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It is well known that investigating QCD at finite density by standard Monte Carlo methods is extremely
difficult due to the sign problem. Some years ago, the complex Langevin method with gauge cooling was
shown to work at high temperature, i.e., in the deconfined phase. The same method was also applied to
QCD in the so-called heavy dense limit in the whole temperature region. In this paper, we attempt to apply
this method to the large μ=T regime with moderate quark mass using four-flavor staggered fermions on a
43 × 8 lattice. While a straightforward application faces the singular-drift problem, which spoils the validity
of the method, we overcome this problem by the deformation technique proposed earlier. Explicit results
for the quark number density and the chiral condensate obtained in this way for 3.2 ≤ μ=T ≤ 5.6 are
compared with the results for the phase-quenched model obtained by the standard rational hybrid
Monte Carlo calculation. This reveals a clear difference, which is qualitatively consistent with the silver
blaze phenomenon.
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I. INTRODUCTION

The phase diagram of QCD at finite density and temper-
ature is speculated to have a very rich structure. This is not
only interesting from theoretical viewpoints but is also
relevant to the physics related to heavy-ion collision
experiments and the interior structure of neutron stars.
However, the speculated phase structure still remains

elusive mainly because first-principle calculations based
on lattice QCD are extremely difficult at finite density due
to the complex fermion determinant, which causes the so-
called sign problem.
As a promising solution to this problem, the complex

Langevin method (CLM) [1,2] has been attracting much
attention recently. In this method, based on the idea of
stochastic quantization [3,4], the expectation value of an
observable is calculated using a stochastic process for
complexified dynamical variables with the observable being
extended holomorphically. Since the method does not rely
on the probabilistic interpretation of the Boltzmann weight,
there is a chance to overcome the sign problem completely.
However, it is known that the method yields wrong

results in some cases even if the stochastic process reaches
equilibrium without any problem. This issue was discussed
theoretically for the first time in Refs. [5,6] by considering
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the equality between the expectation value of an observable
defined by the stochastic process at each fictitious time and
the expectation value of the observable with respect to
a complex weight, which satisfies the Fokker-Planck
equation associated with the original theory. If this equality
holds, the expectation value obtained by the stochastic
process in the long-time limit gives the expectation value
defined by the path integral formulation of the original
theory [7]. In proving this equality, a crucial role is played
by the time-evolved observable, the existence of which is
implicitly assumed in Refs. [5,6]. This is actually subtle and
requires the condition that the probability distribution of the
magnitude of the drift term in the stochastic process should
fall off exponentially or faster [9]. On the other hand, if this
condition is satisfied, the integration by parts used in the
argument can be justified. In this sense, one may regard the
above condition as a necessary and sufficient condition for
justifying the CLM under such assumptions as the con-
vergence and the ergodicity of the stochastic process.
Roughly speaking, frequent appearance of large drifts
during the stochastic process invalidates the CLM. The
validity of this criterion has been demonstrated in simple
one-variable models [9] and in semirealistic models [10].
There are actually two cases that can lead to the frequent

appearance of large drifts. One is the case in which the
dynamical variables make frequent excursions in the
imaginary directions during the stochastic process, which
is referred to as the excursion problem [5,6]. The other is
the case in which the drift term has singularities that are
frequently visited during the stochastic process, which is
referred to as the singular-drift problem [8]. By avoiding
these problems, one can enlarge the validity region of the
CLM. For instance, the excursion problem can be solved by
the gauge cooling [11], which amounts to making a
complexified gauge transformation after each Langevin
step in such a way that the imaginary part of the dynamical
variables is minimized [12]. Theoretical justification of the
gauge cooling has been given explicitly in Refs. [9,15]. On
the other hand, Ref. [16] proposed solving the singular-drift
problem by deforming the original system in such a way
that the dynamical variables keep away from the singular-
ities of the drift term. The results for the undeformed
system can be obtained by extrapolating the deformation
parameter to zero using the parameter region in which the
criterion for justifying the CLM is satisfied. This technique
was applied successfully to matrix models relevant to
nonperturbative string theory [17]. For other recent devel-
opments in the CLM, see Refs. [18–32], for instance.
The gauge cooling made it possible to apply the CLM to

finite density QCD in the deconfined phase [20,33] and in
the heavy dense limit [11,23,34]. In this paper, we attempt to
investigate the large μ=T regime with moderate quark mass
using a 43 × 8 lattice [35]. The parameter region we are
aiming at, however, is anticipated to be plagued by the
singular-drift problem according to the studies of the chiral

random matrix theory [40]. Indeed, we encounter this
problem and use the deformation technique to solve it.
By probing the probability distribution of the drift term, we
determine the region of the deformation parameter in which
theCLM is valid andmake extrapolations to the undeformed
model using the results within this region. The baryon
number density and the chiral condensate thus obtained as a
function of the quark chemical potential are compared with
those obtained by the rational hybrid Monte Carlo (RHMC)
calculation of the phase-quenched model, which is defined
by omitting the phase of the fermion determinant. We
observe a clear difference, which is qualitatively consistent
with the so-called silver blaze phenomenon in the fullmodel.
This paper is organized as follows. In Sec. II, we briefly

review lattice QCD at finite density. In Sec. III, we explain
how we apply the CLM to finite density QCD with the
gauge cooling and the deformation technique. In Sec. IV,
we present our results and compare them with the results
for the phase-quenched model. Section V is devoted to a
summary and discussions.

II. LATTICE QCD AT FINITE DENSITY

Our calculation is based on lattice QCD on a four-
dimensional Euclidean periodic lattice defined by the
partition function

Z ¼
Z Y

xμ

dUxμ detMðU; μÞe−SgðUÞ: ð1Þ

The dynamical variables Uxμ ∈ SUð3Þ are the link varia-
bles, where x ¼ ðx1; x2; x3; x4Þ labels a site on the lattice
and μ ¼ 1, 2, 3, 4 represents a direction with μ ¼ 1, 2, 3
and μ ¼ 4 being the spatial and temporal directions,
respectively. We work in units that set the lattice spacing
to unity and denote the number of sites in the spatial and
temporal directions as Ns and Nt, respectively. The gauge
action SgðUÞ is given by

SgðUÞ ¼ −
β

6

X
x

X
μ<ν

trðUxμν þ U−1
xμνÞ; ð2Þ

where the plaquette Uxμν is defined by Uxμν ¼
UxμUxþμ̂;νU−1

xþν̂;μU
−1
xν with μ̂ being the unit vector in the

μ direction.
In this work, we use the unimproved staggered fermions,

for which the fermion matrix MðU; μÞ in (1) is given by

MðU; μÞxy ¼ mδxy þ
X4
ν¼1

1

2
ηνðxÞðeμδν4Uxνδxþν̂;y

−e−μδν4U−1
x−ν̂;νδx−ν̂;yÞ; ð3Þ

where ηνðxÞ ¼ ð−1Þx1þ���þxν−1 . This represents four flavors
of quarks with the degenerate quark mass m and the quark
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chemical potential μ. The quark field obeys the periodic/
antiperiodic boundary conditions in the spatial/temporal
directions, respectively. Note that the fermion matrix
MðU; μÞ satisfies ϵxMðU; μÞxyϵy ¼ MðU;−μ�Þ�yx with ϵx ¼
ð−1Þx1þx2þx3þx4 playing the role of γ5. Hence, for nonzero
real μ, the fermion determinant detMðU; μÞ becomes
complex in general, causing the sign problem, which we
overcome by the CLM explained in the next section.
The observables we consider in this paper are the baryon

number density

hni ¼ 1

3NV

∂
∂μ logZ ð4Þ

and the chiral condensate

hΣi ¼ 1

NV

∂
∂m logZ; ð5Þ

where NV ¼ N3
sNt. We use the standard noisy estimator to

calculate these quantities. Details related to this method are
given in Appendix A.

III. COMPLEX LANGEVIN METHOD FOR
FINITE DENSITY QCD

In this section, we explain how we apply the CLM [1,2]
to lattice QCD at finite density. First, we extend the link
variables Uxμ ∈ SUð3Þ to the complexified link variables
Uxμ ∈ SLð3;CÞ and consider their fictitious time evolution
based on the complex Langevin equation, which is given in
its discrete form by

UxμðtþϵÞ

¼ exp

�
i
X8
a¼1

λa½−ϵvaxμðUðtÞÞþ
ffiffiffi
ϵ

p
ηaxμðtÞ�

�
UxμðtÞ; ð6Þ

where t represents the discretized Langevin time with
the step size ϵ. We have introduced the generators
λa (a ¼ 1;…; 8) of the SU(3) algebra normalized as
trðλaλbÞ ¼ δab and the real Gaussian noise ηaxμðtÞ normal-
ized as hηaxμðtÞηbyνðt0Þiη ¼ 2δabδxyδμνδtt0 , where h� � �iη
represents an average over η. The drift term vaxμðUÞ in
(6) is defined by analytic continuation of the one defined
for Uxμ ∈ SUð3Þ as

vaxμðUÞ ¼ DaxμSðUÞ≡ lim
ε→0

SðeiελaUxμÞ − SðUxμÞ
ε

; ð7Þ

where SðUÞ ¼ SgðUÞ − log detMðU; μÞ.
To calculate the vacuum expectation value (VEV) of a

gauge-invariant observable OðUÞ, we define OðUÞ by
analytic continuation and its expectation value

ΦðtÞ≡ hOðUðtÞÞiη ð8Þ

in the CLM. Then, under certain conditions, one can prove
that

lim
t→∞

lim
ϵ→0

ΦðtÞ ¼ 1

Z

Z Y
xμ

dUxμOðUÞe−S; ð9Þ

which implies that the left-hand side gives the VEV of
OðUÞ in the original theory.
As is mentioned in the Introduction, the proof of (9) was

first given in Refs. [5,6] and was refined later by Ref. [9],
which showed that the necessary and sufficient condition
for (9) to hold is that the probability distribution of the
magnitude of the drift term should fall off exponentially or
faster. In this work, we define the magnitude of the drift
term as

u ¼
�

1

8NV

X
xμ

X8
a¼1

jvaxμðUÞj2
�1

2

ð10Þ

and probe its probability distribution in order to see whether
the CLM is valid or not at each set of parameters. The
validity of this criterion is tested not only in simple one-
variable models [9] but also in semirealistic many-variable
systems [10].
It is known that the slow fall-off of the drift distribution,

which invalidates (9), is caused either by the excursion
problem or by the singular-drift problem. In finite density
QCD, the former problem occurs when the complexified
link variables become far from unitary, while the latter
problem occurs when the fermion matrix (3) has many
eigenvalues close to zero for the complexified link
variables.
To solve the excursion problem, one can use the gauge

cooling, which amounts to making a complexified gauge
transformation after each Langevin step in such a way that
the complexified link variables come closer to a unitary
configuration [11]. The gauge transformation can be
determined by minimizing the unitarity norm

N u¼
1

4NV

X
xμ

tr½ðUxμÞ†UxμþðU−1
xμ Þ†U−1

xμ −2×13×3�; ð11Þ

which measures how far the link variables are from a
unitary configuration. It has been shown explicitly [9,15]
that this additional procedure does not affect the argument
for justifying the CLM. The gauge cooling played a crucial
role in enabling the application of the CLM to finite density
QCD in the deconfined phase [33] and in the heavy dense
limit [11,23,34].
At large μ=T with moderate quark mass, the singular-

drift problem occurs on top of the excursion problem. To
solve that problem, we use the deformation technique [16],
which was applied successfully to matrix models relevant
to superstring theory [17].
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In the case at hand, we introduce a deformation param-
eter α ∈ R in the fermion matrix (3) as

MðU; μÞxy → MðU; μÞxy þ iαη4ðxÞδxy: ð12Þ

This deformation may be regarded as adding an imagi-
nary chemical potential in the continuum theory. Strictly
speaking, the extra term corresponds to adding a term
iαψ̄ðxÞðγ4 ⊗ γ4ÞψðxÞ in the Lagrangian density of the
continuum theory, where the first γ4 acts on the spinor
indices and the second γ4 acts on the flavor indices.
For α large enough, the eigenvalue distribution of the

fermion matrix develops a gap near the real axis, which
enables us to avoid the singular-drift problem. When the
singular-drift problem occurs, the unitarity norm (11)
becomes large, and it sometimes becomes uncontrollable.
This problem is cured when the singular-drift problem is
avoided by sufficiently large α.
We probe the drift distribution at each α and determine

the range of α for which the obtained results are reliable.
Extrapolating the results within this range of α to α ¼ 0, we
obtain the results for the original theory. Considering the
symmetry of the deformed theory under α ↔ −α, we
choose the fitting function to be a linear function of α2.

IV. RESULTS

In this section, we show our results for finite density
QCD obtained by the CLM as explained in the previous
section. We use a 43 × 8 lattice with the gauge coupling
β ¼ 5.7 and the quark mass m ¼ 0.05. The quark chemical
potential μ is taken to be 0.4 ≤ μ ≤ 0.7, which implies that
the physical μ=T ranges from 3.2 to 5.6. The Langevin
process (6) is performed for the total Langevin time 50–150
with a fixed step size ϵ ¼ 10−4. We present results for the
baryon number density (4) and the chiral condensate (5),
which are compared with those for the phase-quenched
model obtained by the standard RHMC calculation.
First, we check the validity of the CLM by probing the

probability distribution of the drift term, which is shown in
Fig. 1 for μ ¼ 0.7 with various α. We find that the
probability distribution falls off exponentially or faster
for α ≥ 0.4, while a power-law tail develops for α ¼ 0.2,
0.3. This implies that the CLM is valid for α ≥ 0.4
at μ ¼ 0.7.
The power-law tail of the probability distribution for α ≲

0.3 is actually due to the singular-drift problem caused by
near-zero eigenvalues of the fermion matrix, as one can see
from Fig. 2. Indeed, there are many eigenvalues distributed
around the origin for α ¼ 0.2, which is not the case for
α ¼ 0.4, owing to the gap developing along the real axis.
In Fig. 3, we plot the baryon number density hni (top)

and the chiral condensate hΣi (bottom) obtained by the
CLM against α2 for μ ¼ 0.7. Note that the data points for
α≲ 0.3 should be discarded since the CLM is not valid
there. We find that hni drops to zero for α ≥ 0.6 and that

hΣi changes its behavior at α ∼ 0.6. These observations
suggest the existence of a phase transition at α ∼ 0.6. Thus,
we are led to use only the data points for α ¼ 0.4, 0.45, 0.5
for the extrapolation to α ¼ 0 for μ ¼ 0.7. These are shown
in Fig. 4 by circles, which can be fitted to a straight line. In
the same figure, we also plot the reliable data points
obtained for other values of μ together with the linear
extrapolation using α ¼ 0.1, 0.2, 0.3 for μ ¼ 0.4 and
α ¼ 0.2, 0.3, 0.4 for μ ¼ 0.5, 0.6.
When we performed complex Langevin simulations

without deformation, the history of observables typically
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FIG. 1. The probability distribution of u, the magnitude of the
drift term defined by (10), is shown in a semilog plot for μ ¼ 0.7
with various α.
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FIG. 2. The eigenvalue distribution of the fermion matrix is
shown for μ ¼ 0.7 with α ¼ 0.2 (top) and α ¼ 0.4 (bottom).

NAGATA, NISHIMURA, and SHIMASAKI PHYS. REV. D 98, 114513 (2018)

114513-4



shows occasional spikes, which makes it difficult to reduce
the statistical error within a reasonable computing time
[41]. This problem does not occur in all the cases inves-
tigated here with the deformation.
In Fig. 5, the extrapolated values for the baryon number

density (top) and the chiral condensate (bottom) are plotted
against μ by circles. In the same figure, we also plot by
squares the results for the phase-quenched model obtained
by the standard RHMC calculation, which reveals a clear
difference. The results of the CLM show that the baryon
number density is almost zero for μ≲ 0.6 and has a sharp
increase within 0.6≲ μ≲ 0.7. Correspondingly, the chiral
condensate is almost constant for μ ≲ 0.6 and starts to
decrease rapidly within 0.6≲ μ≲ 0.7. While certain sys-
tematic errors due to the α → 0 extrapolation are consid-
ered to exist, the rapid change within 0.6≲ μ≲ 0.7 should
be robust, judging from the qualitative difference of the α
dependence for μ ¼ 0.6 and μ ¼ 0.7 seen in Fig. 4. The
results for the phase-quenched model, on the other hand,
show a milder μ dependence. The onset of the baryon
number density occurs around μ ∼ 0.4, where the chiral
condensate starts to decrease.
Note that the value of β is chosen to be large (β ¼ 5.7) in

order to avoid the excursion problem that occurs at smaller
β similarly to the situation found in Ref. [20]. Because of
this, the corresponding lattice spacing is well below 0.1 fm
according to a crude extrapolation from the data obtained in

Ref. [20]. Considering that our lattice is 43 × 8, this implies
that the temperature is quite high, whereas the physical
volume of the spatial lattice is much smaller than the QCD
scale. In fact, despite the high temperature, the Polyakov
line vanishes for μ ≤ 0.6, as we show in Appendix B. This
can be understood as a consequence of the finite spatial
volume effects since the increase of free energy for having
one quark in such a small spatial region is much larger than
that in the infinite volume at the same temperature. In other
words, the temperature is actually “low” compared with the
scale of the spatial directions due to the chosen aspect ratio.
It is therefore not so surprising that the observables behave
more like those at low temperature in a usual setup.
In full QCD at zero temperature in the infinite volume

limit, physical observables are independent of μ up to μ ∼
mN=3 with mN being the nucleon mass. On the other hand,
in the case of the phase-quenched model, physical observ-
ables are independent of μ up to μ ∼mπ=2ð<mN=3Þ with
mπ being the pion mass. The μ independence of full QCD
within the region mπ=2 < μ < mN=3, which is commonly
referred to as the “silver blaze phenomenon” in the
literature, is expected to occur due to the effect of the
phase of the complex fermion determinant. Our results are
qualitatively consistent with this expectation.
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FIG. 3. The baryon number density (top) and the chiral
condensate (bottom) obtained by the CLM are plotted against
α2 for μ ¼ 0.7.
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represent linear extrapolations to α ¼ 0 with respect to α2.
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V. SUMMARY AND DISCUSSIONS

We have made an attempt to extend the success of the
CLM in investigating finite density QCD in the deconfined
phase or in the heavy dense limit to the large μ=T regime
with moderate quark mass. In this exploratory work, we use
a 43 × 8 lattice with four-flavor staggered fermions and
calculate the baryon number density and the chiral con-
densate as a function of the quark chemical potential. The
reliability of the obtained results is judged by the proba-
bility distribution of the magnitude of the drift term. As
in the previous work, the excursion problem is avoided by
the gauge cooling. In addition to this, the singular-drift
problem has to be overcome in the parameter regime we
explore. The deformation technique, which was shown to
be useful in the case of matrix models for superstring
theory, turns out to be useful also in the present case. By
probing the probability distribution of the magnitude of the
drift term, we find that the singular-drift problem can be
cured and reliable data can be obtained unless the defor-
mation parameter is too small. The results for the original
theory are obtained by extrapolation using only the reliable
data. Thus, we are able to obtain explicit results in the
region 3.2 ≤ μ=T ≤ 5.6 with moderate quark mass.
By comparing the results of the CLM with those

obtained by the RHMC calculations in the phase-quenched

model, we observe that the onset of the baryon number
density in the full model occurs at larger μ than in the
phase-quenched model, which is qualitatively consistent
with the silver blaze phenomenon, which occurs at zero
temperature in the infinite volume. To confirm this phe-
nomenon, we clearly need to increase the lattice size. We
have already started simulations on a 83 × 16 lattice [42]
and found that the CLM actually gives correct results even
in the region of relatively large chemical potential without
the deformation technique. Preliminary results for the
baryon number density and the chiral condensate show a
rapid change twice as we increase the chemical potential,
which may be interpreted as the phase transitions to the
nuclear matter and to the quark matter. We hope to report on
these results in the forthcoming publication.
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APPENDIX A: DETAILS OF THE
NOISY ESTIMATOR

To calculate the drift term

vðfÞaxμ ¼ −trðM−1DaxμMÞ ðA1Þ

obtained from the fermion determinant, we use the standard
noisy estimator. In this section, we present the details of
how we use this method in our calculation.
The idea is to replace the trace in (A1) by

vðfÞaxμ ¼ −φ�M−1DaxμMφ ¼ −ψ�DaxμMφ; ðA2Þ

where φ is a random complex vector generated with the
normalized Gaussian distribution. The other complex
vector ψ ¼ ðM†Þ−1φ in (A2) can be calculated from φ
as ψ ¼ Mχ, where χ is obtained by solving M†Mχ ¼ φ
using the conjugate gradient method.
The above procedure is exact if we take an average over

infinitely many φ generated randomly. In practice, we
generate the random vector only once at each Langevin step
and estimate the trace using it. The use of this approxi-
mation does not yield any systematic errors in the CLM in
the step size ϵ → 0 limit since the associated Fokker-Planck
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equation remains the same [43]. When we evaluate the trace
involved in the observables (4) and (5), we take an average
over 20 φ’s generated randomly.
See Refs. [37–39] for a more sophisticated way to

implement the noisy estimator, which ensures that the drift
term becomes real for unitary link variables at μ ¼ 0.

APPENDIX B: THE RESULTS FOR THE
POLYAKOV LINE

In this Appendix, we present our results for the Polyakov
line defined by

P ¼ 1

3N3
s

X
x⃗

trðUðx⃗;0Þ4Uðx⃗;1Þ4 � � �Uðx⃗;Nt−1Þ4Þ: ðB1Þ

Figure 6 shows the expectation value hPi plotted against α2.
We plot only the reliable data from the viewpoint of our
criterion based on the drift distribution. For μ ¼ 0.4 and
μ ¼ 0.7, we can fit the data to a straight line. For μ ¼ 0.5
and μ ¼ 0.6, we find that the data are close to zero for
sufficiently small α.

In the phase-quenched model, the expectation value hPi
is obtained as 0.594(1), 0.749(2), 0.121(3), 0.146(4) for
μ ¼ 0.4, 0.5, 0.6, 0.7, respectively.
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