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With the long-standing tension between experiment and standard-model (SM) prediction in the
anomalous magnetic moment of the muon, aμ ¼ ðg − 2Þμ=2, at the level of 3–4σ, it is natural to ask if
there could be a sizable effect in the electric dipole moment (EDM) dμ as well. In this context it has often
been argued that in UV complete models the electron EDM, which is very precisely measured, excludes a
large effect in dμ. However, the recently observed 2.5σ tension in ae ¼ ðg − 2Þe=2, if confirmed, requires
that the muon and electron sectors effectively decouple to avoid constraints from μ → eγ. We briefly
discuss UV complete models that possess such a decoupling, which can be enforced by an Abelian flavor
symmetry Lμ − Lτ. We show that, in such scenarios, there is no reason to expect a correlation between the
electron and muon EDM, so that the latter can be sizable. New limits on dμ improved by up to two orders of
magnitude are expected from the upcoming ðg − 2Þμ experiments at Fermilab and J-PARC. Beyond, a
proposed dedicated muon EDM experiment at PSI could further advance the limit. In this way, future
improved measurements of ae, aμ, as well as the fine-structure constant α are not only set to provide
exciting precision tests of the SM, but, in combination with EDMs, to reveal crucial insights into the flavor
structure of physics beyond the SM.
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I. INTRODUCTION

Ever since Schwinger’s seminal prediction al ¼ α=ð2πÞ
[1], magnetic moments of charged leptons have served as
powerful precision tests first of quantum electrodynamics
(QED) and later of the full SM. In fact, for the muon there
exists a tantalizing tension between the measurement [2]

aexpμ ¼ 116; 592; 089ð63Þ × 10−11 ð1Þ

(corrected for the updated ratio of proton and muon
magnetic moments [3]) and the SM prediction. The latter
is currently being reevaluated in a community-wide effort
prompted by upcoming improved measurements at
Fermilab [4] and J-PARC [5] (see also [6]), with promising
recent advances in hadronic vacuum polarization [7–14],
hadronic light-by-light scattering [15–23], and higher-order
hadronic corrections [24,25]. Current evaluations point
toward a discrepancy

Δaμ ¼ aexpμ − aSMμ ∼ 270ð85Þ × 10−11 ð2Þ

of around 3–4σ (for definiteness, we choose a value at the
lower end).
This tension raises the question about the existence of

effects beyond the SM (BSM) in the EDM of the muon.
Here, the present EDM bound is [26]

jdμj < 1.5 × 10−19 e cm 90% C:L:; ð3Þ
which is about 600 times larger than expected from the
central value of aμ assuming that the imaginary part of the
corresponding BSM contribution is as large as the real one.
In contrast, the electron EDM is very precisely measured
[27,28] with an upper limit of

jdej < 1.1 × 10−29 e cm 90% C:L:; ð4Þ

which indicates a very small or even vanishing phase of any
BSM contribution. Models with minimally flavor-violating
(MFV) structures [29–33] then predict dμ ¼ mμ=mede,
leading to

jdMFV
μ j < 2.3 × 10−27 e cm 90% C:L: ð5Þ

This is eight orders of magnitude below the current limit,
but it is imperative to keep in mind that it is derived under
the strong assumption of MFV.
MFV is strongly challenged by recent experimental

measurements in semileptonic B meson decays (see [34]
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for a recent review) and by a new, indirect, measurement of
ae. Until recently, the direct measurement of ae [35]

aexpe ¼ 1; 159; 652; 180.73ð28Þ × 10−12 ð6Þ

agreed with the SM prediction [36]

aSMe jαRb ¼ 1; 159; 652; 182.03ð72Þ × 10−12; ð7Þ

derived from the fine-structure constant as measured in Rb
atomic interferometry [37], at the level of 1.7σ, with the
uncertainty completely dominated by ΔaSMe , i.e., limited by
the precision of the Rb measurement of α. This situation
changed significantly with a new measurement of α using
Cs atoms [38], implying

aSMe jαCs ¼ 1; 159; 652; 181.61ð23Þ × 10−12: ð8Þ

Thus

Δae ¼ aexpe − aSMe ¼ −0.88ð36Þ × 10−12; ð9Þ

which corresponds to a 2.5σ deviation, at a level of
accuracy improved by a factor of 2.1 Most crucially, the
sign of Δae is opposite to Δaμ, contradicting the MFV
hypothesis. It also excludes a resolution of Δaμ in terms of
a dark photon, leading to a positive sign, at 99% confidence
level [38], while a new axially coupled light degree of
freedom would result in the negative sign required by Δae
[40], but could not accommodate Δaμ at the same time.
Given the deviation (2), primary attention has focused on

aμ, but interest in ae as a test of QED and the full SM goes
back decades, see e.g., [41]; more recently, the role of ae as
a precision test of the SM has been studied in [42,43].
Starting from the benchmark that BSM contributions scale
with the square of the lepton mass, one would expect
Δae ∼ 0.06ð2Þ × 10−12, thus another factor of 5 below
current sensitivities. To reach that level of precision, con-
current improvements both in the direct measurement aexpe

and α are clearly necessary, but also the subleading uncer-
tainties from the numerical integration error in the 4- and
5-loop QED coefficients were found to be relevant [43].
Since the semianalytical work byLaporta [44] eliminates the
4-loop uncertainty completely, while the improved 5-loop
results from [36] push the remaining uncertainty to the same
level as hadronic corrections≲0.02 × 10−12, such improved

measurements can now be translated directly into yet more
stringent SM precision tests.
From these considerations the emergence of a nonzero

Δae, in particular the opposite sign, would be surprising,
and a BSM explanation almost necessarily has to violate
the quadratic mass scaling. Such a scenario itself is not
entirely unexpected [43], given that only one power of the
mass is coming from the equations of motions, while the
second one results from assuming a SM-like structure of
theYukawa interactions. Therefore, some enhancementwith
respect to the MFV mass scaling is necessary to explain ae.
One possible model displaying such an enhancement, based
on a light scalar, has been recently proposed in [45].
In this paper, we stress that a common feature that

emerges in explanations along these lines concerns an
effective decoupling of the μ and e BSM sectors, due to the
stringent limits from μ → eγ. We discuss explicit models
which possess such a decoupling, and, by comparing g − 2
to EDM limits, we argue that this decoupling allows for a
large muon EDM despite the stringent electron EDM limit.
Such scenarios could be probed at the upcoming ðg − 2Þμ
experiments at Fermilab and J-PARC, and, potentially, a
dedicated muon EDM experiment at PSI.

II. EFT ANALYSIS

We start by collecting the relevant expressions for
magnetic moments and μ → eγ. The effective Hamiltonian

Heff ¼ c
lfli
R l̄fσμνPRliFμν þ H:c: ð10Þ

gives

ali ¼ −
2mli

e
ðclili

R þ clili�R Þ ¼ −
4mli

e
Re cliliR ;

dli ¼ iðcliliR − clili�R Þ ¼ −2Im cliliR ;

Br½μ → eγ� ¼ m3
μ

4πΓμ
ðjceμR j2 þ jcμeR j2Þ; ð11Þ

where li, lf ∈ fe; μ; τg. This decomposition emphasizes
that in general there are no correlations between magnetic
moments and lepton flavor violation, such correlations are
always model dependent [46]. Furthermore, in the defi-
nition of the Wilson coefficients (10) we did not implicitly
assume MFV, i.e., aμ and ae are linear (rather than
quadratic) in mμ and me, respectively.
Therefore, for generic BSM scenarios the effect in

muons is larger than in electrons

−3.0≳ Re cμμR =Re ceeR ≳ −130; ð12Þ

varying both aμ and ae within their preferred 2σ ranges,
with a central value Re cμμR =Re ceeR ∼ −15. Likewise, the
central values in (2) and (9) give

1The extraction of α from atomic interferometry relies on the
Rydberg constant R∞ from [3], with a quoted uncertainty of 6 ppt.
Since a shift in R∞ could be a possible resolution of the proton
radius puzzle [39], one might wonder about the impact on the
determination of α, but the suggested shift ΔR∞=R∞¼−0.03ppb
translates to ΔaSMe ¼ΔR∞=R∞aSMe =2¼−0.018× 10−12, in the
right direction, but a factor 50 too small to explain (9).
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���� Im ceeR
Re ceeR

����≲ 6 × 10−7;

���� Im cμμR
Re cμμR

����≲ 600: ð13Þ

Thus, the phase of ceeR must be very small, while that of cμμR
is largely unconstrained. The future ðg − 2Þμ experiments
will be sensitive to jdμj ∼ 10−21 e cm [6], but probing
phases around 45° requires yet another order of magnitude
improvement.
Finally, the EFT analysis shows that solutions where the

BSM particles couple to muons and electrons simultane-
ously ceμR ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ceeR cμμR
p

are excluded since the resulting

Br½μ → eγ� ¼ αm2
μ

16meΓμ
jΔaμΔaej ∼ 8 × 10−5 ð14Þ

violates the MEG bound [47]

Br½μ → eγ� < 4.2 × 10−13 90% C:L: ð15Þ

by 8 orders ofmagnitude. The relation (14) arises inminimal
models where the muon and electron sector are not
decoupled, as shown in Fig. 1, e.g., it holds if a single
new heavy fermion L is added to the SM. Furthermore, the
bound still applies if a new scalar or vector is introduced in
addition. Therefore, to evade the bound one needs at least
two (new) fermions or two new scalars/vectors in the loop.
This includes the case of a single new scalar/vector coupling
flavor-diagonally to muons and electrons. However, in such
a scenario no chiral enhancement is possible.
In this way, the spectacular failure (14) already indicates

that much more intricate constructions are necessary to
obtain a viable model that displays chiral enhancement, i.e.,
the muon and the electron sector must be separated. We
now turn to models which can possess such a decoupling of
the two sectors.

III. MODELS EXPLAINING BOTH ANOMALIES

In order to explain the quite large effect in aμ, which is of
the order of the electroweak (EW) contribution in the SM,
and the relatively even larger effect in ae, any viable BSM
mechanism requires some form of enhancement: it either
has to be light, has to have Oð1Þ couplings for TeV-scale
masses, or it needs to possess a chiral enhancement, i.e., a
coupling to the Higgs field much larger than the SM one

ml=v. An example for such a chiral enhancement is tan β in
theMSSMormq=ml inmodelswith leptoquarks (LQs). The
necessity of an enhanced Higgs coupling in any model
realized above the EW breaking scale can be easily under-
stood by looking at the gauge-invariant effective operators
Qfi

eW ¼ l̄fσ
μντIliHWI

μν and Qfi
eB ¼ l̄fσ

μνliHFμν, which
explicitly involve the SM Higgs doublet [48,49].
As mentioned in the Introduction, light (pseudo-) vector

particles (“dark photons”) are problematic. Neutral vectors
give a necessarily positive effect and can therefore
only account for aμ, while neutral axial vectors give a
negative effect and are therefore only compatible with ae.
Furthermore, the preferred regions from aμ and ae are in
general in tension with other constraints [40]. While a light
scalar, as proposed in [45], provides in principle a relatively
economical solution, the model is not yet UV complete and
its UV completion again requires heavy BSM degrees of
freedom. Here, we will instead consider models realized
above the EW breaking scale with chiral enhancement. In
general, respecting Lorentz invariance and renormalizabil-
ity, one can only add new scalar, vector, and/or fermion
fields to the particle content of the SM.

A. New scalars, vectors, and fermions

Without any assumptions on the specific model, the
coupling of fermions to SM leptons and scalars/vectors can
be parametrized as

LΦ ¼ Ψ̄ðΓiL
ΨΦPL þ ΓiR

ΨΦPRÞliΦ� þ H:c:; ð16Þ

LV ¼ Ψ̄ðΓiL
ΨVγ

μPL þ ΓiR
ΨVγ

μPRÞliV�
μ þ H:c:; ð17Þ

where a sum over all fermions Ψ and scalars (vectors) Φ
(Vμ) is implicitly understood. With these conventions at
hand the contribution of new scalars and vectors to dipole
moments can be written as (see also [50,51])

cfiRΦ ¼ e
16π2

ΓfL�
ΨΦ ΓiR

ΨΦMΨ

fΦ
�
M2

Ψ
M2

Φ

�
þQgΦ

�
M2

Ψ
M2

Φ

�
M2

Φ

þ e
16π2

ðmliΓ
fL�
ΨΦ ΓiL

ΨΦ þmlfΓ
fR�
ΨΦ ΓiR

ΨΦÞ

×
f̃Φ

�
M2

Ψ
M2

Φ

�
þQg̃Φ

�
M2

Ψ
M2

Φ

�
M2

Φ
; ð18Þ

cfiRV ¼ e
16π2

ΓfL�
ΨV ΓiR

ΨVMΨ

fV
�
M2

Ψ
M2

V

�
þQgV

�
M2

Ψ
M2

V

�
M2

V

þ e
16π2

ðmli
ΓfL�
ΨV ΓiL

ΨV þmlfΓ
fR�
ΨV ΓiR

ΨVÞ

×
f̃V

�
M2

Ψ
M2

V

�
þQg̃V

�
M2

Ψ
M2

V

�
M2

V
; ð19Þ

FIG. 1. Generic 1-loop diagram contributing to the dipole
operator with fermion L and scalar or vector ϕ or V, respectively.
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with

fΦðxÞ ¼ 2g̃ΦðxÞ ¼
x2 − 1 − 2x log x

4ðx − 1Þ3 ;

gΦðxÞ ¼
x − 1 − log x
2ðx − 1Þ2 ;

f̃ΦðxÞ ¼
2x3 þ 3x2 − 6xþ 1 − 6x2 log x

24ðx − 1Þ4 ;

fVðxÞ ¼
x3 − 12x2 þ 15x − 4þ 6x2 log x

4ðx − 1Þ3 ;

gVðxÞ ¼
x2 − 5xþ 4þ 3x log x

2ðx − 1Þ2 ;

f̃VðxÞ ¼
−4x4 þ 49x3 − 78x2 þ 43x − 10 − 18x3 log x

24ðx − 1Þ4 ;

g̃VðxÞ ¼
−3ðx3 − 6x2 þ 7x − 2þ 2x2 log xÞ

8ðx − 1Þ3 ; ð20Þ

whereQ is the electric charge of the fermion. We calculated
the contribution of the massive vector boson in unitary
gauge, so that the effects of Goldstone bosons are auto-
matically included, which is possible since the matching on
dipole operators gives a finite result. The terms proportional
to the heavy fermion mass are the ones that can be chirally
enhanced. These contributions have an arbitrary phase also
for i ¼ f while, due to Hermiticity of the Lagrangian, the
terms which are not chirally enhanced, i.e., proportional to
ΓfL�
ΨV;ΦΓ

iL
ΨV;Φ and ΓfR�

ΨV;ΦΓ
iR
ΨV;Φ (included here for complete-

ness), are real for flavor-conserving dipole transitions. Note
that the relations (16)–(19) are not manifestly SUð2Þ
invariant but only invariant with respect to Uð1ÞEM.
Therefore, we will illustrate them for several (simplified)
models: LQs, the minimal supersymmetric SM (MSSM),
Little-Higgs-inspired models, and, in more detail, a sim-
plified model with new heavy leptons (and possibly a new
scalar).

B. Specific models

1. Leptoquarks

In LQ models one adds in their minimal version only one
new scalar or vector particle to the SM. Therefore, they are,
with respect to their particle content, minimal models with
chiral enhancement. In constructing these models one
demands that the couplings to quarks and leptons respect
SM gauge invariance, resulting in 5 vector LQs and 5
scalars LQs [52]. Therefore, in (18) and (19) MΨ corre-
sponds to the quark mass, MΦ and MV to the LQ mass,
respectively, and a factor Nc ¼ 3 has to be added to take
into account the fact that quarks and LQs are colored. There
are two representations of scalar LQs that can easily
accommodate aμ via a chiral enhancement by the top mass
[53–60] and two vector LQs whose effect in dipole

moments can be enhanced by the bottom mass [60].
Therefore, even for TeV-scale masses, one can easily
explain the tension in aμ or ae for couplings of order 0.1.
However, in their minimal version, LQs are a single-

particle extension of the SM and thus subject to the
constraint in (14). Therefore, they can only account for
aμ by decoupling the electron sector completely,2 and thus
cannot explain ae at the same time. However, this implies
that also the EDMs are decoupled and the phase of cμμR is
not subject to any serious constraint, so that one would
expect naturally jdμj ∼ e=ð2mμÞΔaμ ∼ 3 × 10−22 e cm.

2. Extra dimensional and composite models

In models with an extra dimension (such as the Randall–
Sundrum model [62]) or models with a strongly coupled
Higgs sector (e.g., the littlest Higgs model [63]) one obtains
in general new massive fermions and vectors that are
resonances of the SM particles [64]. Assuming a new
quantum number called T-parity [65], these particles do
not mix with the SM and one obtains a scenario as above
with heavy new fermions and vector bosons as in (17).
However, it has been shown in [66] that for the littlest Higgs
model with T-parity the effect in aμ is small since the
couplings of the resonances are mainly left-handed and
therefore do not allow for a sufficient chiral enhancement.
The same is true for generic RS models [67,68]. Again,
explaining aμ and ae in the simplest models is not possible
since the vector resonances are not flavor specific and have
common couplings to muons and electrons, violating the
μ → eγ bound.

3. MSSM (with large A terms)

aμ in the MSSM has been most extensively studied in the
context of the constrained MSSM or with the assumption of
flavor-universal supersymmetry (SUSY) breaking terms
(see e.g., [51] for a review), i.e., respecting (naive) MFV.
As outlined in the Introduction, a model with MFV cannot
explain aμ and ae simultaneously, and this is of course also
true for the MSSM. Furthermore, the phase in cμμR is
correlated with ceeR suppressing possible effects in the
muon EDM.
However, since the MSSM possesses three generations

of sleptons, effects in electrons and muons can in principle
be decoupled. In fact, with a general flavor structure of the
SUSY breaking terms, contributions of large nonuniversal
trilinear A-terms can in principle give the right effects
[69,70]. Still, large Aμ and, even more significantly, large
Ae-terms are delicate because of fine-tuning in the lepton
mass matrix [71] and charge-breaking minima of the scalar
potential that would render the vacuum unstable [72].

2Decoupling of the electron sector is also motivated by the
anomalies in RðKÞ and RðK�Þ, where μ → eγ requires small or
vanishing couplings to electrons [61].
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The latter constraints could be avoided by using non-
holomorphic A0 terms [73]. Nonetheless, achieving such
anarchic A-terms, while still respecting all other flavor
bounds, with a SUSY breaking mechanism seems very
challenging.3

C. Model with a new scalar and fermions

Due to the shortcomings of the models discussed so far
in providing a common explanation of aμ and ae we turn
now to models in which we introduce vectorlike gener-
ations of leptons. The general comments regarding the
chiral enhancement still apply, so special attention will be
paid to the flavor structure of the corresponding models.

1. Model I

Let us introduce three SUð2Þ doublets Li and three
SUð2Þ singlets Ei with the same quantum number as the
SM lepton doublet and singlet, respectively.4 In order to
avoid the bound from μ → eγ we assume that these three
generations of heavy leptons couple separately tomuons and
electrons (and taus). This flavor conservation can be
guaranteed by introducing an Abelian flavor symmetry
for the leptons and their vectorlike partners, e.g., Lμ − Lτ

[82,83], but also other charge assignments are compatible
with the observed PMNS matrix [84] and ensure flavor
conservations as well. Therefore, it is sufficient to discuss
the case for each charged fermionl ¼ e, μ, τ separately. The
generic diagrams to be considered for cR are shown in Fig. 2.
We start from the following Lagrangians for the mass

terms and the interactions with the Higgs of the vectorlike
leptons

LM ¼ −MLL̄LLR −MEĒLER þ H:c:;

LH ¼ −κLL̄LHER − κEL̄RHEL

− λLL̄LlRH − λEĒRH̃lL þ H:c: ð21Þ

In principle, there are also mass terms connecting SM
leptons to their heavy partners. However, in our setup these
terms can always be absorbed into a redefinition of the
fields.
This model gives rise to tree-level effects in the Z → ll

and h → ll couplings. At leading order in v=M the
corrections to Z → ll are given by

LZ ¼
X
i¼L;R

ðZi
ll þ ΔZi

llÞl̄γμPilZμ;

ΔZL
ll ¼ v2jλEj2

M2
E

ðZR
ll − ZL

llÞ;

ΔZR
ll ¼ v2jλLj2

M2
L

ðZL
ll − ZR

llÞ; ð22Þ

with g ¼ ffiffiffi
2

p
MW=v,

ZL
ll ¼ g

2 cos θW
ð1 − 2sin2θWÞ;

ZR
ll ¼ −

g
cW

sin2θW; ð23Þ

and the Higgs vacuum expectation value v ∼ 174 GeV
(H0 ¼ vþ h=

ffiffiffi
2

p
). Similar corrections also pertain to the

W couplings

ΔWL
ll ¼ −

v2jλEj2
2M2

E
WL

ll ≡ δWL
llW

L
ll; ð24Þ

but since they are less well constrained we only consider
the indirect impact on Z → ll due to the renormalization
of GF extracted from muon decay

ΔZL;R
ll → ΔZL;R

ll −
1

2
ZL;R
ll ðδWL

μμ þ δWL
eeÞ: ð25Þ

For h → ll we find a shift of the Yukawa coupling
(normalized to the one of the SM) given by

δYl ¼ ΔYl

Yl ¼ 2κ�Eλ
�
EλL

v3

mlMLME
: ð26Þ

The heavy fermions E, (second component of) L, and the
charged SM lepton mix to mass eigenstates χ� [77], so that
after diagonalization of the mass matrix we derive the
contribution to dipole moments from the general relation
(18) with Q ¼ −1

FIG. 2. Generic diagrams contributing to the dipole operator in
Model I.

3Alternatively, one can also use flavor-violating SUSY break-
ing terms together with chirality violation from the τ sector to
generate an enhanced effect in aμ that has a free phase and can
therefore also generate a large effect in dμ [74]. However, in this
case more free parameters are involved and constraints from
τ → μγ arise.

4aμ in models with one generation of vectorlike leptons has
been studied in [50,75–81].
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cI;hR ¼ −
e

32π2

vλ�EλLκ
�
E½M2

EFΦ

�
M2

E
m2

h

�
þM2

LFΦ

�
M2

L
m2

h

�
�

m2
hMLME

þ e
32π2

vλ�EλL
m2

hðM2
E −M2

LÞ

×

�
MEðMEκ

�
L þMLκ

�
EÞFΦ

�
M2

E

m2
h

�

−MLðMEκ
�
E þMLκ

�
LÞFΦ

�
M2

L

m2
h

�	
; ð27Þ

where FΦðxÞ ¼ fΦðxÞ − gΦðxÞ and we have again
expanded in v=M. In the limit mh ≪ ME ¼ ML ¼ M this
expression simplifies to

cI;hR ¼ e
16π2

3vλ�EλLκ
�
E

8M2
: ð28Þ

In practice, the pieces that are not chirally enhanced can
indeed be safely ignored, and were already dropped in (27),
but, in particular for low masses, higher orders in v can
become relevant. Accordingly, we keep the exact diago-
nalization everywhere in the numerical analysis, including
the Z → ll couplings.
Moreover, in the asymptotic M → ∞ limit the Higgs

contribution is dominant, but in the general case we do need
to keep the Z and W loops

cI;ZR ¼ −
e

32π2
vλ�EλL

ðM2
E −M2

LÞMEML

×

�
MEðMEκ

�
E þMLκ

�
LÞFV

�
M2

E

M2
Z

�

−MLðMLκ
�
E þMEκ

�
LÞFV

�
M2

L

M2
Z

�	
;

cI;WR ¼ −
e

16π2
vλ�EλLκ

�
E

MEML
fV

�
M2

L

M2
W

�
; ð29Þ

with FVðxÞ ¼ fVðxÞ − gVðxÞ, as derived from (19) with
Q ¼ −1 and Q ¼ 0, respectively. Asymptotically, they
approach

cI;ZR ¼ e
16π2

vλ�EλLκ
�
E

8M2
; cI;WR ¼ −

e
16π2

vλ�EλLκ
�
E

4M2
; ð30Þ

and are thus suppressed by factors 3 and −3=2 compared to
the Higgs contribution. For smaller masses, however, they
become dominant, especially the W loop.
The numerical results in the limit λE ¼ λL andME ¼ ML

are shown in Fig. 3, for aμ (left) and ae (right). The
restrictions from the modified Z → ll couplings that arise
indirectly from the opposite channel via muon decay prove
to be weaker than the direct ones and are therefore
neglected, while the corrections from muon decay within
the same channel are kept. In general, we implement all
constraints at the 2σ level, the exception being the Z → ll
couplings for which we allow for a 3σ ellipse. This
treatment is motivated by the fact that there is a tension
between the measured Z → ee couplings and their SM

FIG. 3. Allowed regions of al in the λE ¼ λL–ME ¼ ML plane for κL ¼ 0 and κE ¼∓ 1 for muon (left) and electron (right). The
bounds are derived from σðh → μþμ−Þ=σðh → μþμ−ÞSM ¼ 0� 1.3 [85–87], σðh → eþe−Þ=σðh → eþe−ÞSM < 3.7 × 105 [88], Z → ll
[85,89], and direct searches for new heavy charged leptons [90]. The h → ll limits are implemented at 2σ, the ones for Z → ll at 3σ, as
explained in the main text.
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values at the level of 2σ, so that a slightly higher
significance is required to ensure that the SM is included
in the allowed range.
We find that Δaμ can only be explained for relatively

large couplings, consequently with a parameter space
already partly excluded by h → μμ and Z → μμ. In con-
trast, Δae is still allowed for a wide range of masses and
couplings. The reason for this behavior can be understood
already from the relative size of the respective deviation,
see (12), in such a way that all other parameters being equal
Δaμ requires larger couplings. The different sign in κE
reflects the respective sign in Δal and due to the domi-
nance of the Higgs contribution for asymptotic masses can
be read off from (28). We conclude that while for the muon
the construction based on the SM Higgs is already under
pressure, Δae does permit such an explanation for a wide
range of parameters. However, a huge relative effect in the
effective electron Yukawa coupling (which could be
considered as fine-tuning) appears, enhancing h → ee by
orders of magnitude compared to the SM with potentially
interesting phenomenological consequences [91].

2. Model II

One way to avoid the Z → ll and h → ll bounds
discussed above is to introduce a new scalar ϕ charged
under a Z2 symmetry, which takes the role of the SMHiggs.
In this way, only the interaction term

Lϕ ¼ −λϕLL̄RϕlL − λϕEĒLϕlR þ H:c: ð31Þ

changes. This SM extension leads to chirally enhanced
effects in aμ and ae, while the Z2 symmetry forbids L̄LHeR
couplings that would otherwise produce the potentially
problematic couplings. In analogy to (27) we obtain

cIIR ¼ e
16π2

vλϕEλ
ϕ�
L

m2
ϕðM2

E −M2
LÞ

�
MEðMEκE þMLκLÞFΦ

�
M2

E

m2
ϕ

�

−MLðMEκL þMLκEÞFΦ

�
M2

L

m2
ϕ

�	
; ð32Þ

which in the limit mϕ ¼ ME ¼ ML ¼ M simplifies to

cIIR ¼ −
e

16π2
vλ

24M2
; λ ¼ λϕEλ

ϕ�
L ðκE − 3κLÞ: ð33Þ

The resulting expression

al ¼ λl
vml

96π2M2
ð34Þ

can then easily explain both anomalies, for M ¼ 1 TeV
with λe ∼ −0.01 and λμ ∼ 0.15, but thanks to the chiral

enhancement the original couplings λϕE;L and κE;L remain

perturbative up to at least M ¼ 10 TeV, again at the price
of decoupling the μ and e sectors.
With slight modification of the model it might be

possible to address other issues that require BSM input.
For instance, we can add a charged scalar instead of a
neutral one by changing the hypercharge of the new
(Majorana) fermion fields accordingly. In this way, the
two neutral components would mix to mass eigenstates χ0,
which could produce a dark matter candidate. Moreover,
these states could generate neutrino masses by the type I
seesaw mechanism, and, assuming a nonvanishing phase in
λl, produce a CP asymmetry that could be relevant for
creating the matter–antimatter asymmetry via leptogenesis.
Such a phase, in turn, could be observable as a larger-than-
MFV muon EDM, see Sec. IV.

3. Model III

Interestingly, one can combine the two effects of
models I and II for explaining aμ and ae to actually decrease
the particle content. To this end, one can explain ae via an
effect induced by the SMHiggs (and also modified Z andW
couplings) while one accounts for aμ through an additional
neutral scalar. In this setup, it is sufficient to add a single
vectorlike generation. Assuming Lμ − Lτ as the flavor
symmetry, the vectorlike generation is uncharged (coupling
to electrons and the SMHiggs) while the additional scalar is
singly charged (coupling to the vectorlike generation and
muons). Accordingly, the Lagrangian for scalar and Higgs
interactions of this model takes the form

L ¼ −λϕLL̄RϕμL − λϕEĒLϕμR

− λLL̄LeRH − λEĒRH̃eL þ H:c: ð35Þ
Furthermore, once the flavor symmetry is gauged, one can
identify the neutral scalar with the “flavon,” and the scenario
becomes very similar to the model of [92].5 Moreover,

FIG. 4. Three-loop diagram that produces a contribution to the
electron EDM by an insertion of the muon EDM operator
indicated by the cross. The other diagrams with insertions at
the remaining muon–photon vertices as well as the permutations
at the electron line are not shown.

5Since the hint for an excess in h → τμ disappeared, we do not
need the second scalar introduced in [92] and the flavon can be
heavy.
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gauging Lμ − Lτ allows for explaining the intriguing
hints for lepton flavor non-universality in b → sll
transitions (which are currently at the 5σ level [93]) once
vectorlike quarks are added [94–97], quarks are charged
under the same flavor symmetry [98], or mix with another Z0
[99]. However, once the flavon acquires a vacuum expect-
ation value, again nonzero rates for μ → eγ arise and a
more intricate structure would be needed to sufficiently
suppress it.

IV. A LARGE MUON EDM

All the examples discussed in the previous section have
in common that agreement with Δaμ and Δae, if taken at
face value, demands the decoupling of the μ and e BSM
sectors due to the constraints from μ → eγ. In such a
scenario, the stringent limits on the electron EDM (4) do
not constrain the phase of cμμR , which, as argued above,
leads one to expect jdμj ¼ Oð10−22 e cmÞ. Accordingly,
the best constraint on the phase of cμμR , derived from the
present limit on the muon EDM, only excludes values
very close to 90°, see (13), and leaves open the possibility
of a muon EDM much larger than expected from MFV
scaling (5).
However, despite the absence of a direct correlation,

indirect bounds on jdμj can still be extracted from limits on
jdej by means of the three-loop diagram shown in Fig. 4,
i.e., from the contribution of the muon dipole operator to
the electron EDM (see [100], where this argument was used

to derive improved limits on the EDM of the τ). This
indirect limit produces

jdμj ≤
��

15

4
ζð3Þ − 31

12

�
me

mμ

�
α

π

�
3
	
−1
jdej

≤ 0.9 × 10−19 e cm 90% C:L:; ð36Þ
slightly better than the direct limit (3). Therefore, the limit
on jdej, which is 10 orders of magnitude better than the
limit on jdμj, just barely suffices to overcome the three-loop
suppression, but it is unlikely that the result can be further
improved by orders of magnitude, see Fig. 5. For this
reason we now turn to the prospects of improving the direct
limit on the muon EDM.

V. EXPERIMENTAL PROSPECTS

The first search for the muon EDM resulted in an upper
limit of 2.9 × 10−15 e cm (95% C.L.) [101] and was
published in 1958. Half a century later the current best
upper limit (3) was deduced using the spin precession data
from the ðg − 2Þμ storage ring experiment E821 at BNL [2].
The EDM can be similarly defined as the magnetic

moment μ ¼ gqℏσ=ð4mcÞ, leading to

d ¼ η
qℏ
4mc

σ; ð37Þ

where q, m, σ are the elementary charge, mass, and spin of
the muon. Hence, the spin precession ω of a muon in a
storage ring with an electric field E and magnetic field B is
given by

ω ¼ q
m

�
aB −

�
aþ 1

1 − γ2

�
β × E
c

	

þ q
m
η

2

�
β × Bþ E

c

�
; ð38Þ

where a ¼ ðg − 2Þ=2 is the anomalous magnetic moment
and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
. The first term in (38) is the anomalous

precession frequency ωa, the difference of the Larmor
precession and the cyclotron precession oriented parallel to
the magnetic field. The second term is the precession ωe
due to an EDM coupling to the relativistic electric field of
the muon moving in the magnetic field B, oriented
perpendicular to B. In the case of the E821 experiment
muons with a so called “magic” momentum of pmagic ¼
m=

ffiffiffi
a

p ¼ 3.09 GeV=c were used, simplifying (38) to

ω ¼ q
m

�
aBþ η

2

�
β × Bþ E

c

�	
; ð39Þ

which makes the anomalous precession frequency inde-
pendent of electric fields needed for steering the beam. In
this case the precession plane is tilted out of the orbital

–34 –33 –32 –31 –30 –29 –28
–24

–23

–22

–21

–20

–19

Log10 de

Lo
g 1

0
d µ

BNL

Fermilab
J–PARC

PSI
ACME 2013
ACME 2018

FIG. 5. Present and future direct limits on jdμj from BNL [26]
(dark blue), see (3), Fermilab/J-PARC (blue), and the proposed
PSI experiment (light blue). The dark red and light red regions
refer to the ACME 2013 [27] and ACME 2018 [28] limits on jdej,
respectively, where the latter provides an indirect bound on jdμj
slightly better than the BNL direct bound. The blue dashed lines
indicate the limits on jdej that would be required to match the
anticipated direct limits from Fermilab/J-PARC and PSI. The
black line defines the relation (36), with the upper-left half
referring to limits on jdμj and the lower-right to limits on jdej.
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plane defined by the movement of the muon in the presence
of an EDM. Hence, a vertical precession (ωe⊥B) with an
amplitude proportional to the EDM with a frequency ω
phase-shifted by 90° with respect to the horizontal anoma-
lous precession becomes observable. Another effect of an
EDM is the increase of the observed precession frequency

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

a þ ω2
e

q
: ð40Þ

Three different data sets from different detectors of the
BNL E821 experiments were used to search for a muon
EDM signal [26], which resulted in the current best
measurement of dμ ¼ −0.1ð9Þ × 10−19 e cm. In the mean-
time, the Muon g − 2 collaboration moved the storage ring
to Fermilab and upgraded the detection system. A first data-
taking campaign was just completed. More statistics and
reduced systematic shall eventually lead to a new muon
EDM search with a sensitivity down to 10−21 e cm [102],
and a similar sensitivity could be expected from the
J-PARC ðg − 2Þμ experiment [6].
A further increase of the sensitivity for a muon EDM

search is possible employing the frozen-spin technique
[103,104]. This requires tuning of the electric and magnetic
fields in (38) in such a way that the first term cancels

aB −
�
aþ 1

1 − γ2

�
β × E
c

¼ 0: ð41Þ

In this case with η ¼ 0, either absent or a negligibly small
muon EDM, the spin exactly follows the momentum, and in
the rest frame of the muon the spin is “frozen.”

A. Prospects of the frozen-spin technique using a
compact storage ring at PSI

In [105] it has been shown that a dedicated compact
muon storage ring at PSI employing the frozen-spin
technique is an attractive method to search for a muon
EDM. The proposed design uses positively charged muons
with a momentum of 125 MeV=c, corresponding to a
velocity of βc ¼ 0.766c ≈ 23 cm=ns from the muon beam
line μE1 at PSI, in combination with a fast trigger system
based on a muon telescope and a storage ring made of a
very homogeneous conventional dipole magnet with a
field of B ¼ 1.5 T. A sketch of the experiment is shown
in Fig. 6(a), while a cross section of the orbit with positron
detectors and electric field electrodes is shown in Fig. 6(b).
In order to maximize the sensitivity to an EDM of the

muon, we will employ the frozen-spin technique with

E ≈ aBcβγ2; ð42Þ

which eliminates the anomalous precession signal. In the
case of an EDM (η ≠ 0) the spin will start to precess out
of the orbital plane. A positron-detection system around
the storage ring will detect the decay positrons. Due to the
average decay asymmetry ᾱ, more positrons are emitted
along the muon spin. This will lead to a build-up of an up/
down asymmetry with time, proportional to η, the EDM
signal.
For the frozen-spin technique the sensitivity is given by,

see Eq. (5) of [105],

σðdμÞ ¼
ℏγa

2τEᾱP
ffiffiffiffi
N

p ð43Þ

FIG. 6. Sketch (a) and cross section (b) of the compact storage ring setup to search for a muon EDM (not to scale). (a) Polarized muons
(P ≈ 0.9) from in-flight decays of pions with a momentum of 200 MeV=c from target E (not shown) of the high intensity proton
accelerator of PSI arrive every 19.75 ns at the beam telescope. A dipole magnet with B ¼ 1.5 T with a circular electrode system forms
the magnetic storage ring. Once the beam telescope identifies a muon within the acceptance of the storage ring, the inflector, an air coil
perturbing the otherwise homogeneous field, will be synchronously ramped down using a 1=2 integer resonant injection scheme. After
about twenty turns (orange orbits), the muon will stay on the stable (red) orbit until it decays. A positron tracker around the orbit will
count the decay positrons relative to time. In general only one muon at a time will be stored. A veto sends the muon beam on a beam
dump (not shown) until the decay is registered or a time-out occurs. Then the next cycle starts with ramping of the inflector field. (b) The
muon orbit (red spot) is surrounded by a positron tracker system (blue) inside a vacuum chamber (gray outer lines). An electrode system
encapsulated in a ground ring creates the electric field.
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for a polarization P, the muon lifetime τ ¼ 2.2 μs, and the
number of detected positrons N [we used (37) to replace η].
In a magnetic field of B ¼ 1.5 T a radial electric field of
E ¼ 1 MV=m is required for the frozen-spin technique,
resulting in a radius r ¼ 0.28 m. With ᾱ ¼ 0.3, P ¼ 0.9,
and N ¼ 4 × 1014 per year, one expects a statistical
sensitivity of

σðdμÞ ¼ 5 × 10−23 e cm; ð44Þ

for one year of data taking. A possible method to further
increase the experimental sensitivity of the experiment
is to use a higher muon momentum up to 200 MeV=c
[106], which will be studied in detail using simulations.
Assuming the muon polarization remains the same, this
would result in a twofold improvement of sensitivity
requiring higher electric fields of E ¼ 22 kV=cm and a
radius of r ¼ 0.44 m.
The experimental prospects for the muon EDM are

summarized in Fig. 7. Depending on the value of aμ, the
current limit is too weak to impose a visible bound on the
phase of cμμR . While the future ðg − 2Þμ experiments at
Fermilab and J-PARC can only cover phases above
approximately 70°, the proposed frozen-spin technique

experiment at PSI would be sensitive down to small phases
of around 10°.

VI. CONCLUSIONS

In this article we argued that the recent tension observed
in ae, together with the long-standing anomaly in aμ, can be
considered an indication that potential BSM physics does
not respect MFV. Furthermore, due to the constraint from
μ → eγ, the electron and muon sectors need to be (nearly)
completely decoupled from each other. We illustrated this
argument using several UV complete models as examples.
While the MSSM, LQs, and also Little-Higgs-inspired
models have problems with explaining both ae and aμ
simultaneously, models with vectorlike fermions can
account for both anomalies. Here, an Abelian flavor
symmetry, for instance Lμ − Lτ, can be used to ensure
the decoupling of the electron and the muon sector and
even allow for intriguing connections to the anomalies
observed in b → sμþμ− transitions.
We stressed that considering heavy BSM degrees of

freedom realized above the EW breaking scale requires
chiral enhancement. The contributions to dipolemoments in
such models necessarily have a free phase, contrary to the
nonenhanced effects which are real at the one-loop level.
Therefore, in such a scenario, there is no reason to believe
that the strict limit on the EDM of the electron should be
reflected in the muon sector and a natural phase around 45°
would lead one to expect an EDM of jdμj ∼ 3 × 10−22 e cm
at the current level of the ðg − 2Þμ anomaly. These models
would remain viable if the tension in ae disappeared, but in
this case explanations of aμ that automatically lead to a small
muon EDM would again become possible.
While beyond the reach of the future ðg − 2Þμ experi-

ments, an EDMat the level of 10−22 e cm could bemeasured
at the proposed muon EDM experiment at PSI using the
frozen-spin technique, with sensitivity to the phase of the
relevant Wilson coefficient illustrated in Fig. 7. In combi-
nation with improved measurements of ae, aμ, and the fine-
structure constant α, such an experiment would thus
complete the search for BSM physics in lepton magnetic
moments and, if the current anomalies were confirmed,
provide further crucial insights into its flavor structure.
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FIG. 7. Contour lines defining the muon EDM (in units of e cm)
as a function of Δaμ and the phase of the Wilson coefficient cμμR .
The red regions are currently preferred by the measurement of aμ
and the blue regions are the expected sensitivity of the Fermilab/
J-PARC (dark blue) and the proposed PSI experiment (light blue).
Note that since a chirally enhanced effect is preferred, arg½cμμR � is a
free phase of the theory and in general expected to fulfill
tanðarg½cμμR �Þ ¼ Oð1Þ. The limit on the phase derived from the
current limit for jdμj is so close to 90° that it is not visible
in the plot.
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