

¼ 40, NF2R
¼ 80, NF4

¼ 100), we also
find a set of UV fixed point solutions which satisfy the
vacuum stability conditions (see Table III).
So far yF was asymptotically free (see Table II and

Table III,) and we now exhibit the case in which yF ≠ 0 in
the UV. This case is shown in Table IV in which we have a
UV safe solution for yF for (NF2L

¼ 40, NF2R
¼ 130,

NF4
¼ 130). Interestingly this solution owes its existence

to the bubble diagram contributions for the Yukawa and
quartic RG beta functions. Thus, the large-N contributions
for the Yukawa and quartic couplings add novel safe
possibilities in which all Yukawa couplings are safe.

We now determine which fixed point is relevant/
irrelevant (UV repulsive/attractive) following the conven-
tion according to which the RG flows towards the IR. The
results are summarized in Table V. We consider the cases
that abide the vacuum stability conditions. We use “×” to
represent that the couplings are turned off to simplify the
system. We gradually increase the complexity of the system
from scenario 1 to 5 where more and more couplings are
involved. Scenario 4 (see e.g., Table II for one sample case)
and scenario 5 (see e.g., Table IV for one sample case)
possess all the couplings involved in our Pati-Salam model.
The value 0 denotes a zero value solution at the fixed point.
There are two distinct cases in which a specific coupling
can be zero at the UV fixed point: the coupling can be
asymptotically free or can vanish at all scales. For example,
yF is asymptotically free and therefore it leads to interesting
physics in the IR while λ3, λRΦ2

and λRΦ3
can be set to zero

at all energies, with the current approximations. This is
what is assumed in the last row of Table V to simplify the
analysis.
We employed two approaches to determine the RG flow

of the system: the IR to UV approach and the UV to IR
approach. In the IR to UV approach, the RG flow of the
irrelevant couplings is constrained on certain trajectories,
the separatrices.2 Thus, we can solve the set of equations
βi ¼ 0 (i corresponding to all the irrelevant couplings) and
solve for all the irrelevant couplings as function of the
relevant couplings. The IR initial conditions of the relevant
couplings are compatible with the phenomenological con-
straints while preserving UV safety. For the UV to IR
approach one simply starts from the UV fixed point and
attempts to run towards the IR. Here we use the fact that the
gauge couplings have RG functions that are sufficiently
decoupled from the other couplings. Thus, we can run the
remaining couplings along the determined gauge coupling
RG trajectories.
We report our results in Figs. 3 and 4 where we show the

running of the gauge, Yukawa and scalar couplings by
using the UV to IR approach for (NF2L

¼ 40, NF2R
¼ 130,

NF4
¼ 130). The corresponding UV fixed point solution is

the one shown in the AF row of Table IV. As mentioned
above the RG flows of the gauge couplings are determined
once the IR conditions are given. The IR initial conditions

TABLE II. This table summarizes the sample UV fixed point
solution with sample value (NF2L

¼ 40, NF2R
¼ 150, NF4

¼ 200)
involving the bubble diagram contributions in the Yukawa and
quartic RG beta functions.

λ1 λ2 λ3 λ4 λRΦ1
λRΦ2;3

λR1 λR2 y yc yν yF

0.12 0.05 0 0.13 0.02 0 0.13−0.01 0.78 0.78 0.84 0

TABLE III. This table summarizes the UV fixed point solution
for (NF2L

¼ 40, NF2R
¼ 80, NF4

¼ 100) involving the bubble
diagram contributions in the Yukawa and quartic RG beta
functions.

λ1 λ2 λ3 λ4 λRΦ1
λRΦ2;3

λR1 λR2 y yc yν yF

0.21 0.07 0 0.24 0.03 0 0.27−0.02 1.05 1.05 1.19 0

TABLE IV. This table summarizes the UV fixed point solution
for (NF2L

¼ 40, NF2R
¼ 130, NF4

¼ 130) involving the bubble
diagram contributions in the Yukawa and quartic RG beta
functions.

λ1 λ2 λ3 λ4 λRΦ1
λRΦ2;3

λR1 λR2 y yc yν yF

0.05 0.02 0 0.01 0.04 0 0.02 0.08 0.24 0.24 0.57 0.74

2A separatrix is the globally defined trajectory dividing the RG
flow into distinct physical regions.
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for gL, gR and g4 are obtained by using the matching
conditions of Eqs. (2) and (9) and the SM couplings are
running from the EW scale to the Pati-Salam symmetry
breaking scale. For simplicity, the vectorlike fermions
masses are taken to be the Pati-Salam symmetry breaking
scale vR ¼ 2000 TeV. From Figs. 3 and 4, it is clear that all
couplings (i.e., gauge, Yukawa and scalar quartic) achieve a
safe UV fixed point. The transition scale, above which, the
UV fixed point is reached is about 0.5 × 109 GeV for all
the couplings. Note that we could shift this transition scale

significantly by increasing (the scale will decrease) or
decreasing (the scale will increase) the number of vector-
like fermions.

IV. MATCHING THE STANDARD MODEL

We now consider gluing the ultraviolet safe theory to the
SM couplings at low energies, which is an important test in
order to render our high energy safe extension phenom-
enologically viable. We start with the scalar component of
the theory.

TABLE V. Classifications of the UV fixed point solutions of the couplings with relevant (Rev) and irrelevant (Irev) characteristics are
listed. The symbol “×” denotes the corresponding coupling is turned off for simplification. From scenario 1 to 5, the complication of the
scenario is gradually increased. yF ¼ 0 is due to the asymptotically free solution we choose while λ3, λRΦ2

and λRΦ3
are chosen to be zero

at all scale for simplification.

λ1 λ2 λ3 λ4 λRΦ1
λRΦ2

λRΦ3
λR1 λR2 y yc yν yF

1 Irev × × × Rev Rev × Irev Rev Irev Irev Irev 0
2 Rev × × Irev Irev Rev × Irev Rev Irev Irev Irev 0
3 Irev Rev × × Rev Irev × Irev Rev Irev Irev Irev 0
4 Irev Rev 0 Irev Irev 0 0 Irev Rev Irev Irev Irev 0
5 Irev Rev 0 Irev Irev 0 0 Irev Irev Irev Irev Irev Irev

(a)

(c) (d)

(b)

FIG. 3. RG running of the gauge and Yukawa couplings by using the UV to IR approach. We have chosen NF2 ¼ 40, NF3 ¼ 130,
NF4 ¼ 130. We have used the matching conditions at IR [see Eqs. (2) and (9)] to set the initial conditions of gL, gR, g4 at IR. For
simplification, we have assumed that the vectorlike fermions under gauge different symmetry groups are exactly introduced at the Pati-
Salam breaking scale, vR ¼ 2000 TeV, marked by a vertical dashed line.
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A. Scalar sector

After Pati-Salam symmetry breaking, the scalar bidoub-
let should match the conventional two Higgs doublet model
which is defined by the Lagrangian:

VH ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ðm2

12Φ
†
1Φ2 þ H:c:Þ

þ λ̄1ðΦ†
1Φ1Þ2 þ λ̄2ðΦ†

2Φ2Þ2 þ λ̄3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ̄4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ̄5ðΦ†

1Φ2Þ2

þ λ̄6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ þ λ̄7ðΦ†
2Φ2ÞðΦ†

1Φ2Þ þ H:c:

�
:

ð40Þ

Comparing (40) with (11), we find:

λ̄1¼ λ1; λ̄2¼ λ1; λ̄3¼ 2λ1; λ̄4 ¼ 4ð−2λ2þλ4Þ
λ̄5¼ 4λ2; λ̄6 ¼−λ3; λ̄7¼ λ3: ð41Þ

When a set of (NF2, NF3, NF4) is given and a Pati-Salam
symmetry breaking pattern is chosen, by using the RG
running from a specific UV fixed point, we could predict
the coupling values at the Pati-Salam symmetry breaking
scale. After implementing the matching conditions of
Eq. (41) these couplings become our new initial values
so that by employing the two Higgs doublet RG beta
functions [55], we could obtain the coupling values at the
electroweak scale.

FIG. 4. RG running of the scalar quartic couplings using the UV to IR approach for NF2 ¼ 40, NF3 ¼ 130, NF4 ¼ 130. All the
vectorlike fermions appear (dashed line) at the symmetry breaking scale of the Pati-Salam group, which is around 2000 TeV.
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At this point we turn our attention to the mass matrix (neutral scalar fields) of the two Higgs doublet model:

M2
neutral ¼

" m2
12
v2

v1
þ 2λ̄1v21 −m2

12 þ ðλ̄3 þ λ̄4 þ λ̄5Þv1v2
−m2

12 þ ðλ̄3 þ λ̄4 þ λ̄5Þv1v2 m2
12
v2

v1
þ 2λ̄2v22

#
: ð42Þ

Note that this mass matrix is defined at the electroweak
scale and to make sure that the computation is complete, we
further included the higher order corrections for the mass
matrix (e.g., the RG improved mass matrix), which for
simplicity are not shown explicitly in Eq. (42). By using the
coupling values obtained previously at the electroweak
scale, we determine the mass eigenvalues. The important
phenomenological constraints are both eigenvalues of the
mass matrix should be positive and the lighter one should
be close to the 125 GeV value of the observed Higgs mass.
It can be shown that by choosing NF2 ¼ 32, NF3 ¼ 108,
NF4 ¼ 56, we obtain the following coupling values at
around the electroweak scale:

λ̄1 ¼ 0.222; λ̄2 ¼ 0.222; λ̄3 ¼ 0.250;

λ̄4 ¼ −0.380; λ̄5 ¼ 0.260; y ¼ 0.614: ð43Þ

It is interesting to discuss two cases in the following: the
one for which we set m12 ¼ 0 and the other for m12 ≠ 0.
For the case with m12 ¼ 0, we obtain two neutral scalar
masses, one with ∼92 GeV (lighter Higgs) and an heavier
one of ∼123 GeV. We stress that the choice (NF2 ¼ 32,
NF3 ¼ 108, NF4 ¼ 56) is among the ones in which one can
achieve the heaviest Higgs mass. We find intriguing that to
push the lighter Higgs to be closer to the observed Higgs
mass requires the Pati-Salam symmetry breaking scale not
to be too far away from 104 TeV. Overall, for m12 ¼ 0,
both mass eigenvalues are phenomenologically too light.
For the case with m12 ≠ 0, we find both mass eigenvalues

to increase when increasing m12 (Fig. 5). In particular the
light Higgs for the above choice of NF seems to converge
toward the value of 120 GeV (almost not changing after
m12 > 150 GeV) while the heavier Higgs mass keeps
increasing with m12. When choosing m12 ¼ 150 GeV,
the light Higgs and the heavy Higgs masses are respectively
120 GeVand 264 GeV. We find that also in this case, there
is a constraint on the Pati-Salam symmetry breaking scale.
Slightly different from the case where m12 ¼ 0, it now
requires the Pati-Salam symmetry breaking scale to be
larger than 104 TeV in order to yield a phenomenologically
viable Higgs mass.
We also found alternative RG flow solutions leading to

two light Higgs (we briefly list the result here). For
NF2 ¼ 36, NF3 ¼ 109, NF4 ¼ 118, we could have one
light Higgs at 22.6 GeVand the heavy one at 125 GeV. We
point to recent studies in the detection of light scalars
[56,57].

B. Yukawa sector

The top Yukawa mass term by using Eq. (15) at the
electroweak scale is given by:

mtop ¼ ðy sin β þ yc cos βÞv ¼
ffiffiffi
2

p
yv; ð44Þ

where we have implemented the CP symmetry leading to
y ¼ yc and tan β ¼ 1. Thus it is clear that to obtain the
correct top quark mass at the electroweak scale, y should be
∼ 0.93ffiffi

2
p ∼ 0.66 which is smaller than the conventional SM top

Yukawa coupling value. From Eq. (43), we obtain y ¼
0.614 which is close to the required value.
To obtain the correct bottom quark mass, we have

discussed previously that it requires to introduce a new
10 − dim vectorlike fermion F ∼ ð10; 1; 1Þ with mass MF
to trigger the bottom-top mass splitting. The color triplet B
component of F ∼ ð10; 1; 1Þ obtains the mass after Pati-
Salam symmetry breaking: mB ≡ yFvR=

ffiffiffi
2

p
∼ 7000 TeV,

where we have used the same set of NF2 ¼ 32, NF3 ¼ 108,
NF4 ¼ 56 above providing vR ∼ 10000 TeV and yF ¼ 1 at
the Pati-Salam Symmetry breaking scale. By using

Eq. (28), it requires MF ¼
ffiffi
2

p
mBmb
mt

¼ 239.2 TeV to obtain
the correct bottom quark mass. Since MF is a free
parameter in our theory, we do have the freedom to choose
the desired value.

FIG. 5. In this figure, we show two mass eigenvalues of the CP-
even neutral Higgs mass matrix as a function of m12. MH1

denotes the lighter Higgs while MH2 denotes the heavier one.
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V. CONCLUSIONS

Models in which scalar degrees of freedom are funda-
mental a lá Wilson [51,52] require the presence of scale
invariance at short distances [6,53,54]. A complete safe or
free theory can therefore support elementary scalars as
fundamental fields. Fundamentality and naturality are
complementary concepts. Short distance scale invariance
implies fundamentality while (near) long distance confor-
mality and/or controllably broken symmetries help with
naturality [6,53]. A coherent search of safe extensions of
the SM has only recently begun. In this work we have
constructed a realistic safe extension of the SM in which we
add vectorlike fermions to the time-honored Pati-Salam
framework. Recent progress in the large-N safe dynamics
of gauge-Yukawa theories has proven instrumental for the
success of the project. In particular we have shown that the
gauge, scalar quartic and Yukawa couplings achieve an
interacting ultraviolet fixed point below the Planck scale.
The minimal model is a relevant example of a standard
model extension in which unification of all type of
couplings occurs because of a dynamical principle, i.e.,
the presence of an ultraviolet fixed point. Most importantly,
we are able to show that starting from specific UV fixed
points, some of the RG flows can match both the SM Higgs
mass and Yukawa couplings (top and bottom) which
implies a truly UV completion of the standard model. It
is also intriguing that, in this minimal model, the Pati-

Salam symmetry breaking scale is close to 104 TeV to yield
a physically acceptable Higgs mass. There are several
aspects that deserve further investigation from a more in
depth phenomenological study of the quark and lepton
flavor sector to baryogenesis.

ACKNOWLEDGMENTS

The work is partially supported by the Danish National
Research Foundation under the Grant No. DNRF:90 and
the Natural Sciences and Engineering Research Council of
Canada (NSERC). E. Molinaro thanks the Department of
Physics and Astronomy of Aarhus University for the
hospitality during the completion of this paper. Z.W.
Wang thanks Robert Mann, Tom Steele, Heidi Rzehak,
Chen Zhang and Jing Ren for very helpful suggestions.

APPENDIX: ONE-LOOP RG EQUATIONS OF
THE PALATI-SALAM MODEL

1. Gauge couplings

ð4πÞ2βgL ¼ −3g3L; ðA1Þ

ð4πÞ2βg4 ¼ −9g34; ðA2Þ

ð4πÞ2βgR ¼ −
7

3
g3R: ðA3Þ

2. Quartic coupling

ð4πÞ2βλ1 ¼ λ1ð32y2c þ 128λ1 − 128λ2 þ 64λ4 − 9g2L − 9g2R þ 32y2Þ þ 512λ22 þ
9

32
ðg4L þ g4RÞ þ

3

16
g2Lg

2
R

þ 32λRΦ1λRΦ3 þ 32λ2RΦ1 þ 16λ2RΦ3 þ 64λ24 − 8y4 − 8y4c; ðA4Þ

ð4πÞ2βλ2 ¼ λ2ð32y2 − 9g2L − 9g2R þ 96λ1 þ 192λ4 − 384λ2 þ 32y2cÞ − 4y2cy2 þ 48λ23 þ 32λ2RΦ2; ðA5Þ

ð4πÞ2βλ3 ¼ λ3ð32y2c − 9g2L − 9g2R þ 192λ1 þ 192λ4 þ 32y2Þ − 8y3yc − 8yy3c þ 64λRϕ1λRϕ2 þ 32λRϕ2λRϕ3 ðA6Þ

ð4πÞ2βλ4 ¼ λ4ð32y2 − 9g2L − 9g2R þ 96λ1 þ 128λ2 þ 64λ4 þ 32y2cÞ þ
3

8
g2Lg

2
R þ 192λ23 þ 128λ2RΦ2 − 8λ2RΦ3

− 24y2y2c þ 4y4c þ 4y4; ðA7Þ

ð4πÞ2βλR1 ¼ λR1

�
192λR1 − 9g2R −

45

2
g24 þ 192λR2 þ 20y2F þ 8y2ν

�
þ 48λ2R2 þ

9

32
g4R þ 27

128
g44 þ

27

32
g2Rg

2
4

þ 16λ2RΦ1 þ 16λRΦ1λRΦ3 þ 64λ2RΦ2 −
1

2
y4F − 2y4ν; ðA8Þ

ð4πÞ2βλR2 ¼ λR2

�
−9g2R −

45

2
g24 þ 20y2F þ 8y2ν þ 96λR1

�
−

9

16
g24g

2
R þ 9

16
g44 − 3y4F þ 8λ2RΦ3; ðA9Þ
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ð4πÞ2βλRΦ1
¼ λRΦ1

�
16y2c þ 16y2 −

9

2
g2L −

45

4
g24 − 9g2R þ 80λ1 − 64λ2 þ 32λ4 þ 144λR1 þ 96λR2 þ 10y2F þ 4y2ν

�

þ 32λ1λRΦ3 þ 16λ2RΦ1 þ 64λ2RΦ2 þ 8λ2RΦ3 þ
9g4R
16

þ 64λR1λRΦ3 − 64λ2λRΦ3

þ 32λ4λRΦ3 þ 16λR2λRΦ3 − 4y2cy2ν − 10y2y2F; ðA10Þ

ð4πÞ2βλRΦ2
¼ λRΦ2

�
16y2 þ 16y2c −

9

2
g2L − 9g2R −

45

4
g24 þ 16λ1 þ 64λ2 þ 64λ4

þ 144λR1 þ 96λR2 þ 10y2F þ 32λRΦ1 þ 16λRΦ3 þ 4y2ν

�
þ 48λ3λRΦ1 þ 24λ3λRΦ3 − 2yycy2ν − 5yycy2F; ðA11Þ

ð4πÞ2βλRΦ3
¼ λRΦ3

�
16y2 þ 16y2c −

9

2
g2L −

45

4
g24 þ 16λ1 þ 64λ2 − 32λ4 þ 16λR1 þ 64λR2 þ 10y2F þ 32λRΦ1 þ 4y2ν

�
þ 16λ2RΦ3 − 10y2cy2F þ 10y2y2F þ 4y2cy2ν − 4y2y2ν: ðA12Þ

3. Yukawa couplings

ð4πÞ2βy ¼ −
9y
4
g2L −

9y
4
g2R −

45y
4

g24 þ 12y3 þ yy2ν þ
5

2
yy2F; ðA13Þ

ð4πÞ2βyc ¼ −
9yc
4

g2L −
9yc
4

g2R −
45yc
4

g24 þ 12y3c þ ycy2ν þ
5

2
ycy2F; ðA14Þ

ð4πÞ2βyF ¼ −
9yF
4

g2R −
153yF

8
g24 þ

19

2
y3F − yFy2ν þ 2y2yF; ðA15Þ

ð4πÞ2βyν ¼ −
9yν
4

g2R −
45yν
8

g24 −
5

2
y2Fyν þ 11y3ν þ 4y2yν: ðA16Þ
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