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Via Cinthia, 80126 Fuorigrotta, Napoli, Italy

and Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma, Italy
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We study the propagation of quantum fields on κ-Minkowsi spacetime. Starting from the non-
commutative partition function for a free field written in momentum space, we derive the Feynman
propagator and analyze the nontrivial singularity structure determined by the group manifold geometry of
momentum space. The additional contributions due to such a singularity structure result in a deformed field
propagation which can be alternatively described in terms of an ordinary field propagation determined by a
source with a blurred spacetime profile. We show that the κ-deformed Feynman propagator can be written
in terms of vacuum expectation values of a commutative nonlocal quantum field. For sub-Planckian modes,
the κ-deformed propagator corresponds to the vacuum expectation value of the time-ordered product of
nonlocal field operators while for trans-Plankian modes, this is replaced by the Hadamard two-point
function, the vacuum expectation value of the anticommutator of nonlocal field operators.
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I. INTRODUCTION

A recurring theme in quantum gravity research in recent
years has been that of dimensional reduction (see [1] for a
comprehensive and up-to-date review). Evidence from a
variety of approaches to the problem indeed suggests that
the effective dimensionality of spacetime might decrease
below the infrared value of four as we probe shorter and
shorter scales [2–13], with the majority of results pointing
to a two-dimensional effective spacetime dimension at the
Planck scale.
The classical description of spacetime in terms of a

smooth manifold is expected to become unreliable at very
short distances, when quantum gravitational effects cannot
be neglected, and thus, a notion of dimensionality in
quantum gravity should be based on “dimensional estima-
tors” [1] which can be generalized to quantum geometries.
An example of such an estimator is the notion of spectral
dimension associated to a diffusion process determined, via

the heat equation, by a Laplacian operator. Such a char-
acterization of dimensionality has been widely used in the
literature to explore the running of dimensionality in
various quantum gravity settings. The definition of spectral
dimension relies on the existence of a Laplacian operator
which governs the diffusion process in the particular model
of quantum spacetime considered. It turns out that the
nontrivial UV features of the diffusion process can be
generally modeled by a deformation of the ordinary special
relativistic energy-momentum dispersion relation [14]. The
existence of such a departure from the usual relativistic
relation between energy and momentum raises the issue of
whether the phenomenon of running dimensionality could
signal a breaking of Lorentz symmetry as we probe
spacetime at the shortest scales [15]. Models of deformed
relativistic kinematics based on curved momentum space
(with a curvature scale proportional to the Planck energy
Ep ∼ 1028 eV) provide a framework in which a running
spacetime dimensionality can coexist with the notion of
relativistic symmetries albeit of a deformed kind. An
example of such models is given by the κ-Minkowski
noncommutative spacetime [16]. The dual momentum
space to this noncommutative spacetime is a non-Abelian
Lie group [17] whose manifold structure is given by “half”
of de Sitter space [18]. The group manifold structure of
momentum space reflects on the structure of the generators
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of relativistic symmetries, which are now described by a
quantum deformation of the Poincaré algebra known as the
κ-Poincaré algebra [19,20].
A significant shortcoming of adopting the notion of a

spectral dimension to gain insight on the short distance
features of spacetime is that the definition of spectral
dimension is based on a fictitious diffusion process on a
Euclidean space [21,22]. Various alternative characteriza-
tions of the dimensionality of (quantum) spacetime in terms
of estimators of more direct physical significance have
appeared in recent literature [21–27]. For example, in the
case of κ-Minkowski space, one can resort to field theoretic
tools to describe the interaction potential between sources
to gain information about the effective dimensionality of
spacetime in the UV [28]. The analysis presented in [28]
suggests that the nontrivial features of the Green’s function
leading to an effective dimensional reduction in the UV can
be understood in terms of a fuzziness of the spacetime profile
of the source induced by noncommutativity. In this work, we
take as a starting point, this observation and embark on a
systematic analysis of the construction and behavior of the
Feynmanpropagator in κ-Minkowski space in order to gain a
more complete picture of signal propagation in such a
noncommutative framework.
On one side, our analysis aims to shed light on the

connection between the path integral approach first pio-
neered in [29] and the canonical approach explored in [30] to
the quantization of fields on κ-Minkowski space. The bridge
between these two pictures will be established via a descrip-
tion of noncommutative fields on κ-Minkowski space in
terms of nonlocal fields on ordinary Minkowkski space
[31,32]. The work we present also aims at placing on firmer
grounds the fuzzy spacetime picture of κ-deformed field
propagation sketched in [28] providing an in-depth descrip-
tion of the spacetime properties of the κ-deformed Feynman
propagator.
In the next section, we introduce the basics of

κ-Minkowski noncommutative spacetime, its associated
momentum space and deformed symmetries. Moreover,
we collect all the necessary tools to carry out the field
theoretic analysis in the following sections, namely the
noncommutative differential calculus, the notion of a
Weyl map, ⋆ product, and integration on noncommutative
spaces. Our analysis starts in Sec. III, where we derive the
κ-deformed Feynman propagator from themomentum space
counterpart of the noncommutative partition function, ana-
lyze how this propagates field perturbations, and interpret the
results in terms of the effects of spacetime fuzziness on
sources andon the propagation process. In the remaining part
of Sec. III, we study the spacetime profile of the deformed
propagator function according to the various possible values
of its argument. In Sec. IV,we turn to the connection between
noncommutative fields on κ-Minkowski space and a non-
local field theory on ordinary Minkowski space. In Sec. V,
we proceed to a canonical quantization of the nonlocal field

theory derived in the previous section and observe that the
κ-deformed propagator can be obtained as the vacuum
expectation value of the time-ordered product of nonlocal
fields for “sub-Planckian” momenta (with a modulus lower
than the deformation scale κ), while it coincides with the
nonlocal Hadamard two-point function for trans-Planckian
momenta. The concluding section is devoted to a summary
and discussion of the results obtained.

II. THE κ-DEFORMED FIELD
THEORIST TOOLBOX

The κ-Minkowski spacetime [16] is described by the
four-dimensional Lie algebra

½x̂0; x̂i� ¼ i
κ
x̂i; ½x̂i; x̂j� ¼ 0; i; j ¼ 1; 2; 3: ð1Þ

It will be useful towork with the following five-dimensional
matrix representation1 of the κ-Minkowski Lie algebra:

ðx̂0Þab¼
i
κ

0
B@
0 0T 1

0 0 0

1 0T 0

1
CA; ðx̂iÞab¼

i
κ

0
B@

0 eTi 0

ei 0 ei
0 −eTi 0

1
CA; ð2Þ

where the 3-vector ei has entry 1 at the i’th position [i.e.,
eTi ¼ ðδ1i ; δ2i ; δ3i Þ andT denotes transposition], the 3-vector0
is the null vector and 0 is the 3 × 3 null matrix. Let us notice
that the algebra (1) can be seen as a subalgebra of the five
dimensional Lorentz algebra soð4; 1Þ. Indeed, using the
Iwasawa decomposition, the latter can be written as the
following direct sum:

soð4; 1Þ ¼ k ⊕ a ⊕ n; ð3Þ

where k is the four-dimensional Lorentz algebrasoð3; 1Þ, the
algebra a is one-dimensional, and n is a three-dimensional
nilpotent algebra. A representation of the algebras a andn is
given by the 5 × 5matrices2 a ¼ iκðx̂0Þab and ni ¼ iκðx̂iÞab
respectively, so that they satisfy the κ-Minkowski-like
commutation relation

½a; ni� ¼ ni; ð4Þ

with all other commutator being zero.
Noncommutative “plane waves” are obtained by expo-

nentiating the generators of (1). The dimensionful param-
eters appearing in the argument of the exponential are
interpreted as κ-deformed momenta. Two important points
should be stressed which radically distinguish the present

1With lower indices x̂0 ¼ −x̂0, x̂i ¼ x̂i the κ-Minkowski
defining commutator reads ½x̂i; x̂0� ¼ i

κ x̂i.2It is easy to verify that the spatial generators are nilpotent, i.e.,
½ðx̂iÞ�3 ¼ 0.
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noncommutative scenario with the usual commutative
Minkowski spacetime. Since the noncommuting coordi-
nates belong to a Lie algebra, plane waves will be elements
of the corresponding Lie group and, accordingly, momenta
will be coordinates on such group. Moreover, since
κ-Minkowski coordinates are noncommuting objects, there
will be inequivalent ordering prescription for defining a
noncommutative plane wave. To fix the ideas, we will focus
on the ordering convention where the time coordinate x̂0

appears to the right,

g ¼ eikix̂
i
eik0x̂

0

: ð5Þ

The group element g in the five-dimensional matrix
representation reads

Ga
b ¼

0
BBB@
cosh

�
k0
κ

�
þe

k0
κ k2

2κ2
−1

κk
T sinh

�
k0
κ

�
þe

k0
κ k2

2κ2

−e
k0
κ 1
κk I −e

k0
κ 1
κk

sinh
�
k0
κ

�
−e

k0
κ k2

2κ2
1
κk

T cosh
�
k0
κ

�
−e

k0
κ k2

2κ2

1
CCCA;

ð6Þ

where I denotes the 3 × 3 identity matrix and kT ¼
ðk1; k2; k3Þ. The choice of ordering (5) is quite natural in
view of the Iwasawa decomposition defined above. In fact,
the group element is nothing but the product of the two group
elements N ¼ expðkini=κÞ and A ¼ expðk0a=κÞ obtained
by exponentiating the algebras n and a, respectively.
From the Iwasawa decomposition of the five-dimensional
Lorentz group SOð4; 1Þ ¼ SOð3; 1ÞNA, we can character-
ize the group generated by the κ-Minkowski Lie algebra as
the quotient SOð4; 1Þ=SOð3; 1Þ ∼ NA, also denoted in the
literature as ANð3Þ (for more details, see [17,18]). The real
parameters k0, k appearing in (5) are coordinates on the
ANð3Þ group momentum space known as “horospherical”
coordinates [33].
In order to describe the manifold structure of the ANð3Þ

Lie group, we act with the generic element g ∈ ANð3Þ, in
its 5 × 5 matrix representation G, on the spacelike vector
ð0; 0; 0; 0; κÞ of the five-dimensional Minkowski (momen-
tum) space. Writing the resulting vector in terms of global
coordinates as G · ð0; 0; 0; 0; κÞ ¼ ðP0; P1; P2; P3; P4Þ,
one gets

P0 ¼ κ sinh

�
k0
κ

�
þ e

k0
κ
k2

2κ

Pi ¼ e
k0
κ ki

P4 ¼ cosh

�
k0
κ

�
− e

k0
κ
k2

2κ
: ð7Þ

These coordinates satisfy the constraints

−P2
0 þ PiPi þ P2

4 ¼ κ2; P0 þ P4 > 0: ð8Þ

The former relation is nothing but the equation defining
four-dimensional de Sitter space dS4 in an embedding five-
dimensional Minkowski space. The inequality P0þP4>0
restricts us to “half”3 of dS4.

A. The κ-Poincaré algebra

As illustrated above, at the momentum space level, the
noncommutativity of spacetime leads to momenta which
belong to a non-Abelian Lie group rather than to a vector
space as in ordinary relativistic kinematics. It is thus natural
to expect that this basic structural shift will affect dramati-
cally the ordinary notions of relativistic symmetries as
described by the Poincaré group. To understand how these
structures are affected, let us consider the product of two
“right-ordered” ANð3Þ group elements g ¼ eikix̂

i
eik0x̂

0

and
h ¼ eilix̂

i
eil0x̂

0

. This can be written as

gh ¼ eikix̂
i
eik0x̂

0

eilix̂
i
eil0x̂

0 ¼ eiðki⊕liÞx̂ieiðk0⊕l0Þx̂0 ; ð9Þ
where ki ⊕ li ¼ ki þ e−k0=κli and k0 ⊕ l0 ¼ k0 þ l0. The
addition law kμ ⊕ lμ ¼ ðk0 ⊕ l0; ki ⊕ liÞ is clearly non-
Abelian, i.e., kμ ⊕ lμ ≠ lμ ⊕ kμ, since the “momentum”
Lie group is non-Abelian. The addition law for momenta
reflects the composition of conserved quantum numbers
associated to translation generators. In particular, the
familiar addition of momenta can be seen as a consequence
of the Leibiniz rule for the action of translation generators
on multiparticle states. The non-Abelian composition of
momenta thus reflects a deformed action of space trans-
lation generators. In the language of Hopf algebras [34],
this can be expressed in terms of a nontrivial coproduct for
the spatial translation generators Ki which act diagonally
on right-ordered plane waves

ΔKi ¼ Ki ⊗ 1þ e−K0=κ ⊗ Ki; ð10Þ
while the time translation generator acts according to the
usual Leibniz rule expressed by the trivial coproduct

ΔK0 ¼ K0 ⊗ 1þ 1 ⊗ K0: ð11Þ

Notice that in the limit κ → ∞, the coproduct (10) reduces
to the trivial one. In a similar fashion, the group inversion is
reflected in a nontrivial antipode for the generators

3The other half of dS4, i.e., the one identified by the condition
P0 þ P4 < 0, can be obtained by replacing the action of G with
G ·N , where

N ¼

0
B@

−1 0T 0

0 I 0

0 0T −1

1
CA:
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SðK0Þ ¼ −K0; SðKiÞ ¼ −eK0=κKi; ð12Þ

which determines the appropriate generalization of momen-
tum subtraction operation ⊖ needed in order for the basic
relation kμ ⊕ ð⊖kμÞ ¼ 0 to hold.
It is natural at this point to ask how these deformations of

the action of translation generators affect the other gen-
erators of relativistic symmetries. In particular, whether the
generators of rotations and boosts also exhibit nontrivial
coproducts and antipodes, and if the deformations affect the
ordinary structure of the commutators of the Poincaré
algebra. In general, both structures will be deformed.
These nontrivial structures are mathematically described
by a “quantum deformation” of the Poincaré algebra: the
κ-Poincaré Hopf algebra introduced in [19]. It turns out that
the Lorentz sector of the κ-Poincaré algebra is characterized
by trivial coproducts and antipodes for the generators of
rotations, while those of the boost generators are deformed

ΔMi ¼ Mi ⊗ 1þ 1 ⊗ Mi; SðMiÞ ¼ −Mi;

ΔNi ¼ Ni ⊗ 1þ e−K0=κ ⊗ Ni þ
1

κ
εijkKj ⊗ Mk;

SðNiÞ ¼ −eK0=κNi þ
1

κ
εijkeK0=κKjMk: ð13Þ

Notice that setting K0 ¼ Ki ¼ 0, i.e., restricting to the
Lorentz algebra, we recover a trivial Hopf algebra structure.
The particular realization of the κ-Poincaré Hopf algebra in
terms of the generators fKμ;Mi; Nig, i.e., with translation
generators associated to the parametrization of the ANð3Þ
group in terms of horospherical coordinates, is known in
the literature as the bicrossproduct basis of the κ-Poincaré
algebra [16]. One of the characterizing features of the
bicrossproduct basis is that, while translation generators
behave as ordinary four vectors under rotations, the
commutators between boosts and translation generators
are deformed

½K0;Ni� ¼−iNi;

¼−iδij
�
κ

2
ð1−e−2K0=κÞþ 1

2κ
KiKi

�
þ i
κ
KiKj:

ð14Þ

It can be shown [35] that the deformed commutator
between boosts and spatial translation generators leads
to finite boost transformations for which the modulus of the
spatial momentum approaches the UV value of κ, rather
than diverging, in the limit of infinite boost parameter. This
behavior is typical of models based on nonlinear deforma-
tions of relativistic kinematics known as doubly special
relativity [36–40], widely popular over the past fifteen
years as effective models of Planck-scale kinematics
incorporating the Planck energy, in our case identified

with the UV deformation parameter κ, as an observer
independent energy scale [41,42].
A rather important point to stress is that different choices

of coordinates on the ANð3Þ manifold will lead, in general,
to different coproducts and antipodes for the associated
translation generators. For example, the relations above can
be used to derive the coproducts and antipodes for trans-
lation generators Pμ associated to the embedding coordi-
nates defined in (7)

ΔðP0Þ ¼ P0 ⊗ Pþ þ P−1þ ⊗ P0 þ
1

κ

X3
i¼1

PiP−1þ ⊗ Pi;

ΔðPiÞ ¼ Pi ⊗ Pþ þ 1 ⊗ Pi;

ΔðP4Þ ¼ P4 ⊗ Pþ − P−1þ ⊗ P0 −
1

κ

X3
i¼1

PiP−1þ ⊗ Pi

SðP0Þ ¼ −P0 þ
1

κ
P2P−1þ ¼ κP−1þ − P4;

SðPiÞ ¼ −PiP−1þ ; SðP4Þ ¼ P4; ð15Þ

where Pþ ≡ P0þP4

κ . The corresponding coproducts and
antipodes for rotations and boosts will be now given by

ΔðMiÞ ¼ Mi ⊗ 1þ 1 ⊗ Mi ð16Þ

ΔðNiÞ ¼ Ni ⊗ 1þ P−1þ ⊗ Ni þ
ϵijk
κ

PjP−1þ ⊗ Mk ð17Þ

SðMiÞ ¼ −Mi ð18Þ

SðNiÞ ¼ −NiPþ þ ϵijk
κ

PjMk: ð19Þ

These generators are known in the literature as the “classical”
basis [43,44] of the κ-Poincaré algebra since, unlike the
bicrossproduct basis reviewed above, their commutators are
just the ones of the ordinary Poincaré algebra. This also
implies that the mass Casimir invariant naturally associated
to the generators Pμ is just the ordinary one

CðPÞ ¼ PμPμ: ð20Þ

In other words, in such a basis, the nontrivial features due to
symmetry deformation manifest only in the “coalgebra”
sector (i.e., in the coproducts and antipodes) leaving un-
modified the familiar Lie algebra structure of relativistic
symmetries.
Finally, let us notice that in terms of bicrossproduct

generators the Casimir is no longer quadratic and takes the
form

CðKÞ ¼ CκðKÞ
�
1þ CκðKÞ

4κ2

�
; ð21Þ
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where CκðKÞ is the κ-deformed Casimir invariant naturally
associated with the bicrossproduct basis [45]

CκðKÞ ¼
�
2κ sinh

�
K0

2κ

��
2

−K2eK0=κ: ð22Þ

This Casimir determines a modification of the energy-
momentum dispersion relation governed by the UV scale κ
common to many models of departures from ordinary
relativistic kinematics at the Planck scale. Possible signa-
tures of such deformed dispersion relations in the highest
energy astrophysical phenomena have been among the
leading candidate scenarios for experimental manifesta-
tions of quantum gravity effects [46,47].

B. Noncommutative calculus

As in ordinary field theory, one expects the Casimir
invariant (20) to have a “coordinate space” counterpart in
terms of a noncommutative wave operator. This will be
written in terms of noncommutative differential operators
complying with the nontrivial structure of the spacetime
commutator (1) and of the symmetry generators. In this
section, we introduce the differential calculus needed to
define such operators (for further technical details, we refer
the reader to [48,49]).
As it is well known in the literature [50], it is impossible

to construct a four-dimensional set of noncommutative
differentials which are also covariant under the action
of κ-Poincaré generators.4 Rather, one has to resort to a
five-dimensional set of noncommutative differentials
fdx̂0; dx̂1; dx̂2; dx̂3; dx̂4g with the following commutation
relations with the κ-Minkowski coordinates:

½x̂0; dx̂0� ¼
i
κ
dx̂4; ½x̂0; dx̂i� ¼ 0; ½x̂0; dx̂4� ¼

i
κ
dx̂0;

½x̂i; dx̂0� ¼
i
κ
dx̂i; ½x̂i; dx̂j� ¼ δij

i
κ
ðdx̂0 − dx̂4Þ;

½x̂i; dx̂4� ¼
i
κ
dx̂i: ð23Þ

It can be checked by taking the differential of both sides of
(1) that these commutators are consistent with the non-
commutative structure of spacetime and that all Jacobi
identities involving differentials and noncommuting coor-
dinates are satisfied. The Lorentz covariance of these
commutators can be easily checked using the relations [16],

Ni ⊳ x̂0 ¼ ix̂i; Ni ⊳ x̂j ¼ iδijx̂0; ð24Þ

and extending the action to the algebra of differentials in a
natural way as5

Ni ⊳ dx̂μ ¼ dðNi ⊳ x̂μÞ;
Ni ⊳ ðx̂μdx̂νÞ ¼ ðNð1Þ

i ⊳ x̂μÞðdðNð2Þ
i ⊳ x̂νÞÞ; ð25Þ

where we have used Sweedler notation ΔðNÞ ¼ Nð1Þ ⊗
Nð2Þ ¼ P

aN
ð1Þa ⊗ Nð2Þa for the coproduct in (17).

A differential on the algebra of functions over κ-
Minkowski spacetime can be defined as

d ¼ idx̂a∂̂a; ð26Þ

where the derivatives ∂̂a are determined by requiring that
the Leibniz rule for the differential is satisfied, as we now
show. Working in the bicrossproduct basis, the explicit
form of the ∂̂a can be derived by first noting that, from the
commutator ½x̂μ; dx̂a� ¼ ðx̂μÞbadx̂b, follows the identity

êkdx̂aê⊖k ¼ dx̂bGb
a; ð27Þ

where Gb
a is the matrix representation (6) of the right-

ordered plane wave g ¼ eikix̂
i
eik0x̂

0 ≡ êk. Imposing then
the Leibniz rule for the differential d on the product êkêq,
we get

dðêkêqÞ ¼ ðdêkÞêq þ êkðdêqÞ
¼ ðidx̂a∂̂aêkÞêq þ êkðidx̂a∂̂aêqÞ
¼ i½ðdx̂a∂̂aêkÞêq þ êkðdx̂aê⊖kêk∂̂aêqÞ�
¼ idx̂a½ð∂̂aêkÞêq þ ðGb

aêkÞð∂̂bêqÞ�; ð28Þ
where in the second term of the third equality, we have
introduced ê⊖kêk ¼ 1 and in the last equality, we used the
relation (27). Accordingly, looking at the first and the last
terms of (28), we find that, in order for the differential
d ¼ idx̂a∂̂a to satisfy the Leibniz rule, the derivatives must
have coproducts

Δð∂̂aÞ ¼ ∂̂a ⊗ 1þ Ga
b ⊗ ∂̂b: ð29Þ

It turns out that these coproducts reproduce the ones for the
classical basis generators Pa in (15), with the coproduct of
the operator ∂̂4 corresponding to the coproduct of ðκ − P4Þ.
Therefore, we can identify noncommutative derivatives
associated with the five-dimensional covariant calculus
with translation generators of the classical basis. The action
of the derivatives on right-ordered plane waves is then

4For instance, the 4D differential calculus used in [51] and
defined by the commutators

½x̂0; dx̂i� ¼ −
i
κ
dx̂i; ½x̂0; dx̂0� ¼ 0; ½x̂i; dx̂μ� ¼ 0;

is covariant with respect to the action of translations alone, but is
not κ-Lorentz covariant.

5We also assume that the differential dx̂4 is κ-Poincaré
invariant Pκ ⊳ dx̂4 ¼ 0, where Pκ is a generic element of the
κ-Poincaré algebra.

SIGNAL PROPAGATION ON κ-MINKOWSKI … PHYS. REV. D 98, 106018 (2018)

106018-5



∂̂μêk ¼ PμðkÞêk; ∂̂4êk ¼ ðκ − P4ðkÞÞêk; ð30Þ

where the explicit form of the classical basis momenta
PaðkÞ in terms of the bicrossproduct momenta is given by
(7). One also defines conjugate operators ∂̂†

μ whose action
on plane waves is given by6

∂̂†
μêk ≡ ð∂̂μê

†
kÞ† ¼ SðPðkÞÞμêk; ∂̂†

4 ¼ ∂̂4; ð31Þ

reflecting the fact that PðSðkÞÞa ¼ SðPðkÞÞa.
From the action of the derivatives on êk, one can

straightforwardly derive the action of the operators ∂̂a

on the generic function of noncommuting coordinates f̂ðx̂Þ.
This can be done by resorting to the following Fourier
expansion [32,52–54] in terms of right-ordered noncom-
mutative plane waves êk:

f̂ðx̂Þ ¼
Z

dμðkÞf̃rðkÞêkðx̂Þ; ð32Þ

where the integration measure dμðkÞ is the Haar measure7

on ANð3Þ,

dμðkÞ ¼ e3k0=κ

ð2πÞ4 dk0dk; ð33Þ

which can be also expressed in terms of the ordinary
Lebesgue measure on the five-dimensional embedding
space d5P as

dμðPÞ ¼ κ
δðPaPa − κ2ÞθðP0 þ P4Þ

ð2πÞ4 d5P; ð34Þ

and the subscript of f̃rðkÞ denotes that the Fourier trans-
form is defined in terms of right-ordered noncommutative
plane waves.

C. Weyl maps and ⋆ product

The Weyl map is a useful tool first introduced in
quantum mechanics to map classical observables (commut-
ing functions on phase space) to quantum observables
(functions of noncommuting operators). Because of order-
ing ambiguities on the noncommutative side, Weyl maps
are obviously not unique. In our context, a Weyl map will
map a function on the commutative Minkowski space to a

(suitably ordered) function on the noncommutative κ-
Minkowski space.
Let us focus on plane waves. As we will see, in our

context, the ordering ambiguity will reflect different
choices of bases for the κ-deformed translation generators.
We define the “right-ordered” Weyl map Ωr as

ΩrðeikxÞ ¼ eikix̂
i
eik0x̂

0 ¼ êk; Ω−1
r ðêkÞ ¼ eikx; ð35Þ

i.e., Ωr an ordinary plane wave is mapped to an ANð3Þ
group element written in the decomposition (5) in which
the non-Abelian generator x̂0 is always to the right. One can
associate a commutative function frðxÞ to f̂ðx̂Þ via this
Weyl map using the Fourier expansion (32)

frðxÞ ¼ Ω−1
r ðf̂ðx̂ÞÞ ¼

Z
dμðkÞf̃rðkÞΩ−1

r ðêkðx̂ÞÞ

¼
Z

dμðkÞf̃rðkÞeikx: ð36Þ

Among the possible Weyl maps to functions on κ-
Minkowski, a preferred choice, which we denote Ωc, is
given by the map leading to noncommutative plane waves
on which the derivatives ∂̂μ of the noncommutative differ-
ential calculus have a “classical” action; i.e.,

∂̂μ ⊳ ΩcðeipxÞ ¼ Ωcð−i∂μeipxÞ ¼ pμΩcðeipxÞ: ð37Þ

The Weyl map Ωc is related to the classical basis
coordinates Pa and, as it can be easily checked confronting
the actions (30) and (37), it has the following action on
plane waves:

ΩcðeiPxÞ ¼ êkðPÞ; Ω−1
c ðêkðPÞÞ ¼ eiPx; ð38Þ

that is, Ωc maps a commutative plane wave labeled by P
to a right-ordered noncommutative plane wave whose
four-momentum is kμðPÞ, where kðPÞ is the inverse trans-
formation of (7). Therefore, following (32), a noncommu-
tative function f̂ðx̂Þ can be expressed as

f̂ðx̂Þ ¼
Z

dμðPÞf̃cðPÞΩcðeiPxÞ; ð39Þ

where f̃cðPÞ ¼ f̃rðkðPÞÞ, and the commutative function
fcðxÞ associated to f̂ðx̂Þ through the inverse classical basis
Weyl map is given by

fcðxÞ ¼ Ω−1
c ðf̂ðx̂ÞÞ ¼

Z
dμðPÞf̃cðPÞeiPx: ð40Þ

Using such a map, we can finally introduce a suitable
notion of integration on κ-Minkowski space as follows:

6Here, we have used the fact that the Hermitian conjugate of a
plane wave involves the antipode map SðpÞ on its momentum
ê†k ¼ êSðkÞ ≡ ê⊖k.

7It is a left invariant measure dμðpkÞ ¼ dμðkÞ, and it is worth
noticing that in horospherical coordinates, it is just the diffeo-
morphism invariant measure on dS4 corresponding to the
cosmological metric −dk20 þ e2k0=κdk2i .
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bZ
f̂≡

Z
d4xΩ−1

c ðf̂ðx̂ÞÞ ¼
Z

d4xfcðxÞ: ð41Þ

On the space of commutative functions obtained via the
action ofΩ−1

c , the noncommutativity of κ-Minkowski space
is reflected in a nontrivial ⋆ product which replaces the
ordinary commutative pointwise product. The star product
associated to the Weyl map Ωc is defined by the relation

f̂ðx̂Þĝðx̂Þ¼ΩcðfcðxÞÞΩcðgcðxÞÞ¼ΩcðfcðxÞ⋆ gcðxÞÞ: ð42Þ

It can be shown [32] that the explicit formula for products
of the form f†c ⋆ gc ¼ Ω−1

c ðf̂†ĝÞ has the rather simple
expression

f†cðxÞ ⋆ gcðxÞ ¼ f�cðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

q
gcðxÞ; ð43Þ

where with f†c we denote the κ-Minkowski Hermitian
conjugation involving the antipode, e.g., ðeiPxÞ† ¼ eiSðPÞx,
while f�c is just the standard complex conjugation. The ⋆
product (43) can be used to define the Fourier transform

f̃cðPÞ¼
bZ
½ΩcðeiPxÞ�†f̂ðx̂Þ¼

Z
d4xðeiPxÞ† ⋆ fcðxÞ; ð44Þ

which, taking into account the explicit form of the integra-
tionmeasure and the⋆ product, leads to the two fundamental
relations

f̃cðPÞ ¼
jP4j
κ

Z
d4xe−iPxfcðxÞ; ð45Þ

and

fcðxÞ ¼
Z

d4PθðP0 þ P4Þ
ð2πÞ4jP4j=κ

f̃cðPÞeiPx; ð46Þ

where P4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − P2

p
and P2 ¼ −P2

0 þ P2. It is worth

noticing that the operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

p
, coming from the ⋆

product, in momentum space is nothing but jP4j=κ, i.e., the
same term appearing in the denominator of the integration
measure; this will lead to important simplifications in what
follows.
We conclude this introductory section with some

remarks on Lorentz invariance. As first noted in [52]
and successively elaborated in [55], the momentum space
suffers from a subtle form of Lorentz symmetry breaking.
Namely, for any negative energy mode, the allowed range
of rapidities is bounded above. As we discussed in the
previous sections, the bicrossproduct coordinates cover
only half of de Sitter space identified by the condition
κPþðkÞ≡ P0ðkÞ þ P4ðkÞ > 0, so that the momentum
space is not the whole de Sitter space dS4. In the classical
basis, this restriction explicitly breaks Lorentz invariance

since it is not preserved by boosts (remember that P0

transform as the 0th component of a Lorentz vector while
P4 is a Lorentz scalar). Indeed, it takes a boost with finite
rapidity to bring a point out of the region P0 þ P4 > 0.
Away to circumvent this problem is to take as momentum

space the full de Sitter space quotiented by reflections
Pa → −Pa. In fact, by reflections, the sector P0 þ P4 > 0
is sent to its complement. This space is called the elliptic de
Sitter space dS4=Z2. Accordingly, one can change the
defining condition from P0 þ P4 > 0 to P4 > 0, which is
clearly Lorentz invariant, by considering, instead of the
sector identified by the conditionsP0 þ P4 > 0 andP4 < 0,
its image under reflection, i.e., the sector with P0 þ P4 < 0

andP4 > 0. The Fourier transform f̃cðPÞ, defined so far only
in the region Pþ > 0, is now defined on the whole de Sitter
momentum space, which is even under the Z2 identification
f̃cðPaÞ ¼ f̃cð−PaÞ. This suggest that, in the classical basis,
the Lorentz invariant measure on dS4=Z2 will be

dμðPÞ ¼ 2κ
δðPaPa − κ2ÞθðP4Þ

ð2πÞ4 d5P: ð47Þ

Solving the delta function with respect to P4, we have that a
noncommutative function f̂ðx̂Þ can be Fourier expanded as

f̂ðx̂Þ ¼
Z

d4Pθðκ2 − P2Þ
ð2πÞ4jP4j=κ

f̃cðPÞΩcðeiPxÞ; ð48Þ

where the Heaviside step function ensures that P4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − P2

p
∈ R.

III. FREE κ-DEFORMED QUANTUM FIELDS:
THE FEYNMAN PROPAGATOR

A. The κ-deformed free field partition function

We now move to the study of κ-deformed quantum
fields. The κ-Poincaré invariant action of a free massive
complex scalar field is given by

Sfree½ϕ̂; ϕ̂†� ¼
bZ
½ð∂̂μϕ̂Þ†ð∂̂μϕ̂Þ þm2ϕ̂†ϕ̂�: ð49Þ

The derivatives ∂̂μ are those of the 5D bicovariant and κ-
Poincaré covariant differential calculus illustrated in Sec. II.
From the action (49), making use of the coproduct proper-
ties of the ∂̂μ’s [recall thatΔð∂̂μÞ ¼ ΔðPμÞ], one obtains the
following equation of motion:

ð∂̂μ∂̂μ þm2Þϕ̂ðx̂Þ ¼ 0; ð50Þ
and an identical one for ϕ̂†ðx̂Þ thanks to the property
ð∂̂μ∂̂μÞ† ¼ ∂̂μ∂̂μ, which reflects the fact that, in the classical
basis, the antipodes satisfy the relation SðPÞμSðPÞμ ¼
PμPμ. Considering the Fourier expansion (48), the free
action (49) can be expressed in momentum space as
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Sfree½ϕ̃; ϕ̃�� ¼
Z

dμ̄ðpÞ
ð2πÞ4 ϕ̃

�ðpÞðpμpμ þm2Þϕ̃ðpÞ; ð51Þ

where the measure is dμ̄ðpÞ ¼ d4pθðκ2 − p2Þκ=jp4j, and
we denoted the classical basis momenta with pa and the
commutative functions ϕ̃cðpÞ simply with ϕ̃ðpÞ. In deriving
this last expression, we have also used the relation (37) for
the action of derivatives on plane waves and the following
relation for integration on κ-Minkowski:

cZ
x̂
½ΩcðeipxÞ�†ΩcðeiqxÞ

¼
Z

d4xðeipμxμÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

q
ðeiqμxμÞ

¼ ð2πÞ4 jp4j
κ

δðp0 − q0Þδðp − qÞ: ð52Þ

Looking at the expression of the action (51), the
simplifications introduced by working with the classical
basis of the κ-Poincaré algebra become evident. Indeed, as
a result of the fact that in the classical basis the algebraic
sector is undeformed, the Casimir C ¼ pμpμ appearing in
(51) is the standard one. Therefore, the momentum space
free action differs from the ordinary one only for the
integration measure dμ̄ðpÞ.
The action in momentum space (51) can be used to write

down the partition function of the theory. A partition
function obtained from a momentum space action of a
κ-deformed field was first used in [29]. However, at that
time, a full understanding of the momentum space related

to the κ-Poincaré Hopf algebra had not yet been reached.
Specifically, the fact that the space of momenta is the four-
dimensional elliptic de Sitter space was not taken into
account, and consequently, the exact form of the momen-
tum space integration measure was not given explicitly in
the analysis of [29]. A more recent use of the κ-deformed
partition function, which implemented the nontrivial geo-
metric features of the momentum space, has appeared in
[28]. This work presented a field theoretic approach to the
study of the potential between two static point sources in a
noncommutative space. The partition function adopted in
[28] can be straightforwardly generalized to the complex
scalar field case as

Z̄½J; J†� ¼
Z

D½ϕ�D½ϕ†�eiSfree½ϕ̂;ϕ̂†�þi
R̂

½ϕ̂†ĴþĴ†ϕ̂�; ð53Þ

where the action Sfree½ϕ̂; ϕ̂†� is the κ-Poincaré invariant
action (49). We focus on the normalized partition function

Z½J; J†� ¼ Z̄½J; J†�
Z̄½0; 0� : ð54Þ

In order to bring Z½J; J†� into a well-suited expression for
the manipulation needed to extract the Feynman propaga-
tor, we rewrite the partition function in momentum space.
Indeed, since the momentum space is a commutative space,
here it is possible to handle the functional calculus (which
we will illustrate below) unambiguously. Making use of
(48), (51), and (52), one obtains from (53)

Z½J̃; J̃�� ¼ 1

Z̄½0; 0�
Z

D½ϕ̃�D½ϕ̃��ei
R

dμ̄ðpÞ
ð2πÞ4 ½ϕ̃

�ðpÞðpμpμþm2Þϕ̃ðpÞþϕ̃�ðpÞJ̃ðpÞþJ̃�ðpÞϕ̃ðpÞ�
: ð55Þ

The functional integration can now be carried out as an
ordinary Gaussian integral and, after simple manipulations,
one finds that

Z½J̃; J̃�� ¼ exp

�
i
Z

dμ̄ðpÞ
ð2πÞ4

J̃�ðpÞJ̃ðpÞ
−p2 −m2 þ iε

�
: ð56Þ

In this last expression, we introduced the usual shift
m2 → m2 − iε to render the integral well defined.
In order to derive the Feynman propagator from the

partition function Z½J̃; J̃��, we need an appropriate gener-
alization of the functional derivatives to the deformed
setting. In particular, one has to take into account the
κ-deformed coproduct structure of the translation gener-
ators in (15), which leads to the following non-Abelian
addition laws for momenta:

ðp ⊕ qÞ0 ¼ p0qþ þ q0
pþ

þ 1

κ

piqi

pþ
ð57Þ

ðp ⊕ qÞi ¼ piqþ þ qi: ð58Þ

This issue was first faced in [29] where however, as recalled
above, the explicit form of the momentum space integration
measure was not taken into account. Nonetheless, for an
explicit definition of the functional derivatives such infor-
mation is needed. Indeed, an important ingredient in the
construction of functional calculus is a notion of delta
function on the space of momenta. We will consider a delta
function compatible with the nontrivial momentum space
measure dμ̄ðpÞ [56–58], i.e., such that

Z
dμ̄ðqÞδðp; qÞfðqÞ ¼ fðpÞ: ð59Þ
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It can be easily checked that such delta function is given by

δðp; qÞ ¼ δðð⊖pÞ ⊕ qÞ ¼ jp4j
κ

δðp − qÞ; ð60Þ

and thus, it is proportional to an ordinary delta function
δðp − qÞ, and, in particular, it is symmetric under the
exchange of momenta in the argument δðð⊖pÞ ⊕ qÞ ¼
δðð⊖qÞ ⊕ pÞ. Let us mention that the other possible choice
of delta function δðp ⊕ ð⊖qÞÞ would have been less
natural since it carries and additional multiplicative factor,
indeed from

δðp ⊕ ð⊖qÞÞ ¼ jpþj3
jp4j
κ

δðp − qÞ ¼ jpþj3δðð⊖pÞ ⊕ qÞ;
ð61Þ

it is easily seen thatZ
dμ̄ðqÞδðp ⊕ ð⊖qÞÞfðqÞ ¼ jpþj3fðpÞ: ð62Þ

Notice that the two delta functions δðð⊖pÞ ⊕ qÞ and
δðp ⊕ ð⊖qÞÞ are related by the antipode transformation
ðp; qÞ → ð⊖p;⊖qÞ, and thus, the appearance of the factor
jpþj3 is related to the Jacobian of the antipode map
jJf∂⊖p

∂p gj ¼ jp−1þ j3.
With the choice of the delta function (60), we can now

proceed as in [29], though specializing the discussion to a
complex field, and define the following κ-deformed func-
tional derivatives:

δZ½J̃; J̃��
δJ̃ðqÞ ¼ lim

ϵ→0

1

ϵ
fZ½J̃ðpÞþ ϵδðð⊖pÞ⊕ qÞ; J̃�ðpÞ�

−Z½J̃; J̃��g;
δZ½J̃; J̃��
δJ̃�ðqÞ ¼ lim

ϵ→0

1

ϵ
fZ½J̃ðpÞ; J̃�ðpÞþ ϵδðð⊖pÞ⊕ ð⊖qÞÞ�

−Z½J̃; J̃��g; ð63Þ

which clearly reduce to the ordinary definitions in the limit
κ → ∞, given that ⊖p → −p and p ⊕ q → pþ q. These
will be employed in the next section to obtain the Feynman
propagator on κ-Minkowski noncommutative space.

B. The Feynman propagator

Following [29], we define the κ-deformed Feynman
propagator in terms of the functional derivative of the
partition function (56) with respect to incoming and out-
going source functions,

iΔ̃κ
Fðp; qÞ ¼

�
i

δ

δJ̃�ðpÞ
��

−i
δ

δJ̃ðqÞ
�
Z½J̃; J̃��

�����
J̃;J̃�¼0

: ð64Þ

Taking into account the relations (63), one obtains

iΔ̃κ
Fðp; qÞ ¼ ið2πÞ4 δðð⊖qÞ ⊕ ð⊖pÞÞ

−q2 −m2 þ iε

¼ ið2πÞ4 jq4j
κ

δðq − SðpÞÞ
−q2 −m2 þ iε

; ð65Þ

where in the last equality, we have expanded the delta
function as in (60). Through the inverse Fourier transform
(48), it is then possible to obtain the free scalar Feynman
propagator on κ-Minkowski noncommutative space

iΔ̂κ
Fðx̂; ŷÞ ¼ i

Z
dμ̄ðpÞ
ð2πÞ4

ΩcðeipxÞ½ΩcðeipyÞ�†
−p2 −m2 þ iε

: ð66Þ

A point that deserves to be stressed is that iΔ̂κ
Fðx̂; ŷÞ is

not symmetric under an exchange of its arguments. This
property of the Feynman propagator (66) originates from
the fact that, in the κ-deformed setting, the Hermitian
conjugate of a plane wave involves the antipode map SðpÞ
on its momentum. Such spacetime asymmetry of iΔ̂κ

Fðx̂; ŷÞ,
as wewill see, although it may seem puzzling, does not lead
to an actual physical asymmetry of the κ-Minkowski field
propagation. Nonetheless, the combination of noncommu-
tative plane waves appearing in (66), which is the cause of
this concern, makes sure that the Feynman propagator is a
Green’s function of the κ-Klein Gordon equation (50), as
we now show. As a first step, we define the noncommu-
tative delta function δ̂ðx̂; ŷÞ using the κ-Minkowski Fourier
transform and antitransform (44) and (48)

f̂ðx̂Þ ¼
Z

dμ̄ðpÞ
ð2πÞ4 f̃ðpÞΩcðeipxÞ

¼
Z

dμ̄ðpÞ
ð2πÞ4

� ˆZ
ŷ
½ΩcðeipyÞ�†f̂ðŷÞ

�
ΩcðeipxÞ: ð67Þ

By requiring

f̂ðx̂Þ ¼
cZ
ŷ
δ̂ðx̂; ŷÞf̂ðŷÞ; ð68Þ

we are led to define the noncommutative δ-function8

δ̂ðx̂; ŷÞ ¼
Z

dμ̄ðpÞ
ð2πÞ4 ΩcðeipxÞ½ΩcðeipyÞ�†: ð69Þ

Applying the κ-Klein-Gordon operator to the Feynman
propagator (66) and taking into account the expression of
the delta function (69), we thus get

8The noncommutative delta function δ̂ðx̂; ŷÞ also satisfies

dZ
x̂;ŷ

δ̂ðx̂; ŷÞ ¼ 1:
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ð∂̂μ∂̂μ þm2ÞΔ̂κ
Fðx̂; ŷÞ ¼ −δ̂ðx̂; ŷÞ; ð70Þ

which shows that Δ̂κ
Fðx̂; ŷÞ is a (noncommutative) Green’s

function for this operator.
We now get back to the issue of the spacetime asym-

metry of the κ-deformed propagator raised above and study
how Δ̂κ

Fðx̂; ŷÞ propagates the field in the presence of a
perturbation generated by an external source Ĵðx̂Þ. This
exercise will also provide significant insight on the physical
properties of the κ-Minkowski Feynman propagator. Given
the κ-Klein-Gordon equation in the presence of a source,

ð∂̂μ∂̂μ þm2Þϕ̂ðx̂Þ ¼ Ĵðx̂Þ; ð71Þ

using the Eqs. (68) and (70), we can write down the
following solution:

ϕ̂ðx̂Þ ¼ −
cZ
ŷ
Δ̂κ

Fðx̂; ŷÞĴðŷÞ: ð72Þ

In contrast with the standard commutative case, the
κ-Minkowski integral (72) involves the product of two
noncommutative functions and requires some additional
care. As recalled in the previous section, such an
integral can be defined via the ordinary Lebesgue
integral introducing a noncommutaive ⋆ multiplication
between the fields. Indeed, writing the source ĴðŷÞ as a
Fourier integral,

ĴðŷÞ ¼
Z

dμ̄ðpÞ
ð2πÞ4 J̃ðpÞΩcðeipyÞ; ð73Þ

we see that (72) involves an integral of the form,

cZ
ŷ
½ΩcðeipyÞ�†ΩcðeiqyÞ: ð74Þ

This is just the integral in (52) which, making use of the
inverse Weyl map Ω−1

c and its associated star product, can
be expressed as

cZ
ŷ
½ΩcðeipyÞ�†ΩcðeiqyÞ¼

Z
d4yðeiSðpÞμyμÞ⋆ ðeiqμyμÞ

¼
Z

d4ye−ipμyμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

q
eiqμy

μ
:

ð75Þ

We have therefore that the propagation law (72) can be
expressed in terms of commutative fields as

ϕðxÞ ¼ −
Z

d4yΔκ
Fðx − yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

q
JðyÞ; ð76Þ

where ϕðxÞ ¼ Ω−1
c ðϕ̂ðx̂ÞÞ, JðyÞ ¼ Ω−1

c ðĴðŷÞÞ, and we
defined the κ-deformed Feynman propagator on commu-
tative Minkowski space

iΔκ
Fðx − yÞ ¼ i

Z
dμ̄ðpÞ
ð2πÞ4

eipðx−yÞ

−p2 −m2 þ iε
: ð77Þ

From (76), we see that the spacetime asymmetry of the
κ-Minkowski Feynman propagator (66) does not affect the
actual propagation of the field. Indeed, such asymmetry is
canceled by the star product of (75), leading to a field
propagation governed by the spacetime symmetric
κ-deformed Feynman propagator (77).
Let us also notice that in the propagation law (76) we can

make the star product term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

p
act either on the

source JðyÞ or, equivalently,9 on the κ-deformed propaga-
tor Δκ

Fðx − yÞ.
Acting on JðyÞ and noticing that in momentum space the

term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

p
is equal to jp4j=κ, so that it cancels the

same factor in the nontrivial integration measure dμ̄ðpÞ,
one obtains

ϕðxÞ ¼ −
Z

d4yΔκ
Fðx − yÞJclðyÞ; ð78Þ

where JclðyÞ is a classical source

JclðyÞ ¼
Z

d4p
ð2πÞ4 J̃ðpÞe

ipy; ð79Þ

i.e., just an ordinary commutative function which, in
particular, can describe a sharply localized source (e.g.,
a Dirac delta function).
Acting instead with the star product term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

p
in

(76) on Δκ
Fðx − yÞ, one gets

ϕðxÞ ¼ −
Z

d4yΔFðx − yÞJðyÞ; ð80Þ

where iΔFðx − yÞ is the undeformed free scalar Feynman
propagator

iΔFðx − yÞ ¼ i
Z

d4p
ð2πÞ4

eipðx−yÞ

−p2 −m2 þ iε
; ð81Þ

and where, in this case, the source function JðyÞ can not
describe a pointlike source due to the presence of the
κ-deformed integration measure dμ̄ðpÞ ¼ d4pθðκ2 − p2Þκ=
jp4j in its Fourier expansion (73). The source function JðyÞ

9Given the propagation law ϕðxÞ¼−
R
d4yΔκ

Fðx−yÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

p
JðyÞ, we can take the formal series expansion in

powers of the d’Alembertian for the star product term ϕðxÞ ¼
−
R
d4y

P∞
n¼0 anΔκ

Fðx − yÞ□nJðyÞ which, after integrating by
parts, becomes ϕðxÞ ¼ −

R
d4y

P∞
n¼0 an□

nΔκ
Fðx − yÞJðyÞ.
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can indeed be seen as a smeared version of the classical
source (79). For instance, considering a classical source
sharply localized in space JclðyÞ ¼ δðyÞ, for which J̃ðpÞ ¼
2πδðp0Þ, the source JðyÞ takes the form

JðyÞ¼ 2

Z
κ

0

dpp

ð2πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2=κ2

p sinðpjyjÞ
jyj ¼ κ2

4π

J1ðκjyjÞ
jyj ;

ð82Þ

where J1 is the Bessel function of the first kind (Fig. 1).
Summarizing we have the following two pictures for the

propagation of the noncommutative κ-scalar field in terms
of commuting fields:
(1) Given a perturbation generated by a classical, and

virtually sharply localized source JclðyÞ, the field
responds by propagating through the κ-deformed
Feynman propagator iΔκ

Fðx − yÞ.
(2) Given a perturbation generated by a κ-deformed

sourceJðyÞ, the field respondsby propagating through
the standard Feynman propagator iΔFðx − yÞ.

This result provides a concrete realization of the picture
qualitatively outlined in [28]. There it was showed that for
κ-deformed fields, the Yukawa potential between two
static point sources does not diverge in the short-distance
limit, and that this feature could be interpreted in terms of
pointlike sources being effectively smoothed out by the
UV features of the κ deformation. This is precisely what
is realized in the propagation picture (80) outlined above.
Although equally interesting, we postpone an analysis of
such a limitation in localizing sources in an arbitrarily
small region to future studies, while, in this work, we will
focus on the first picture of field propagation (78), where
all the nontrivial structures due to the noncommutativity
are contained in the κ-deformed Feynman propagator
(77). The next step will be the explicit evaluation of the
integral in (77) to analyze the spacetime behavior
of iΔκ

FðxÞ.

C. Spacetime profile of the κ-deformed propagator

In order to study the spacetime properties of the
κ-deformed Feynman propagator, we must first stress that
in the classical basis of the κ-Poincaré algebra the action of
Lorentz transformations is undeformed (unlike, e.g., the
bicrossproduct basis). We indeed have that the κ-deformed
Feynman propagator is manifestly Lorentz invariant

iΔκ
Fðx−yÞ¼ i

Z
d4pθðκ2−p2Þ

ð2πÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2=κ2

p eipðx−yÞ

−p2−m2þ iε
; ð83Þ

and thus, the analysis of its spacetime behavior can be
divided, as in the standard case, according to whether the
spacetime separation xμ − yμ is spacelike ðx − yÞ2 > 0,
timelike ðx − yÞ2 < 0, or lightlike ðx − yÞ2 ¼ 0. Let us
notice, however, that the undeformed character of Lorentz
transformations in the classical basis is limited to the one-
particle sector of the theory. Indeed, when one considers
multiparticle states, the nontrivial coalgebra structure in
(17), (19) enters the game, and the covariance of multi-
particle states and observables should be assessed taking
into account such deformed structures.
Before we start our analysis, let us observe that the

Feynman propagator (83) can be conveniently expressed as

iΔκ
Fðx − yÞ ¼ i

Z
d3p
ð2πÞ4 e

ipðx−yÞ
Z

dp0κθðκ2 − p2 þ p2
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 − p2 þ p2
0

p
×

e−ip0ðx0−y0Þ

p2
0 − ω2

p þ iε
; ð84Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. In order to carry out the p0

integral of this last expression, we will make use, as in
the standard case, of the Cauchy’s residue theorem.
However, we will have to deal, besides the nontrivial p0

range of integration, with a different singularity structure in
the complex p0 plane, as compared to the standard case.
As a first step, in view of the condition κ2 − p2 þ p2

0 > 0,
we split the range of integration inmomentumspace into two
regions depending on whether jpj < κ or jpj > κ

A ¼ fjpj < κ jp0 ∈ Rg;

B ¼
�
jpj > κ jjp0j >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − κ2

q 	
: ð85Þ

It is then possible to rewrite the expression (84) as

iΔκ
Fðx − yÞ ¼ i

Z
jpj<κ

d3p
ð2πÞ4 e

ipðx−yÞIA
pðx0 − y0Þ

þ i
Z
jpj>κ

d3p
ð2πÞ4 e

ipðx−yÞIB
pðx0 − y0Þ; ð86Þ

where we have defined the integrals

2 4 6 8 10 12 14
y

0.01

0.02

0.03

0.04

J (y)

FIG. 1. Smeared version JðyÞ of a classical source sharply
localized in space JclðyÞ ¼ δðyÞ. Here, we have set the defor-
mation parameter κ ¼ 1.
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IA
pðx0 − y0Þ ¼

Z þ∞

−∞

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ Ω2

A

p e−ip0ðx0−y0Þ

p2
0 − ω2

p þ iε
;

ΩA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

q
;

IB
pðx0 − y0Þ ¼

Z
∞

ΩB

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −Ω2

B

p e−ip0ðx0−y0Þ þ eip0ðx0−y0Þ

p2
0 − ω2

p þ iε
;

ΩB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − κ2

q
: ð87Þ

As we will see, the singularity structure of iΔκ
F in the

complex p0 plane will differ in the sub-Planckian (jpj < κ)
and trans-Plankian (jpj > κ) regions. Accordingly, we will
divide our analysis in two parts.

1. Region A: Sub-Planckian modes

In the region A, we deal with the integral

IA
pðx0−y0Þ

¼
Z þ∞

−∞

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0þΩ2

A

p e−ip0ðx0−y0Þ

ðp0−ωpþ iεÞðp0þωp− iεÞ ; ð88Þ

where ΩA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

p
∈ Rþ due to the fact that here

jpj < κ. The square root at denominator can be written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp0 − iΩAÞðp0 þ iΩAÞ
p

, so that the points �iΩA are two
branch points of the square root type. As in the standard
case, one can solve the integral IA

pðx0 − y0Þ employing
Cauchy’s residue theorem. However, it is first necessary to
cut the complex p0 plane from þiΩA to −iΩA passing by
infinity. Therefore, aside from the two undeformed simple
poles in p0 ¼ �ωp ∓ iε, the singularity structure of the
integrand in the complex p0 plane counts two branch cuts
from þiΩA to þi∞ and from −iΩA to −i∞.
The path in the complex plane that we use to evaluate

IA
pðx0 − y0Þwhen x0 > y0 is the one shown in Fig. 2; while

when x0 < y0, the path must be closed in the upper half
plane. The result valid in both cases is

IA
pðx0 − y0Þ ¼

−2πiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p e−iωpjx0−y0j

2ωp

− 2

Z
∞

ΩA

dzκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − Ω2

A

p e−zjx0−y0j

z2 þ ω2
p
; ð89Þ

where the standard residue at the pole is only modified by
the constant multiplicative factor ð1þm2=κ2Þ−1=2, while
the new term comes from the discontinuity along the
branch cut on the imaginary axis.
Let us pause for a moment on what consequences the

presence of these imaginary axis branch cuts could have on
the scalar field propagation. Let us consider, for simplicity,
the case of a κ-deformed retarded propagation of the field
(for which both the simple poles are in the lower half plane)

generated by a pointlike source JclðyÞ ¼ δðy0 − tÞδðy − rÞ
which appears at y0 ¼ t and suddenly disappears. The
presence of the cuts on the imaginary axis makes it
impossible to define a retarded propagator Gκ

Rðx − yÞ that
vanishes for x0 < y0. As a result, the field will respond to
the perturbation generated by JclðyÞ before the source itself
switches on at y0 ¼ t. Although quite puzzling, this feature
of the κ-deformed retarded propagator can be interpreted as
an effect of a spacetime fuzziness determined by the
noncommutativity. Indeed, in the equivalent picture related
to the field propagation (80), we would have a propagation
mediated by the standard retarded propagator GRðx − yÞ,
and a source JðyÞ that, being a smeared version of the
pointlike source JclðyÞ, results active before the time t.
Thus, in the first picture, one has a κ-deformed retarded
propagator whose advanced effects are generated by the
tachyon branch cuts, while, in the second picture, one has a
source smoothed out by the κ deformation that, having
support for times earlier than t, allows a retarded field
propagation before the time t.

2. Region B: Trans-Planckian modes

The contribution to iΔκ
Fðx − yÞ from the region B is

given by the integral

IB
pðx0−y0Þ¼

Z þ∞

ΩB

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−Ω2

B

p e−ip0ðx0−y0Þþeip0ðx0−y0Þ

ðp0−ωpþiεÞðp0þωp−iεÞ
¼IBð−Þ

p ðx0−y0ÞþIBðþÞ
p ðx0−y0Þ; ð90Þ

where we have denoted with IBð�Þ
p the positive and negative

frequency part of IB
p . In this case, ΩB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − κ2

p
∈ Rþ

FIG. 2. Sector A, path in the complex p0 plane used to evaluate
IA
pðx0 − y0Þ when x0 > y0.
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due to the fact that jpj > κ. Therefore, the real points �ΩB
are branch points of the square root type and, in order to
solve the integrals via Cauchy’s residue theorem, we have to
cut the complexp0 plane fromΩB to−ΩB passing by∞ (see
Fig. 3). We choose to focus on the negative frequency
integral

IBð−Þ
p ðx0−y0Þ

¼
Z þ∞

ΩB

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−Ω2

B

p e−ip0ðx0−y0Þ

ðp0−ωpþ iεÞðp0þωp− iεÞ ; ð91Þ

since it is then easy to extend the result to IBðþÞ
p ðx0 − y0Þ.

The paths in the complex p0 plane that we use to evaluate

IBð−Þ
p are shown in Fig. 3 and give as a result

IBð−Þ
p ðx0 − y0Þ ¼ −

Z
∞

0

dzκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B þ z2
p e−zðx0−y0Þ

z2 þ ω2
p

− i
Z

ΩB

0

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B − p2
0

p e−ip0ðx0−y0Þ

p2
0 − ω2

p

þ −2πiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

κ2

q e−iωpðx0−y0Þ

2ωp
;

IBð−Þ
p ðx0 − y0Þ ¼ −

Z
∞

0

dzκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B þ z2
p ezðx0−y0Þ

z2 þ ω2
p

þ i
Z

ΩB

0

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B − p2
0

p e−ip0ðx0−y0Þ

p2
0 − ω2

p
; ð92Þ

for x0 > y0 and x0 < y0, respectively. From the formulas

(92), the integral IBðþÞ
p can be straightforwardly evaluated.

Then, considering the Eq. (90), one obtains for the p0

integral in the region B, the expression

IB
pðx0 − y0Þ ¼

−2πiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p e−iωpjx0−y0j

2ωp

− 2

Z
ΩB

0

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B − p2
0

p sinðp0jx0 − y0jÞ
p2
0 − ω2

p

− 2

Z
∞

0

dzκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B þ z2
p e−zjx0−y0j

z2 þ ω2
p
: ð93Þ

Collecting now the results (89) and (93) obtained above,
and plugging them in (86), we can write down the final
expression of the κ-deformed Feynman propagator (84) as

iΔκ
Fðx − yÞ ¼ iΔFðx − yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2=κ2
p þ iΠκ

Fðx − yÞ; ð94Þ

where iΔFðx − yÞ is the standard free scalar Feynman
propagator

iΔFðx − yÞ ¼
Z

d3p
ð2πÞ32ωp

eip·ðx−yÞe−iωpjx0−y0j; ð95Þ

and iΠκ
Fðx − yÞ is given by

iΠκ
Fðx − yÞ ¼

Z
jpj<κ

d3p
ð2πÞ4 e

ip·ðx−yÞIA

þ
Z
jpj>κ

d3p
ð2πÞ4 e

ip·ðx−yÞðIB1 þ IB2 Þ; ð96Þ

where, in order to express iΠκ
Fðx − yÞ in a compact form,

we have defined the integrals

FIG. 3. Sector B, paths in the complex p0 plane used to evaluate IBð−Þ
p ðx0 − y0Þ when x0 > y0 and x0 < y0, respectively. We have

displaced the branch cuts by a small imaginary term in order to visually take into account the discontinuity along the cut.
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IA ¼ −2i
Z

∞

ΩA

dzκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −Ω2

A

p e−zjx0−y0j

z2 þ ω2
p
;

IB1 ¼ −2i
Z

∞

0

dzκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B þ z2
p e−zjx0−y0j

z2 þ ω2
p
;

IB2 ¼ −2i
Z

ΩB

0

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

B − p2
0

p sinðp0jx0 − y0jÞ
p2
0 − ω2

p
: ð97Þ

Notice that in the limit κ → ∞ the κ-deformed Feynman
propagator reduces to the ordinary one, as it should be.
Indeed, besides the trivial constant factor ð1þm2=κ2Þ−1=2
getting to 1, the term iΠκ

Fðx − yÞ disappears, since the
integral IA goes to zero, asΩA → ∞, and the trans-Planckian
sector B disappears. Notice also that the deformation term
iΠκ

Fðx − yÞ is a purely imaginary quantity, and thus, the real
part of iΔκ

Fðx − yÞ differs from the standard one only by the
constant multiplicative factor10 ð1þm2=κ2Þ−1=2.
Having derived the explicit expression for the κ-

deformed propagator (94), we now proceed with the
analysis of its spacetime behavior. As customary we will
divide the discussion in three cases depending on the sign
of the norm of the spacetime separation xμ.

3. Lightlike separation

When the spacetime separation xμ is a null vector, i.e.,
we are on the light cone x0 ¼ jxj, with a Lorentz trans-
formation, one can set xμ ¼ ð0; 0Þ. Therefore, we consider
the following κ-deformed Feynman propagator:

iΔκ
Fð0Þ ¼

iΔFð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p þ iΠκ
Fð0Þ: ð98Þ

The three integrals (97) that define iΠκ
Fð0Þ can be explicitly

computed as

IA ¼−2i
sinh−1ð ωpffiffiffiffiffiffiffiffiffi

κ2−p2
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2=κ2
p

ωp

;

IB1 ¼−2i
cosh−1ð ωpffiffiffiffiffiffiffiffiffi

p2−κ2
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2=κ2
p

ωp

; IB2 ¼ 0; ð99Þ

so that, introducing spherical polar coordinates and per-
forming the angular integration, one gets

iΠκ
Fð0Þ ¼

−4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p 
Z
κ

0

dp
ð2πÞ3

p2

ωp
sinh−1

�
ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

p �

þ
Z

∞

κ

dp
ð2πÞ3

p2

ωp
cosh−1

�
ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − κ2

p ��
; ð100Þ

where jpj ¼ p.
According to (98), on the light cone, the κ-deformed

Feynman propagator has the standard real quadratic diver-
gence coming from iΔFð0Þ and, in addition, due to the
novel contribution of iΠκ

Fð0Þ, it now exhibits also an
imaginary divergent part. This imaginary contribution is
due to the second integral in the square brackets of (100).
Indeed, given that

cosh−1
�

ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2−κ2

p �
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2þm2

p

p
þO

�
1

p2

�
; p→∞;

ð101Þ
the integrand ½p2

ωp
cosh−1ð ωpffiffiffiffiffiffiffiffiffi

p2−κ2
p Þ�, for large values of p,

approaches a constant so that the imaginary contribution of
iΠκ

Fð0Þ is linearly divergent.

4. Spacelike separation

For spacelike separation x2 > 0, one can set x0 ¼ 0 and
jxj ¼

ffiffiffiffiffi
x2

p
¼ r. Taking into account the Eq. (94), the κ-

deformed Feynman propagator reads

iΔκ
FðrÞ ¼

iΔFðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p þ iΠκ
FðrÞ: ð102Þ

Given that the term iΠκ
FðrÞ is a pure imaginary quantity,

the only contribution to real part of the κ-deformed
Feynman propagator comes from iΔFðrÞ. Such a term is
real and can be expressed [59] in terms of the Hankel
function of the second kind as

ℜ½iΔκ
FðrÞ� ¼

iΔFðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p ¼ −m
8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p 1

r
Hð2Þ

1 ð−imrÞ:

ð103Þ
Introducing spherical coordinates and performing the
angular integration in momentum space, the imaginary
part of the κ-deformed Feynman propagator (102) reads

ℑ½iΔκ
FðrÞ� ¼ iΠκ

FðrÞ¼
−4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2=κ2
p

×


Z
κ

0

dp
ð2πÞ3

p
ωp

sinh−1
�

ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2−p2

p �
sinðprÞ

r

þ
Z

∞

κ

dp
ð2πÞ3

p
ωp

cosh−1
�

ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2− κ2

p �
sinðprÞ

r

�
;

ð104Þ
10Which is, however, negligible if we identify κ with the

Planck energy Ep ∼ 1028 eV and consider any of the particle
masses of the standard model.
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where jpj ¼ p. In contrast with the standard case, the κ-
deformed Feynman propagator now possesses both a real
and an imaginary part given by the standard Feynman
propagator iΔFðrÞ and by iΠκ

FðrÞ, respectively. We pro-
ceeded to a numerical evaluation of iΠκ

FðrÞ, and the real
and the imaginary part of iΔκ

FðrÞ are shown in Fig. 4.
As in the undeformed case the real part of iΔκ

FðrÞ rapidly
falls to zero with a scale set by the Compton wavelength
m−1. Indeed, the real part of iΔκ

FðrÞ is only modified, with
respect to the standard case, by a constant multiplicative
factor ð1þm2=κ2Þ−1=2. The leading correction coming
from this term is of order11 ðm=κÞ2 which does not lead
to visually appreciable changes in the first plot in Fig. 4.
The imaginary part of iΔκ

FðrÞ, absent in the undeformed
case, is divergent on the light cone (in accordance with the
analysis made in the previous paragraph) and falls to zero
oscillating after few Planck lengths κ−1 from the light cone.
The fact that the Feynman propagator is nonzero for

spacelike distances is a well-known quantum mechanical
tunneling phenomenon caused by the difficulty to sharply
localize a particle in spacetime. However, now, in addition
to the localization limit given by the particle’s Compton
wavelength, we also have an effect generated by the fuzzy
nature of spacetime, which results in the nonvanishing
additional imaginary contribution of Fig. 4 (right).

5. Timelike separation

When the event x is at timelike separation (x2 < 0) from
the origin, we can set xμ ¼ ðx0; 0Þ, so that

iΔκ
Fðx0Þ ¼

iΔFðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p þ iΠκ
Fðx0Þ: ð105Þ

The real and the imaginary contributions to iΔκ
Fðx0Þ can be

identified as follows:

ℜ½iΔκ
Fðx0Þ� ¼ ℜ



im

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p 1

x0
Hð2Þ

1 ðmx0Þ
�
;

ℑ½iΔκ
Fðx0Þ� ¼ ℑ



im

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p 1

x0
Hð2Þ

1 ðmx0Þ
�

þ iΠκ
Fðx0Þ; ð106Þ

where we have used the fact that the undeformed Feynman
propagator can be expressed in terms of Hankel functions
of the second kind and that iΠκ

Fðx0Þ is a pure imagi-
nary term.
Introducing spherical polar coordinates and performing

the angular integration in momentum space, the term
iΠκ

Fðx0Þ takes the form

iΠκ
Fðx0Þ ¼ 2


Z
κ

0

dp
ð2πÞ3 p

2IA þ
Z

∞

κ

dp
ð2πÞ3 p

2ðIB1 þ IB2 Þ
�
;

ð107Þ

where jpj ¼ p and the integrals IA, IB1 , and I
B
2 are defined in

(97). This expression cannot be analytically computed;
therefore, we proceeded to a numerical evaluation. The
resulting real and the imaginary part of iΔκ

Fðx0Þ are shown
in Fig. 5.
In Fig. 5 (right) are shown, in dashed line, the unde-

formed imaginary part of the propagator and, in solid line,
the κ-deformed one. The effect of the κ deformation is
dominant near the light cone, where the imaginary part of
iΔκ

Fðx0Þ diverges in accordance with the analysis made in
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–200
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FIG. 4. Plots of the real (left) and imaginary (right) part of the κ-deformed Feynman propagator (102) for spacelike separation
x2 ¼ r2 > 0. In the undeformed case, there is no imaginary part. The spacelike separation rvaries on the horizontal axis. In this simulation,
we have set κ ¼ 102 andm ¼ 1, so that the ratio ism=κ ¼ 10−2. We are looking at distances of 10 Planck lengths κ−1 from the light cone,
or, equivalently, at distances of 10−1 Compton wavelengthsm−1 from the light cone. In the plot of the real part, the difference between the
standard and the deformed graph is not visually appreciable, being of the order of ðm=κÞ2, and the two graphs overlap.

11Here we have expanded the square root ð1þ ϵÞ−1=2 with
respect to the small parameter ϵ ¼ m2=κ2 ≪ 1, i.e., ð1þ ϵÞ−1=2 ∼
1 − 1

2
ϵþOððϵÞ2Þ.
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the previous paragraphs. For large timelike distances, the κ-
deformed Feynman propagator approaches the standard
one, so that it decreases in amplitude while oscillating
according to the asymptotic behavior,

iΔFðx0Þ ∼ constðx20Þ−
3
4e−imjx0j; jx0j → ∞: ð108Þ

The scale of the oscillations, inside both the future and
past light cone, is set by the Compton wavelengths m−1.
Summarizing, κ deformations modify the real part of the

Feynman propagator only by a constantmultiplicative factor
ð1þm2=κ2Þ−1=2. Conversely, the imaginary part of the
κ-deformed Feynman propagator is ð1þm2=κ2Þ−1=2 times
the undeformed one plus an additional contribution iΠκ

F.
This contribution is divergent on the light cone, as can be
seen from the Figs. 4 and 5, for spacelike distances falls to
zero oscillating after few Planck length from the light cone,
and for timelike distances modifies the undeformed propa-
gator as in Fig. 5 (right).
Before concluding this section, we would like to note

that, in spite of the prominent role that the Feynman
propagator plays in the standard local quantum field theory,
very few attempts addressing the generalization of the
Feynman propagator to noncommutative field theory on κ-
Minkowski have appeared in literature. Most of the earlier
attempts to the study of the κ-deformed propagator
remained just at an exploratory level due to the poorly
understood structure of κ-deformed momentum space at the
time. This is the case, for example, of [60] and [61] where
the authors introduced a κ-deformed Feynman propagator
and a Pauli-Jordan function by analogy with the unde-
formed case, simply by replacing the standard relativistic
energy-momentum dispersion relation with the κ-deformed
Casimir similar to (21). More recently, a study of the Pauli-
Jordan function taking into account the nontrivial de Sitter

geometry of κ-deformed momentum space has appeared in
[62]. The approach taken by the authors is to define a field
operator and an algebra of creation and annihilation
operators, so that the commutator of the fields can be used
to derive the Pauli-Jordan via its vacuum expectation value.
The main drawback of the canonical approach adopted in
[62] is that it relies on the definition of an algebra of
creation and annihilation operator which does not take into
account the known difficulties in dealing with multiparticle
states in a κ-deformed context (see, e.g., [63,64]).
Moreover, using the field operator defined in [62] to
construct a κ-deformed Feynman propagator, one would
have that only the simple poles, coming from the delta
function of the Casimir, will contribute to the propagator.
Our analysis instead shows that the Feynman propagator, in
order to be a Green’s function of the κ-Klein-Gordon
equation, must contain also the contributions from the
branch cuts.

IV. FROM NONCOMMUTATIVE TO
NONLOCAL FIELDS

In the previous section, we have seen how the nontrivial
features of κ-deformed propagation (80) can be understood
in terms of an effective spacetime fuzziness in the UV.
We also pointed out how the deformed field propaga-
tion can be equivalently viewed as a propagation on
classical Minkowski spacetime, i.e., with no limitations in
localizing a source, mediated by the κ-deformed Feynman
propagator (77).
In this section, we show how such interpretation of

κ-deformed propagation, based on a classical Minkowski
spacetime, can be formulated in terms of a nonlocal field
theory. We will also show how the κ-deformed Feynman
propagator can be related to the vacuum expectation values
of products of this nonlocal field operator. We will find that
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FIG. 5. Plots of the real (left) and imaginary (right) part of the κ-deformed Feynman propagator (105) for timelike separation. The
timelike interval x0 varies on the horizontal axis. In this simulation, we have set κ ¼ 102 and m ¼ 1, so that the ratio is m=κ ¼ 10−2.
Here we are looking at distances of 103 Planck lengths κ−1 from the light cone, or, equivalently, at distances of 10 Compton wavelengths
m−1 from the light cone. In the figure on the right are plotted both the imaginary part of iΔκ

Fðx0Þ (solid line) and the ordinary undeformed
imaginary part of iΔFðx0Þ (dashed line), while, in the plot of the real part on the left, the difference between the standard and the
deformed graph is not visually appreciable, being of the order of ðm=κÞ2, and the two graphs overlap.
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the standard relation between the Feynman propagator and
the time-ordered two-point function holds only in the sub-
Planckian sector, while, for trans-Planckian momenta, the
κ-deformed Feynman propagator will be shown to have the
form of the Hadamard (anticommutator) two-point func-
tion. We will comment on a possible physical interpretation
of such feature at the end of this section.
As observed in [31,32], the free κ-Minkowski scalar field

theory can be recast in the form of a nonlocal scalar field
theory on ordinary Minkowski space. In these works, it was
shown how the nonlocal character of the κ-Minkowski
theories, already noticed in [60] for the bicrossproduct
basis, is present also for the classical basis, and it is
encoded in a nonlocal star product. Let us notice that the
nonlocal character of the κ-Minkowski free scalar action12

could have already been noticed by considering its expres-
sion in momentum space (51) and the explicit form of the
Fourier transform (45), so that (51) can be written as

Sfree ¼
Z

d4xd4x0ϕ�ðxÞð−□þm2Þϕðx0ÞVðx; x0Þ; ð109Þ

where the nonlocal term Vðx; x0Þ is given by

Vðx;x0Þ ¼
Z

d4pθðκ2−p2Þ
ð2πÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2=κ2

q
e−ipðx0−xÞ: ð110Þ

Alternatively, making use of the classical basis Weyl map
Ωc and its associated star product ⋆ (see Sec. II C), the
κ-Poincaré invariant action (49) can be expressed as

Sfree ¼
Z

d4x½ð∂μϕÞ† ⋆ ð∂μϕÞ þm2ϕ† ⋆ ϕ�

¼
Z

d4x½ð∂μϕÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

q
ð∂μϕÞ

þm2ϕ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

q
ϕ�: ð111Þ

This action is manifestly invariant under κ-Poincaré tras-
formations which in the classical basis, as mentioned
above, are just the standard ones. Taking the formal series
expansion in powers of the d’Alembertian for the star
product term, the action has infinitely many derivatives

Sfree ¼
Z

d4x
X∞
n¼0

an½∂μϕ
�
□

n∂μϕþm2ϕ�
□

nϕ�; ð112Þ

where an ∝ κ−2n. Varying the action (112) with respect to
the field and its complex conjugate, we get

X∞
n¼0

an½−□nþ1 þm2□n�ϕ ¼ 0; ð113Þ

and similarly for ϕ�, from which, summing up the series,
one obtains the nonlocal equation of motion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□=κ2

q
ð□ −m2Þϕ ¼ 0; ð114Þ

and an identical one for the complex conjugate field ϕ�.
These equations of motion involve nonlocal pseudodiffer-
ential operators; specifically, they contain fractional powers
of the d’Alembertian.13 In order to solve them, we will
make use of the methods developed in [73–75] and
employed, for example, in [76] to study the nonlocal
effective field theory emerging in a “mesoscopic” regime
of casual sets. The general form of a Lorentz invariant
nonlocal pseudodifferential equation is

fð□Þϕ ¼ 0; ð115Þ

where, as for the equation of motion (113), the function
fð□Þ cannot be expanded in a finite series. A general
solution of (115) can be written as

ϕðxÞ ¼ 1

2πi

Z
d3p

ð2πÞ3=2
ZP

i
Γi

dp0eipx



1

fð−p2Þ
�
aðp0;pÞ;

ð116Þ

where aðp0;pÞ is an entire analytic function, i.e., a
complex-valued function that is holomorphic at all points
over the whole complex plane, and the Γi’s are paths that
encircle, in the complex p0 plane, all the singularities of
1=fð−p2Þ. Indeed, rewriting the solution (116) as

12It should be stressed that the type of nonlocality associated to
the noncommutative ⋆ product (43) and reflected in a nonlocal
field action is fundamentally different from the nonlocal effects
characterizing the kinematics of models with curved momentum
space within the framework of relative locality [65]. Such effects
refer to the crossings of worldlines of classical relativistic point
particles. Some formulations of classical κ-deformed kinematics
exhibit relative locality features [66,67] (see also [68] for a model
which implements relative locality effects without κ-deforma-
tions), and it is likely that at a field theoretic level these are
associated to the nonlocal action of κ-deformed translation
generators explored, e.g., in [69].

13In field theories based on nonlocal d’Alembertians, one is
usually concerned with the presence of unstable modes which can
spoil the theory, for example, by leading to violations of unitarity
[70]. For what concerns our equation of motion (114) for
κ2 − p2 < 0, the nonlocal factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ□

p
becomes a purely

imaginary quantity, and thus, in principle, some instabilities are
expected [71,72]. Looking at this nonlocal model as effectively
representing a κ-deformed theory however, we see that the de
Sitter geometry of the space of four momenta naturally imposes
the condition κ2 − p2 > 0. This is obvious if one looks at the
embedding coordinates defined in (7) and notices that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

p
corresponds to the embedding coordinate P4 and thus is real.
This shows that in the κ-deformed theory the offending four-
momentum region κ2 − p2 < 0 is excluded from the outset.
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ϕðxÞ ¼
Z

d3p

ð2πÞ3=2 e
ip·xϕpðx0Þ; ð117Þ

where

ϕpðx0Þ ¼
1

2πi

ZP
i
Γi

dp0e−ip0x0



1

fð−p2Þ
�
aðp0;pÞ; ð118Þ

the condition (115) becomes

fð−∂2
0 − p2Þϕpðx0Þ ¼ 0; ð119Þ

and when we apply the operator fð−∂2
0 − p2Þ on (118), a

factor fð−p2Þ that cancels all the poles and cuts is produced
inside the integral, so that the paths Γi can now be deformed
to a point giving vanishing contributions. In our case, the
function fð−p2Þ can be read off the κ-deformed equations
of motion (114) and is given by

fκð−p2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2=κ2

q
ð−p2 −m2Þ: ð120Þ

An important point to notice is that the κ-deformed con-
tribution

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2=κ2

p
to the function fκð−p2Þ is just

the term jp4j=κ appearing at the denominator of the
κ-Poincaré momentum space integration measure dμ̄ðpÞ ¼
d4pθðκ2 − p2Þκ=jp4j. Accordingly, the isolated singular-
ities and branch cuts associatedwith the function 1=fκð−p2Þ
are just the ones we have already seen in Sec. III C when
solving the p0 integral of the κ-deformed Feynman propa-
gator. We will thus split the analysis of the solutions
associated to (114) in two parts depending on whether one
considers the sub-Planckian or the trans-Planckian sector.
The position of the branch cuts in the complex p0 plane are
different in these two case; a cut on the imaginary p0 axis
when jpj < κ and a cut on the real p0 axis when jpj > κ [see
Figs. 2 and 3]. The solution (117) can thus be rewritten as

ϕðxÞ ¼ ϕAðxÞ þ ϕBðxÞ ¼
Z
jpj<κ

d3p

ð2πÞ3=2 e
ip·xϕA

pðx0Þ

þ
Z
jpj>κ

d3p

ð2πÞ3=2 e
ip·xϕB

pðx0Þ; ð121Þ

and similarly forϕ�ðxÞ. Our goal in the next Sectionwill be to
find a relationship between the κ-deformed Feynman propa-
gator found in Sec. III and vacuum expectation values of the
field operator (121) above. Let us recall that, in analogy with
(121), the propagator (86) exhibits a similar splitting in sub-
Plankian and trans-Planckian contributions

iΔκ
FðxÞ ¼ iΔκ

FðxÞjA þ iΔκ
FðxÞjB ¼ i

Z
jpj<κ

d3p
ð2πÞ4 e

ip·xIA
pðx0Þ

þ i
Z
jpj>κ

d3p
ð2πÞ4 e

ip·xIB
pðx0Þ; ð122Þ

due to the restriction imposed by the condition κ2 − p2 > 0
on momentum space. In particular, we should notice that,
since in the sub-Planckian region A the p0 range of
integration in the propagator remains unaffected [see (85)],
we expect a standard relation between iΔκ

FðxÞjA and the time-
ordered two-point function of ϕA. The same, however, can
not be said for the trans-Planckian sector B. Here, the
condition κ2 − p2 > 0 deforms the p0 range of integration
(jp0j > ΩB), so we should expect a different combination of
two-point functions of ϕB to be related to iΔκ

FðxÞjB. In what
follows, we will study this issue in detail.

V. THE κ-DEFORMED PROPAGATOR AS A
NONLOCAL TWO-POINT FUNCTION

In this section, we characterize the κ-deformed
Feynman propagator in terms of the vacuum expectation
values of the nonlocal complex scalar field on ordinary
Minkowski spacetime introduced in the previous section.
In order to do so we proceed to quantize the nonlocal
field (117) using the techniques first developed in [73].
Once again, we focus separately on the sub-Planckian
and trans-Planckian cases.

A. Sub-Planckian momenta: Time-ordered
two-point function

In the region of sub-Planckian momenta, the function fκ
of the Eq. (120) takes the form

fκðp0;pÞ ¼
2πi
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ Ω2

A

q
ðp2

0 − ω2
pÞ; ð123Þ

where, for future convenience, we have incorporated also
the term 2πi in the definition of fκ and, as in Sec. III, ΩA ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

p
and ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Considering Eqs. (118),

(121), and (123), it is then possible to express the restriction
of the field ϕ to the region A, taking into account the
singularity structure of 1=fκ, as

ϕAðxÞ ¼
Z
jpj<κ

d3p

ð2πÞ3=2 e
ip·xϕA

pðx0Þ; ð124Þ

with

ϕA
pðx0Þ ¼

1

2πi

X2
i¼1

Z
ΓA
i þγAi

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ Ω2

A

p e−ip0x0

p2
0 − ω2

p
aðp0;pÞ;

ð125Þ

where the integration contours ΓA
i and γAi are shown in

Fig. 6. We can write (125) explicitly as
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ϕA
pðx0Þ ¼

Z
−iΩA

−i∞
dp0ΔΓA



1

fκðp0;pÞ
�
e−ip0x0aðp0;pÞ

þ
Z

−iΩA

−i∞
dp0ΔΓA



1

fκðp0;pÞ
�
eip0x0að−p0;pÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p e−iωpx0

2ωp
aðωp;pÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p eiωpx0

2ωp
að−ωp;pÞ; ð126Þ

where the functional ΔΓA
½1=fκðp0;pÞ� is the discontinuity

functional at the branch cut of 1=fκ, which in our
case is just

ΔΓA



1

fκðp0;pÞ
�
¼ −

2

2πi
κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ Ω2

A

p 1

p2
0 − ω2

p
: ð127Þ

The quantum counterpart of the field (126) is obtained by
promoting the entire analytic coefficients aðpÞ and að−pÞ
to annihilation and creation operators, respectively. Since
we are dealing with a complex field, the function aðpÞ will
be promoted to the annihilation operator for particles while
að−pÞ to the creation operator b†ðpÞ of antiparticles.
Following [73], we note that, in order to have a consistent
quantization scheme, the creation and annihilation oper-
ators must satisfy the commutation rules

Δ



1

fκð−p2Þ
�
½aðpÞ; a†ðqÞ� ¼ δðp − qÞ;

Δ



1

fκð−p2Þ
�
½bðpÞ; b†ðqÞ� ¼ δðp − qÞ; ð128Þ

with all the other commutators being zero. The disconti-
nuity functional Δ½1=fκð−p2Þ� involved in the commuta-
tion relations (128) obviously depends on which singularity
one considers; for instance, the discontinuity functional
associated to the branch cut is the one appearing in (127),
while for the simple pole one has

ΔγA



1

fκð−p2Þ
�
¼ lim

ε→0


�
1

fκððp0 þ iεÞ2 − p2Þ

−
1

fκððp0 − iεÞ2 − p2Þ
�����

γA

�
; ð129Þ

and with simple manipulations

ΔγA



1

fκð−p2Þ
�
¼ 1

2πi
2πiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−p2=κ2
p lim

ε→0

�
1

π

ε

ε2þð−p2−m2Þ2
�

¼ δðp2þm2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p : ð130Þ

The algebra of the annihilation and creation operators
for the field excitations with four momentum associated

to the simple pole are then simply
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p
times the

usual ones

½aðωp;pÞ;a†ðωq;qÞ� ¼ 2ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

q
δðp−qÞ;

½bðωp;pÞ;b†ðωq;qÞ� ¼ 2ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

q
δðp−qÞ; ð131Þ

while for excitations with four momentum belonging to the
cut, one obtains

½aðpÞ; a†ðqÞ�jp;q∈ΓA
¼ δðp − qÞ

ΔΓA
½1=fð−p2Þ� ;

½bðpÞ; b†ðqÞ�jp;q∈ΓA
¼ δðp − qÞ

ΔΓA
½1=fð−p2Þ� : ð132Þ

We now have all the tools needed to compute the time-
ordered two-point functions in the region A as

h0jTfϕAðxÞðϕAðyÞÞ�gj0i

¼ θðx0−y0Þ
Z
jpj;jqj<κ

d3pd3q
ð2πÞ3 eip·xe−iq·y

× h0jϕA
pðx0ÞðϕA

qðy0ÞÞ�j0i

þθðy0−x0Þ
Z
jpj;jqj<κ

d3pd3q
ð2πÞ3 e−ip·xeiq·y

× h0jðϕA
qðy0ÞÞ�ϕA

pðx0Þj0i; ð133Þ

and, making use of the Eqs. (126), (131) and (132), we get14

FIG. 6. Singularity structure in the region A. There are two
simple poles at p0 ¼ �ωp and two branch cuts on the imaginary
axis, one from iΩA to i∞ and one from −iΩA to −i∞.

14In deriving the integral inside the square brackets, we have
made the changes of variable p0 → �iz.
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h0jTfϕAðxÞðϕAðyÞÞ�gj0i

¼
Z
jpj<κ

d3p
ð2πÞ3 e

ip·ðx−yÞ



e−iωpjx0−y0j

2ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=κ2

p
þ 2

2πi

Z
∞

ΩA

dzκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −Ω2

A

p e−zjx0−y0j

z2 þ ω2
p

�
: ð134Þ

The term in square brackets is just i=2π times the integral
IA
p defined in (89). Accordingly, this expression is equal to

the restriction iΔκ
Fðx − yÞjA of the κ-deformed Feynman

propagator to the region of sub-Planckian momenta, as can
be easily seen confronting the relations (122) and (134),

h0jTfϕAðxÞðϕAðyÞÞ�gj0i¼ i
Z
jpj<κ

d3p
ð2πÞ4e

ip·ðx−yÞIA
pðx0−y0Þ

≡iΔκ
Fðx−yÞjA: ð135Þ

This shows that for sub-Planckian modes, as expected,
no changes occur in the standard relation between the
Feynman propagator and the vacuum expectation values of
the T product of fields.

B. Trans-Planckian momenta: The Hadamard function

We now derive the combination of nonlocal two-point
functions which reproduces the restriction iΔκ

Fðx − yÞjB of
the κ-deformed Feynman propagator to the region of trans-
Planckian momenta. Let us start from the κ-deformed
Feynman propagator

iΔκ
Fðx−yÞ¼ i

Z
d4pθðκ2−p2Þ

ð2πÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2=κ2

p eipðx−yÞ

p2
0−ω2

pþ iε
; ð136Þ

which we can rewrite using the integral expression for the
step function θðκ2 − p2Þ as

iΔκ
Fðx − yÞ ¼ i

Z þ∞

−κ2
dμ2

Z
d4pδðp2 þ μ2Þ

ð2πÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2=κ2

p
×

eipðx−yÞ

p2
0 − ω2

p þ iε
: ð137Þ

The restriction to spatial momenta bigger than κ is given by

iΔκ
Fðx − yÞjB ¼ i

Z þ∞

−κ2
dμ2

Z
jpj>κ

d4pδðp2 þ μ2Þ
ð2πÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2=κ2

p
×

eipðx−yÞ

p2
0 − ω2

p þ iε
: ð138Þ

For trans-Planckian momenta, the delta function δðp2 þ μ2Þ
can be expanded with respect to the roots of p0 as

15

δðp2þμ2Þ¼δðp0−ωμ
pÞþδðp0þωμ

pÞ
2ωμ

p
; ωμ

p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þμ2

q
;

ð139Þ
and the integral over p0 in (138) can be trivially carried out

iΔκ
Fðx−yÞjB¼ i

Z þ∞

−κ2

dμ2κ

ð2πÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2þμ2

p 1

μ2þm2þiε

×


Z
jpj>κ

d3peipðx−yÞ

ð2πÞ32ωμ
p
ðe−iωμ

pðx0−y0Þþeiω
μ
pðx0−y0ÞÞ

�
:

ð140Þ
The term in square brackets is just the restriction to jpj > κ
of the Feynman propagator iΔFðx − y; μ2Þ minus the anti-
propagator iΔAFðx − y; μ2Þ or, equivalently, the Hadamard
(anticommutator) function Gð1Þðx − y; μ2Þ of an ordinary
scalar field of mass μ

Gð1Þðx − y; μ2ÞjB
¼ iΔFðx − y; μ2ÞjB − iΔAFðx − y; μ2ÞjB
¼

Z
jpj>κ

d3peipðx−yÞ

ð2πÞ32ωμ
p
ðe−iωμ

pjx0−y0j þ eiω
μ
pjx0−y0jÞ: ð141Þ

We can thus write (140) in terms of a Källen-Lehmann-like
spectral representation,

iΔκ
Fðx − yÞjB ¼

Z þ∞

−κ2
dμ2σðμ2Þ 1

2
½iΔFðx − y; μ2ÞjB

− iΔAFðx − y; μ2ÞjB�; ð142Þ

FIG. 7. Singularity structure in the region B. There are two
branch cuts on the real axis, one from ΩB to þ∞ and one from
−ΩB to −∞. The two simple poles at p0 ¼ �ωp are just over the
branch cuts since when jpj > κ then ωp > ΩB.

15Indeed, it is only for jpj > κ that ωμ
p ∈ R for all

μ2 ∈ ½−κ2;þ∞Þ.
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where the spectral function σðμ2Þ is the discontinuity
at the cut from −κ2 to þ∞ of the function 1=fκðμ2Þ ¼
ð2πiðμ2 þm2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2=κ2

p
Þ−1

σðμ2Þ ¼ −
2

2πi
κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 þ μ2
p 1

μ2 þm2 þ iε
: ð143Þ

The analysis above suggest that the κ-deformed Feynman
propagator for trans-Planckian momenta should take the
form of half the Hadamard function,

1

2
h0jfϕBðxÞ;ðϕBðyÞÞ�gj0i

≡1

2
½h0jϕBðxÞðϕBðyÞÞ�j0iþh0jðϕBðyÞÞ�ϕBðxÞj0i�: ð144Þ

In order to check this explicitly, we evaluate the anticom-
mutator of the field in region B. For trans-Planckian
momenta, the function fκ takes the form fκðp0;pÞ ¼
2πi
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −Ω2

B

p ðp2
0 − ω2

pÞ, where ΩB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − κ2

p
. The sin-

gularity structure of 1=fκ is shown in Fig. 7. Taking into
account Eqs. (118) and (121), we can write the field as

ϕB
pðx0Þ¼

1

2πi

X2
i¼1

Z
ΓB
i

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−Ω2

B

p e−ip0x0

p2
0−ω2

p
aðp0;pÞ

¼
Z

∞

ΩB

dp0ΔΓB



1

fκðp0;pÞ
�
e−ip0x0aðp0;pÞ

þ
Z

∞

ΩB

dp0ΔΓB



1

fκðp0;pÞ
�
eip0x0að−p0;pÞ; ð145Þ

where the discontinuity functional at the cut of 1=fκ is

ΔΓB



1

fκðp0;pÞ
�
¼ −

2

2πi
κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 −Ω2

B

p 1

p2
0 − ω2

p
: ð146Þ

Following the procedure already employed in the region A,
the quantum counterpart of the field (145) and of its complex
conjugate, are obtained by promoting the entire analytic
functions aðpÞ and að−pÞ to annihilation and creation
operators of particles and antiparticles, respectively.
The commutation rules for annihilation and creation oper-
ators of excitations with four momentum belonging to the
cut are then

½aðpÞ; a†ðqÞ�
���
p;q∈ΓB

¼ δðp − qÞ
ΔΓB

½1=fð−p2Þ� ;

½bðpÞ; b†ðqÞ�
���
p;q∈ΓB

¼ δðp − qÞ
ΔΓB

½1=fð−p2Þ� ; ð147Þ

with all the others commutators being zero. Using the
Eqs. (145)–(147), one can now compute the two-point
functions for trans-Planckian momenta as

h0jϕBðxÞðϕBðyÞÞ�j0i ¼
Z
jpj;jqj>κ

d3pd3q
ð2πÞ3 eip·xe−iq·yh0jϕB

pðx0ÞðϕB
qðy0ÞÞ�j0i

¼
Z

d3p
ð2πÞ3 e

ip·ðx−yÞ
�
−

2

2πi

Z þ∞

ΩB

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − Ω2

B

p e−ip0ðx0−y0Þ

p2
0 − ω2

p

�
;

h0jðϕBðyÞÞ�ϕBðxÞj0i ¼
Z
jpj;jqj>κ

d3pd3q
ð2πÞ3 e−ip·xeiq·yh0jðϕB

qðy0ÞÞ�ϕB
pðx0Þj0i

¼
Z

d3p
ð2πÞ3 e

−ip·ðx−yÞ
�
−

2

2πi

Z þ∞

ΩB

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −Ω2

B

p eip0ðx0−y0Þ

p2
0 − ω2

p

�
: ð148Þ

The p0 integrals in this last expressions are ill defined since the poles �ωp are on the path of integration (ωp > ΩB);
however, we can adopt the prescription in the spectral function (143) to avoid the poles, and thus the vacuum expectation
value of half the anticommutator of the fields becomes

1

2
h0jfϕBðxÞ; ðϕBðyÞÞ�gj0i ¼ −

1

2πi

Z
jpj>κ

d3p
ð2πÞ3 e

ip·ðx−yÞ
Z þ∞

ΩB

dp0κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − Ω2

B

p e−ip0ðx0−y0Þ þ eip0ðx0−y0Þ

p2
0 − ω2

p þ iε
: ð149Þ

In this equation, the p0 integral is just the integral IB
p defined in (87). We thus obtain that the Hadamard function of the

nonlocal field is equal to the restriction iΔκ
Fðx − yÞjB of the κ-deformed Feynman propagator to trans-Planckian momenta

1

2
h0jfϕBðxÞ; ðϕBðyÞÞ�gj0i ¼ i

Z
jpj>κ

d3p
ð2πÞ4 e

ip·ðx−yÞIB
pðx0 − y0Þ≡ iΔκ

Fðx − yÞjB: ð150Þ
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Considering now the relations (86), (135), and (150), we
can finally write down the expression of iΔκ

Fðx − yÞ in
terms of the vacuum expectation values of the nonlocal
scalar fields on ordinary Minkowski space. The κ-deformed
Feynman propagator coincides with the T-product of such
nonlocal fields for sub-Planckian momenta and to half their
Hadamard function for trans-Planckian momenta

iΔκ
Fðx − yÞ ¼ h0jTfϕAðxÞðϕAðyÞÞ�gj0i

þ 1

2
h0jfϕBðxÞ; ðϕBðyÞÞ�gj0i: ð151Þ

Let us note that in the limit κ → ∞ the rhs of this equation
approaches the time-ordered two-point function as a
consequence of the fact that in this limit the region B
disappears.
Although the relation (151) may look unusual, since it

contains a splitting that depends on the value of the spatial
momenta, it turns out that a similar expression for the
propagator emerges in an apparently unrelated context,
namely for the Feynman propagator of a degenerate Fermi
gas (see, e.g., the standard textbook reference [59]). In this
case, the “deformation scale” is set by the Fermi momen-
tum kF, and the standard Feynman propagator for the
Dirac field is recovered in the limit kF → 0, so that, in
particular, the Fermi momentum plays the role of an IR
deformation parameter. Indeed, when one replaces the
standard vacuum with a noninteracting Fermi gas of
electrons at zero temperature with Fermi momentum kF,
the resulting propagator coincides with the advanced propa-
gator for spatial momenta p lower than kF and to the
ordinary time-ordered two-point function for jpj > kF. A
physical interpretation of such a modification can be given
by recalling that the standard Feynman propagator corre-
sponds to an advanced propagation of the negative-energy
solutions and to a retarded propagation of the positive-
energy solutions. Now, in a degenerate Fermi gas, all the
levels in the positive-energy electron continuum are occu-
pied up to the Fermi momentum kF. Excitations related to
these energy levels have to be treated like negative-energy
states, i.e., they propagate backwards in time via the
advanced propagator. Accordingly, when we consider states
with an energy below the corresponding Fermi energy
EF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

e

p
, both the negative-energy solutions and

the positive-energy solutions propagates in an advanced
way, conversely, when jpj > kF, negative-energy solutions
still propagate in an advancedwaywhile the positive-energy
solutions propagate in a retarded way, so that we recover the
standard structure that gives rise to the time-ordered two-
point function.
In the analysis, we presented the deformation parameter κ,

usually identifiedwith the Planck energyEp, is instead aUV
scale and the κ-deformed Feynman propagator differs from
the time-ordered two-point function for spatial momenta
bigger than κ. Indeed, for trans-Planckian momenta, the

κ-deformed propagator has the form of the Hadamard
function which, being the vacuum expectation value of the
anticommutator of the field, does not posses a time ordering.
Nonetheless, like the T-product, the anticommutator is
symmetric under exchange of the spacetime arguments of
the fields. A physical interpretation for the appearance of the
Hadamard function for trans-Planckian momenta is however
less straightforward than the interpretation of the propagator
structure of a degenerate Fermi gas. Indeed,wenowdealwith
vacuum expectation value of a nonlocal field, in which both
the simple poles and the branch cuts contributes. The
expression (151) for the κ-deformed Feynman propagator,
suggests that for trans-Planckian momenta, we lose the
notion of time orientation; the two Wightman functions
h0jϕBðxÞðϕBðyÞÞ�j0i and h0jðϕBðyÞÞ�ϕBðxÞj0i contribute
both for x0 > y0 and x0 < y0.

VI. DISCUSSION

In this work, we provided a comprehensive description
of the structure and properties of the Feynman propagator
of a κ-deformed field theory. We started from its derivat-
ion from a noncommutative generating functional and
described the nontrivial singularity structure determined
by the curved geometry of momentum space dual to the
κ-Minkowski space. We showed how such singularity
structure is responsible for the new features of the κ-
Feynman propagator, and how such features are intimately
related to the different behavior of the propagator for sub
and trans-Planckian field modes. Our results showed that
the propagation of perturbations in κ-deformed field theory
can be equivalently described in terms of perturbations
generated by a fuzzy source, which cannot be sharply
localized in spacetime, or by a ordinary source which
generates perturbations mediated by a κ-deformed propa-
gator whose nontrivial spacetime profile was analyzed in
detail.
Our analysis also addressed the question of whether the

κ-deformed Feynman propagator derived from the gener-
ating functional, which we showed to be a Green’s function
of the κ-deformed Klein-Gordon operator, can be related to
the vacuum expectation value of suitable products of field
operators. In order to explore such a relationship, we resorted
to a mapping of noncommutative fields on κ-Minkowski
space to fields on ordinaryMinkowski space with a nonlocal
kinetic term. Adopting techniques previously developed in
the literature for the canonical quantization of nonlocal field
theories, we showed that the κ-deformed Feynman propa-
gator can be related to the vacuum expectation value of
products of nonlocal field operators. We obtained that for
sub-Planckian field modes the propagator coincides with the
vacuum expectation value of the time-ordered product of
nonlocal fields, while for trans-Planckian momenta, it is
related to the nonlocal Hadamard function, i.e., the vacuum
expectation value of the anticommutator of nonlocal field
operators. This peculiar behavior is reminiscent of the
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propagation of electrons in a Fermi gas where above and
below the Fermi momentum their propagator is described by
different kinds of two-point functions.While electrons above
the Fermi momentum propagate as ordinary free electrons,
excitations below the Fermi level (holes) behave has anti-
particles and are described by an advanced propagator. In our
case, thedeformation parameter κ sets aUVmomentumscale
above which propagation of excitations is described by the
Hadamard propagator in which a notion of time ordering is
no longer present. This result provides an interesting picture
of how the noncommutativity of κ-Minkowski space affects
the propagation of particles in the deep UV and provides

valuable insight for understanding the physical properties of
this particular noncommutative deformation of quantum
field theory.
While the main focus of our analysis has been on the

study of κ-deformed propagation, it would be interesting to
further explore the alternative picture of κ-deformation as
ordinary propagation of perturbations from a smeared out
source as discussed in Sec. III B. In particular, it should be
in principle possible to reformulate this scenario in terms of
an equivalent nonlocal field theory on ordinary Minkowski
spacetime and investigate its nontrivial UV effects. We
postpone such a study to future work.
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