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Stimulated by the newly discovered (2012) resonance at Belle II, in this work we have studied the OZI
allowed strong decays of the low-lying 1P- and 1D-wave Q baryons within the 3P, model. It is found that
©(2012) is most likely to be a 1 P-wave Q state with J¥ = 3/2~. We also find that the £(2250) state could
be assigned as a 1 D-wave state with J* = 5/2%. The other missing 1P- and 1D-wave Q baryons may have

large potentials to be observed in their main decay channels.
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I. INTRODUCTION

The study of the hadron spectrum is an important way for
us to understand strong interactions. For the baryon spectra,
the classification based on SU(3); flavor symmetry has
been achieved a great success. The Q hyperon as a member
of baryon decuplet in the quark model was unambiguously
discovered in both production and decay at BNL about one
half century ago [1]. More excited € baryons should exist
as well according to SU(6) x O(3) symmetry. In theory,
the mass spectrum of € hyperon has been predicted within
many models, such as the Skyrme model [2], various
constituent quark models [3—12], the lattice gauge theory
[13,14], and so on. However, in experiments there are only
a few information of the excited € baryons. In the review of
particle physics from the Particle Data Group (PDG),
except for the ground state Q(1672), only three possible
excited Q baryons are listed: Q(2250), ©(2380), and
Q(2470) [15]. Their nature is still rather uncertain with
three- or two-star ratings. Fortunately, the Belle II experi-
ments offer a great opportunity for our study of the Q
spectrum.
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Very recently, a candidate of excited Q baryon, Q(2012),
was observed by the Belle II collaboration [16]. The
measured mass and width are

M =2012.4 + 0.7(stat) £ 0.6(syst) MeV,
[ = 6.477)(stat) £ 1.6(syst) MeV,

respectively. In various quark models [3—12], the masses
of the first orbital (1P) excitations of Q states are predicted
to be ~2.0 GeV. The newly observed state (2012) may
be a good candidate of the 1P-wave Q state. Recently, to
study the possible interpretation of Q(2012), its strong
decays were calculated with the chiral quark model [17],
where it was shown that Q(2012) could be assigned to the
spin-parity J* = 3/2~ 1P-wave state. However, the spin-
parity J” = 1/27 state can’t be completely ruled out.
Furthermore, the mass and strong decay patten of

Q(2012) also were studied by QCD sum rule [18,19].
As its mass is very close to E(1530)K threshold, there is
also some work that considered it as a J© =3/2~ KE*
molecular state [20-22], or a dynamically generated state
[23]. In Ref. [24], by a flavor SU(3) analysis the authors
suggested Q(2012) to be a number of 3/2~ decuplet
baryon if the sum of branching ratios for the decay
Q(2012) —» EKz, Q 7z is not too large (<70%).

In the present work, to further reveal the nature of
Q(2012) and better understand the properties of the excited
Q states, we study the Okubo-Zweig-lizuka (OZI) allowed
two-body strong decays of the 1P- and 1D-wave baryons
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TABLE 1.

The theory predicted masses (MeV) and spin-flavor-space wave functions of Q baryons under SU(6) quark model

classification are listed below. We denote the baryon states as |Ng, 27!N3, N, L, J¥) where N stands for the irreducible representation of
spin-flavor SU(6) group, N5 stands for the irreducible representation of flavor SU(3) group and N, L, J as principal quantum number,
total orbital angular momentum and spin-parity, respectively [17]. The ¢, y, w denote flavor, spin, and spatial wave function,
respectively. The Clebsch-Gorden coefficients of spin-orbital coupling have been omitted.

Theory
States Wave function [4] [3] [2] [7] [13]

IS [56.410.0,0.3/2%) W00 1678 1635 1694 1675 1642(17)
P 702101, 1.1/27) S (gt + v 1941 1950 1837 2020 1944(56)

70.210.1.1.3/27) L@y, + b v, 2038 2000 1978 2020 2049(32)
ID  [56,410,2,2,1/2%) Wi, 2301 2055 2140 2210 2350(63)/2481(51)

156,410,2,2,3/2%) PV 2173/2304 2280 2282 2215

70.210.2,2,3/2%) Ly +¢tvh,)  2173/2304 2345 2282 2265 247049)

156,410,2,2,5/2+) Wi, 2401 2280 2225

70.210.2.2,5/2°) (v + $ v ) 2401 2345 2265

156,410,2,2,7/2%) Wi, 2332 2295 2210

with the widely used 3P, model. The quark model
classification for the 1P- and 1D-wave € baryons and
their theoretical masses are listed in Table I. The spatial
wave functions for the € baryons are described by
harmonic oscillators. According to our calculations, we
find that (i) the newly observed ©(2012) resonance is most
likely to be the 1P-wave Q state with spin-parity J =
3/2” and the experimental data can be reasonably
described. The other 1P-wave state with J” = 1/2~ might
be broader state with a width of dozens of MeV. The 3P,
results are consistent with the recent predictions of the
chiral quark model [17]. (i) The €(2250) resonance listed
in PDG may be a good candidate of the J© = 5/2% 1D
wave state |56,%10,2,2,5/2%) or [70,%10,2,2,5/2%).
Although the widths of the D-wave states predicted within
the 3P, model are systematically larger that those predicted
with the chiral quark model [17], these states may be
observed in their main decay channels in future experi-
ments for their relatively narrow width.

This paper is organized as follows. First, we give a brief
review of the *P, model in Sec. II. Second, we present the
numerical results of strong decay of 1P- and 1D-wave Q
baryon in Sec. I1I. Finally, a summary of our results is given
in Sec. IV.

II. THE *P, MODEL

The 3P, model, is also called the quark pair creation
(QPC) model. It was first proposed by Micu [25], Carlitz
and Kislinger [26], and developed by the Orsay group and
Yaouanc et al. [27-32]. In the model, it assumes that a pair
of quarks gg is created from the vacuum with JP¢ =
0+ (3*1L; = 3P,) when the initial hadron A decays, and
the quarks from the hadron A regroups with the created

quarks form two daughter hadrons B and C. For baryon
decays, two quarks of the initial baryon regroup with the
created quark to form a daughter baryon, and the remaining
one quark regroup with the created antiquark to form a
meson. The process of baryon decays is shown in Fig. 1.

The transition operator under the 3P, model is written as

T ==3y) (Im;1—m|00) / d*pad’ b5 (Pa + Ps)

o (PN oalel pody 5. ()
where the pair-strength y is a dimensionless parameter, i
and j are the color indices of the created quark ¢, and
antiquark gs. ¢’ = (uit +dd + 55)/V/3 and o =5
stand for the flavor and color singlet, respectively. x>,
is the spin triplet state and V}'(p) = [p|Y]'(6,.4,) is a
solid harmonic polynomial corresponding to the P-wave
quark pair. b} ( [_54)d; (Ps) denotes the creation operator in

the vacuum.
1
2B
4
1
A2
3
5
C
3
FIG. 1. The decay process of A — B + C in the *P, model.
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According to the definition of the mock state [11], the
baryons A and B, and meson C are defined as follows:

AR L, ) (Pa))

= 2E,4 Z (LaM s SaM, |JaM,,)

My, Ms,

X /53<I_51 + Py + P3 — Py)d’ pd° prd’ by
X anALAMLA (ﬁlv ]_527 ﬁ3))(é‘§?\/[sA (p114230)/1423

x |q1(P1)42(P2)q3(P3)) (2)

|B(néSB+lLB(JBM,B))(ﬁB)>

= B; B B
V2Eg Y (LpMy,;SpMs,|JpM,,)

My Mg,

X /53(131 + Dy + Py — Pp)d’ b1 d’ prd* by
X ‘PnBLBMLB (ﬁl ’ 1527 1_54))(\%‘?]‘\/[\96 (p§24w1824

% |q1(P1)92(P2)q4(P4)) (3)

CEH L)) (Pe))

= 2E¢ Z (LcMy s SeMg |JeM|,)

M. Mg,
X /53(133 + Ps — Pc)d® p3d® ps

X Wocrem,, (P3 Ps)sy g,

X pEw¥|q3(P3)qs(Ps)). (4)

where the subscripts 1, 2, 3 denote the quarks of the initial
baryon A. 1,2, and 4 denote the quarks of the final baryon
B, 3 and 5 stand for the quark and antiquark of the final
meson C, respectively. p;(i = 1,2, 3) are the momentum of
quarks in baryon A. p;(i = 1,2,4) are the momentum of
quarks in baryon B. p; and ps are the momentum of the

quark and antiquark in meson C. 13A, IBB, 13C denotes the
momentum of state A, B, C. S, Sg, Sc and Ju, Jg, J¢
represent the total spin and the total angular momentum of
state A, B, C. ¥, My, WL, My, and T”CLCMLC denotes
the spatial wave functions of the baryon and meson in
momentum space, respectively.

The decay amplitude of the Q baryon in 3Py, is written as

25,41 280+ 25,41
MMiaMogMic = (B(ny"" LB(JB,M,B))a C(ng" LC(JC,M,C))|T|A(”A A+ LA(JA,MJA)>

=-3y\/BE\EgEc Y >

D (LaMy,: SaMs, [TuM,, ) (1m; 1 = m|00)

My, Mg, My, Mg, My . .Mg..m

123

X (LgMy,; SpMs, |JpMy, ) (LM ScMs I M) Of}siﬁxl%)(gizwsc |)(SAMSA)(?5—m>

< (o oPloi Pl x>

A
M o4M g
ALl

AT A AT A
"/JL/“MLA’”ALZ .MLA,lm
14 P

M, oM, .M
4 Lf Le

-

e m ot nct o () )

0(}9%,1438%?9?1;456 |Z§§LSAZ?im> = <51MS, 5 52M52|512M512><512M5122 S3M53 |SAMSA>
X (S1Ms,; Mg, [S1:Ms,,)(S12Ms,,; SaMs,|SgMg,)
X <S3MS3;SSM55|SCMSC><S4MS4;S5MS5|10>~ (6)

In the Ba. (51 (e, 2, 20, 212, a0 o

123 45

2 @y) stand for the spin matrix and the flavor matrix,

respectively. S; stand for the spin of ith quark and S, stand for the total spin of 1 and 2 quarks. The prefactor 3 in front of y
arises from the fact that the three decay processes of the Q baryon in 3P, model are equivalent.The summed magnetic
quantum numbers are not completely independent of each other.

The overlap integral in the momentum space is written as

AT A A7 A
n, L, ’ML;} ’”),LA‘ ’ML;‘ JAm

InﬁLﬁMLgnfoMLfnchMLc (Pp) = /d3131d3132d3133d3134d313553(131 + P2+ P3— Pa)8 (P + Ps)
X 8 (Py + Pa+ Pa — Pp)5 (D3 + Ps — Pc)Ya(D1. P2 P3)¥5(D1. Pa. Pa)¥Ye(P3. Bs)

- / AP, dp |72 (FA. Py (By. 52 5 e (~Py. BA. BY)
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— [ dBAaAARNARNI by ()Y, (O () Vg, ()
2

R 3
X ¢, BLB(p/))YL M (QB)¢n 5B (Pf - \/;

> 2, - 2,
o258 ) Vicm, @00 (B =282, )

ms
(e

mz +m,

where ﬁp:\%(i’”zﬂlxnf 2) and p;= \/5 (m%(pljnf’i)mz(;n;,;:mﬁp})
stand for the momentum corresponding to p and 4 Jacobi
coordinates in the center mass frame of baryon A, and |J|
stand for the Jacobi determinant which determined by the
definition of p,, p;. m; denote the mass of ith quark, and
m, denote the mass of the created quark pairs. The n, and
L, denote the nodal and orbital angular momentum
between the 1, 2 quarks (see Fig. 1), while the n; and
L, stand for the nodal and orbital angular momentum
between the 1, 2 quarks system and the 3 quark (see Fig. 1).

In the calculations, simple harmonic oscillator (SHO)
wave functions is employed as the hadron wave function.
The momentum space wave function of baryon is

Wi(Ps) = Ny LMy, (Py, )1//% LMy, (Pa,)

B N 9l+2 1
Wanr, (P) = (=1)"(=0) [m]

1\ 43 52
<(5) onl(ap)e ()

(8)

where N stands for a normalization coefficient of the wave

1+1/2(

function and L /32) is the Laguerre polynomial func-

tion. The Clebsch-Gorden coefficients of /,, [; coupling are
equal to 1 in our case.

The ground state wave function of a meson in the
momentum space is

R*: R2p?
Yoo = {—] CXP( ab>’ (9)
V3 2

where the p,;, stands for the relative momentum between
the quark and antiquark in the meson. As all hadrons in the
final states are S-wave in this work, Eq. (7) can be further
expressed as follows

nL MLAnAL MAlm
(LY My, LY Mpa,m) =1 K (10)

BLBMLBnAL MyancLeMy

2m3 =

PB) Viow,(@F)
A

2m3 +m,

[
the expressions of IT1(L, M i Lo, Mpa, m) and harmonic
oscillator wave function for the S-wave, P-wave, D-wave

Q baryons are collected in the Appendix A and B.
The decay width I' of the process A — B + C is

Ipl 1
r=
3 m2 20, + 1 >

My, M, M,

|MMJAM,BMJC|2’ (11)

where J, are the total angular momentum of the initial
baryon A. p is the momentum of the final baryon in the
center of mass frame of the initial baryon A

|ﬁ| — \/[mfl - (mB - mcz):jimi - (mB + mC)z] i (12)

where my, mp, and m, are the mass of the initial and final
hadrons.

In order to partly remedy the inadequacy of the non-
relativistic wave function as the relative momentum p
increases [33-37], the decay amplitude is written as

M(P) = vy M(ysP). (13)

where y; denotes a commonly Lorentz boost factor,
Yy = mp/Ep. In most decays, the three momenta carried
by the final state baryons are relatively small, which means
the nonrelativistic prescription is reasonable and the cor-
rections from the Lorentz boost is not drastic.

ITII. NUMERICAL RESULTS AND ANALYSIS

In our calculations, we adopt m, = m,; = 350 MeV,
my; = 450 MeV for the constituent quark masses. The
masses of the Q baryons listed in Table I, the masses of
K mesons and E baryons are taken from the PDG [15]. The
quantum numbers involved in the calculations are listed in
Table II. Due to the orthogonal relationship of the wave
functions, only the 1 excited mode contributes. There are
three harmonic oscillator parameters, the §, and f3; and R in
baryon and meson wave functions, respectively. We adopt
R = 2.5 GeV~! for K mesons [38]. The parameter B, of the
p-mode excitation between the 1, 2 quarks (see Fig. 1) is
taken as f3, = 0.4 GeV [39]. The f, is obtained with the
relation [40]:
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TABLE II. The Quantum numbers of 1P-wave and 1D-wave Q
baryons. Due to the orthogonal relationship of the wave func-
tions, only the 1 excited mode contributes.

States J n, I, m L, L S, S
|70,%10,1,1,1/27) L o o o 1 1 1 !
|70.210,1,1,3/27) 3 o0 o0 O 1 1 1 !
I56.410,2,2,1/2*) 4 o o0 o0 2 2 1 3
56.410,2,2,3/2%) 3 o0 O O 2 2 1 3
70.%10,2,2,3/2%) 3 0 o0 o0 2 2 1 !
56,410,2,2,5/2*) 3 0 0O 0 2 2 1 3
70.%10,2,2,5/2*) 3 o0 o0 o0 2 2 1 !}
56,410,2,2,7/2*y 7 0 0O O 2 2 1 3
1

For the quark pair creation strength from the vacuum, we
take as those in Ref. [38], y = 6.95.

A. The 1P-wave states

According to the SU(6) supermultiplet classification (see
Table I), there are two 1P-wave states with J = %‘ and

JP =3, ie,[70,210,1,1,1/27) and |70,%10,1,1,3/27).
The mass of the newly observed €(2012) state is close to the
1P-wave Q baryon predicted in various quark models (see
Table ). Assuming (2012) as a candidate of the 1 P-wave Q
baryons, we calculate the OZlI-allowed two body strong

decays in the P, model, and list our results in Table III.

It is found that if one assigns ©(2012) as the J© =~
state |70, 210,1,1,1 /27), the width is predicted to be
rih  ~43 MeV, (15)

which is too large to be comparable with the width of
Q(2012). This width predicted in the *P, model is about a
factor 3 larger than that predicted within the chiral quark
model [17]. As the mass of %‘ Q baryon are predicted about
1.95 GeV in some models [3,4,13]. In Fig. 2 we shows its
strong decay properties as functions of mass in range of

TABLE III.  The total decay widths (MeV) of the |70, 210, 1,1,
1/27) and |70,210, 1, 1,3/27) states with mass M = 2012 MeV.
rth ., denotes the total decay width and B stands for the radio of
the branching fraction T[E°K~]/T'[Z~ KY]. The results of Ref. [17]
are also listed for a comparison. The units of widths is MeV.

States rhoorho[17] B B[17]
70,210,1,1,1/27)  43.0 15.2 096 095
170,210,1,1,3/27)  8.19 6.64 111 LI2

60

501 T ——

S 401 ~—
[
s

_ 301

20‘__——__-_——__—‘-—-_——“=============:::::

10 - - - -
1.94 1.96 1.98 2.00 2.02 2.04

MA (GEV)

FIG. 2. The decay width of the J© = %‘ Q baryon as functions
of the initial state mass.

1.94-2.04 GeV. It is found that the decay width of 1~ Q
baryon is about I' ~ 40-50 MeV and dominantly decays to
EK channel. As future experimental statistics increases, it is
possible to find the 5~ Q baryon in this channel.

On the other hand, assigning Q(2012) as the J* =3~
state |70,210,1,1,3/27), we find that the width
rth  ~8MeV, (16)

1

and the branching fraction ratio

R — I[|70,210,1,1,3/27) - E°K"]
— I[|70,%10,1,1,3/27) - E-KY]

~1.1, (17)

are consistent with the measured width I'®*P =
6.4137(stat) = 1.6(syst) and ratio R®*P =1.240.3 for
Q(2012). These *P, model predictions are compatible with
those predicted within the chiral quark model [17].

B. The 1D-wave states

According to the quark model classification, there are six
I1D-wave states. Their masses are predicted to be in the
range of 2.2-2.3 GeV in various models (see Table I). Their
OZI allowed two-body strong decay channels are ZK and
E(1530)K. With the masses predicted in Ref. [7], we study
the strong decay processes of 1D-wave states into both 2K
and E(1530)K channels, and collect their partial decay
widths in Table IV.

It is interesting to find that the two J¥ =5/27" states
156,410,2,2,5/2%) and |70,210,2,2,5/2") may be good
candidates of Q(2250) listed in the review book of PDG
[15]. (i) The mass of Q(2250) is close the predictions of
156,410,2,2,5/2%) and |70,210,2,2,5/2%) in the quark
model [7]. (ii) The measured width of Q(2250), I' =
55 4+ 18 MeV, is close to the theoretical predictions, I" ~
80/50MeV for |56,410,2,2,5/2") and |70,%10,2,2,5/2"),
respectively. (iii) The decays modes of [56,410,2,2,5/2F)

114023-5
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TABLEIV. The partial and total decay widths (MeV) of the 1D-wave states. '

denotes the total decay width and B stands for the

total

radio of the branching fraction I'[EK]/I'[E(1530)K]. The results of Ref. [17] are also shown for a comparison. The widths and masses

are in units of MeV.

States Mass [7] T[EK] T[EK][17] T[E(1530)K] T[E(1530)K] [17] T® T (177 B  B[17]
56,410,2,2,1/2+) 2210 154 51.8 16.5 4.53 171 563 936 114
56,410,2,2,3/2+) 2215 76.8 25.8 55.4 15.7 132 415 139 164
56,410,2,2,5/2+) 2225 7.78 6.58 77.2 22.6 84.9 292 0.0 029
56,410,2,2,7/2+) 2210 31.7 26.2 2.94 1.51 34.7 27.7 108 174
70,210,2,2,3/2+) 2265 9.04 7.40 14.3 11.9 234 209 063 0.62
70,210,2,2,5/2+) 2265 4.34 0.99 50.0 11.6 54.4 134 009 008

and |70,%10,2,2,5/2%) are dominated by Z(1530)K,
which is also consistent with the fact that the €(2250)
was seen in the 2(1530)K and 2~z K~ channels. In [17],
we predicted that ©(2250) is more likely to be the J© =
5/2% |56,410,2,2,5/2%) with the chiral quark model,
and the width of [70,210,2,2,5/2%) is predicted to be
~12 MeV, which is about a factor 4 smaller than the width
of ©(2250).

The JP =3/2" state |70,%10,2,2,3/2%) is a narrow
state with a width of I'~23 MeV, and has comparable
decay rates into EZK and E(1530)K channels. These
predictions of the 3P, model are consistent with those in
the chiral quark model [17]. While the other J* = 3/2+
state |56, 410,2,2,3/27") is found to be a broad state with a
width of I' ~ 130 MeV, the partial width ratio between 2K
and E(1530)K is predicted to be

[EK]
FEns0E = (18)

The predicted width for |56,410,2,2,3/2%) in this work is
about a factor 3 larger than that predicted with the chiral
quark model [17].

The JP = 1/2% state |56,410,2,2,1/2%) is the broadest
state in the 1 D-wave states. It has a width of I" ~ 170 MeV,
and mainly decays into the 2K channel. However, in the
chiral quark model a relatively narrower width I'~
56 MeV is given for |56,410,2,2,1/2%) [17].

The JP =7/2% state |56,10,2,2,7/2%) may be a
narrow state with a width of I'~30 MeV. This state
mainly decays into the ZK channel. The decay properties
of |56,410,2,2,7/2%) predicted in this work are consistent
with those of chiral quark model in Ref. [17].

As a whole most of the 1D-wave states has a relatively
narrow width, they has potentials to be observed in their
dominant decay modes. The ©(2250) resonance may be
assigned to the J* =5/2% state |56,%10,2,2,5/2%) or
|70,210,2,2,5/2%). Although the decay widths predicted
for the D-wave states within the chiral quark model and 3P,
model show some differences, the partial width ratios of
I'[EK]/T[E(1530)K] predicted within these two models are
in a reasonable agreement with each other.

IV. SUMMARY

Stimulated by the newly discovered (2012) resonance
at Belle II, in this work we have studied the OZI allowed
strong decays of 1P- and 1D-wave Q baryons within the
3P, model.

It is found that the newly observed state €2(2012) favors
the 1P-wave Q state with J© = 3/27,70,%10,1,1,3/27).
Both the decay mode and decay width are consistent
with the observations. The other 1P-wave Q state with
JP =1/27,170,%10,1,1,1/27), might have a relatively
broad width of O(10) MeV. This J¥ = 1/2~ state should
be observed in the Z°K~ and E~K° channels as well.

In the 1D-wave Q states, it is found that the ©(2250)
state may favor the J¥ = 5/27 state |56,410,2,2,5/2%) or
|70,210,2,2,5/2%). These two JP =5/2" states domi-
nantly decay into the Z(1530)K channel, and have a similar
decay width to that of Q(2250). Due to a large uncertainty
of the width of ©(2250), we cannot distinguish it belongs
to the 70 multiplet or 56 multiplet. Future experiment
information will help to clarify this issue. For the other
1D-wave Q baryons, we recommend looking for the J© =
1/2% and J¥ = 7/27 states in the 2K decay channel and
looking for the J© = 3 /2% states in both 2K and E(1530)K
decay channels in future experiments.
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APPENDIX A: THE HARMONIC OSCILLATOR
WAVE FUNCTIONS

For the S-wave omega baryon, the harmonic oscillator
wave function is

AN/ 1\3 B
¥(0,0,0,0) = (ﬁ) <—> yo,o(ﬁp)e W ¥,
P

X <\/i7—[>% <é> %yo,o(fu) (A1)
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For the P-wave omega baryon, the harmonic oscillator
wave function is

VERARY: Lo T
¥(0.0.1.my) = —i _zr) (/3_/)) Yoo(P,)e * i
8 \:/1)3
X 3 ”> (E) yl,mll(pﬂ)v <A2)
8 \:/1\3 L
‘P(l,ml,,,O 0) [ _ y]’ml/(pp) 7
z P

i

For the D-wave omega baryon, the harmonic oscillator
wave function is

¥(0,0,2, my,) (4)% 1>% ( )_:/TZ_%
wUsmp) ==\ —=| | 5| YoolPp)e "
z) \bB, ’
16 \3/1\z _
<(raoz) (5) ram@ (a0
16 \:/1 —5—h
lP<25 mlp’o 0) (1 \/E) (7) y2 m,,,(pp)
%
( ( ))’00 (A5)
A
Where 5, = 5 (1 = ) and jy=\ /(7 +7r=273)

are obtained in the relative Jacobi coordinates. The y; ,, ()
is the solid harmonic polynomial.
The wave function of the meson in our calculation is

2\ 32 s 522
oo - (Bt

. (A6)

_Pz l’s R——
Pec

Here pe

APPENDIX B: THE MOMENTUM SPACE
INTEGRATION

The momentum space integration IT1(L5, M4, L4, M5 .m)
are presented in the following

11(0,0,0,0,0) = B|p|Ago-

(B1)
For the P-wave omega baryon decay,

1
\/6,12 24

11(0.0,1,0,0) = ( 2ﬂ|p|2> Aoy. (B2)

1
I1(0,0,1,1,—-1) = ———Ay; =11(0,0,1, -1, 1).
( ) Vo, Mo ( )
(B3)
For the D-wave omega baryon decay,
2 L. V6l
11(0,0,2,0,0) = (z—jzﬂlpP 3123 |pI>Aoz, (B4)
2
H(0’072’1’_ ) \/_ 2‘p|A02_ (070727_1’1)' (BS)
Here,
P SO U TR T (B6)
Tty T s
Vém m;  6R?
A3 = : 2 : > (B7)
(2m3 —+ ms)ﬁl ms + ms 3
3m3 m? R?
My = 3 + s, B8
F@my +ms)?B? T (my+ ms)? 2 (B8)
A
2
and
TR SO ST
00 n
( M (ﬂﬂ) <% ’ ®10
Al: L%L%R_z i 44/17‘17‘2
np}) \np} z
i (1 \i/ 8 1 %
— | — — — Bl11
) ) (ﬂg> @
gy = (LY (LY (BN (2 amier
’ T ;,2 ﬂﬂf T AAy
3 1 7
y VIS (1 Nif 16 \if 1 4 (B12)
8 ﬂﬁ% 157 %

where the momentum space integration H(L;},Mf},
L3, M4, m) is introduced in Ref. [41], what makes our
differences from Ref. [41] is that we take into account

difference of the masses of the quarks in baryons.
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