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Many discussions in the literature of spacetimes with more than one Killing horizon note that some
horizons have positive and some have negative surface gravities, but assign to all a positive temperature.
However, the first law of thermodynamics then takes a nonstandard form. We show that if one regards the
Christodoulou and Ruffini formula for the total energy or enthalpy as defining the Gibbs surface, then the
rules of Gibbsian thermodynamics imply that negative temperatures arise inevitably on inner horizons, as
does the conventional form of the first law. We provide many new examples of this phenomenon, including
black holes in STU supergravity. We also give a discussion of left and right temperatures and entropies,
and show that both the left and right temperatures are non-negative. The left-hand sector contributes exactly
half the total energy of the system, and the right-hand sector contributes the other half. Both the sectors
satisfy conventional first laws and Smarr formulas. For spacetimes with a positive cosmological constant,
the cosmological horizon is naturally assigned a negative Gibbsian temperature. We also explore entropy-
product formulas and a novel entropy-inversion formula, and we use them to test whether the entropy
is a super-additive function of the extensive variables. We find that super-additivity is typically satisfied,
but we find a counterexample for dyonic Kaluza-Klein black holes.
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I. INTRODUCTION

Since the early days of black hole thermodynamics there
have been suggestions that the thermodynamic of the inner,
Cauchy, horizons of charged and or rotating black holes
should be taken more seriously than it has been [1–10].
With the development of string theory approaches these
suggestions have become more insistent [11–17]. This
interest increased considerably with the observation that
the product of the areas and hence entropies of the inner and
outer horizon takes in many examples a universal form
which should be quantized at the quantum level [18–22].
Some of these papers, and others, e.g., Refs. [22–27],
encountered the same feature first noticed in [1]: the fact
that with a conventional first law of thermodynamics the
temperature of the inner horizon would be negative. The

authors of [22] chose to resolve this issue by defining
the temperature of the inner horizon to be the absolute value
of the “thermodynamic” temperature, and proposing an
appropriately-modified first law on the inner horizon to
compensate for this. In this paper we shall explore the
consequences of adhering to the standard first law of
thermodynamics for inner horizons, with the inevitable
result that the temperature will be negative there.
In the derivation of the first law of black hole dynamics

one finds, integrating in the region between the inner and
outer horizons, that

0 ¼ κþ
8π

dAþ −
κ−
8π

dA− þ � � � ; ð1:1Þ

where κ� are the surface gravities and A� the areas of the
outer and inner horizons respectively. (The contributions
from the angular momentum and charge(s) are represented
by the ellipses in this equation.) If, as turns out to be the
case in the examples we consider, the signs of dAþ and dA−
are opposite for a given change in the black-hole param-
eters, then the signs of the surface gravities at κþ and
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κ− must be opposite too. The surface gravity is defined by
evaluating

lμ∇μlν ¼ κlν ð1:2Þ

on the horizon, where lμ is the future-directed null
generator of the horizon, which coincides with a Killing
vector Kμ on the horizon. One then finds that whilst κ is
positive on the outer horizon, it is negative on the inner
horizon.1 Hawking showed that for an isolated event
horizon in an asymptotically flat spacetime (for which in
fact κ is positive), the temperature is κ=ð2πÞ. We shall
discuss the extension of Hawking’s calculation to the case
of inner horizons in the concluding section of this paper. In
what follows, however, we shall frequently make reference
to the formula

T ¼ κ

2π
; ð1:3Þ

with the understanding that T may not be a temperature
measured by a physical thermometer, but rather, as we shall
explain shortly, a “Gibbsian” temperature.
The occurrence of a negative κ on an inner horizon is

somewhat obscured in many discussions in the literature by
the fact that the surface gravity is commonly calculated by
evaluating

κ2 ¼ −
gμνð∂μK2Þð∂νK2Þ

4K2
ð1:4Þ

in the limit on the horizon. This formula is derivable from
(1.2), but the information about the sign of κ is lost, and
commonly the positive root is assumed when calculating κ
from (1.4). A guaranteed correct procedure is to use the
formula (1.2), working in a coordinate system that covers
the horizon region.
Another situation where one encounters two horizons is

when a positive cosmological constant Λ is involved and
one has both a black hole event horizon and a cosmological
event horizon bounding a static or stationary region [28].
A number of recent studies have pointed out that the
surface gravities of the black hole horizon κB and the
cosmological event horizon κC again have opposite signs
[29–31]. Most have followed the procedure adopted in [28]

and taken the physical temperature to be jκj
2π (e.g., see [32]).

A similar situation arises in the case of the C-metrics, which
contain both a black-hole horizon and an acceleration
horizon. Their surface gravities are of opposite signs.
In order to assess the status of these suggestions, in this

paper we shall reexamine the foundations of classical black
hole thermodynamics from the viewpoint of the approach
to classical thermodynamics advocated by Gibbs [33]. The
central idea of this approach is that the physical properties
of a substance are encoded into the shape of its Gibbs
surface, i.e. the surface given by regarding the height of the
surface as given by the total energy, regarded as a function
of the remaining extensive variables. From this point of
view, the temperature is given by the slope of the curve of
energy versus entropy. To this end, we shall need explicit
Christodoulou-Ruffini formulas, and a major goal of this
paper is to obtain these for a variety of black hole solutions.
As we shall see, it is a common feature of these examples
that the “Gibbsian temperature” thus defined, while pos-
itive for black hole event horizons, is negative for inner
horizons (i.e. Cauchy horizons) and for cosmological
horizons. We shall return to a discussion of the physical
consequences for spacetimes with two horizons in the
conclusions.
Let us recall that the formalism of thermodynamics,

applied to classical black holes, began with two indepen-
dent discoveries:

(i) Christodoulou’s concept of reversible and irrevers-
ible transformations such that the energy E of a
rotating black hole of angular momentum J and
momentum P may be expressed as

M2 ¼ M2
irr þ P2 þ J2

M2
irr

; ð1:5Þ

where the irreducible massMirr is nondecreasing [34].
(ii) Hawking’s theorem [35,36] that the area A of the

event horizon is nondecreasing.
In fact

A ¼ 16πM2
irr; ð1:6Þ

and for charged rotating Kerr-Newman black holes and
dropping the momentum contribution and setting J ¼ jJj,
one has [37] the Christodoulou-Ruffini formula:

M2 ¼
�
Mirr þ

Q2

4Mirr

�
2

þ J2

M2
irr

: ð1:7Þ

The obvious analogy of some multiple of the area of the
horizon with entropy became even more striking with the
discovery by Smarr [38] of an analogue of the Gibbs-
Duhem relation for homogeneous substances. For Kerr-
Newman black holes, this reads

1For example, in a static metric ds2 ¼ −hðrÞdt2 þ dr2=hðrÞ þ
r2ðdθ2 þ sin2 θdϕ2Þ one finds (after changing to a coordinate
system that covers the horizon region) from (1.2) that if
K ¼ ∂=∂t then κ ¼ 1

2
dh=dr, which is of the form of the negative

of the gradient of the gravitational potential, evaluated on the
horizon. If h ¼ ðr − rþÞðr − r−Þ=r2, as in the Reissner-
Nordström metric, then κþ ¼ ðrþ − r−Þ=ð2r2þÞ > 0, while
κ− ¼ −ðrþ − r−Þ=ð2r2−Þ < 0. In general, of course, the slope
of hðrÞ must always have opposite signs at two adjacent zeros,
and thus the surface gravities must have opposite signs.
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M ¼ 1

4π
κAþ 2ΩJ þΦQ; ð1:8Þ

where κ is the surface gravity, Ω the angular velocity andΦ
the electrostatic potential of the event horizon. The analogy
became almost complete with the formulation of three laws
of black hole mechanics, including the first law

dM ¼ 1

8π
κdAþ ΩdJ þΦdQ; ð1:9Þ

by Bardeen, Carter and Hawking [39]. Note that the
Smarr relation (1.8) follows from the first law (1.9) by
differentiating the weighted homogeneity relation

Mðλ2A; λ2J; λQÞ ¼ λM ð1:10Þ

with respect to λ and then setting λ ¼ 1.
The existence of a “first law” is not in itself surprising,

nor does it, in itself, imply any thermodynamic conse-
quences. Whenever one has a problem involving varying a
function subject to some constraints, and considering the
value of the function at critical points, one has a formula
analogous to (1.9). In the case of black hole solutions of the
Einstein equations, they are known to satisfy a variational
principle in which the mass is extremized keeping the
horizon area, angular momenta and charges fixed (see, e.g.,
[40–42]). Similar formulae arise in the theory of rotating
stars (see, e.g., [43]). The study of these variations is
sometimes referred to as comparative statics.
For homogeneous substances with pressure P, volume V

and internal energy U, it is well known that the Gibbs-
Duhem relation is equivalent to the statement that the Gibbs
free energy, or thermodynamic potential,

G ¼ U − TSþ PV; ð1:11Þ

vanishes identically. For black holes the Smarr relation
(1.8) implies that

G ¼ TSþΩJ: ð1:12Þ

Classically, a number of arguments led to the conclusion
that the laws of black hole mechanics were just analogous
to the laws of thermodynamics. One argument was that as
perfect absorbers, classical black holes should have vanish-
ing temperature and hence the entropy should be infinite
(cf. [44,45]). Another was based on dimensional reasoning.
In units where Boltzmann’s constant is taken to be unity,
entropy is dimensionless, but in classical general relativity
it is not obvious how to achieve this without introducing a
unit of length. The obvious guess for entropy would be
some multiple of the area A, but why not some monoton-
ically increasing function of the area? Despite these doubts
it was conjectured by Bekenstein [45] that when quantum
mechanics is taken into account some multiple of A

l2p
should

correspond to the physical entropy of a black hole.
This conjecture was subsequently confirmed at the semi-
classical level by Hawking [46,47], using quantum field
theory in a curved background. Given this, one recognizes
the Christodoulou-Ruffini formula (1.7) in the form

M ¼ MðS; J;QÞ ð1:13Þ

as an explicit expression for the analogue of the Gibbs
surface U ¼ UðS; VÞ for a homogeneous substance.
To summarize, the purpose of the present paper is to

reexamine these issues systematically, based on Gibbs’s
geometric viewpoint of the mathematical formalism of
thermodynamics [33]. This starts with a choice of pairs of
extensive and intensive variables and an expression for
some sort of “energy,” which is regarded as a function of
the extensive variables. For the black holes in asymptoti-
cally flat spacetimes that we shall consider, the energy is
taken to be the ADM mass M, and the extensive variables
Sμ are usually taken to be Sμ ¼ ðS; J;Qi; PiÞ ¼ ðS; sÞ,
where S ¼ 1

4
A and A is the area of the event horizon, J

is the total angular momentum andQi and Pi are N electric
andN magnetic charges.2 The index μ therefore ranges over
2þ 2N values. We have

M ¼ MðS; J;Qi; PiÞ ¼ MðSμÞ: ð1:14Þ

The intensive variables are taken to be Tμ ¼ ∂M
∂Sμ ¼

ðT;Ω;Φi;ΨiÞ ¼ ðT; tÞ where T is the temperature, Ω is
the angular velocity of the horizon, and Φi and Ψi are the
electrostatic and magnetostatic potentials.
The organization of this paper is as follows. In Sec. II,

we review the theory of Gibbs surfaces, and the various
thermodynamic metrics with which they may be equip-
ped. Section III forms the core of the paper. In it, we
give many new results for the thermodynamics of a
wide range of asymptotically-flat black holes. We begin
in subsections III A, III B and III C by reviewing how
the well-known Reissner-Nordström, Kerr and Kerr-
Newman black holes fit into the Gibbsian framework.
Subsection III D then provides a extensive discussion of
the thermodynamics of families of black holes in four-
dimensional STU supergravity. (The term STU supergrav-
ity was introduced in Ref. [49].) In particular, we give a
systematic discussion of the notion of the decomposition
of the system into left-handed and right-handed sectors,
and their associated thermodynamics. Subsection III E has
analogous results for five-dimensional STU super-
gravity black holes. Subsections III F and III G give
similar results for the general family of four-dimensional
Einstein-Maxwell-Dilaton (EMD) black holes, and a
two-field generalization. Included in the discussion of

2We shall not consider scalar charges and moduli [48] in this
paper.
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these two-field EMD black holes, we exhibit a new area-
product formula.
A rather general feature of many asymptoticaly flat black

holes with two horizons is that the product of the areas of
the two horizons is independent of the mass, and given in
terms of conserved charges and angular momenta, which
may plausibly be quantized at the quantum level. In Sec. IV,
we use this area-product formula to exhibit an intriguing
S → 1=S inversion symmetry of the Christodoulou-Ruffini
formulas for such black holes. This symmetry of the Gibbs
surface interchanges the positive and negative temperature
branches.
In Sec. V we extend our discussion to black holes that are

asymptotically AdS, or black holes with positive cosmo-
logical constant. In the AdS case the situation for inner and
outer horizons is broadly similar to that for the asymptoti-
cally flat case. For positive cosmological constant, the
black hole event horizon continues to have positive
Gibbsian temperature, but that of the cosmological horizon
is negative.
In Sec. VI, we revisit an old observation, that the entropy

of the Kerr-Newman solution is a super-additive function of
the extensive variables, and we its relation to Hawking’s
area theorem for black-hole mergers. We find that super-
additivity holds also for a wide variety of the asymptoti-
cally-flat examples that we considered in Sec. III. However,
we find that Kaluza-Klein dyonic black holes provide a
counterexample, and we speculate on the reason for this.
The paper ends with conclusions and future prospects in

Sec. VII.

II. THE GIBBS SURFACE AND
THERMODYNAMIC GEOMETRY

A. The Gibbs surface

In this section we shall briefly summarize those aspects
of the Gibbs surface which are relevant for the latter part of
the paper. If we think of ðSμ;MÞ as coordinates in R3þ2N

then (1.14) defines a hypersurface G ⊂ R3þ2N whose
conormal is ðTμ;−1Þ. Since in our case M is a unique
function of the extensive variables, the intensive variables
are unique functions of the extensive variables: Tμ ¼
TμðSνÞ. The converse need not be true. If the function
MðSμÞ were convex, then for fixed conormal ðTμ;−1Þ the
plane

TμSμ −M ¼ 0 ð2:1Þ

would touch the surface at a unique point ðSμ;MÞ. For a
smooth Gibbs surface G, convexity requires that the
Hessian

gWμν ¼
∂2M

∂Sμ∂Sν ð2:2Þ

be positive definite and one may then define a positive
definite metric

ds2 ¼ gWμνdSμdSν; ð2:3Þ

called the Weinhold metric [50]. Because one of the
components of the Weinhold metric (2.2) is related to
the heat capacity3 at constant J and Qi and Pi, namely

gWSS ¼ TC−1
s ¼ ∂T

∂S
����
s
; ð2:4Þ

and neutral black holes or black holes with small charges or
angular momentum have negative heat capacities, the Gibbs
surface G is typically not convex and theWeinhold metric for
black holes is typically Lorentzian [51].
If one defines a totally symmetric co-covariant tensor of

rank three by

Cλμν ¼
∂3M

∂Sλ∂Sμ∂Sν ; ð2:5Þ

the Riemann and Ricci tensors and the Ricci scalar of the
Weinhold metric are given by

Rα
βμν ¼ −

1

4
½Cα

μλCλ
νβ − Cα

νλCλ
μβ�;

Rβν ¼ −
1

4
½Cα

αλCλ
βν − Cαλ

νCλαβ�;

R ¼ −
1

4
½Cα

αλCλν
ν − CανλCανλ�; ð2:6Þ

all indices being raised with gμνW , the inverse of gWμν.
Divergences in R are sometimes held to be a diagnostic
for phase transitions.
The geometry of the Gibbs surface is essentially the

geometry behind the first law of thermodynamics. As we
remarked previously, this fits into a pattern that is more
general than just the theory of black holes, and arises
whenever one is considering a variational problem with
constraints. Since this is not as widely known as it deserves
to be, we shall pause to describe the general situation, and
then we shall restrict attention to its application to black
hole theory. Consider a real-valued function fðxÞ on some
space X with coordinates x, subject to the n constraints that
certain functions CaðxÞ ¼ ca, 1 ≤ a ≤ n, where the ca are
constants. Adopting the method of Lagrange multipliers,
we require that

δf − λaδCa ¼ 0; ð2:7Þ

3We use the term “heat capacity” rather than “specific heat”
because the latter is defined to be per unit mass.
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for all variations in X. Suppose the solutions of these
equations lie in an n-dimensional submanifold S of X,
parametrized by the values of the constraints, ca. One may
restrict the variations in (2.7) to directions within the
solution space S, in which case we obtain the formula

δfðcÞ ¼ λaδca: ð2:8Þ

Geometrically, we can think of this situation as follows. We
construct a (2nþ 1)-dimensional space with coordinates
ðf; λa; caÞ. Since, locally at least, f and λa may be thought
of as functions of the ca, we obtain an n-dimensional
surface in this space. From (2.8), it follows that the
Lagrange multipliers λa are determined by the tangent
planes to the surface. From now on, we shall restrict
attention to the thermodynamic case, with f being the total
energy, or mass, M, and the ca being ðS; J;Qi; PiÞ.
The thermodynamic phase space has coordinates

ðSμ; TμÞ, and is therefore ð4þ 4NÞ-dimensional. We then
have a ð2þ 2NÞ-dimensional submanifold LA∶Tμ ¼
TμðSνÞ of the thermodynamic phase space, i.e. LA ⊂
R4þ4N with coordinates ðTμ; SνÞ, equipped with the sym-
plectic form

ω ¼ dTμ ∧ dSμ: ð2:9Þ

Since, when pulled back to LA we have TμdSμ ¼ dMðSμÞ,
the pull-back of ω to LA vanishes,

ωjLA ¼ 0: ð2:10Þ

In other words, LA is a Lagrangian submanifold of R4þ4N .
One may go a step further and lift LA to R5þ4N with

coordinates ðPμ; Sν;MÞ, equipped with the contact form

η ¼ TμdSμ − dM; ð2:11Þ

as a Legendre submanifold LE, i.e. one for which

ηjLE ¼ 0: ð2:12Þ

In most of the cases we shall be considering, for
dimensional reasons MðS; J;Qi; PiÞ satisfies the weighted
homogeneity relation

Mðλ2A; λ2J; λQi; λPiÞ ¼ λM: ð2:13Þ

Differentiating with respect to λ and then setting λ ¼ 1
yields the Smarr relation [38]

M ¼ 2TSþ 2ΩJ þΦiQi þΨiPi: ð2:14Þ

The Gibbs function, or thermodynamic potential, G, is the
total Legendre transform of the mass with respect to the
extensive variables. It satisfies

dG ¼ −SμdTμ; ð2:15Þ

where

GðTμÞ ¼ M − TμSμ

¼ M − TS − ΩJ −ΦiQi −ΨiPi

¼ TSþ ΩJ: ð2:16Þ

Note that G is not necessarily a single-valued function of
the intensive variables Tμ, unless the Gibbs surface G is
convex. The Hessian of the Gibbs function with respect to
the intensive variables is related to the Weinhold metric by
the easily verified formula

∂2G
∂Tμ∂Tν

∂2M
∂Sν∂Sλ ¼ −δμλ : ð2:17Þ

It provides a metric on the space of intensive variables.
It is important to realize that from the point of view of

the symplectic and contact structures described above, the
coordinates ðSμ; Tμ;MÞ have a privileged status and it
makes little physical sense to consider arbitrary coordinate
transformations even if they preserve the symplectic or
contact structures. Only a limited number of Legendre
transformations are of physical relevance. It is physically
meaningful to consider positive linear combinations of the
vectors Sμ, i.e. sending Sμ → Dμ

νSν, where Dμ
ν is a

constant diagonal matrix, and also to reverse the sign of
any but the first component (i.e. the first diagonal compo-
nent of Dμ

ν, associated with scaling the entropy itself,
should be positive). In other words, physical states are
future directed with respect to the first component.
In the literature on thermodynamic metrics, much dis-

cussion has focused on whether or not the Ricci scalar is a
good indicator of phase transitions. Because, as explained
above, general coordinate transformations do not have
physical significance, it is not obvious that one should
be concerned with a scalar such as the Ricci scalar. In fact,
what is more relevant is the behavior of the Hessian, i.e. the
thermodynamic metric. If this is not invertible then a
divergence of the Ricci scalar will occur, but the value
of the Ricci scalar itself does not appear in general to have
any physical significance.

B. Thermodynamic metrics

It has been traditional in the literature to focus on the
Ruppeiner and Weinhold metrics, and this is especially
convenient if one has available an explicit Christrodoulou-
Ruffini formula. However, as in standard text books on
thermodynamics, it is frequently convenient to introduce a
variety of other thermodynamic potentials related by
Legendre transformations, depending upon what quantities
are being held fixed. In the context of black hole thermo-
dynamics this corresponds to what boundary conditions are
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being considered. The consequent uniqueness or “No Hair”
properties will depend in general on precisely what is to be
held fixed. This lack of uniqueness is what is often referred
to as a “phase transition,” but as in standard thermody-
namics it is important to specify the physical conditions
under which the phase transition takes place.
From the point of view of the Gibbs surface G,

geometrically this should really be thought of as an n-
dimensional Legendrian submanifold of the (2nþ 1)-
dimensional Legendre manifold whose coordinates consist
of the total energy and the n pairs of intensive and extensive
variables. Given a choice of n coordinates chosen from
these 2n variables, one may locally describe the surface in
terms of the associated thermodynamic potential, and from
that compute the associated Hessian metric. But globally, it
is not in general true that the Gibbs surface equipped with
the choice of Hessian is a single-valued nonsingular graph
over the n-plane spanned by the chosen set of n coor-
dinates. It should also be remembered that although the
Hessian metrics may be thought of as the pull-back to G of a
flat metric on the 2n-dimensional flat hyperplane spanned
by the choice n pairs of intensive and extensive variables,
the signature of that flat metric depends upon that choice.
Here we review some key results on the general classes

of thermodynamic metrics that were presented in [52].
Consider first the energy M ¼ MðSμÞ, which obeys the
first law

dM ¼ TμdSμ ¼ TdSþΩdJ þΦidQi þ � � � : ð2:18Þ

One can define from this the metric

ds2ðMÞ ¼ dTμ ⊗s dSμ; ð2:19Þ

where Tμ are viewed as functions of the Sμ variables, with

Tμ ¼
∂M
∂Sμ ; ð2:20Þ

and ⊗s denotes the symmetrized tensor product. In the
usual parlance of general relativity we may simply write
(2.19) as

ds2ðMÞ ¼ dTμdSμ: ð2:21Þ

In view of (2.20) we have

ds2ðMÞ ¼ ∂2M
∂Sμ∂Sν dS

μdSν; ð2:22Þ

which is nothing but the Weinhold metric.
One can obtain a set of conformally related metrics by

dividing (2.18) by any one of the intensive variables Tμ for
μ ¼ μ̄ where μ̄ denotes the associated specific index value
of the chosen intensive variable, and then constructing the
thermodynamic metric ds2ðSμ̄Þ for the conjugate extensive

variable by using the same procedure as before [52]. Thus,
e.g., if we choose μ̄ ¼ 0, so that T is the chosen intensive
variable and S its conjugate, then we rewrite (2.18) as

dS ¼ dM
T

−
1

T
TadSa; ð2:23Þ

where we have split the μ index as μ ¼ ð0; aÞ, and then
write the associated thermodynamic metric

ds2ðSÞ ¼ −
1

T2
dTdM þ Ta

T2
dTdSa −

1

T
dTadSa

¼ −
1

T
ðdTdSþ dTadSaÞ

¼ −
1

T
ds2ðMÞ: ð2:24Þ

The second line was obtained by using (2.18), and the
third line follows from (2.22). Thus ds2ðSÞ, which is the
Ruppeiner metric, is conformally related by the factor
−1=T to the Weinhold metric. Weinhold and Ruppeiner
metrics were introduced into black hole physics in [51,53].
The literature is by now quite extensive. For a recent review
see [54]. Other conformally-related metrics can be defined
by dividing (2.18) by any other of the intensive variables
and the repeating the analogous calculations. For example,
if there is a single charge Q and potential Φ, then dividing
the first law dM ¼ TdSþΦdQþ � � � byΦ and calculating
the metric ds2ðQÞ, one obtains

ds2ðQÞ ¼ −
1

Φ
ds2ðMÞ: ð2:25Þ

Further thermodynamic metrics that are not merely
conformally related to the Weinhold metric can be obtained
by making Legendre transformations to different energy
functions before implementing the above procedure [52].
For example, if one make the Legendre transform to the
free energy F ¼ M − TS, for which one has the first law

dF ¼ −SdT þ TadSa; ð2:26Þ

then the associated thermodynamic metric will be

ds2ðFÞ ¼ −dTdSþ dTadSa; ð2:27Þ

where S and Ta, which are now the intensive variables, are
viewed as functions of T and Sa. The metric components
in ds2ðFÞ are therefore given by the Hessian of F. As
observed in [52], the metric ds2ðFÞ has the property that,
unlike the Weinhold or Ruppeiner metrics, its curvature is
singular on the so-called Davies curve where the heat
capacity diverges.
Clearly, by making different Legendre transformations,

one can construct many different thermodynamic metrics,
which take the form
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ds2 ¼
X
μ≥0

ημdTμdSμ; ð2:28Þ

where each ημ can independently be either þ1 or −1. The
overall sign is of no particular importance, and so metrics
related by making a complete Legendre transformation of
all the intensive/extensive pairs in a given energy definition
really yields an equivalent metric. For example, the Gibbs
energy G ¼ M − TμSμ gives the metric

ds2ðGÞ ¼ −dTμdSμ; ð2:29Þ

which is just the negative of the Weinhold metric ds2ðMÞ
in (2.22).
One further observation that was emphasized in [52]

is that one is not, of course, obliged when writing a
thermodynamic metric to use the associated extensive
variables as the coordinates. It is sometimes the case, as
we shall see in later examples, that although one can
calculate the thermodynamic variables in terms of the
metric parameters, one cannot explicitly invert these
relations. In such cases, one can always choose to use
the metric parameters as the coordinates when writing the
thermodynamic metrics. Geometric invariants such as
the Ricci scalar of the thermodynamic metric will be the
samewhether written using the thermodynamic variables or
the metric parameters, since one is just making a general
coordinate transformation. Thus even in cases where the
relations between the thermodynamic variables and metric
parameters are too complicated to allow one to find an
explicit Christodoulou-Ruffini formula to define the Gibbs
surface, one can still study the geometrical properties of the
various thermodynamic metrics.

III. ASYMPTOTICALLY FLAT BLACK HOLES

In this section, we shall illustrate the issues raised in the
previous section by listing the cases of asymptotically-flat
black holes for which we have explicit formulae. Whilst the
formulae for the Kerr-Newman family of black holes are
well known, we first review these in some detail in
preparation for our discussion of much less well known
black holes, such as those that occur in supergravity or
Kaluza-Klein theories.

A. The Gibbs surface for Reissner-Nordström

The Gibbs surface G for the Reissner-Nordström solution
is given by the Christodoulou-Ruffini formula

M ¼
ffiffiffiffiffiffi
S
4π

r
þQ2

4

ffiffiffiffiffiffi
4π

S

r
¼ Mirr þ

Q2

4Mirr
; ð3:1Þ

where Mirr ¼
ffiffiffiffi
S
4π

q
. It is convenient to envisage ðM;Q; SÞ

as a right-handed Cartesian coordinate system with M > 0

taken vertically and −∞ < Q < ∞ and S > 0 spanning a
horizontal half-plane. In ðM;Q;

ffiffiffi
S

p Þ coordinates the sur-
face is part of the quadratic cone

M2 ¼
� ffiffiffi

S
π

r
−M

�
2

þQ2: ð3:2Þ

We have

M ≥ jQj; ð3:3Þ

with M > jQj being subextremal black holes. Rewriting
(3.2) as

S2 − 2πð2M2 −Q2ÞSþ π2Q4 ¼ 0; ð3:4Þ

the two solutions for S at fixed M and Q are given by

S�
π

¼ 2M2 −Q2 � 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ð3:5Þ

with these corresponding to the entropies (i.e. one quarter
the area) of the outer (Sþ) and inner (S−) horizons
respectively. It is straightforward to see that the temperature
T ¼ ∂M=∂S is positive on the outer horizon and negative
on the inner horizon.
Equality, M ¼ jQj, corresponds to extreme black holes.

They lie on the space curve γextreme given by the intersection
of the two surfaces

M ¼ jQj; M ¼
ffiffiffi
S
π

r
: ð3:6Þ

The first is a plane orthogonal to the Q plane, and the
second a parabolic cylinder with generators parallel to the
Q axis. The projection of γextreme onto the Q–S plane is
given by the parabola

S ¼ πQ2: ð3:7Þ

Roughly speaking, the Gibbs surface G is folded over the
space curve γextreme. Now the Weinhold metric, or equiv-
alently the Hessian of MðS;QÞ, is given by

ds2W ¼
ffiffiffiffiffiffi
4π

S

r �
1

2
dQ2 −

Q
2S

dQdSþ 1

16S2

�
3Q2 −

S
π

�
dS2
�
:

ð3:8Þ

Note that ∂2M∂S2 changes sign, passing through zero, along the
space curve γDavies, given by

S ¼ 3πQ2 ¼ 9

4
M2: ð3:9Þ
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Since the heat capacity at constant charge, CQ, is given by

CQ ¼ T

�∂2M
∂S2

�
−1

Q
; ð3:10Þ

it also changes sign across the curve γDavies, on which it
diverges [55]. This is often taken as a sign of a phase
transition. In support of this interpretation, it has been
shown [56] that the single negative mode of the
Lichnerowicz operator passes through zero and becomes
positive as Q is increased across γDavies.
The curve γDavies is an example of what, in the literature

on phase transitions, is often referred to as a spinodal curve,
and is usually defined in terms of the vanishing of a
diagonal element of the Hessian of the Gibbs function. In
the present case, the Gibbs function is

G ¼ M − TS −ΦQ ¼ ð1 −Φ2Þ2
16πT

; ð3:11Þ

and the Hessian is given by

 ∂2G
∂T2

∂2G
∂T∂Φ

∂2G
∂Φ∂T

∂2G
∂Φ2

!
¼
 ð1−Φ2Þ2

8πT3

ð1−Φ2ÞΦ
4πT2

ð1−Φ2ÞΦ
4πT2 − ð1−3Φ2Þ

4πT

!
: ð3:12Þ

The spinodal curve is thus given by Φ2 ¼ � 1
3
, which, in

terms of S and Q, coincides with (3.9).
The Weinhold metric may written as

ds2W ¼
ffiffiffiffiffiffi
4π

S

r �
1

2

�
dQ −

Q
2S

dS
	
2
−

1

16S2

�
S
π
−Q2

�
dS2
�
;

ð3:13Þ

and hence the Gibbs surface for subextremal black holes
has a Hessian, or equivalently a Weinhold metric, that is
nonsingular but Lorentzian. Moreover the Gibbs surface for
nonextreme black holes is nonconvex. Expressed in terms
of S and the electrostatic potential

Φ ¼ ΦðS;QÞ ¼ Q

ffiffiffi
π

S

r
; ð3:14Þ

the Weinhold metric becomes

ds2W ¼ 1

8
ffiffiffi
π

p
S3=2

½−ð1 −Φ2ÞdS2 þ 8S2dΦ2�: ð3:15Þ

Note that the metric is nonsingular when either Φ2 < 1,
corresponding to the outer horizon, or Φ2 > 1, correspond-
ing to the inner horizon. It changes signature from ð−þÞ to
ðþþÞ as Φ goes from Φ2 < 1 to Φ2 > 1. The heat capacity
passes through infinity at Φ2 ¼ 1

3
.

Expressed in terms of Φ and S, the temperature is given
by T ¼ ð1 −Φ2Þ=ð4 ffiffiffiffiffiffi

πS
p Þ, and so the Ruppeiner metric is

given by

ds2R ¼ −
1

T
ds2W ¼ −

dS2

2S
þ 4S

dΦ2

1 −Φ2

¼ −dτ2 þ τ2dσ2þ; ð3:16Þ

where we have defined, for the outer horizon,

S ¼ 1

2
τ2; Φ ¼ sin

σþffiffiffi
2

p : ð3:17Þ

The metric in the second line of (3.16) is the Milne metric
on a wedge of Minkowski spacetime inside the light
cone. This is made apparent by introducing new coordi-
nates according to

t ¼ τ cosh σþ; x ¼ τ sinh σþ; ð3:18Þ

in terms of which the Ruppeiner metric becomes

ds2R ¼ −dt2 þ dx2; S ¼ Sþ ¼ 1

2
ðt2 − x2Þ: ð3:19Þ

Since the range of σþ is − πffiffi
2

p ≤ σþ ≤ πffiffi
2

p , the extremal

solutions lie on the timelike geodesics t ¼ �arctanh πffiffi
2

p .

The heat capacity changes sign at Φ2 ¼ 1
3
.

If Φ2 > 1, corresponding to the inner horizon, then, if
Q > 0, substituting

Φ ¼ cosh
σ−ffiffiffi
2

p ð3:20Þ

(or Φ ¼ − coshðσ−=
ffiffiffi
2

p Þ if Q < 0) into (3.16) gives

ds2 ¼ −ðdτ2 þ τ2dσ2−Þ: ð3:21Þ

The metric in brackets is the flat metric on Euclidean space
in polar coordinates, except that the range of the coordinate
σ− is 0 ≤ σ− ≤ ∞, so we have an infinitely branched
covering of the Euclidean plane, with the branch point
at the origin. The Weinhold metric is itself positive definite.
Thus the Gibbs surface is convex and the entropy surface is
concave for the inner horizon.
The flatness of the Ruppeiner metric for Reissner-

Nordström has given rise to much comment, because
singularities of the Ruppeiner metric are expected to reveal
the occurrence of phase transitions. However, the geomet-
rical significance of the change in sign of the heat capacity
is that for fixed charge Q, there is a maximum temperature.
In fact
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T ¼ TðS;QÞ ¼ 1

2S

ffiffiffiffiffiffi
S
4π

r
−
Q2

8S

ffiffiffiffiffiffi
4π

S

r
; ð3:22Þ

so for given jQj and positive T less than
ffiffi
3

p
8πjQj, there are two

positive values of S and hence two nonextreme black holes.
By contrast, since the electrostatic potential Φ satisfies
(3.14), there is a unique positive value of S and hence a
unique black hole for given Q and Φ2 < 1.
Every two-dimensional metric is conformally flat.

Therefore it is not surprising that both the Weinhold
and Ruppeiner metrics for Reissner-Nordström are con-
formally flat. It is, however, nontrivial that the Ruppeiner
metric is flat. It has recently been pointed out [57] that one
can also consider the Hessian of the charge Q, considered
as a function of the mass and entropy, as a metric ds2Q.
In fact ds2Q ¼ −Φ−1ds2W , as in (2.25). Geometrically, there
is no reason to give a preference to any of the metrics ds2W ,
ds2R or ds2Q. Since T and Φ are both nonsingular on the
curve along which the heat capacity diverges, none of
the three metrics is capable of detecting the associated
“phase transition.”
As was shown in [52], and we reviewed in Sec. II B,

the thermodynamic metric (2.27) constructed from the
free energy F ¼ M − TS does exhibit a singularity on
the Davies curve where the heat capacity diverges. For the
Reissner-Nordström metric (2.27) is the restriction of
ds2ðFÞ ¼ −dTdSþ dΦdQ to the Gibbs surface, and hence
we find

ds2ðFÞ ¼
ffiffiffi
π

S

r
dQ2 þ 1

8
ffiffiffi
π

p
S5=2

ðS − 3πQ2ÞdS2: ð3:23Þ

A straightforward calculation shows that its Ricci scalar is
given by

RF ¼ 4
ffiffiffi
π

p
S3=2

ðS − 3πQ2Þ2 ; ð3:24Þ

which does indeed diverge on the Davies curve S ¼ 3πQ2.

B. The Gibbs surface for Kerr

This is qualitatively very similar to the Reissner-
Nordström case. To begin with, we shall summarize, in
our notation, some results first presented by Curir [1]. One
has

M2 ¼ S
4π

þ πJ2

S
; ð3:25Þ

and MðS; JÞ at fixed J has a minimum value when

S ¼ 2πjJj; M ¼
ffiffiffiffiffiffi
jJj

p
: ð3:26Þ

This is the extreme case and, as before, the inner horizon
has a negative temperature, a point made first by Curir [1].
Explicitly one has

T ¼ 1

8πM

�
1 −

4π2J2

S2

�
: ð3:27Þ

For any given values of J and of M > 0, there are two
positive solutions, Sþ and S−, of (3.25), where Sþ ≥ 2πjJj
corresponds to one quarter of the area of the outer horizon
of a sub-extremal black hole and S− ≤ 2πjJj corresponds to
one quarter of the area of the inner horizon of a sub-
extremal black hole. From (3.25), they obey the entropy
product formula

S−Sþ ¼ 4π2J2: ð3:28Þ

By (3.27), the outer horizon has a positive temperature,
which we label Tþ, and the inner horizon has a negative
temperature, which we label T−. One has [1]

T� ¼ S� − S∓
8πMS�

; Ω� ¼ πJ
MS�

; ð3:29Þ

whereΩ� ¼ ð∂M=∂JÞS� . Note that it follows from the first
equation in (3.29) that

TþSþ þ T−S− ¼ 0: ð3:30Þ

Note also that M and J, which are conserved quantities
defined in terms of integrals at infinity, are universal and do
not carry � labels.
In terms of Sþ and S−, one has, from (3.25),

M2 ¼ Sþ
4π

þ S−
4π

: ð3:31Þ

Therefore

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ þ S−

p
ffiffiffiffiffiffi
4π

p ≤
ffiffiffiffiffiffi
Sþ
4π

r
þ

ffiffiffiffiffiffi
S−
4π

r
; ð3:32Þ

with equality be attained if J ¼ 0. If one varies M, one has

dM ¼ T�dS� þ Ω�dJ: ð3:33Þ

There is also a modified Smarr formula

M ¼ TþSþ þ T−S− þ ΩþJ þΩ−J ¼ ðΩþ þ Ω−ÞJ;
ð3:34Þ

where the second equality follows from (3.30). This way of
writing the first law of thermodynamics was employed in
[58] for deriving a simple formula for holographic com-
plexity. These results were interpreted in [1] as indicating
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that the total energy of a rotating black hole may be
regarded as receiving contributions from two thermody-
namic systems; one associated with the outer horizon and
the other with the inner horizon. The negative temperature
was interpreted in terms of Ramsey’s account of the
thermodynamics of isolated spin systems [59].
Okamoto and Kaburaki [10] introduced the dimension-

less parameter h ¼ a
Mþ

ffiffiffiffiffiffiffiffiffiffi
M2−a2

p in their discussion of the

energetics of Kerr black holes and noticed that it satisfies
the quadratic equation

h2 −
2hM2

jJj þ 1 ¼ 0: ð3:35Þ

It was initially assumed that only the solution of (3.35)
satisfying 0 ≤ h ≤ 1 has physical significance. However
Abramowicz [60] drew their attention to [1,2], and they
realized that the other root of (3.35), which satisfies
1 ≤ h ≤ ∞ and is given by h ¼ a

M−
ffiffiffiffiffiffiffiffiffiffi
M2−a2

p , is associated

with the inner horizon [10]. Expressing the thermodynamic
variables in terms of h they established (3.30) if T− is taken
to be negative, and they also obtained the formula

Ωþ
Tþ

þ Ω−

T−
¼ 0: ð3:36Þ

C. Kerr-Newman black holes

Kerr-Newman black holes may have both electric and
magnetic charges. By electric-magnetic duality invariance
one may set the magnetic charge P to zero. To restore
electric-magnetic duality invariance it suffices to replace
Q2 by Q2 þ P2 in all formulas thus producing a manifestly
Oð2Þ invariant Gibbs surface.
The mass of the Kerr-Newman black hole is given by

M ¼


π

4S

�
S
π
þQ2

�
2

þ πJ2

S

�1
2

; ð3:37Þ

and therefore it satisfies

M ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þQ4

4

r
þQ2

2

s
; ð3:38Þ

acquiring its least value on the surface γextreme in the three
dimensional space of extensive variables given by

S ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þQ4

p
; ð3:39Þ

on which the temperature

T ¼
�∂M
∂S
�

J;Q
¼ 1

8πM



1 −

π2

S2
ð4J2 þQ4Þ

�
ð3:40Þ

vanishes. If J ¼ 0, then (3.38) is the usual Bogomolnyi
bound [61]. One also has

Ω ¼ πJ
MS

; Φ ¼ πQ
2MS

�
Q2 þ S

π

�
: ð3:41Þ

The explicit formulas (3.37), (3.40) and (3.41) allow a lift
of the Gibbs surface G to a Lagrangian submanifoldL inR6

and a Legendrian submanifold in R7. The entropy product
law becomes

SþS− ¼ π2ð4J2 þQ4Þ; ð3:42Þ

where the − refers to the inner and þ to outer horizon.
The temperatures and angular velocities of the two

horizons are given by

T� ¼ S� − S∓
8πMS�

; Ω� ¼ πJ
MS�

; ð3:43Þ

and one has

SþTþ þ S−T− ¼ 0: ð3:44Þ

There is a conventional first law for both horizons:

dM ¼ T�dS� þ Ω�dJ þΦ�dQ; ð3:45Þ

and a modified Smarr formula

M ¼ TþSþ þ T−S− þ ΩþJ þΩ−J þ
1

2
ΦþQþ 1

2
Φ−Q

¼ ðΩþ þ Ω−ÞJ þ
1

2
ðΦþ þΦ−ÞQ: ð3:46Þ

D. STU black holes

Four-dimensional black holes in string theory or
M-theory can be described as solutions of N ¼ 8 super-
gravity. The most general black holes are supported by just
four of the 28 gauge fields, in the Cartan subalgebra of
SOð8Þ. The black holes can therefore be described just
within the N ¼ 2 STU supergravity theory, which is a
consistent truncation of the N ¼ 8 theory whose bosonic
sector comprises the metric, the four gauge fields, and six
scalar fields. Black holes of the STU model are para-
metrized by massM, angular momentum J and four electric
Qi (i ¼ 1, 2, 3, 4) and four magnetic charges Pi (i ¼ 1, 2, 3,
4). The most general black hole solution was obtained by
Chow and Compère [62] by solution generating techniques.
We shall follow the usual conventions for STU super-

gravity, in which the normalization of the gauge fields FðiÞ
is such that if the scalar fields are turned off, the Lagrangian
will take the form L ¼ ffiffiffiffiffiffi−gp ½R − 1

4

P
iðFðiÞÞ2 þ � � �� (see

Appendix B for a presentation of the bosonic sector of the
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STU supergravity Lagrangian). This contrasts with the
conventional normalization L¼ ffiffiffiffiffiffi−gp ðR−F2Þ, in Gaussian
units, which we use when describing the pure Einstein-
Maxwell theory. Since this means that the charge normali-
zation conventions will be different in the two cases, we
shall briefly summarize our definitions here. If we consider
the Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p ðR − γF2Þ; ð3:47Þ

one can derive by considering variations of the associated
Hamiltonian that black holes will obey the first law

dM ¼ κ

8π
dAþΦdQþΩdJ; ð3:48Þ

where κ is the surface gravity, Φ is the potential difference
between the horizon and infinity (with the potential being
equal to ξμAμ, where ξμ is the future-directed Killing vector
that is null on the horizon and is normalized such that
ξμξμ → −1 at infinity). The electric charge Q is given by

Q ¼ γ

4π

Z
�F: ð3:49Þ

Thus in Einstein-Maxwell theory, with L ¼ ffiffiffiffiffiffi−gp ðR − F2Þ,
we shall have

Q ¼ 1

4π

Z
�F; ð3:50Þ

while in STU supergravity we shall have (neglecting the
scalar fields for simplicity4)

Qi ¼
1

16π

Z
�FðiÞ: ð3:51Þ

The black hole solutions have two horizons, with the
product of the horizon entropies quantized:

SþS− ¼ 4π2jJ2 þ Δj; ð3:52Þ

where Δ is the Cayley hyperdeterminant ΔðQi; PiÞ:

Δ ¼ 16



4ðQ1Q2Q3Q4 þ P1P2P3P4Þ þ 2

X
i<j

QiQjPiPj

−
X
i

ðQiÞ2ðPiÞ2
�
: ð3:53Þ

Note that Eq. (3.52) has previously appeared in the
literature without the absolute value symbol (e.g., in
[62]). We have written (3.52) with an absolute value sign
since Δ, and hence Δþ J2, can be negative; for example
for a static Kaluza-Klein dyonic black hole. (In [62] it was
proposed that S− is negative when Δþ J2 < 0, but this
would contradict the fact that, e.g., the area of the inner
horizon of the static Kaluza-Klein dyonic black hole is
positive.)
It should be noted that if J vanishes and Δ ¼ 0, then

S− will vanish also. In this case there is no nonsingular
inner horizon.
The entropy formulas (3.52) can be cast in the form

Sþ ¼ SL þ SR; S− ¼ jSL − SRj; ð3:54Þ

with

SL ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ Δ

p
; SR ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F − J2

p
; ð3:55Þ

where F is another complicated expression that is a
function of M, Qi and Pi only [62]. Note that it follows
from (3.54) that Sþ ≥ S−. Unlike [62], we have put an
absolute value sign around ðSL − SRÞ in the expression for
S−, since, for the reasons discussed above, there can be
circumstances where SL < SR, but S− should be non-
negative. Note that F þ Δ is always non-negative, and
F − J2 is non-negative provided that the black hole is not
overrotating [62]. The quantities SL and SR are both non-
negative. In the extremal limit F − J2 ¼ 0, one gets the
extremal value for the entropy Sþ ¼ S− ¼ 2π

ffiffiffiffiffiffiffijΔjp
. This

was seen for the BPS (Bogomol’nyi-Pasad-Sommerfield)
solutions (F ¼ 0 and J2 ¼ 0) in [13].
Note from (3.55) that while the right-moving entropy SR

is a function of all the extensive variables ðM;Qi; Pi; JÞ, the
left-moving entropy SL is a function of ðM;Qi; PiÞ but
not J [62]. This was noted previously in the special case
of the four-charge black holes characterized by ðM;Qi; JÞ
in [11,63]. The expressions (3.55) may in principle
be inverted to give two different Christodoulou-Ruffini
formulas:

M¼MðSL;Qi;PiÞ; and M¼MðSR;Qi;Pi;JÞ: ð3:56Þ

The structure (3.55) ensures that the two entropies Sþ
and S− are solutions of the quadratic equation

4In general, including the scalar fields, and writing the
Lagrangian as a 4-form, we shall have L ¼ R � 1 − 1

2
MijðΦÞ�

FðiÞ ∧ FðjÞ − 1
2
NijðΦÞFðiÞ ∧ FðjÞ þ � � �, where FðiÞ ¼ dAðiÞ. The

electric charges can be written as

Qi ¼ −
1

16π

Z
δL

δFðiÞ :

(Here the variational derivative is defined by δX ¼ ðδX=δFÞ ∧
δF. For example if X¼u�F∧FþvF∧F then δX=δF ¼
2u � F þ 2vF.) The magnetic charges are given by Pi¼ 1

16π

R
FðiÞ.
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S2 − SΣþ 4π2jJ2 þ Δj ¼ 0; ð3:57Þ

where Σ ¼ SL þ SR þ jSL − SRj, and we employed (3.54),
(3.55) and (3.52). Note that Σ ¼ 2SL if SL > SR, which
corresponds to J2 þ Δ > 0, whilst Σ ¼ 2SR if SL < SR,
corresponding to J2 þ Δ < 0. From (3.57) we can deduce

∂M
∂S

∂Σ
∂M
����
ðQi;Pi;JÞ

¼


1 −

4π2jJ2 þ Δj
S2

�
¼ 1

S



S −

SþS−
S

�
:

ð3:58Þ

Since Sþ ≥ S−, the final expression in (3.58) is non-
negative for S ¼ Sþ, and nonpositive for S ¼ S−. Since
∂M
∂S jðQi;Pi;JÞ ¼ T, and since ∂Σ

∂M jðQi;Pi;JÞ is independent of
whether one takes S ¼ Sþ or S ¼ S−, it then follows that

SþTþ þ S−T− ¼ 0: ð3:59Þ

In particular, this implies that Tþ and T− must have
opposite signs.
As well as considering the left-moving and right-moving

entropies SL and SR, one can also introduce left-moving
and right-moving temperatures TL and TR, defined by [15]

1

TL
¼ 1

Tþ
þ 1

T−
;

1

TR
¼ 1

Tþ
−

1

T−
: ð3:60Þ

These definitions are motivated by the fact that when one
calculates scattering amplitudes for test fields propagating
in the black-hole background, one finds that they factorize
into the product of thermal Boltzmann factors for the
temperatures TL and TR respectively [15]. Using (3.59),
together with the expressions for Sþ and S− in terms of SL
and SR in (3.54), it follows from (3.60) that

SL ≥ SR∶
SL
TL

¼ SR
TR

;

SL ≤ SR∶
SR
TL

¼ SL
TR

; ð3:61Þ

for the two cases that we described previously. From its
definition, TR is obviously non-negative since Tþ ≥ 0 and
T− ≤ 0. It is then evident from (3.61) that TL is non-
negative also, since we already know that SL and SR are
non-negative.
We can also derive, from

Ω ¼ ∂M
∂J
����
ðQi;Pi;SÞ

¼ ∂M
∂S

∂S
∂J
����
ðQi;Pi;SÞ

; ð3:62Þ

and using either (3.57) or else simply writing Sþ and S− in
terms of SL and jJ2 þ Δj by using (3.52), that in the two
cases SL ≥ SR and SL ≤ SR we have

SL ≥ SR∶ ΩþSþ ¼ Ω−S−;
Ωþ
Tþ

¼ −
Ω−

T−
;

SL ≤ SR∶ ΩþSþ ¼ −Ω−S−;
Ωþ
Tþ

¼ Ω−

T−
: ð3:63Þ

Note that when SL < SR, i.e. when J2 þ Δ < 0, the angular
velocities of the inner and outer horizons are opposite.
Note also that the two cases in (3.63) can be expressed in
the single universal formula

ðSL þ SRÞΩþ ¼ ðSL − SRÞΩ−: ð3:64Þ

1. Thermodynamics of the left-moving
and right-moving sectors

The introduction of the left and right temperatures and
entropies suggested the possibility of viewing the black
hole as being composed of excitations in left-moving and
right-moving sectors in a string or D-brane description,
associated with degrees of freedom of a weakly coupled
two-dimensional conformal quantum field theory.
The total entropy Sþ of the outer horizon is viewed as the

sum of the entropies SL and SR of the left-moving and right-
moving sectors. It is then natural to expect that there should
exist thermodynamic descriptions for these sectors, with
first laws of the form5

dEL ¼ TLdSL þΩLdJ þΦi
LdQi þ ΨL;idPi;

dER ¼ TRdSR þ ΩRdJ þΦi
RdQi þ ΨR;idPi: ð3:65Þ

For now, we shall focus for simplicity on the regime where
SL ≥ SR, i.e. ðJ2 þ ΔÞ ≥ 0.
Let us first consider processes where dJ ¼ 0 and

dQi ¼ dPi ¼ 0. From the definitions of TL, TR, SL and
SR given in (3.54) and (3.60), it straightforward to see from
the first laws

dM ¼ T�dS� þΦi
�dQi þΨ�;idPi þ Ω�dJ ð3:66Þ

on the outer and inner horizons that we must have

EL ¼ ER ¼ 1

2
M: ð3:67Þ

In other words, the left-moving and right-moving sectors
contribute equally to the mass of the black hole. (This was
observed in the case of Kerr-Newman black holes in
[23,24].) Dividing the first laws (3.66) by T� respectively
and then taking the plus and minus combinations, one finds

5The analysis the thermodynamics of asymptotically-flat black
holes in terms of left-moving and right-moving degrees of
freedom was first addressed in [15] for general STU black holes
in five dimensions, and briefly in [16] for four charge STU black
holes.
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that these match with (3.65) provided that we define the
left-moving and right-moving quantities as

Φi
L ¼ TL

�
Φiþ
2Tþ

þ Φi
−

2T−

�
; ΨL;i ¼ TL

�
Ψþ;i

2Tþ
þ Ψ−;i

2T−

�
;

ΩL ¼ TL

�
Ωþ
2Tþ

þ Ω−

2T−

�
; Φi

R ¼ TR

�
Φiþ
2Tþ

−
Φi

−

2T−

�
;

ΨR;i ¼ TR

�
Ψþ;i

2Tþ
−
Ψ−;i

2T−

�
; ΩR ¼ TR

�
Ωþ
2Tþ

−
Ω−

2T−

�
;

ð3:68Þ

and so we have the first laws

1

2
dM ¼ TLdSL þ ΩLdJ þΦi

LdQi þ ΨL;idPi;

1

2
dM ¼ TRdSR þ ΩRdJ þΦi

RdQi þΨR;idPi ð3:69Þ

for the left-moving and right-moving sectors.
In a similar fashion, we can then see that the Smarr

relations

M ¼ 2T�S� þ 2Ω�J þΦi
�Qi þ Ψ�;iPi ð3:70Þ

on the outer and inner horizons imply the Smarr relations

1

2
M ¼ 2TLSL þ 2ΩLJ þΦi

LQi þΨL;iPi;

1

2
M ¼ 2TRSR þ 2ΩRJ þΦi

RQi þ ΨR;iPi ð3:71Þ

for the left-moving and right-moving sectors.
It should be noted that, from (3.63) and (3.68), the left-

moving angular velocity is in fact zero:

ΩL ¼ 0; ΩR ¼ TR

Tþ
Ωþ: ð3:72Þ

If we now turn to the regime where SL < SR, we find that
the roles of SL and SR are exchanged in both the first laws
and the Smarr relations for the left-moving and right-
moving sectors, so that we have

SL < SR∶
1

2
dM ¼ TLdSR þ ΩLdJ þΦi

LdQi þ ΨL;idPi;

1

2
dM ¼ TRdSL þ ΩRdJ þΦi

RdQi þ ΨR;idPi;

ð3:73Þ

1

2
M ¼ 2TLSR þ 2ΩLJ þΦi

LQi þΨL;iPi;

1

2
M ¼ 2TRSL þ 2ΩRJ þΦi

RQi þ ΨR;i:Pi ð3:74Þ

Furthermore, it follows from (3.63) and (3.68) that it is now
ΩR, rather than ΩL, that vanishes. One possible way to
make the formulae more uniform for the SL < SR regime
would be exchange the L and R labels in the definitions of
all the intensive thermodynamic variables, T;Φi;Ψi;Ω,
when SL < SR. This would have the merit that, with the
relabeling, the left-moving angular velocity would vanish
in all cases, while still retaining the property that SL is
independent of J in all cases. The left-moving and right-
moving first laws and Smarr relations would then take the
same forms as in (3.69) and (3.71) for both SL ≥ SR and
SL < SR, in terms of the relabeled variables.

2. Four-charge STU black holes

The prospects for obtaining an explicit Christodoulou-
Ruffini formula for the general 8-charge black hole
solutions are not good. The main problem is the F-invariant
that appears in the expressions for SL and SR in Eq. (3.55),
whose evaluation in terms of physical charges and mass
appears to be quite intractable [64]. In order to obtain more
explicit, concrete expressions, we shall now focus on the
specialization to black-hole solutions carrying just four
electric charges, which were found in [11].
These black holes are parametrized in terms of the

nonextremality parameter m ≥ 0 (Kerr mass parameter),
the “bare” angular momentum a (Kerr rotation parameter)
and four boost parameters δi ≥ 0 (i ¼ 1, 2, 3, 4) [11] (see
also [65] for compact expressions for the metric and the
other fields). In terms of these, the physical mass, charges
and angular momentum are given by

M ¼ m
4

X
i

cosh 2δi;

Qi ¼
1

4
m sinh 2δi;

J ¼ maðΠc − ΠsÞ: ð3:75Þ

The black hole entropies, associated with the inner and the
outer horizon, are given by [11,16]:

S� ≡ A�
4

¼ 2πm
h
mðΠc þ ΠsÞ � ðΠc − ΠsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p i
ð3:76Þ

¼ 2π



m2ðΠc þ ΠsÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðΠc − ΠsÞ2 − J2

q �
: ð3:77Þ

The temperatures T�, related to surface gravities κ� by
T� ¼ κ�

2π, and angular velocities Ω�, which are associated
with the inner and out horizon respectively, are given by [16]:
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1

T�
¼ 2π

κ�

¼ 4πmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
h
�mðΠc þ ΠsÞ þ ðΠc − ΠsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p i
;

ð3:78Þ

Ω� ¼ � 2πaT�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p ; ð3:79Þ

where

Πc ¼
Y
i

cosh δi; Πs ¼
Y
i

sinh δi: ð3:80Þ

Note that T− is negative.6 From the above expressions one
also finds

S� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p

2T�
: ð3:81Þ

It can easily beverified that the entropiesS�, temperaturesT�
and angular velocities Ω� satisfy equation (3.59) and the
SL ≥ SR equations in (3.63).
The entropies and the inverses of the surface gravities,

associated with the outer and inner horizons, have a
suggestive form in terms of the left-moving and right-
moving entropy and inverse temperature excitations of a
weakly coupled 2-dimensional conformal field theory (2D
CFT), given in [16]:

SL ¼ 1

2
ðSþ þ S−Þ ¼ 2πm2ðΠc þ ΠsÞ;

SR ¼ 1

2
ðSþ − S−Þ ¼ 2πm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
ðΠc − ΠsÞ; ð3:82Þ

1

TL
¼ 1

Tþ
þ 1

T−
¼ 8πmðΠc − ΠsÞ; ð3:83Þ

1

TR
¼ 1

Tþ
−

1

T−
¼ 8πm2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − a2
p ðΠc þ ΠsÞ: ð3:84Þ

Note that these solutions with four electric charges have
Δ ≥ 0, as can be seen from (3.53), and so they have
SL ≥ SR, as is evident from (3.82). In this suggestive form
the central charges CL;R of the left-moving and right-
moving sector of the 2D CFT, related to SL;R and TL;R via
Cardy relation SL ¼ π2

3
CLTL and SR ¼ π2

3
CRTR, respec-

tively, turn out to be the same and equal to:

CL ¼ 3SL
π2TL

¼ 48m3ðΠ2
c − Π2

sÞ ¼
3SR
π2TR

¼ CR: ð3:85Þ

relations:
Again the product of outer and inner horizon entropies is

quantized in terms of J and Qi (i ¼ 1, 2, 3, 4) only [18]:

SþS− ¼ S2L − S2R ¼ 4π2
�
J2 þ 64

Y
i

Qi

�
; ð3:86Þ

which agrees with the result for Kerr-Newman black hole
after equating Q1 ¼ Q2 ¼ Q3 ¼ Q4 ¼ 1

4
Q:

SþS− ¼ 4π2
�
J2 þ 1

4
Q4

�
: ð3:87Þ

The main challenge here is to obtain the formulas
M ¼ MðS; J;QiÞ and S ¼ SðM; J;QiÞ. As an initial step,
we observe the solutions for S�, due to relation (3.82),
satisfy a quadratic equation:

S2 − 2SSL þ 4π2
�
J2 þ 64

Y4
i¼1

Qi

�
¼ 0; ð3:88Þ

where SL, defined in (3.82), depends on M and Qi (i ¼ 1,
2, 3, 4) only. Furthermore as SL ≥ SR, Sþ ≥ S− ≥ 0, where
the extremal value Sþ ¼ S− is achieved for SR ¼ 0. The
extremal the case either corresponds to the BPS solution
δi → ∞, m ∼ a → 0 and Qi ¼ m

2
expð2δiÞ—finite, or to the

extremal rotating solution with m ¼ a.
Equation (3.88) (which is a special case of (3.57) implies

again that Tþ and T− have opposite signature. By having an
explicit expression for SL we can actually obtain an explicit
expression for the temperatures. Namely, we can express
SL in terms of m and Qi, by employing:

4m2ðΠc � ΠsÞ ¼
 Y4

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 16Q2

i

q
þm

r

�
Y4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 16Q2

i

q
−m

r !
; ð3:89Þ

and

M ¼ 1

4

X4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 16Q2

i

q
: ð3:90Þ

From (3.88) we obtain:

∂SL
∂S ¼ 1

2



1 −

4π2ðJ2 þ 64
Q

4
i¼1QiÞ

S2

�
; ð3:91Þ6Note that in [16] the value of T− was taken to be positive, and

equal to the absolute value of the T− given in (3.79).
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Furthermore, employing (3.89) and (3.90) we obtain:

∂SL
∂S
����
Qi

¼ ∂SL
∂m

∂m
∂M

∂M
∂S ¼ 4πmðΠc − ΠsÞ

∂M
∂S ; ð3:92Þ

which leads to the explicit expression for the temperature:

T ¼ ∂M
∂S ¼ 1

8πmðΠc − ΠsÞ


1 −

4π2ðJ2 þ 64
Q

4
i¼1 QiÞ

S2

�
;

ð3:93Þ

and angular velocity:

Ω ¼ ∂M
∂J ¼ 1

mðΠc − ΠsÞ
πJ
S

¼ aπ
S
: ð3:94Þ

These expressions are in agreement (3.59) and (3.63), and
explicitly determine Tþ > 0, T− < 0 andΩ�, in agreement
with direct calculations at the horizons (3.79).
The technical difficulty in obtaining an explicit

Christodoulou-Ruffini mass expression is due to the fact
that an explicit expression for SL in terms of M and Qi is
cumbersome, in general. However, we succeeded in the
following special cases.

3. Pairwise-equal charges

The four-charge black-hole solutions simplify consid-
erably in the special case of pair-wise equal charges (see,
e.g., Ref. [65]) Q1 ¼ Q3 and Q2 ¼ Q4 where (3.88) can be
solved explicitly for M:

M2 ¼ π

4S


�
S
π
þ 16Q2

1

��
S
π
þ 16Q2

2

�
þ 4J2

�

:
ffiffiffiffiffiffi
π

S�

r
q21Þ
� ffiffiffiffiffiffi

S�
π

r
þ

ffiffiffiffiffiffi
π

S�

r
q22

�
þ πJ2

S�
: ð3:95Þ

Furthermore (3.95) and (3.86) implies:

M2 ¼ Sþ
4π

þ S−
4π

þ 4Q2
1 þ 4Q2

2: ð3:96Þ

For Q2 ¼ 0 the result reduces to the example of rotating
dilatonic black hole with the dilaton coupling a ¼ 1.7

The result reduces to the Kerr-Newman (or Reissner-
Nordström) black hole expression when Q1 ¼ Q2 ¼ 1

4
Q.

It becomes straightforward that the differentiation of
(3.95) with respect to S� (with J and Q1;2 fixed), produces
the expected expressions for T�, including the sign.

4. Three equal nonzero charges

It turns out that for the example of three equal nonzero
charges, i.e. Q1 ¼ Q2 ¼ Q3 ¼ q and Q4 ¼ 0, which cor-
responds to the rotating dilatonic black hole with the
dilaton coupling a ¼ 1ffiffi

3
p , one can again obtain an explicit

expression for the Christodoulou-Ruffini mass:

M2 ¼
h
16q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64q4 þ ðS�π þ 4π

S�
J2Þ2

q i
2

32q2 þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64q4 þ ðS�π þ 4π

S�
J2Þ2

q : ð3:97Þ

(As in the pairwise-equal charge case above, here too an
axion is also turned on if the black hole is rotating.)

5. One nonzero charge

We also note in the case of only one nonzero charge (say,
Q1 ¼ q ¼ 1

4
m sinh 2δ), which corresponds to the rotating

dilatonic black hole with the dilaton coupling a ¼ ffiffiffi
3

p
, the

Christodoulou-Ruffini mass can be expressed in the fol-
lowing form:

M2 ¼ SL
8π

�
3 cosh δþ 1

cosh δ
þ y

�
; ð3:98Þ

where y ¼ 32π
SL

q2, SL ¼ 1
2
ðS� þ 4π2J2

S�
Þ, and cosh δ is a

solution of the cubic equation cosh3 δ − cosh δ − y ¼ 0:

cosh δ ¼ A
1
3 þ 1

3A
1
3

; A ¼ y
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

4
−

1

27

r
: ð3:99Þ

6. Dyonic Kaluza-Klein black hole

In all the explicit STU supergravity black holes we have
discussed so far, each of the four field strengths carries a
charge of a single complexion (which could be pure electric
or pure magnetic). The most general possibility is where
each field strength carries independent electric and mag-
netic charges, as described in the general 8-charge case
that was constructed by Chow and Compère. Although
explicit, these general solutions are rather unwieldy. Here,
we discuss a much simpler case, which is still rather
nontrivial, and that goes beyond what we have explicitly
presented so far. We consider the case where just one of the
four field strengths is nonvanishing, but it carries indepen-
dent electric and magnetic charges. For simplicity we
shall restrict attention to the case of static black holes.

7Note, however, that when the black hole is rotating, an axion
in the STU supergravity is also turned on when Q1 and/or Q2 is
nonzero (except in the case Q1 ¼ Q2).

KILLING HORIZONS: NEGATIVE TEMPERATURES AND … PHYS. REV. D 98, 106015 (2018)

106015-15



The Lagrangian (in the normalization we are using for the
STU supergravities) is given by8

L4 ¼
ffiffiffiffiffiffi
−g

p 

R −

1

2
ð∂ϕÞ2 − 1

4
e−
ffiffi
3

p
ϕF2

�
; ð3:100Þ

and a convenient way [66] to present the static dyonic black
hole solutions is

ds24 ¼ −ðH1H2Þ−1
2fdt2 þ ðH1H2Þ12ðf−1dr2

þ r2ðdθ2 þ sin2θdφ2ÞÞ;

ϕ ¼
ffiffiffi
3

p

2
log

H2

H1

; f ¼ 1 −
2μ

r
;

A ¼
ffiffiffi
2

p 
ð1 − β1fÞffiffiffiffiffiffiffiffiffi
β1γ2

p
H1

dtþ 2μ
ffiffiffiffiffiffiffiffiffi
β2γ1

p
γ2

cos θdφ

�
;

H1 ¼ γ−11 ð1 − 2β1f þ β1β2f2Þ;
H2 ¼ γ−12 ð1 − 2β2f þ β1β2f2Þ;
γ1 ¼ 1 − 2β1 þ β1β2;

γ2 ¼ 1 − 2β2 þ β1β2; ð3:101Þ

where m, β1 and β2 are constants that parametrize the
physical massM, electric chargeQ and magnetic charge P,
with

M ¼ ð1 − β1Þð1 − β2Þð1 − β1β2Þμ
γ1γ2

;

Q ¼
ffiffiffiffiffiffiffiffiffi
β1γ2

p
μffiffiffi

2
p

γ1
; P ¼

ffiffiffiffiffiffiffiffiffi
β2γ1

p
μffiffiffi

2
p

γ2
: ð3:102Þ

A necessary condition for regularity of the black hole is
0 ≤ βi ≤ 1. The entropy of the outer horizon, located at
r ¼ 2μ, is given by

Sþ ¼ 4πμ2ffiffiffiffiffiffiffiffiffi
γ1γ2

p ; ð3:103Þ

whilst the entropy of the inner horizon, located at r ¼ 0, is
given by

S− ¼ 4πβ1β2μ
2ffiffiffiffiffiffiffiffiffi

γ1γ2
p : ð3:104Þ

The product of the entropies on the outer and inner horizons
is given by

SþS− ¼ 64π2P2Q2: ð3:105Þ

Note that S− vanishes if Q or P vanishes. Note also that the
dyonic black hole is an example where the invariant Δ,
defined in (3.53), is negative. Of course since the solutions
we are considering here are static, ðJ2 þ ΔÞ is negative too,
and so we are in the regime where SL < SR for these black
holes, and in fact we have

SL ¼ 2πμ2ð1 − β1β2Þffiffiffiffiffiffiffiffiffi
γ1γ2

p ;

SR ¼ 2πμ2ð1þ β1β2Þffiffiffiffiffiffiffiffiffi
γ1γ2

p : ð3:106Þ

One can straightforwardly calculate the temperatures on the
outer and inner horizons, finding as usual that the temper-
ature Tþ is positive and T− is negative. The left-moving
and right-moving temperatures, defined by (3.60), then turn
out to be

TL ¼
ffiffiffiffiffiffiffiffiffi
γ1γ2

p
8πμð1 − β1β2Þ

;

TR ¼
ffiffiffiffiffiffiffiffiffi
γ1γ2

p
8πμð1þ β1β2Þ

: ð3:107Þ

These are both non-negative.
A special case is when the black hole is extremal, which

is achieved in this parameterization by taking a limit in
whichm goes to zero and the βi go to 1. The result is that in
the extremal case

Mext ¼ ðQ2
3 þ P

2
3Þ32; Sext ¼ 8πQP: ð3:108Þ

By a straightforward, although somewhat intricate,
procedure, one can eliminate the metric parameters m,
β1 and β2 from the four equations (3.102) and (3.103) that
define the physical mass, charges and entropy, thereby
arriving at a Christodoulou-Ruffini type formula relating
these quantities. If we first define

S̃ ¼ S
π
; ð3:109Þ

we find that they andM obey the relationWðS̃;M;Q; PÞ ¼
0 where

8This Lagrangian can also be obtained by means of a circle
reduction of five-dimensional pure Einstein gravity. For this
reason, the black hole solutions are sometimes referred to as
Kaluza-Klein dyons.
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WðS̃;M;Q; PÞ ¼ 4096M8 þ 16M6ðP2 þQ2ÞðP2Q2 − 8PQS̃þ 4S̃2ÞðP2Q2 þ 8PQS̃þ 4S̃2Þ
P2Q2S̃2

þ M4

16P2Q2S̃4
ðP8Q8 − 48P8Q4S̃2 − 400P6Q6S̃2 þ 1152P6Q2S̃4 − 48P4Q8S̃2

− 2208P4Q4S̃4 − 768P4S̃6 þ 1152P2Q6S̃4 − 6400P2Q2S̃6 − 768Q4S̃6 þ 256S̃8Þ

−
M2ðP2 þQ2Þ
64P2Q2S̃4

ð5P8Q8 − 12P8Q4S̃2 þ 40P6Q6S̃2 þ 160P6Q2S̃4 − 12P4Q8S̃2

− 352P4Q4S̃4 − 192P4S̃6 þ 160P2Q6S̃4 þ 640P2Q2S̃6 − 192Q4S̃6 þ 1280S̃8Þ

−
ðP4 þ 4S̃2Þ2ðQ4 þ 4S̃2Þ2ðP2Q2 − 4S̃4Þ2

4096P2Q2S̃6
: ð3:110Þ

This defines a multinomial of 12th order in S̃, and W
is invariant under the inversion transformation S̃ →
Q2P2=ð4S̃Þ. Note that because M is invariant under the
inversion, the coefficients of each separate power of M in
(3.110) are invariant under the inversion.

E. Five-dimensional STU supergravity

Here, we consider black hole solutions in five-
dimensional STU supergravity. General solutions with
mass M, two angular momenta Jϕ and Jψ , and three
charges Qi were constructed in [12] by employing solution
generating techniques. We use principally the conventions
of [15], except that we shall use the labels ↑ and ↓ to denote
the sum and difference combinations of the angular
momenta and angular velocities associated with the ϕ
and ψ azimuthal coordinates, reserving L and R to denote
the combinations of inner and outer horizon quantities,
analogous to the definitions used previously for the four-
dimensional STU black holes. The physical mass, charges
and angular momenta are given by [15]

M ¼ m
Xi¼3

i¼1

cosh 2δi; Qi ¼ m sinh 2δi;

J↓ ¼ mðl1 − l2ÞðΠc þ ΠsÞ; J↑ ¼ mðl1 þ l2ÞðΠc − ΠsÞ;
ð3:111Þ

where Πc ¼
Q

i¼3
i¼1 cosh δi, Πs ¼

Q
i¼3
i¼1 sinh δi, and J↓ ¼

1
2
ðJϕ − Jψ Þ, J↑ ¼ 1

2
ðJϕ þ JψÞ. Here the five-dimensional

Newton constant is taken to be G5 ¼ π
4
. We shall, without

loss of generality, take the rotation parameters l1 and l2 and
the charge boost parameters δi to be non-negative in what
follows.
These black holes have many analogous properties to

those of the four-dimensional STU black holes, except, of
course, that they can carry only electric charges but not
magnetic. In particular, they have two horizons, with the
inner and outer horizon entropies expressed as [15]:

Sþ ¼ SL þ SR; S− ¼ SL − SR; ð3:112Þ

where

SL ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m3ðΠc þ ΠsÞ2 − J2↓

q
; ð3:113Þ

SR ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m3ðΠc − ΠsÞ2 − J2↑

q
: ð3:114Þ

The product of the inner and outer horizon entropies is
again quantized as:

SþS− ¼ 4π2
�
JϕJψ þ

Yi¼3

i¼1

Qi

�
¼ 4π2

�
J2↑ − J2↓ þ

Yi¼3

i¼1

Qi

�
:

ð3:115Þ

Note that as in the case of the four-dimensional STU black
holes, here it would in general be necessary to use an
absolute value in the expression for S− in (3.112), and on
the right-hand side of (3.115), since S− must be non-
negative while SL and SR, which are both non-negative,
could obey either SL > SR or SL < SR depending on the
relative values of the charge and angular momentum
parameters. However, our non-negativity assumptions
stated above for the charge and rotation parameters imply
that in fact SL ≥ SR in this case, and so we can omit the
absolute value in the expression for S−, as we have done in
(3.112), and in (3.115).
From the above expressions it follows that S (either Sþ or

S−) again obeys a quadratic equation,

S2 − 2SSL þ 4π2
�
J2↑ − J2↓ þ

Yi¼3

i¼1

Qi

�
¼ 0: ð3:116Þ

Furthermore one can analogously derive the general result
that Tþ and T− have opposite signs, with:

SþTþ þ S−T− ¼ 0; ð3:117Þ
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and similarly

Ω↑
þ

Tþ
þ Ω↑

−

T−
¼ 0;

Ω↓
þ

Tþ
−
Ω↓

−

T−
¼ 0; ð3:118Þ

where Ω↑
� ¼ 1

2
ðΩϕ

� þ Ωψ
�Þ and Ω↓

� ¼ 1
2
ðΩϕ

� −Ωψ
�Þ. (The

relative signs between the terms in these two equations in
(3.118) are the opposite of those given in [15], because in
that paper κ− was taken to be positive.)
The black holes obey the usual first laws on the outer and

inner horizons:

dM ¼ T�dS� þ Ω↑
�dJ↑ þ Ω↓

�dJ↓ þΦi
�dQi: ð3:119Þ

As in the four-dimensional case, the calculation of scatter-
ing amplitudes in the black-hole background shows that
they factorize into left and right sectors with Boltzman
factors corresponding to temperatures TL and TR given
by (3.60) [15]. Together with the normalization of SL and
SR, such that Sþ ¼ SL þ SR in accordance with the
interpretation of the entropy as the sum of left-moving
and right-moving contributions, one can then establish by
rewriting the first laws dM ¼ T�dS� þ � � � in terms of left
and right-moving quantities that 1

2
dM ¼ TLdSL þ � � � and

1
2
dM ¼ TRdSR þ � � �, and so each of the sectors contributes

one half the total mass of the black hole. Matching the first
laws for arbitrary variations of the parameters then allows
one to read off the appropriate definitions of the left-
moving and right-moving angular momenta and electric
potentials. Thus one finds the first laws

1

2
dM ¼ TLdSL þ Ω↑

LdJ↑ þΩ↓
LdJ↓ þΦi

LdQi;

1

2
dM ¼ TRdSR þ Ω↑

RdJ↑ þ Ω↓
RdJ↓ þΦi

RdQi; ð3:120Þ

where

Φi
L ¼ TL

�
Φiþ
2Tþ

þ Φi
−

2T−

�
; Ω↑

L ¼ TL

�
Ω↑

þ
2Tþ

þ Ω↑
−

2T−

�
;

Ω↓
L ¼ TL

�
Ω↓

þ
2Tþ

þ Ω↓
−

2T−

�
; Φi

R ¼ TR

�
Φiþ
2Tþ

−
Φi

−

2T−

�
;

Ω↑
R ¼ TR

�
Ω↑

þ
2Tþ

−
Ω↑

−

2T−

�
; Ω↓

R ¼ TR

�
Ω↓

þ
2Tþ

−
Ω↓

−

2T−

�
:

ð3:121Þ

In view of the relations (3.118), one finds

Ω↑
L ¼ 0; Ω↓

L ¼ TL

Tþ
Ω↓

þ; Ω↑
R ¼ TR

Tþ
Ω↑

þ; Ω↓
R ¼ 0:

ð3:122Þ

Thus we see that the angular momentum J↑ and the
associated angular velocity Ω↑ enters only in the right-
moving first law and in SR, while the angular momentum
J↓ and associated angular velocity Ω↓ enters only in the
left-moving first law and in SL. Note that as in four
dimensions, TL and TR are both non-negative.
The Smarr formulas for the left-moving and right-

moving sectors agree with the ones derived in [15]:

1

2
M ¼ 3

2
TLSL þ 3

2
Ω↓

LJ↓ þΦi
LQ;

1

2
M ¼ 3

2
TRSR þ 3

2
Ω↑

RJ↑ þΦi
RQ: ð3:123Þ

The expression for the Christodoulou-Ruffini formula in
terms solely of the conserved charges, angular momenta,
mass and entropy are too cumbersome to present explicitly.
Even in the case of three equal charges, the mass is
determined by a cubic equation.

F. Einstein-Maxwell-dilaton black holes

There exists a more general class of black holes in the
theory of Einstein-Maxwell gravity with an additional
dilatonic scalar field, which is coupled to the Maxwell
field with a dimensionless coupling constant a, with the
Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p ðR − 2ð∂ϕÞ2 − e−2aϕF2Þ; ð3:124Þ

The electrically-charged black-hole solution can be written
as [67–69]

ds2 ¼ −
�
1 −

rþ
r

��
1 −

r−
r

�
b
dt2

þ
�
1 −

rþ
r

�
−1
�
1 −

r−
r

�
−b
dr2

þ r2
�
1 −

r−
r

�
1−b

dΩ2;

e2aϕ ¼
�
1 −

r−
r

�
1−b

;

A ¼ Q
r
dt; ð3:125Þ

where

b ¼ 1 − a2

1þ a2
: ð3:126Þ

The relevant thermodynamic quantities for these black
holes in this theory are given by
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S¼πr2þ

�
1−

r−
rþ

�
1−b

; T¼ 1

4πrþ

�
1−

r−
rþ

�
b
;

Q¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rþr−
1þa2

r
; M¼1

2
ðrþþbr−Þ; Φ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þa2
p

ffiffiffiffiffi
r−
rþ

r
;

ð3:127Þ

where rþ is the radius of the outer horizon, and r− is a
singular surface unless a ¼ 0. Since by assumption
rþ ≥ r−, it follows that

M >
jQjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p : ð3:128Þ

This is consistent with the BPS bound derived in [70] using
“fake supersymmetry.”
The Smarr relations continue to hold and the Gibbs free

energy is again given by

G ¼ TS ¼ 1

4
ðrþ − r−Þ: ð3:129Þ

The coordinates frþ; r−g are now related to the coordinates
fT;Φg by

rþ ¼ 1

4πT
ð1 − ð1þ a2ÞΦ2Þb ð3:130Þ

and

r− ¼ ð1þ a2ÞΦ2

4πT
ð1 − ð1þ a2ÞΦ2Þb: ð3:131Þ

Thus the Gibbs energy as a function of fT;Φg is given by

G ¼ 1

16πT
ð1 − ð1þ a2ÞΦ2Þ1þb: ð3:132Þ

As discussed in Sec. II B, the Ricci scalar of the
Helmholtz free energy metric ds2ðFÞ ¼ −dSdT þ dΦdQ
will be singular on the Davies curve where the heat capacity
at constant charge changes sign. It is easiest to use rþ and
r− as the coordinate variables in this calculation, which
gives

R ¼ 4ð1þ a2Þ2rþ
½ð1þ a2Þrþ − ð3 − a2Þr−�2

: ð3:133Þ

Thus the Davies curve is given by

r−
rþ

¼ 1þ a2

3 − a2
; ð3:134Þ

which implies

Q2

M2
¼ 3 − a2

ð2 − a2Þ2 : ð3:135Þ

Since we must have r− < rþ, a solution for (3.134) exists
only for a2 < 1. The spinodal curve thus projects down to
the parabola in the S–Q plane given by

S ¼ ð3 − a2Þ1−a
2

1þa22
2a2

1þa2ð1 − a2Þ 2a2

1þa2πQ2: ð3:136Þ

From (3.127), one can in general solve for rþ and r− in
terms of M and Q, obtaining

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − a2ÞQ2

q
;

r− ¼ 1

b

�
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − a2ÞQ2

q 	
; ð3:137Þ

and hence express S in terms of M and Q [71]:

S
π
¼
�
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − a2ÞQ2

q �
2

×

�
1 −

ð1þ a2ÞQ2

ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − a2ÞQ2

p
Þ2
� 2a2

1þa2 : ð3:138Þ

If a2 > 0 the entropy vanishes at extremality, namely
rþ ¼ r− and hence jQj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
M. Then r ¼ rþ ¼ r−

is a point-like singularity and there is no inner horizon.
One can also, in general, express the entropy in terms of rþ
and Q, using

�
S

πr2þ

�1þa2

2a2 ¼ 1 −
ð1þ a2ÞQ2

r2þ
: ð3:139Þ

Particular cases include the following, which also arise
as special cases of STU Black holes:

(i) a ¼ 0 is the Reissner-Nordström case.
(ii) a2 ¼ 1

3
is a reduction of Einstein-Maxwell in 5

dimensions.
(iii) a2 ¼ 1 is the so-called string case. We have

S
π
¼ 4M2 − 2Q2; M ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
π
þ 2Q2

r
: ð3:140Þ

The spinodal curve coincides with the Q-axis and
the Gibbs surface is nowhere convex. It is a hyper-
bolic paraboloid for which the Ruppeiner metric is
flat [71]. The temperature is given by

T ¼ 1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
π þ 2Q2

q ¼ 1

8πM
; ð3:141Þ
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and is always positive. It goes to a nonvanishing
value at extremality. The heat capacity at constant
charge is given by

CQ ¼ −
1

8π2ðSπ þ 2Q2Þ32 ¼ −
1

64π2M3
ð3:142Þ

and is always negative, and is also nonvanishing at
extremality [68].

(iv) a2 ¼ 3 is the Kaluza-Klein black hole.

G. Two-field dilatonic black holes

Here we review a class of theories [72] which are similar
to the Einstein-Maxwell-dilaton (EMD) theory of the
previous subsection, but with two field strengths rather
than just one. The Lagrangian, in an arbitrary dimensionD,
is given by

LD¼ ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂ϕÞ2−1

4
ea1ϕF2

1−
1

4
ea2ϕF2

2

�
: ð3:143Þ

The advantage of considering this extension of EMD theory
is that by choosing the coupling constants a1 and a2
appropriately, we can find general classes of static black
hole solutions with two horizons, and one can study the
thermodynamic properties at both the outer and inner
horizon.
If we turn on both the gauge fields Ai independently, the

theory for general ða1; a2Þ does not admit explicit black
hole solutions. We shall determine the condition on ða1; a2Þ
so that the system will give such explicit solutions. It is
advantageous for later purpose that we reparameterize these
dilaton coupling constants as

a21 ¼
4

N1

−
2ðD − 3Þ
D − 2

; a22 ¼
4

N2

−
2ðD − 3Þ
D − 2

: ð3:144Þ

(Note that N1 and N2 are not necessarily integers.) For the
ai to be real, we must have

0 < Ni ≤
2ðD − 2Þ
D − 3

: ð3:145Þ

(If both Ni are outside the range, the Lagrangian could still
be made real by sending ϕ → iϕ, corresponding to having a
ghostlike dilaton. We shall not consider this possibility
here.)
Here we shall consider the case where a1 and a2 obey the

constraint

a1a2 ¼ −
2ðD − 3Þ
D − 2

; ð3:146Þ

which implies the identities

N1a1 þ N2a2 ¼ 0; N1 þ N2 ¼
2ðD − 2Þ
D − 3

: ð3:147Þ

It follows from the second identity in (3.147) that both Ni
can take integer values only in four and five dimensions,
with N1 þ N2 ¼ 3 and 4 respectively. The solutions with
positive integers for Ni are known black holes in relevant
supergravities.
With a1 and a2 obeying (3.146), one can find black hole

solutions, given by [72]

ds2 ¼ −ðHN1

1 HN2

2 Þ−ðD−3Þ
D−2 fdt2

þ ðHN1

1 HN2

2 Þ 1
D−2ðf−1dr2 þ r2dΩ2

D−2Þ

A1 ¼
ffiffiffiffiffiffi
N1

p
c1

s1
H−1

1 dt; A2 ¼
ffiffiffiffiffiffi
N2

p
c2

s2
H−1

2 dt;

ϕ ¼ 1

2
N1a1 logH1 þ

1

2
N2a2 logH2; f ¼ 1 −

μ

rD−3 ;

H1 ¼ 1þ μs21
rD−3 ; H2 ¼ 1þ μs22

rD−3 ; ð3:148Þ

where we are using the standard notation where si ¼ sinh δi
and ci ¼ cosh δi. The mass and charges are given by

M ¼ ðD − 2ÞμωD−2

16π

�
1þD − 3

D − 2
ðN1s21 þ N2s22Þ

�
;

Qi ¼
ðD − 3ÞμωD−2

16π

ffiffiffiffiffi
Ni

p
cisi; ð3:149Þ

where ωD−2 is the volume of the unit (D − 2)-sphere. The
outer horizon is located at r0 ¼ μ1=ðD−3Þ, and the entropy is
given by

S ¼ Sþ ≡ 1

4
ωD−2μ

D−2
D−3cN1

1 cN2

2 : ð3:150Þ

The inner horizon is located at r ¼ 0, and we have

S− ≡ 1

4
ωD−2μ

D−2
D−3sN1

1 sN2

2 : ð3:151Þ

Multiplying the two entropies gives the product formula

SþS− ¼ S2ext; ð3:152Þ

where

Sext ¼ 4
D−1
D−3

�
π

D − 3

�D−2
D−3

ω
− 1
D−3

D−2

�
Q1ffiffiffiffiffiffi
N1

p
�1

2
N1

�
Q2ffiffiffiffiffiffi
N2

p
�1

2
N2

:

ð3:153Þ

Thus the entropy product is independent of the mass.
There exists an extremal limit in which we send μ → 0

while keeping the charges Qi nonvanishing. In this limit,
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the inner and outer horizons coalesce and the near-horizon
geometry becomes AdSD−2 × S2. The mass now depend
only on the charges, and is given by

Mext ¼
ffiffiffiffiffiffi
N1

p
Q1 þ

ffiffiffiffiffiffi
N2

p
Q2: ð3:154Þ

It is useful to define

M̃ ¼ 16π

ðD − 2ÞωD−2
M;

Q̃i ¼
8π

ðD − 3ÞωD−2
ffiffiffiffiffi
Ni

p Qi;

S̃ ¼ 1

ωD−2
S; ð3:155Þ

and then we have

s2i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̃2

i þ 16μ2
q

2μ
−
1

2
: ð3:156Þ

Some specific examples are as follows:
Case 1: D ¼ 4, N1 ¼ N2 ¼ 2:

M̃2 −
4ðQ̃2

1 þ S̃ÞðQ2
2 þ S̃Þ

S̃
¼ 0: ð3:157Þ

We can define

Ŝ ¼ S̃

Q̃1Q̃2

; ð3:158Þ

and then

M̃2 − 4ðQ̃2
1 þ Q̃2

2Þ − 4Q̃1Q̃2

�
Ŝþ 1

Ŝ

�
¼ 0: ð3:159Þ

Case 2: D ¼ 4, N1 ¼ 1, N2 ¼ 3:

M̃6 þ M̃4ðS̃4 − 3S̃2Q̃4
1 − 15S̃2Q̃2

1Q̃
2
2 þ Q̃2

1Q̃
6
2Þ

S̃2Q̃2
1

−
ð4S̃4 þ S̃2Q̃4

1 − 6S̃2Q̃2
1Q̃

2
2 − 3S̃2Q̃4

2 þ 4Q̃2
1Q̃

6
2Þ2

S̃4Q̃2
1

−
M̃2

S̃2Q̃2
1

ð20S̃4Q̃2
1 þ 12S̃4Q̃2

2 − 3S̃2Q̃6
1 − 3S̃2Q̃4

1Q̃
2
2

− 57S̃2Q̃2
1Q̃

4
2 − S̃2Q̃6

2 þ 20Q̃4
1Q̃

6
2 þ 12Q̃2

1Q̃
8
2Þ ¼ 0:

ð3:160Þ

Case 3: D ¼ 5, N1 ¼ 1, N2 ¼ 2:

0 ¼ M̃4 þ M̃3ð4S̃4 þ Q̃2
1Q̃

4
2Þ

3S̃2Q̃2
1

−
4M̃2ð8Q̃4

1 þ 20Q̃2
1Q̃

2
2 − Q̃4

2Þ
9Q̃2

1

−
8M̃ð2Q̃2

1 þ Q̃2
2Þð4S̃4 þ Q̃2

1Q̃
4
2Þ

3S̃2Q̃2
1

−
4ð432S̃8 − 64S̃4Q̃1

6 þ 192S̃4Q̃4
1Q̃2

2 þ 24S̃4Q̃2
1Q̃

4
2 þ 64S̃4Q̃6

2 þ 27Q̃4
1Q̃

8
2Þ

81S̃4Q̃2
1

: ð3:161Þ

Case 4: General D, but with N1 ¼ N2 ¼
ðD − 2Þ=ðD − 3Þ
These cases lie, in general, outside the realm of super-

gravity theories. We have

M̃2 − 4ðQ̃2
1 þ Q̃2

2Þ− ð16 1
D−2Q̃2

1Q̃
2
2S̃

2
D−2−2 þ 16

D−3
D−2S̃2−

2
D−2Þ ¼ 0:

ð3:162Þ

Entropy super-additivity is difficult to prove in general,
but we can at least look at the case of extremal black holes,
for which

Sext ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QN1

1 QN2

2

q
: ð3:163Þ

It seems that super-additivity will be satisfied if N1 þ N2 ≥
2, and in fact, from (3.147), we have N1 þ N2 > in all
dimensions.

IV. ENTROPY PRODUCT AND INVERSION LAWS

It is well known from many examples that if a black hole
has two horizons then the product of the areas, or
equivalently entropies, of these horizons is equal to an
expression written purely in terms of the conserved charges
and angular momenta [18,20]. Thus we may write

SþS− ¼ KðQ; JÞ; ð4:1Þ

where Q represents the complete set of charges carried by
the black hole, and J represents the set of angular momenta.
[Generalizations arise also if there are more than two
horizons or “pseudohorizons” (see, e.g., Ref. [18].)] We
also saw various examples in the previous section where
there is a Christodoulou-Ruffini formula relating the
entropy to the mass, charges and angular momenta, of
the form

WðS;M;Q; JÞ ¼ 0; ð4:2Þ
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for which there was a symmetry under a certain inversion of
the entropy, S → S0 ∼ 1=S.
Here, we make some observations about the relation

between these properties of the black hole entropy. First,
we note that when one derives a Christodoulou-Ruffini
formula of the form (4.2), one uses properties of the metric
functions that determine the horizon radius in terms of the
metric parameters, and hence implicitly they determine the
horizon radius in terms of M, Q and J. This means that
when one arrives at the Christodoulou-Ruffini relation
(4.2), the expression will necessarily be valid not only
when S ¼ Sþ, but also when instead S ¼ S−. Since Sþ and
S− are related by the product formula (4.1), this means that
if S, the entropy of the outer horizon, obeys (4.2) then we
will also have

W

�
KðQ; JÞ

S
;Q; J

�
¼ 0: ð4:3Þ

In other words, the Christodoulou-Ruffini formula will be
invariant9 under the inversion symmetry

S →
KðQ; JÞ

S
; ð4:4Þ

whereKðQ; JÞ is the right-hand side of the entropy-product
formula (4.1).
In some cases, for example in the case of STU black

holes where J ¼ 0 and insufficiently many charges are
turned on, there is only one horizon and so there is no
entropy-product formula. In such cases the argument above
demonstrating the existence of an inversion symmetry of
the Christodoulou-Ruffini relation breaks down. Indeed, in
Sec. III F we saw examples where, for this reason, the
Christodoulou-Ruffini relation had no inversion symmetry.
One important consequence of the inversion symmetry

of the Christodoulou-Ruffini relation M ¼ MðS;Q; JÞ is
that the relation SþTþ þ S−T− ¼ 0, seen, e.g., for the STU
black holes in (3.59), is true quite generally. Since the
temperature is given by ∂M=∂S at fixed Q and J we have

T ¼ ∂MðS;Q; JÞ
∂S ¼ ∂

∂SM
�
K
S
;Q; J

�

¼ −
K
S2

∂MðS0;Q; JÞ
∂S0

����
S0¼K=S

; ð4:5Þ

where K ¼ KðQ; JÞ is the numerator in the inversion
formula (4.4). Taking S ¼ Sþ we therefore have
S0 ¼ S−, and so we find from (4.5) that

TþSþ þ T−S− ¼ 0 ð4:6Þ

whenever there is an entropy-product rule of the form (4.1)
and the related inversion symmetry under (4.4).

V. ASYMPTOTICALLY AdS AND
DS BLACK HOLES

In this section we shall extend the previous discussion to
the case of a nonvanishing cosmological constant. If the
cosmological constant is negative, the situation is similar to
the case when it vanishes. However, if the cosmological
constant is positive a new feature arises, namely the
occurrence of an additional “cosmological” horizon outside
the black hole event horizon. Typically the surface gravity
at the cosmological horizon is negative.

A. Kottler

Either we regard Λ as a fixed constant or as an intensive
variable which may be varied, in which case we obtain an
analogy with a gas with positive pressure

P ¼ −
Λ
8π

: ð5:1Þ

In the first case we should think of the Abbott-Deser mass
M as the total energy. In the second case, we should instead
think of it as the total enthalpy [73,74]. In both cases
we have

2M ¼
�
S
π

�1
2

−
Λ
3

�
S
π

�3
2

; ð5:2Þ

and in both cases

T ¼ ∂M
∂S
����
Λ
¼ 1

4π


 ffiffiffi
π

S

r
− Λ

ffiffiffi
S
π

r �
ð5:3Þ

and the heat capacity at constant pressure is given by

CΛ ¼ T

�∂T
∂S
����
Λ

�
−1

¼ 2SðΛS − πÞ
ΛSþ π

: ð5:4Þ

We now consider the two cases where Λ < 0 and Λ > 0.

1. Λ < 0

The temperature T is a positive, monotonic-increasing
function of entropy S at fixed pressure P. The isobaric
curve in the S–M plane has a point of inflection at which
the heat capacity changes sign when

S
π
¼ −

1

Λ
; M ¼ 2

3
ffiffiffiffiffiffiffi
−Λ

p ; ð5:5Þ

where the slope, and hence the temperature, has a minimum
value;

9Or conformally invariant, depending on how one chooses the
overall multiplicative factor when defining WðS;M;Q; JÞ.
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T ¼ Tmin ¼
1

2π

ffiffiffiffiffiffiffi
−Λ

p
: ð5:6Þ

It follows that for fixed negative Λ there are no black holes
with temperatures less than Tmin. For temperatures above
Tmin there are two black holes, one with a mass smaller than

2

3
ffiffiffiffiffi
−Λ

p and the other with a mass greater than 2

3
ffiffiffiffiffi
−Λ

p .

The radius rH of the critical black hole, where the two
branches coalesce, is given by

rH ¼ 3

2
M: ð5:7Þ

This is the location where the heat capacity diverges. It is
connected with the Hawking-Page phase transition [75,76].
There is actually a region of masses MHP > M > Mcr
where the AdS4 space is entropically favored; however the
black hole still has a positive heat capacity. As with the
Reissner-Nordström black hole, it has been shown that the
sign of the lowest eigenvalue of the Lichnerowicz operator
changes sign as the heat capacity changes sign [77].

2. Λ > 0

We have a negative pressure, P < 0. If M is assumed
positive we have two horizons, a black hole horizon with

0 < S ≤
π

Λ
; ð5:8Þ

and positive temperature T ¼ ∂M=∂S, and a cosmological
horizon with

π

Λ
≤ S ≤

3π

Λ
; ð5:9Þ

for which T ¼ ∂M=∂S < 0, and hence the temperature is
negative. The heat capacity is therefore always negative.
The temperature vanishes when the two horizons coincide,
that is if

S
π
¼ Λ; ð5:10Þ

at which the mass has a maximum of

M ¼ 1

3
ffiffiffiffi
Λ

p : ð5:11Þ

In summary, we have two horizons; a black hole horizon
and a cosmological horizon. The entropy of the former is
smaller then or equal to the entropy of the latter. It seems
most appropriate to regard M as the enthalpy. In this case
the black hole horizon has positive temperature and the
cosmological horizon has negative temperature. This dif-
fers from the usual interpretation in which both temper-
atures are taken to be positive. In effect one takes TC ¼ jκCj

2π

where κC, where κC is the surface gravity of the event
horizon [28–31]. However, even if one follows the conven-
tional interpretation it should be borne in mind that it is not
an equilibrium system and there is no period in imaginary
time which would produce an everywhere nonsingular
gravitational instanton, except when the black hole is
absent as in [28,78].

B. Reissner-Nordström-de Sitter

1. Λ < 0

If r ¼
ffiffi
S
π

q
is the radius in the area coordinate, we have

2M ¼ rþQ2

r
þ g2r3: ð5:12Þ

where Λ
3
¼ −g2. using the fact that

∂
∂S ¼ 1

2πr
∂
∂r ð5:13Þ

one finds that

T ¼ ∂M
∂S ¼ 1

4πr

�
1 −

Q2

r2
þ 3g2r2

�
ð5:14Þ

and thus T vanishes at r ¼ rextreme where

r2extreme ¼
1

6g2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12Q2g2

q
− 1

�
: ð5:15Þ

One has

∂2M
∂S2 ¼ 1

4π2

�
−

1

r3
þQ2

r5
þ 3g2

r

�
ð5:16Þ

If 6jgQj < 1 there are two inflection points at which the
heat capacity changes sign at r ¼ rinflection where

r2inflection ¼
1

6g2

�
1þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 36Q2g2

q �
: ð5:17Þ

If we take the limit that Q2 → 0 we obtain the spinodal
curve of the Hawking-Page phase transition [75] and if we
take the limit g2 → 0 we obtain the spinodal curve of the
Davies phase transition [55]. The two curves meet at the
critical point 6jgQj ¼ 1.

2. Λ > 0

This case admits new qualitatively different phenomena
since both a black hole and a cosmological horizon are
present. This was extensively investigated in 1989 [79–84].
In all these references the absolute value of the surface
gravity was taken and the and so the temperature of both
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horizons was take to be positive. For the choice M ¼ jQj
the temperatures of the black hole and cosmological
horizon were observed to be equal. This allowed the
construction of a gravitational instanton. To ensure that
the electromagnetic field is real on the Euclidean section it
is most convenient to assume that the electro-magnetic field
is purely magnetic which can be arranged by a duality
rotation. In order to avoid confusion with pressure in what
follows we replace Q by Z and take Z to be real and
positive. We have

−r2gtt ¼ ðr −MÞ2 þ Z2 −M2 −
r4

l2
; ð5:18Þ

and

2M ¼ rþ Z2

r
−
r3

l2
; ð5:19Þ

with l2 ¼ 3
Λ.

If M2 ¼ Z2 there are three positive values of r for which
gtt ¼ 0:

r1 ¼
l
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

M
l

r �
; ð5:20Þ

r2 ¼
l
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

M
l

r �
; ð5:21Þ

r3 ¼
l
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

M
l

r
− 1

�
: ð5:22Þ

which correspond to the cosmological event horizon, the
black hole horizon and its inner horizon respectively. From
the Gibbsian point of view one has T ¼ κ

2π and therefore

T1 ¼ −
1

2πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Ml

p
; ð5:23Þ

T2 ¼
1

2πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Ml

p
; ð5:24Þ

T3 ¼ −
1

2πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ml

p
: ð5:25Þ

Because jT1j ¼ T2 we obtain a gravitational instanton by
setting t ¼ iτ and identifying τ modulo β ¼ 1

T2
[80]. The

sign used for the period appears to have no geometrical
significance and proceeding in the standard way one may
argue that the two horizons are in equilibrium with respect
to the exchange of thermal Hawking quanta.
It was also argued that if jκ3j ≥ jκ1, then the Cauchy

horizon should be stable.

C. Kerr-Newman-de Sitter black holes

From [85] we take the formula

M ¼ 1

2

ffiffiffĩ
S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

ΛS̃
3

þQ2

S̃

�
2

þ 4J2

S̃2

�
1 −

ΛS̃
3

�s
ð5:26Þ

where S̃ ¼ S
π. Writing Λ ¼ −3g2, the formula takes the

form

M2 ¼ π

4S

�

S
π

�
1þ g2

S
π

�
þQ2

�
2

þ 4J2
�
1þ g2

S
π

��
:

ð5:27Þ

For Λ ¼ 0 the result reduces to that of the Kerr-Newman
black hole.

D. Pairwise-equal charge anti-de Sitter black hole

These solutions were obtained in [65], and they are
special cases of solutions in the gauged STU supergravity
model. (Those are also solutions of maximally super-
symmetric four-dimensional theory, which is a consistent
truncation of a Kaluza-Klein compactified eleven-
dimensional supergravity on S7.) The theory is specified
by mass M, angular momentum J, two charges, i.e.,
equating Q1 ¼ Q3 and Q2 ¼ Q4, and cosmological con-
stant Λ ¼ −3g2. In [65] the solution was parametrized by
the nonextremality parameter m, rotational parameter a,
two boost parameters δ1;2 and g2. The thermodynamic
quantities are of the following form:

M ¼ mð1þ s21 þ s22Þ
Ξ2

; ð5:28Þ

J ¼ amð1þ s21 þ s22Þ
Ξ2

; ð5:29Þ

Qi ¼
msici
2Ξ

; i ¼ 1; 2; ð5:30Þ

where si¼ sinhδi, ci¼ coshδi (i¼1, 2). and Ξ ¼ 1 − g2a2.
The entropy is of the form:

S ¼ π

Ξ
ðr1r2 þ a2Þ; ð5:31Þ

where ri ¼ rþ þms2i (i ¼ 1, 2) and rþ is a location of a
horizon, which is a solution of the equation:

r2 − 2mrþ a2 þ g2r1r2ðr1r2 þ a2Þ ¼ 0: ð5:32Þ
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Manipulation of the horizon equation, along with the
expressions for theM, J,Qi and S, allows one to derive the
following explicit Christodoulou-Ruffini mass:

M2 ¼ π

4S

�

S
π

�
1þ g2

S
π

�
þ 16Q2

1

�

S
π

�
1þ g2

S
π

�

þ 16Q2
2

�
þ 4J2

�
1þ g2

S
π

��
: ð5:33Þ

E. Wu black hole

The Wu black hole [86] is 5D, three charge rotating
solution with negative cosmological constant (∝g2).
Employing expressions from [87] for a product of the entropy
and temperature of this black hole, associated with all three
horizons we obtain the following interesting expression:

n1 þ n2 þ n3 þ
1

2

�
n1n2
n3

þ n1n3
n2

þ n2n3
n1

�
¼ 0; ð5:34Þ

where

n1 ¼
4ξaξb
g2π

T1S1 ¼ ðu1 − u2Þðu2 − u3Þ

& cyclic permutations: ð5:35Þ

Here ξa ¼ 1 − g2a2, ξb ¼ 1 − g2b2 and ui is the root
of the horizon equation X ¼ g2ðu − u1Þðu − u2Þðu − u3Þ.
Note that as g2 → 0,u3 → −1=g2 → −∞, and in this case the
above equation reduces to the standard equation
T1S1 þ T2S2 ¼ 0.

VI. ENTROPY AND SUPER-ADDITIVITY

The thermodynamics of equilibrium systems with a
substantial contribution to the total energy from their
gravitational self-energy differs significantly from that
of ordinary substances encountered in the laboratory.
This is because of the long range nature of the
Newtonian gravitational force, which cannot be screened.
As a consequence the total entropy S of a gravitating
system need not be proportional to the total energy M.
A consequence of this is that negative heat capacities are
possible, and indeed these have long been encountered in
the theory of stellar structure [88].
In the case of black holes, the long range nature of

gravitational interaction expresses itself in the fact that
while the individual extensive variables may be added, they
do not necessarily scale. Even if they do, they do not scale
with the same power as the total energy M. In the case of
ungauged supergravity black holes, the scaling behavior is
guaranteed, but the fact that the scaling behaviour is not
homogeneous, that is, not the same for all extensive
variables, leads to a modification of the standard form

of the Gibbs-Duhem relation for ordinary homogeneous
substances

G ¼ M − TS − PV ¼ 0; ð6:1Þ

where G is the Gibbs free energy, V the volume and P the
pressure. By contrast, for black holes the Smarr relation
(2.14) gives rise to the Gibbs function (2.16).
The requirement of homogeneous scaling plays such an

important role in the thermodynamics of ordinary sub-
stances that it has been suggested that it be called the fourth
law of thermodynamics [89,90]. It certainly fails for
systems with significant self-gravitation and, a fortiori,
for black holes. In fact if the matter sector is sufficiently
nonlinear such as in Einstein’s theory coupled to nonlinear
electrodynamics, even the property of weighted homo-
geneity ceases to hold.10 As a consequence, while the first
law of black hole thermodynamics holds there is no
analogue of a Smarr formula [91].
In the thermodynamics of ordinary substances it is usually

assumed that the total energyM is a convex function11 of the
extensive variables or that the S is a concave function of the
other extensive variables. This guarantees that the heat
capacity and other susceptibilities are positive, and that
the Hessians have the correct signs to render the Weinhold
and Ruppeiner metrics positive definite.
Now if the extensive quantities scale in a uniform

fashion, the property of concavity is equivalent to that of
super-additivity,12 but not necessarily if uniform scaling
ceases to hold [92–95]. Remarkably, it was shown long ago
in a little noticed paper by Tranah and Landsberg [94]13 that
while concavity fails for the entropy of Kerr-Newman black
holes, super-additivity remains true. In other words

SðM1 þM2; J1 þ J2; Q1 þQ2Þ
≥ SðM1; J1; Q1Þ þ SðM2; J2; Q3Þ: ð6:2Þ

10A function fðx1; x2;…; xnÞ of n variables is said to be
weighted homogeneous of weights w1; w2;…; wn if fðλw1x1;
λw2x2;…; λwnxnÞ ¼ λfðx1; x2;…; xnÞ. If wi ¼ 1 for all i, the
function is said to be homogeneous of weight one. The Fourth
Law is the statement that all extensive variables have weight one
and thus all intensive variables have weight zero.

11A function fðxÞ is said to be convex if fðλx1 þ ð1 − λÞx2Þ ≤
λfðx1Þ þ ð1 − λÞfðx2Þ ∀ 1 ≤ λ ≤ 1 and concave if ≤ is
changed to ≥: Subject to suitable differentiability this is equiv-
alent to negative (positive) definiteness of the Hessian ∂2f

∂xi∂xj. In
other words, if M is the total energy then the graph of the Gibbs
surface along a straight line joining two equilibrium states x1 and
x2 never lies above the straight line joining these points on the
Gibbs surface.

12A function fðxÞ is super-additive if fðx1 þ x2Þ ≥ fðx1Þ þ
fðx2Þ and subadditive if we replace ≥ by ≤:

13Apparently not accessible on-line. The only paper we know
of that has followed up on this is [8].
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The super-additivity inequality (6.2) is related to
Hawking’s area theorem [35,36]. If two black holes of
areas A1 and A2 can merge to form a single black hole
of area A3, then, subject to the assumption of cosmic
censorship,

A3 ≥ A1 þ A2: ð6:3Þ

If the angular momentum and charge of the final black hole
are equal to the sums of the angular momenta and charges
of the initial black holes, one has in addition

SðM3; J1 þ J2;Q1 þQ2Þ ≥ SðM1; J1;Q1Þ þ SðM2; J2;Q3Þ;
ð6:4Þ

where M3, the mass of the black hole final state after the
merger, obeys

M3 < M1 þM2; ð6:5Þ

since energy will be lost by gravitational radiation. It
follows from the first law that at fixed charge and angular
momentum, dM ¼ TdS and so provided that the temper-
ature is positive,

SðM1þM2; J1þ J2;Q1þQ2Þ> SðM3; J1þ J2;Q1þQ2Þ:
ð6:6Þ

The assumption that Q3 ¼ Q1 þQ2 is reasonable for
theories like Einstein-Maxwell or ungauged supergravity,
where there are no particles that carry charge. The
assumption that J3 ¼ J1 þ J2, however, is less reasonable,
because both electromagnetic and gravitational waves can
carry angular momentum.
In the following subsections we shall obtain generaliza-

tions of the Kerr-Newman super-additivity result of Tranah
and Landsberg for various more complicated black hole
solutions. We also obtain a counterexample in the case of
dyonic Kaluza-Klein black holes.

A. STU black holes with pairwise-equal charges

From the formula expressing M in terms of S, Q1, Q2

and J for pairwise-equal charged STU black holes, we have

1

π
SðM;Q1; Q2; JÞ ¼ Y þ

ffiffiffiffi
X

p
; Y ¼ 2M2 −

1

2
ðQ2

1 þQ2
2Þ;

X ¼ Y2 −Q2
1Q

2
2 − 4J2: ð6:7Þ

For regular black holes we must have X ≥ 0 and hence
Y ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2

1Q
2
2 þ 16J2

p
, thus implying

4M2 ≥ Q2
1 þQ2

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2

1Q
2
2 þ 16J2

q
: ð6:8Þ

Without loss of generality, we shall assume Q1, Q2 and J
are all non-negative. Note that we also have the weaker
inequality

M ≥
1

2
ðQ1 þQ2Þ; ð6:9Þ

which we shall use frequently in the following.
We wish to check whether the entropy of these pairwise-

equal charged black holes obey the super-additivity
inequality

Stot ≥ Sþ S0; ð6:10Þ

where

Stot ≡ SðM þM0; Q1 þQ0
1; Q2 þQ0

2; J þ J0Þ;
S≡ SðM;Q1; Q2; JÞ; S0 ≡ SðM0; Q0

1; Q
0
2; J

0Þ: ð6:11Þ

With analogous definitions for the quantities X and Y,
proving super-additivity requires proving that

Y tot − Y − Y 0 þ
ffiffiffiffiffiffiffiffi
Xtot

p
−

ffiffiffiffi
X

p
−

ffiffiffiffiffi
X0p

≥ 0: ð6:12Þ

We first note that the Y functions are non-negative, and
that they obey

Y tot − Y − Y 0 ¼ 4MM0 −Q1Q0
1 −Q2Q0

2

≥ ðQ1 þQ2ÞðQ0
1 þQ0

2Þ −Q1Q0
1 −Q2Q0

2

¼ Q1Q0
2 þQ2Q0

1

≥ 0: ð6:13Þ

Thus, if we can show that

ffiffiffiffiffiffiffiffi
Xtot

p
−

ffiffiffiffi
X

p
−

ffiffiffiffiffi
X0p

≥ 0 ð6:14Þ

then the super-additivity inequality (6.10) will be estab-
lished. To prove this, we first note that is can be reex-
pressed as

Xtot − ð
ffiffiffiffi
X

p
þ

ffiffiffiffiffi
X0p
Þ2 ≥ 0: ð6:15Þ

We now observe that the following identity holds:

P ≔
�
c
ffiffiffiffi
X

p
−
1

c

ffiffiffiffiffi
X0p �

2

þ 4

�
cJ −

1

c
J0
�

2

¼ −2
ffiffiffiffi
X

p ffiffiffiffiffi
X0p

− 8JJ0 þ 8M2M02 − 2M2ðQ0
1
2 þQ0

2
2Þ

− 2M02ðQ2
1 þQ2

2Þ − 2Q1Q2Q0
1Q

0
2

þ 1

2
ðQ2

1 þQ2
2ÞðQ0

1
2 þQ0

2
2Þ; ð6:16Þ

where we have defined
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c2 ¼ 4M02 − ðQ0
1 −Q0

2Þ2
4M2 − ðQ1 −Q2Þ2

: ð6:17Þ

We can use (6.16) to substitute for
ffiffiffiffi
X

p ffiffiffiffiffi
X0p

in (6.15), thus
yielding

Xtot − X − X0 − 2
ffiffiffiffi
X

p ffiffiffiffiffi
X0p

¼ Pþ 8ðMM0 −Q−Q0
−ÞðM2 þM02 −Q2þ −Q0þ2Þ

þ 8½ðM þM0Þ2 − ðQ− þQ0
−Þ2�ðMM0 −QþQ0þÞ;

ð6:18Þ

where we have defined

Q� ¼ 1

2
ðQ1 �Q2Þ; Q0

� ¼ 1

2
ðQ0

1 �Q0
2Þ: ð6:19Þ

The inequality (6.9) impliesM ≥ Qþ andM0 ≥ Q0þ, and
a fortiori M ≥ jQ−j and M0 ≥ jQ0

−j (recall that we are
taking all charges to be non-negative). Since P, defined in
(6.16), is manifestly non-negative it follows from (6.18)
that the left-hand side must be non-negative, and hence the
required inequality (6.14) is satisfied. Thus we have proven
that the super-additivity property (6.10) is indeed obeyed
by the entropy of the pairwise-equal charged black holes of
STU supergravity.

B. STU black holes with three equal nonzero charges

One can also show analytically that the super-additivity
property of the entropy is true for the case of STU black
holes with three equal nonzero charges, say, Q1 ¼ Q2 ¼
Q3 ¼ q, with Q4 ¼ 0. In this case S ¼ πðY þ ffiffiffiffi

X
p Þ with:

Y2 ¼ 1

64
ð3z − 2MÞðzþ 2MÞ3; ð6:20Þ

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − 2q2

q
; ð6:21Þ

and

X ¼ Y2 − J2: ð6:22Þ

It is straightforward to show that

z2tot − ðzþ z0Þ2 ¼ 8MM0ð1−ww0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−w02

p
Þ ≥ 0;

ð6:23Þ

where w ¼ qffiffi
2

p
M

and w0 ¼ q0ffiffi
2

p
M0. The second inequality in

(6.23) is true for any value of fw;w0g ≤ 1. This result
implies

Y tot − Y − Y 0 ≥ 0: ð6:24Þ

It is now straightforward to show that

ffiffiffiffiffiffiffiffi
Xtot

p
−

ffiffiffiffi
X

p
−

ffiffiffiffiffi
X0p

≥ 0; ð6:25Þ

thus proving the super-additivity of the entropy in this case
as well.
An analytic proof of the super-additivity of the entropy

for the case of one nonzero charge follows analogous steps.
While a numerical analysis indicates that the super-

additivity is true for the STU black holes with four arbitrary
electric charges, it would be interesting to prove this result
analytically.

C. Dyonic Reissner-Nordström

In the explicit examples we have studied so far, the
black hole is supported by one or more field strengths that
each carry a single complexion of field (pure electric
charge, or instead and equivalently, one could consider
pure magnetic charge). The details of the entropy super-
additivity inequality are different if we consider a case
where one or more field strengths carries both electric and
magnetic charge. In this subsection, we shall study the
dyonic Reissner-Nordström black hole, and show that in
this case too the super-additivity property is satisfied. This
case, where the Lagrangian is just that of the pure Einstein-
Maxwell system, can be view as STU black holes where all
four field strengths are equal. By contrast, in the next
subsection we shall see that in the case of STU black holes
where only a single field strength is nonzero, the dyonic
black holes have an entropy that violates the super-
additivity property.
The Einstein-Maxwell Lagrangian L ¼ ffiffiffiffiffiffi−gp ðR − F2Þ

admits static dyonic black hole solutions given by

ds2 ¼ −hdt2 þ dr2

h
þ r2ðdθ2 þ sin2θdφ2Þ;

A ¼ Q
r
dtþ P sin θdφ; h ¼ 1 −

2M
r

þQ2 þ P2

r2
;

ð6:26Þ

with mass M, electric charge Q and magnetic charge P. To
have a black hole, these quantities must obey the inequality

M ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

p
; ð6:27Þ

with extremality being attained when the inequality is
saturated. The entropy is given by

SðM;Q; PÞ ¼ π½2M2 −Q2 − P2 þ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − P2

p
�:

ð6:28Þ
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For super-additivity, one must have

SðM þM0; QþQ0; Pþ P0Þ − SðM;Q;PÞ
− SðM0; Q0; P0Þ ≥ 0; ð6:29Þ

where, as usual, we assume, without loss of generality, that
the charges are all non-negative. Substituting (6.28) into
this, we see that super-additivity is satisfied if

4MM0 − 2QQ0 − 2PP0

þ ðM þM0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þM0Þ2 − ðQþQ0Þ2 − ðPþ P0Þ2

q
−M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − P2

p
−M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02 −Q02 − P02

p
≥ 0:

ð6:30Þ

First, we note that the argument of the first square root is
non-negative, since, after using (6.27) for the unprimed and
primed quantities we have

ðM þM0Þ2 − ðQþQ0Þ2 − ðPþ P0Þ2
≥ 2ðMM0 −QQ0 − PP0Þ; ð6:31Þ

and since

ðMM0Þ2 − ðQQ0 þ PP0Þ2 ≥ ðQ2 þ P2ÞðQ02 þ P02Þ
− ðQQ0 þ PP0Þ2 ¼ ðQP0 − PQ0Þ2 ≥ 0; ð6:32Þ

the non-negativity is proven.
Returning to the inequality (6.30) that we wish to

establish, we see that the terms 4MM0 − 2QQ0 − 2PP0
are themselves certainly non-negative, since 2MM0 −
2QQ0 − 2PP0 ≥ 0 as we just demonstrated. The inequality
is therefore established if we can show that

M
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM þM0Þ2 − ðQþQ0Þ2 − ðPþ P0Þ2
q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − P2

p 	
≥ 0; ð6:33Þ

together with the analogous expression with the primes and
unprimed variables exchanged. The expression in paren-
theses is non-negative if

ðM þM0Þ2 − ðQþQ0Þ2 − ðPþ P0Þ2 − ðM2 −Q2 − P2Þ
ð6:34Þ

is non-negative. After using (6.27) again we see that (6.34)
is greater than or equal to 2ðMM0 −QQ0 − PP0Þ, and we
have already shown that this is non-negative. Thus the
super-additivity property (6.29) is established for the
dyonic Reissner-Nordström black holes.

D. A counterexample: The dyonic
Kaluza-Klein black hole

Here, we demonstrate that dyonic Kaluza-Klein black
holes that we discussed in Sec. III D 6 provide counter-
examples where entropy super-additivity breaks down. The
phase space for checking entropy super-additivity for these
dyonic black holes is rather large, so we shall just focus on
a restricted subspace within which we are able to exhibit
violations. Specifically, we shall consider two black holes
with the following ðM;Q;PÞ values:

ðP; 0; PÞ and ðM0; Q0; 0Þ; ð6:35Þ

so the unprimed case is an extremal black hole with purely
magnetic charge,14 and the primed case is a (subextremal)
black hole with purely electric charge. The masses and
charges will be chosen so that the black hole with the
summed mass and charges will be an extremal dyonic black
hole, for which Mtot ¼ ðQ2=3

tot þ P2=3
tot Þ3=2. Thus

Mtot ¼ M þM0 ¼ PþM0; Qtot ¼ Q0; Ptot ¼ P;

ð6:36Þ

with

PþM0 ¼ ðQ02
3 þ P

2
3Þ32: ð6:37Þ

We shall characterize the ratio P=Q0 by means of a constant
x, such that

P ¼ x
3
2Q0: ð6:38Þ

We therefore have

S ¼ 0; S0 ¼ πm2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β1

p ; Stot ¼ 8πx
3
2Q02; ð6:39Þ

where the primed black hole defined above has metric
parameters m and β1, with β2 ¼ 0. This means that

M0 ¼ ð1 − β1Þm
2ð1 − 2β1Þ

; Q0 ¼
ffiffiffiffiffiffiffi
2β1

p
m

4ð1 − 2β1Þ
; ð6:40Þ

the entropy is given by

14Strictly speaking, the extremal configuration ðP; 0; PÞ is not
a black hole, but rather a naked singularity. However, one can
make an infinitesimal deformation away from extremality, to a
configuration with parameters ðPþ δ; 0; PÞ, and this will de-
scribe a genuine black hole. The results that we shall derive here,
including the bound (6.46) on P versus Q0 for obtaining
violations of entropy super-additivity, are thus valid.
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S0 ¼ 8π
ð1 − 2β1Þ32

β1
Q02; ð6:41Þ

and from (6.37) β1 is given in terms of x by

2ð1 − β1Þffiffiffiffiffiffiffi
2β1

p ¼ ð1þ xÞ32 − x
3
2: ð6:42Þ

Let us first consider the case where x is very small,
x ¼ ϵ

2
3. From (6.42) we find at leading order β1 ¼

1
2
ð1 − ϵ

2
3Þ, and so S0 ¼ 16πϵQ02. Thus we have

Stot − S− S0 ¼ 8πϵQ02 − 0− 16πϵQ02 ¼ −8πϵQ02; ð6:43Þ

and so super-additivity does not hold in this region of the
parameter space.
When x becomes larger, we find from numerical analysis

that the ratio Stot=ðSþ S0Þ, which equals 2 in the limit as x
goes to zero, falls monotonically. The ratio reaches unity
when S0 ¼ Stot, which implies

x ¼ ð1 − 2β1Þβ−
2
3

1 : ð6:44Þ

Substituting into (6.42), we find that this occurs when β1 ¼
y3 and y is the single real root of the 9th-order polynomial

17y9 − 12y8 þ 42y7 − 80y6 þ 39y5 − 48y4 þ 54y3

− 12y2 þ 9y − 8 ¼ 0: ð6:45Þ

This root is given approximately by y ¼ 0.698234, imply-
ing β1 ¼ 0.340411, and hence x ¼ 0.654681. Thus the
parameter range where we find a violation of entropy super-
additivity is when

0 < P < 0.529718Q0: ð6:46Þ

In other words, we have found super-additivity violation
when we add an extremal purely magnetic black hole and a
nonextremal purely electric black hole, with parameters
arranged such that the “total” dyonic black hole is extremal,
provided that the magnetic charge of the original extremal
black hole is sufficiently small in comparison to the electric
charge of the original nonextremal black hole.
We can give a more complete treatment by choosing

two black holes with parameters ðM;Q; PÞ of the form
ðM; 0; PÞ and ðM0; Q0; 0Þ, subject to the assumption that the
total black hole ðMtot; Qtot; PtotÞ is again extremal, obeying

Mtot ¼ ½Q2=3
tot þ P2=3

tot �3=2: ð6:47Þ

Thus

Mtot ¼ M þM0; Qtot ¼ Q0; Ptot ¼ P: ð6:48Þ

It is straightforward to show from the formulae in
Sec. III D 5 that for the individual black holes that carry
purely electric or purely magnetic charge, one has

S ¼
ffiffiffi
8

p
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 − 20M2P2 − 8P4 þMðM2 þ 8P2Þ3=2

q
;

S0 ¼
ffiffiffi
8

p
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M04 − 20M02Q02 − 8Q04 þM0ðM02 þ 8Q02Þ3=2

q
:

ð6:49Þ

One can then use (6.47), together with (6.48), to solve for
M0, and hence one can express Y ≡ Stot − S − S0, where
Stot ¼ 8πPtotQtot, as a function of M, P and Q0. One can
then explore the regions in the space of these parameters
for which Y is negative, signifying a violation of entropy
super-additivity.
Of course, by continuity we expect that super-additivity

violations will occur at least in some neighborhood of the
region found above when all the masses and charges are
allowed to be adjusted. In other words, there will also be
super-additivity violations if we consider cases where all
three black holes are nonextremal, for appropriate ranges of
the various masses and charges.
In our earlier remarks relating super-additivity to the

Hawking area theorem, we assumed not only cosmic
censorship but also that the coalescence of the two black
holes was allowed physically. In the case of dyons, it
should be recalled that they carry angular momentum, and
moreover it is not localized within the event horizon. This,
as suggested in [96], may lead to restrictions on what
coalescences are allowed, and thus the nonsuper-additivity
of the entropy in this counterexample need not imply any
conflict with Hawking’s area theorem. This is an interesting
problem worthy of further study.

VII. CONCLUSIONS AND FUTURE PROSPECTS

We shall turn in this section to a consideration of the
significance of negative surface gravities, and negative
Gibbsian temperatures. We shall begin by recalling the
most physically convincing argument that Schwarzschild
black holes have a temperature, and hence entropy. This
was given by Hawking [46,47], who coupled a collapsing
black-hole metric in an asymptotically-flat spacetime to a
quantum field, and showed that if the quantum field was
initially in its vacuum state, then at late times it would emit
particles with a thermal spectrum and temperature given by
(1.3). The term “vacuum state” implied that it contained no
particles having positive frequency with respect to the
standard retarded time coordinate on past null infinity. This
required his considering the behavior of the quantum field
as it passed through the time-dependent spacetime gen-
erated by the collapse. However, one may dispense with
that region, and work with the exact vacuum Schwarzschild
solution, obtaining the same result, by choosing an appro-
priate boundary condition for the quantum field on the past
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horizon. The appropriate boundary condition, which repro-
duces Hawking’s result, in the exterior region of the
Schwarzschild solution, corresponds to requiring that the
state contains no particles defined as having positive
frequency with respect to a Kruskal null coordinate on
the past horizon. This state is now referred to as the Unruh
vacuum state. This is obviously not a state in thermal
equilibrium. A different state, introduced by Hartle and
Hawking, is defined on the past horizon in the same way,
but at past null infinity the definition of positive frequency
is such that it describes an ingoing flux of particles at the
Hawking temperature. Thus the Hartle-Hawking state
should be regarded as a state in thermal equilibrium.
The situation with two event horizons is more compli-

cated. In order to discuss quantum fields between the
horizons, one needs to specify a notion of positive
frequency on each past horizon. If the region is static,
and one interprets positive frequency as being with respect
to a local Kruskal coordinate on the horizons, the resulting
quantum state will describe thermal radiation entering the
static region at temperatures given by 1

2π jκ�j. This is not a
state in thermal equilibrium. If the region between the two
horizons is not static, as for example in the Reissner-
Nordström solution, one may define a similar state which
would also not be in thermal equilibrium. If, on the other
hand, one considers the static region behind the inner
horizon in the Reissner-Nordström, one needs to specify
boundary conditions on the singularity at r ¼ 0. If one
chose the notation of positive frequency on the past inner
horizon, then whatever boundary conditions were chosen
on the singularity, the quantum state would contain
radiation coming from the inner horizon with a temperature
1
2π jκ�j. Thus if we adopt this procedure, we see in all cases
that the temperature we associate with particles coming
from the horizons is given by the absolute value of the
surface gravity, divided by 2π.
An alternative way of establishing the temperature and

entropy of an asymptotically flat black hole is to follow the
procedure of [78,97], in which one analytically continues
the metric to imaginary time, and discovers that the
metric is periodic in imaginary time with a period given
by 2π=jκj, which is what one expects for a state in thermal
equilibrium at temperature 1

2π jκ�j. Of course, the period
itself can have either sign, but the quantum state would not
necessarily exist if one chose a negative sign for the
temperature. This procedure will work when one has a
single horizon, including an asymptotically anti-de Sitter
spacetime [75,76]. However, this procedure will not work
for a spacetime with two horizons having differing values
of jκj. The conclusion seems to be that classically, the sign
of the temperature can only be determined by appealing to
the first law, and this provides us with a Gibbsian temper-
ature. Quantum mechanically, which seems to be the only
physically reliable argument provided one is prepared to
contemplate nonequilibrium situations, the temperature

should be taken to be positive. In other words, the
temperature is not uniquely defined by the metric, a
conclusion also reached in [25].
The original suggestion that inner horizons should be

assigned a negative temperature [1] was based not quantum
field theoretic considerations, but rather on a consideration
of quantum mechanical systems, such as spin systems,
exhibiting population inversion [59]. Thus one might
regard the total energy of a black hole as receiving
contributions both from the outer and inner horizons.
The inner system would then be thought of as the analogue
of a spin system. This viewpoint was supported by the
existence for the Kerr-Newman black hole of the modified
Smarr formula (3.34), and its variation, which may be
written as

dM ¼ 1

2
ðTþdSþ þΩþdJ þΦþdQÞ

þ 1

2
ðT−dS− þ ΩþdJ þΦþdQÞ: ð7:1Þ

As we saw, these formulas generalize to the case of STU
black holes with four electric charges. The addition of
electric charges, which were not included in the discussion
in [1], suggest that the posited spin system inverted
population should be supplemented by the inclusion of
charged states.
In the case of four-dimensional STU black holes, the

generalization of equation (7.1) may be rewitten in terms of
the left-moving and right-moving sectors [see (3.69)] as

dM ¼ ðTLdSL þ ΩLdJ þΦi
LdQi þ ΨL;idPiÞ

þ ðTRdSR þΩRdJ þΦi
RdQi þ ΨR;idPiÞ; ð7:2Þ

with each sector contributing equally to dM. In contrast to
the proposal in [1], which attempted to give a microscopic
interpretation to the negative temperature on the inner
horizon, here the left-moving and right-moving sectors
both have positive temperatures, consistent with the pro-
posed microscopic interpretation in terms of D-brane states
[11,63]. An analogous interpretation for five-dimensional
STU black holes has also been given [16].
This paper has been concerned exclusively with time-

independent solutions; we have not discussed what happens
to inner horizons when perturbations are considered. There
is a widespread belief that in classical general relativity,
generic perturbations will render Cauchy horizons, of the
sort one finds inside black holes, singular. This is referred
to as the cosmic censorship hypothesis. There are various
forms of this hypothesis, and the literature is at present
rather inconclusive. A recent discussion can be found in
[98]. Our motivation is largely quantum mechanical, and
the relevance of these classical results to a full quantum
gravitational treatment is unclear.
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APPENDIX A: CARTER-PENROSE DIAGRAM
FOR TWO HORIZONS

In this Appendix, we summarize some facts about the
Carter-Penrose diagram of asymptotically-flat spherically
symmetric spacetimes with an inner and outer horizon.
Consider a suitable metric of the form

ds2 ¼ −AðrÞdt2 þ dr2

f2ðrÞAðrÞ þ RðrÞ2dΩ2: ðA1Þ

Introducing an advanced time coordinate v by defining

dv ¼ dtþ dr
fA

; ðA2Þ

the metric takes the Eddington-Finkelstein form

ds2 ¼ −Adv2 þ 2f−1drdvþ R2dΩ2: ðA3Þ

The metric will be regular as long as A, f and R2 are real,
bounded, and twice differentiable, and in addition f and R
are nonzero. We may take f, without loss of generality,
to be positive. In particular, the metric is well-behaved
regardless of whether A is positive, zero or negative.
Asymptotic flatness requires that A and f tend to 1 as
R2 tends to infinity. In the cases we shall consider, R tends
to r at infinity. We shall assume that A is positive in
the interval rþ < r ≤ ∞, and negative in the interval
r− < r < rþ, and that it vanishes on the outer horizon
r ¼ rþ and the inner horizon r ¼ r−. We shall also assume
that A has a smooth positive extension for values of r < r−.
The Killing vector K ¼ ∂=∂v is thus timelike for rþ <
r < ∞, lightlike at r ¼ rþ, spacelike for r− < r < rþ,
lightlike at r ¼ r− and timelike for r < r−. It becomes
lightlike as v tends to �∞, and also as r tends to infinity.
If rþ < r < ∞, then as v tends to þ∞ we obtain future

null infinity, Iþ. For v instead tending to −∞, we obtain
past null infinity I−. As v tends to −∞ and r tends to rþ
we obtain the past null horizon. The Killing vector K is
future-directed inside and on the boundary of this region.
The inner region is bounded by a past Cauchy horizon
at v ¼ −∞ and r ¼ rþ, and a future Cauchy horizon at

v ¼ þ∞ and r ¼ r−. It has a further boundary on the inner
horizon at r ¼ r−, with −∞ < v < þ∞. Thus the Killing
vectorK is future directed both on this inner horizon and on
the outer horizon.
If one looks at radial geodesics in this spacetime, there

are two conserved quantities pv and k, where

pv ¼ A _v − f−1 _r; −A_v2 þ 2f−1 _r _v ¼ −k; ðA4Þ

and a dot denotes a derivative with respect to an affine
parameter λ. Thus radially-infalling geodesics obey

_r ¼ −f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
v − kA

q
; ðA5Þ

with k > 0 and p2
v > k for timlike geodesics that originate

at large r. The constant pv is positive. The infalling particle
passes through the outer and the inner horizons before
reaching a turning point at a radius r̄ < r− at which
p2
v ¼ kAðr̄Þ.
Solving for _v one finds

_v ¼ pv −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
v − kA

p
A

; ðA6Þ

and so

dv
dr

¼ 1

fA



1 −

pvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
v − kA

p �
: ðA7Þ

Thus one finds that _v, dv=dr and v all remain finite as the
particle falls in from infinity to r̄. Note that _v is always
positive.
In conclusion, we note that the Killing vector K ¼ ∂=∂v

is future directed and lightlike on both the future event
horizon of the exterior region, r ¼ rþ with −∞ <
v < þ∞, and on the inner horizon, r ¼ r− with
−∞ < v < þ∞.
For the four-charge STU black holes considered in this

paper, the situation when they are nonrotating is qualita-
tively similar to that for the Reissner-Nordström solution.
The metric takes the form

ds2 ¼ −ðH1H2H3H4Þ−1=2Wdt2

þ ðH1H2H3H4Þ1=2ðW−1dr2 þ r2dΩ2Þ; ðA8Þ

where

Hi ¼ 1þ μsinh2δi
r

; W ¼ 1 −
μ

r
: ðA9Þ

The outer horizon is located at rþ ¼ μ, and the inner
horizon at r− ¼ 0. There are curvature singularities at the
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four locations r ¼ −μ sinh2 δi, and the Carter-Penrose
diagram will be similar to that for Reissner-Nordström,
with the curvature singularity in the diagram occurring at
the least negative of the four locations.

APPENDIX B: STU SUPERGRAVITY

The Lagrangian of the bosonic sector of four-dimensional
ungauged STU supergravity can be written in the relatively
simple form

L4 ¼ R � 1 −
1

2
� dφi ∧ dφi −

1

2
e2φi � dχi ∧ dχi

−
1

2
e−φ1ðeφ2−φ3 � Fð2Þ1 ∧ Fð2Þ1

þ eφ2þφ3 � Fð2Þ2 ∧ Fð2Þ2 þ e−φ2þφ3 � F 1
ð2Þ ∧ F 1

ð2Þ

þ e−φ2−φ3 � F 2
ð2Þ ∧ F 2

ð2ÞÞ
− χ1ðFð2Þ1 ∧ F 1

ð2Þ þ F 2
ð2Þ ∧ F 2

ð2ÞÞ; ðB1Þ

where the index i labeling the dilatons φi and axions χi
ranges over 1 ≤ i ≤ 3. The four field strengths can bewritten
in terms of potentials as

Fð2Þ1 ¼ dAð1Þ1 − χ2dA2
ð1Þ;

Fð2Þ2 ¼ dAð1Þ2 þ χ2dA1
ð1Þ − χ3dAð1Þ1 þ χ2χ3dA2

ð1Þ;

F 1
ð2Þ ¼ dA1

ð1Þ þ χ3dA2
ð1Þ;

F 2
ð2Þ ¼ dA2

ð1Þ: ðB2Þ

The field strengths here are not in the same duality frame as
the one we have assumed in our discussions in this paper
however. To convert from (B1) and (B2) to the frame we are
using, one would need to dualize the field strengthsF 1

ð2Þ and
F 2

ð2Þ, and if then written explicitly, the resulting Lagrangian

would be rather cumbersome. Alternatively, one could
simply exchange the roles of the electric and magnetic
charges for the field strengths F 1

ð2Þ and F 2
ð2Þ, and work with

(B1) without performing any dualizations. For example, the
4-charge black hole solutions that we refer to in this paper as
having four electric charges would, as solutions in terms of
the fields in (B1), instead comprise two electric and two
magnetic charges. (As for example, in the presentation of
these solution in [65].)
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