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In this work we study a z ¼ 3 Horava-Lifshitz-like extension of QED in (3þ 1) dimensions.
We calculate the one-loop radiative corrections to the two and three-point functions of the gauge and
fermion fields. Such corrections were achieved using the perturbative approach and a dimensional
regularization was performed only in the spatial sector. Renormalization was required to eliminate the
divergent contributions emergent from the photon and electron self-energies and from the three-point
function. We verify that the one-loop vertex functions satisfy the usual Ward identities and using
renormalization group methods we show that the model is asymptotically free.
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I. INTRODUCTION

The possibility of Lorentz symmetry breaking, which
began to be discussed in the early 1990s [1], motivated
interest in the idea of space-time anisotropy based on the
suggestion that spatial and temporal coordinates enter field
theories in distinct ways; the resulting theory involves
different orders in the derivatives with respect to time and
space coordinates. Certainly, one of the initial motivations
for this emerged from studies of condensed matter [2],
where this anisotropy was introduced for the development
of effective models describing Lifshitz phase transitions.
In the realm of relativistic quantum field theories, the

first studies on anisotropic models were performed in [3]
where the renormalizability of scalar field theories with
space-time anisotropy was discussed in great details. The
interest on these theories was further enhanced after the
famous Horava’s paper [4], where models of this kind
were proposed within the gravity context. In that paper,
and many others subsequently written, it was assumed
that the theory is invariant under the rescaling t → b−zt,
xi → b−1xi, with z being a number called the critical

exponent. Clearly, for z > 1 the order in spatial derivatives
increases, which naturally can improve the renormalization
properties of the theory. No difficulty with unitarity is to be
expected since the canonical structure is preserved. It was
argued in [4] that since for the critical exponent z ¼ 3 the
gravitational coupling constant is dimensionless, it is
natural to expect the power-counting renormalizability
for the gravity with this value. Afterward, the theories
with space-time anisotropy began to be referred as Horava-
Lifshitz-like theories. Numerous issues related to different
aspects of the Horava-Lifshitz (HL) gravity including exact
solutions, algebraic structure, cosmological implications,
etc., have been studied (for a review on Horava-Lifshitz
gravity, see, e.g., [5]). At the same time, it is clear that the
HL-like approach not only to gravity, but also to other field
theories, could give interesting results because of the
possibility of improving the renormalization behavior of
the corresponding theories.
The most important theory whose HL-like formulation

must be considered is QED. Recently, some important
results were obtained for it in the case z ¼ 2, such as the
one-loop corrections to the two-point function of the gauge
field. There it was verified, that the dynamical restoration of
the Lorentz symmetry occurs at low energies, at least in
certain cases [6]. The effective potential was already
studied in [7], its finite temperature generalization was
obtained in [8], and its gauge dependence in [9]. At the
same time, the consideration of the case with odd z > 1
seems to be very important. This is confirmed by the fact
that in the paper [10], where the HL-like analogue of the
Gross-Neveu model was considered, it was shown that
odd values of z are more interesting, allowing for non-
trivial mass generation. Therefore, the study of quantum
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dynamics of theories with generic odd z seems to be more
interesting since it allows for straightforward comparison
with the Lorentz-invariant case. Up to now, the main results
in this direction were presented in [11], where some aspects
of HL-like QED with z ¼ 3 were analyzed, in [12], where
the triangle anomaly was studied, and in [13] where the
z ¼ 3 four-fermion theory has been considered. Therefore,
it is relevant to pursue the study of perturbative aspects of
the HL-like QED with z ¼ 3 in more details.
In this work we study the possibility of symmetry

restoration in a z ¼ 3 Lifshitz extension of QED in
(3þ 1) dimensions, through the calculation of the one-
loop radiative corrections. However, before entering into
this analysis we would like to make a comment on a
peculiarity of the regularization method we use when
applied to a model with a generic critical exponent. To
keep the ultraviolet divergences under control, we employ
dimensional regularization in the spatial part of the
Feynman integrals. Besides that, to extract its low energy
behavior we examine the Taylor expansions of the inte-
grands around zero external momenta. Proceeding in this
way, we found that the divergences manifest themselves as
poles at values of the degree of superficial divergence
multiples of 2z. Therefore, for many superficially divergent
diagrams the dimensional regularization gives finite results.
At first sight in our case, we would conclude that there is
the emergence of a finite Maxwell term. However, this is a
hasty conclusion as the radiative correction to the self-
energy of the spinor field turns out to be divergent, requires
a counterterm and, as a consequence, generates divergences
also in the coefficient of the Maxwell term.
This work is organized as follows. In Sec. II we present

the model, in Sec. III we perform the calculations of the
one-loop corrections to quadratic actions of gauge and
spinor fields and to the three-point vector-spinor vertex
function, in Sec. IV, we discuss the Ward identities, and in
Sec. V we employ renormalization group methods to
investigate the behavior of the model both at high and
low energies. We summarize our results in the last section.
Throughout this work, we use the Minkowski met-
ric gμν ¼ diagð1;−1;−1;−1Þ.

II. THE MODEL

The Lagrangian describing the z ¼ 3 HL-like QED in
(3þ 1) dimensions looks like

L ¼ −
1

2
F0iF0i −

a23
4
FijΔ2Fij

þ ψ̄ ½iγ0ð∂0 − ieA0Þ þ b1ðiγið∂i − ieAiÞÞ
þ b3ðiγið∂i − ieAiÞÞ3 −m3�ψ ; ð1Þ

where Δ ¼ ∂i∂i. The corresponding action possesses
an Abelian gauge symmetry with the following trans-
formations:

ψ→eieαψ ; ψ̄→e−ieαψ̄ ; A0;i→A0;iþ∂0;iα; ð2Þ

and the mass dimensions are

½Ai� ¼ 0; ½A0� ¼ 2; ½m� ¼ ½e� ¼ 1; ½ψ � ¼ 3

2
;

½a3� ¼ ½b3� ¼ 0; ½b1� ¼ 2: ð3Þ

In order to obtain the photon propagator and keep it
strictly diagonal, the following gauge fixing will be used
(cf. [6]):

Lgf ¼ −
1

2
½ða3ΔÞ−1∂0A0 þ a3Δ∂iAi�2: ð4Þ

The resulting Feynman rules are given by the list below
(here and henceforth we follow the notation =k≡ kiγi and
k2 ≡ jk⃗j2)

ð5Þ

ð6Þ

ð7Þ

ð8Þ

ð9Þ
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ð10Þ

ð11Þ

There is also the quintuple vertex

Vmnl
5 ðp; k; t; qÞ ¼ e3b3ð2πÞ4δ4ðpþ kþ tþ qÞγmγnγl: ð12Þ

We can calculate the superficial degree of divergence for a generic graph γ. It is given by

δðγÞ ¼ 6 − 2E0 −
3

2
Eψ − 2V2 − V0

3 − 3Vð1Þ
3 − Vð2Þ

3 − 2V4 − 3V5; ð13Þ

where E0 is the number of external A0 lines [we note that
δðγÞ does not depend explicitly on the number of external
Ai lines since the Ai has zero mass dimension], Eψ is the

number of external spinor legs, V2, V0
3, V

ð1Þ
3 , Vð2Þ

3 , V4, and
V5 are the numbers of the corresponding vertices. The
model is super renormalizable; thus, in spite of being
marginal, four fermion self-interactions are not generated to
any finite order of perturbation. Also, taking in account
gauge invariance, we may verify that there are no divergent
corrections to the vertices FijΔ2Fij, ψ̄ ½ðiγið∂i − ieAiÞÞ3�ψ
and ψ̄ ½ðiγið∂i − ieAiÞÞ2�ψ . For simplicity, in what follows
we take b3 ¼ a3. Furthermore, also due to gauge invari-
ance, the two point function of the F0i field, hF0iF0ii, turns
out to be finite.
By adopting dimensional regularization in the spatial

part of the relevant Feynman integrals, we may verify that a
typical integral to be determined, has the form

Kðx; y; wÞ ¼
Z

dk0ddk
ð2πÞdþ1

k2x0 ky

ðk20 − a23k
6 −m6Þw ð14Þ

and is given by

Kðx; y; wÞ ¼ 1

3Γðd
2
ÞΓðwÞ 2

−d−1π−
d
2
−1ixþ1ð−1Þwþxa

1
3
ð−d−yÞ
3 mδ

× Γ
�
2xþ 1

2

�
Γ
�
dþ y
6

�
Γ
�
−
δ

6

�
: ð15Þ

We see that divergences will appear only if its degree
of superficial divergence δ ¼ 3þ dþ yþ 6x − 6w ¼
0; 6; 12;…. Thus, by employing dimensional regularization
in the spatial part, the two point function hFijFiji will
require counterterms of the type a1FijFij and a2FijΔFij to
become finite. Similarly, in the matter sector the coupling
b1 will have to be adjusted to secure the finiteness through
the calculations. These are the only divergences to be found
in this model.
As a consequence of the above remarks, we may write

down the complete bare Lagrangian as
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L ¼ −
1

2
F0iF0i −

a1
4
FijFij −

a2
4
FijΔFij −

a23
4
FijΔ2Fij

þ ψ̄ ½iγ0ð∂0 − ieA0Þ þ b1ðiγið∂i − ieAiÞÞ þ b3ðiγið∂i − ieAiÞÞ3 −m3�ψ ð16Þ

and define its renormalized version by performing the reparametrization: A0 ¼ Z1=2A0r, Ai ¼ Z1=2Air, ψ ¼ Z1=2
2 ψ r;

ai ¼ Zai
Z air for i ¼ 1, 2 and b1 ¼ Zb1

Z2
b1r. The Lagrangian becomes

L ¼ −
Z
2
F0iF0i −

a1rZa1

4
FijFij −

a2rZa2

4
FijΔFij −

a23Z
4

FijΔ2Fij þ Z2ψ̄

×

�
iγ0ð∂0 − ieZ1=2A0Þ þ

Zb1b1r
Z2

ðiγið∂i − ieZ1=2AiÞÞ þ b3ðiγið∂i − ieZ1=2AiÞÞ3 −m3

�
ψ ; ð17Þ

where now all basic fields are the renormalized ones. In the
next section we will examine the one-loop contributions to
the renormalization factors; for simplicity, the parameters
a1, a2 and b1 will be treated perturbatively so that they will
not contribute to the free propagators of the basic fields. As
we shall verify, the wave function renormalizations Z and
Z2 turn out to be finite.

III. ONE-LOOP CORRECTIONS

A. The pure gauge sector

We begin our analysis of the radiative corrections by
calculating the contributions to the two-point function of
the gauge field coming from the graphs depicted in Fig. 1.
Our first aim is to obtain a correction to the (generalized)

Maxwell term. The tadpole, the second graph in Fig. 1,
does not contribute to the Maxwell term because it is based
on the vertex Vmn

4 ðp; k; tÞ which contains only one power
of the external momentum, and therefore cannot generate
terms quadratic in Fμν. This diagram only serves to cancel
nongauge-invariant contributions from the other graphs.
The photon self-energy gives us three contributions

coming from the first graph in Fig. 1, iΠ00ðpÞ, with two
external A0 fields, iΠ0iðpÞ, with one Ai and one A0 and
iΠij,with two Ai external fields. Up to first order in b1, each
of these corrections receives two contributions. We will
examine separately each of them.
(1) Contributions to the two point function hA0A0i.

Π00ðpÞ ¼ Π00
1 ðpÞ þ Π00

2 ðpÞ ð18Þ

where Π00
1 and Π00

2 are, respectively, the terms of
zero and first order in b1:

Π00
1 ðpÞ ¼ e2μ3−d

Z
dk0ddk
ð2πÞdþ1

tr½γ0SðkÞγ0Sðk − pÞ�;

ð19Þ
which is independent of b1, and Π00

2 which collects
the result of one insertion of the bilinear part of the
b1 vertex,

Π00
2 ðpÞ

¼ −ie2b1μ3−d
Z

dk0ddk
ð2πÞdþ1

tr½=kSðkÞγ0Sðk − pÞγ0SðkÞ

þ SðkÞγ0Sðk − pÞð=k − =pÞSðk − pÞγ0�; ð20Þ
where, as usual, the parameter μ with mass dimen-
sion one was introduced to fix the dimension of the
integral to its value in three spatial dimensions. In
order to carry out the above integration, we perform
a derivative expansion in the external momentum,

Π00ðpÞ ¼ Π00ð0Þ þ pipj

2

∂2Π00

∂pi∂pj

����
p¼0

þ � � � ; ð21Þ

and use integration over d-dimensional spherical
coordinates. From now on, Π00ðpÞ will represent the
parts of (19) and (20) nontrivially contributing to
F0iF0i, i.e., Π00ðpÞ will contain only terms with two
spatial external momenta. After evaluating the trace,
disregarding the terms which are odd with respect to
momenta, we obtain

Π00
1 ðpÞ

¼ −e2μ3−d
2πd=2

Γðd
2
Þ p⃗2

Z
dk0dk
ð2πÞdþ1

kd−1
�
216k20k

10

d

þ 32k40k
4

d
−
32m12k4

d
þ 8m6k10

d

þ 40k16

d
þ 4k40k

4 − 4m12k4 − 8m6k10 − 4k16
�

×
1

ðk20 − a23k
6 −m6Þ4 : ð22Þ

FIG. 1. Radiative corrections to the photon two point function.
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Finally, after integrating, we obtain

Π00
1 ðpÞ ¼ −i

e2a
2−d
3

3 μ3−dmd−5Γð5
6
− d

6
ÞΓðdþ4

6
Þ

3ð2πÞ12ðdþ1ÞΓðd
2
þ 1Þ p⃗2:

ð23Þ

Analogously, we have

Π00
2 ðpÞ ¼ −i

e2b1a
1
3
−d
3

3 μ3−dmd−7Γð7
6
− d

6
ÞΓðdþ8

6
Þ

3ð2πÞ12ðdþ1ÞΓðd
2
þ 1Þ p⃗2:

ð24Þ

Therefore,

Π00 ¼ −iα1p⃗2; ð25Þ

with

α1 ¼
e2a

2−d
3

3 μ3−dmd−5Γð5
6
− d

6
ÞΓðdþ4

6
Þ

3ð2πÞ12ðdþ1ÞΓðd
2
þ 1Þ

þ e2b1a
1
3
−d
3

3 μ3−dmd−7Γð7
6
− d

6
ÞΓðdþ8

6
Þ

3ð2πÞ12ðdþ1ÞΓðd
2
þ 1Þ : ð26Þ

(2) Using a similar procedure, the quantities Π0iðpÞ and
ΠijðpÞ, that from now on will represent contribu-
tions to F0iF0i and FijFij, can be found. They are

Π0iðpÞ ¼ eμ3−d
Z

dk0ddk
ð2πÞdþ1

trfV3iðk;−pÞSðkÞγ0Sðk − pÞ − ib1V
ð2Þ
3j ðk;−pÞ

× ½SðkÞ=kSðkÞγ0Sðk − pÞ þ SðkÞγ0Sðk − pÞð=k − =pÞSðk − pÞ�g; ð27Þ

ΠijðpÞ ¼ μ3−d
Z

dk0ddk
ð2πÞdþ1

trfV3iðk;−pÞSðkÞV3jðk − p; pÞSðk − pÞ� − ib1V
ð2Þ
3i ðk;−pÞ½SðkÞ=kSðkÞVð2Þ

3j ðk − p; pÞSðk − pÞ

− SðkÞVð2Þ
3j ðk − p; pÞSðk − pÞð=k − =pÞSðk − pÞ�g; ð28Þ

which yields

Π0iðpÞ ¼ −iα1p0pi; ð29Þ

and

Πij ¼ Π1ij þ Π2ij; ð30Þ

with

Π1ij ¼ −iα1p2
0δij; ð31Þ

Π2ij ¼ iα2ðpipj − p⃗2δijÞ; ð32Þ

where α2 is not finite for d ¼ 3 and is given by

α2 ¼ −
�
e2a

4
3
−d
3

3 μ3−dmd−1dðd− 2ÞΓð1
6
− d

6
ÞΓðdþ2

6
Þ

12ð2πÞ12ðdþ1ÞΓðd
2
þ 1Þ

þ b1e2a
1−d

3

3 μ3−dmd−3ðd− 2Þðd− 4ÞΓð1
2
− d

6
ÞΓðd

6
þ 1Þ

6ð2πÞ12ðdþ1ÞΓðd
2
þ 1Þ

�
:

ð33Þ

Observe that the Ward identities

p0Π00 þ piΠi0 ¼ 0 ð34Þ

and

p0Π0j þ piΠij ¼ 0 ð35Þ

are automatically satisfied. Notice also that the coefficients
associated with Π00, Π0i, and Π1ij are the same, and
therefore it is possible to simplify the sum of these
corrections as

Π00ðpÞA0ðpÞA0ð−pÞ þ Π0iðpÞA0ðpÞAið−pÞ þ Π1ijðpÞAiðpÞAjð−pÞ ¼ α1F0iF0i: ð36Þ
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As the gauge structure in the above result is preserved
with α1 finite at d ¼ 3, the wave function renormalization
for the gauge fields, Z, may be taken equal to one.
Moreover, as we have anticipated, at d ¼ 3, Π2ij presents
a divergence to first order in b1. The cancellation of this
divergence is accomplished by writing Za1 ¼ 1þ δZa1
with

a1rδZa1 ¼
b1e2

6π2ðd − 3Þ ; ð37Þ

that effectively removes the pole part of (33).
In this pure gauge sector, there is also a divergence ofΠij

containing four factors of the momentum. To get its explicit
value, we need to calculate the fourth derivative of (28)
with respect to the external momentum and with b1 ¼ 0.
We obtain the result

Πij ¼ iα3ðpipj − p⃗2δijÞp⃗2; ð38Þ

α3 ¼
e2a

2ð1−d
6
Þ

3 2
5
2
−d
2π−

d
2
−1
2md−3μ3−dΓð1

2
− d

6
ÞΓðd

6
Þ

5Γðd
2
− 2Þ

¼ 6e2a3
5π2ðd − 3Þ þ Finite term: ð39Þ

To cancel the above divergence we adjust the renormaliza-
tion of the parameter a2 so that Za2 ¼ 1þ δZa2 , with

a2rδZa2 ¼
6a3e2

5π2ðd − 3Þ : ð40Þ

With these corrections calculated, up to a term proportional
to Fij△

2Fij that is not renormalized, the pure gauge sector
of the effective one-loop Lagrangian can be written as
follows:

Lγ ¼
1

2
ð1þα1ÞF0iF0i−

1

4
ða1rþα2FinÞFijFij

−
1

4
ða2rþα3FinÞFijΔFij−

a23
4
FijΔ2Fij ð41Þ

where α2Fin ¼ α2 −
b1e2

6π2ðd−3Þ and α3Fin ¼ α3 −
6a3e2

5π2ðd−3Þ are,

respectively, the finite parts of (33) and (39). The new terms
with coefficients containing a1r or a2r do not induce new
divergences and can be naturally treated as small pertur-
bations to the classical action. For simplicity, they will be
omitted henceforth. Notice also that, due to gauge invari-
ance, graphs with six external spatial gauge field lines
although individually logarithmically divergent provide a
finite result.

B. Corrections to the two point function
of the spinor field

The next step is to calculate the one-loop corrections for
the spinor sector of the QED. We have two graphs, which
are, as in the previous case, the self-energy and the tadpole.
We will not consider the modifications in these contribu-
tions due to insertions of the vertices V2 or V

ð1Þ
3 as they are

finite and, after renormalization, b1 will be taken very
small. For the fermion self-energy, ΣðpÞ, we have two
contributions, one with two temporal vertices and one with
two spatial vertices. There are no mixed contributions
because our photon propagator is strictly diagonal. These
contributions, which correspond to the first graph in Fig. 2
are given by the expressions below:

iΣðpÞ ¼ iΣ1ðpÞ þ iΣ2ðpÞ ð42Þ

iΣ1ðpÞ¼−e2μ3−d
Z

dk0ddk
ð2πÞdþ1

γ0SðpþkÞγ0D00ð−kÞ; ð43Þ

iΣ2ðpÞ ¼ −μ3−d
Z

dk0ddk
ð2πÞdþ1

V3iðpþ k;−kÞSðpþ kÞV3jðp;−kÞDijð−kÞ: ð44Þ

From now on iΣ1ðpÞwill be the part of (43) contributing to Dirac-like correction. Thus we must consider only terms up to
the linear order in p0 and pi. Hence iΣ1ðpÞ can be written as

iΣ1ðpÞ ¼ −e2μ3−d
2πd=2

Γðd
2
Þ
Z

dk0dk
ð2πÞdþ1

m3kdþ3

ðk20 − a23k
6 −m6Þðk20 − a23k

6Þ þ e2
2πd=2

Γðd
2
Þ
Z

dk0dk
ð2πÞdþ1

kd−1

ðk20 − a23k
6 −m6Þ2ðk20 − a23k

6Þ

×

�
piγ

i

�
−
2a3k20k

6

d
þ 2a3m6k6

d
−
4a33k

12

d
− a3k20k

6 þ a3m6k6 þ a33k
12

�
þ 4a23γ

0p0k20k
4

�
; ð45Þ

FIG. 2. One-loop self-energy graphs. There are two contribu-
tions for the first graph: one in which the wavy line corresponds
to the propagator of the A0 field and another where it represents
the propagator for the Ai field.

M. GOMES et al. PHYS. REV. D 98, 105016 (2018)

105016-6



and, after the integration, we have

Σ1ðpÞ ¼
e2μ3−d2−d−1π−

d
2
−1
2md−3

9Γðd
2
Þ

�
−3að2−dÞ=33 m−2γ0p0Γ

�
dþ 4

6

�
Γ
�
−
d
6
−
7

6

�

þ a1−d=33 piγ
iΓ
�
d
6
þ 1

�
Γ
�
−
d
6
−
3

2

�
þ 3að2−dÞ=33 mΓ

�
−
d
6
−
1

6

�
Γ
�
dþ 4

6

��
: ð46Þ

Observe that the term proportional to piγ
i in the above expression diverges at d ¼ 3 with a pole term

−
e2

48π2
γipi

d − 3
: ð47Þ

Using a similar procedure, we can find the Dirac-like contribution of Σ2ðpÞ, considering only terms that are linear
in p0 and pi and applying d-dimensional spherical coordinates to calculate the integrals, we get

Σ2ðpÞ ¼
e2μ3−d2−d−2π

1
2
ð−d−1Þmd−5

9Γðd
2
Þ

�
að2−dÞ=33 dΓ

�
dþ 4

6

�
Γ
�
−
d
6
−
7

6

�
× ð−ðdþ 7Þm3 þ 6dγ0p0Þ þ

−
2

d
a1−d=33 m2piγ

ifd½dðdþ 6Þ − 12� þ 36gΓ
�
d
6
þ 1

�
Γ
�
−
d
6
−
3

2

��
: ð48Þ

Here the pole part of Σ2 is

−
9e2

16π2
γipi

d − 3
: ð49Þ

Consequently, ΣðpÞ ¼ Σ1ðpÞ þ Σ2ðpÞ is

ΣðpÞ ¼ α4p0γ
0 þ α5piγ

i − α6m3; ð50Þ
where

α4 ¼
2−d−1π−

d
2
−1
2e2a

2−d
3

3 ðd − 1Þmd−5μ3−dΓð− d
6
− 7

6
ÞΓðdþ4

6
Þ

3Γðd
2
Þ ; ð51Þ

α5 ¼
2−1−dπ−

d
2
−1
2e2a

1−d
3

3 ½d½dðdþ 6Þ − 11� þ 36�md−3μ3−dΓð− 3
2
− d

6
ÞΓðd

6
þ 1Þ

9dΓðd
2
Þ ; ð52Þ

α6 ¼
2−dπ

1
2
ð−d−1Þe2a

2
3
−d
3

3 md−5μ3−dΓð5
6
− d

6
ÞΓðdþ4

6
Þ

Γðd
2
Þ : ð53Þ

As we can see, the ΣðpÞ (namely, α5) diverges when we
set d ¼ 3. To be more precise, as mentioned earlier, the
divergence is present in the term ψ̄γipiψ ,

α5 ¼ −
7e2

12π2ðd − 3Þ þ Finite terms; ð54Þ

which may be absorbed in the parameter b1.
The tadpole contribution may be obtained from the terms

in the Lagrangian linear in the spatial derivative and
containing two gauge fields. These two fields are then
contracted and, to evade infrared divergences, we replace
the gauge propagator by

−i
gij

k20 − a23k
6 −M6

; ð55Þ

the auxiliary mass parameter M to be eliminated at the end
of the calculation. We then have

iΣ3ðpÞ ¼ −iμ3−dðdþ 2Þe2a3=p
Z

dk0ddk
ð2πÞdþ1

1

k20 − a23k
6 −M6

;

ð56Þ

corresponding to the second graph in Fig. 2. After perform-
ing the integration, we get
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Σ3ðpÞ≡ α7=p ¼ 2−d−1ðdþ 2Þπ−d
2
−1
2e2a

1−d
3

3 ð μMÞ3−dΓð12 − d
6
ÞΓðd

6
Þ=p

3Γðd
2
Þ ≈ −

5e2

4π2ðd − 3Þ =p −
5e2

4π2
ln
M
μ
=p; ð57Þ

where in the second line of the above regulated expression we also quoted both its pole part at d ¼ 3 and also the
dependence onM of its finite part. Notice that asM tends to zero Σ3 develops a logarithmic divergence. This divergence is
however innocuous as it can be absorbed in the renormalization of the parameter b1.
We may write now the one-loop corrected Dirac-like Lagrangian as

Lψ̄ψ ¼ ψ̄ ½i∂0γ
0ð1þ α4Þ þ ½b1 þ α5 þ α7�i∂iγ

i −m3ð1þ α6Þ�ψ : ð58Þ

The divergences in α5 and α7 are removed by the counterterm associated to the vertex b1 so that Zb1 ¼ 1þ δZb1 , with

b1rδZb1 ¼
11e2

6π2ðd − 3Þ þ
5e2

4π2
ln
M
m

: ð59Þ

Up to a term proportional to Fij△
2Fij, we may summarize the corrections of the Maxwell and Dirac Lagrangians in the

following expression:

LIR ¼ 1

2
ð1þ α1ÞF0iF0i −

1

4
ða1r þ α2FinÞFijFij −

1

4
ða2r þ α3FinÞFijΔFij −

a23
4
FijΔ2Fij

þ ψ̄ ½i∂0γ
0ð1þ α4Þ þ iðb1r þ α5Fin þ α7FinÞ∂iγ

i −m3ð1þ α6Þ�ψ ; ð60Þ

where α5Fin and α7Fin are the finite parts of α5 and α7. In defining α7Fin we subtract the pole term and also subtract a term
containing lnM=m, as it is indicated in (59).

C. The three point vertex function

The corrections to the three point vertex functions hA0ψψ̄i and hAiψψ̄i receive contributions from graphs whose structure
is depicted in Fig. 3. As mentioned before, the analytic expressions for the vertex function hA0ψψ̄i are finite and are
associated with the first graph, Fig. 3(a). They are given by

T10ðp; qÞ ¼ −ie3μ3−d
Z

dk0ddk
ð2πÞdþ1

γ0Sðkþ pÞγ0Sðkþ pþ qÞγ0D00ðkÞ; ð61Þ

when the internal wavy line represents the propagator for the A0 field, and

T20ðp; qÞ ¼ −ie3μ3−d
Z

dk0ddk
ð2πÞdþ1

½Vð2Þ
3a ðpþ k;−kÞSðkþ pÞγ0Sðkþ pþ qÞ×Vð2Þ

3b ðp; kÞDabðkÞ�; ð62Þ

when the wavy line represents the propagator of the spatial component of the gauge field. The other diagrams in Fig. 3 do
not contribute to hA0ψψ̄i. For zero external momenta, a direct computation provides the result

FIG. 3. Graphs contributing to the three point vertex function: (a) graph with three trilinear vertices, graphs (b) and (c) graphs with two
vertices and (d) a tadpole graph. In the text, p and q designate the momenta entering through the fermion and gauge field lines,
respectively.
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T10 ¼ −
ie3μ3−d2−d−1π

1
2
ð−d−1Þa

ð2−dÞ
3

3 md−5Γð− d
6
− 7

6
ÞΓðdþ4

6
Þγ0

3Γðd
2
Þ ; ð63Þ

T20 ¼
ie3μ3−d2−d−1π

1
2
ð−d−1Þa

ð2−dÞ
3

3 md−5dΓð− d
6
− 7

6
ÞΓðdþ4

6
Þγ0

3Γðd
2
Þ ð64Þ

Concerning the vertex function hAiψψ̄i, we have contributions from all graphs in Fig. 3. Thus, similarly to the previous
case the first of those diagrams, Fig. 3(a), is contributed by the following expressions:

T1iðp; qÞ ¼ −ie2μ3−d
Z

dk0ddk
ð2πÞdþ1

γ0Sðkþ pÞVð2Þ
3i ðkþ pþ q; qÞSðkþ pþ qÞγ0D00ðkÞ; ð65Þ

when the internal wavy line represents the propagator for the A0 field, and

T2iðp; qÞ ¼ −iμ3−d
Z

dk0ddk
ð2πÞdþ1

½Vð2Þ
3a ðpþ k;−kÞSðkþ pÞVð2Þ

3i ðkþ pþ q; qÞSðkþ pþ qÞ×Vð2Þ
3b ðp; kÞDabðkÞ�; ð66Þ

if the wavy line represents the propagator of the spatial component of the gauge field. Besides that, there are now also
contributions with two interacting vertices, shown in Figs. 3(b) and 3(c)

T3iðp; qÞ ¼ −μ3−d
Z

dk0ddk
ð2πÞdþ1

Vð2Þ
3a ½ðpþ k;−kÞSðkþ pÞV4ibðpþ q; q; kÞDabð−kÞ; ð67Þ

T4iðp; qÞ ¼ −μ3−d
Z

dk0ddk
ð2πÞdþ1

V4iaðkþ pþ q; q;−kÞSðkþ pþ qÞV3bðpþ q; kÞDabðkÞ; ð68Þ

Finally, we have the contribution from the tadpole graph, Fig. 3(d),

T5iðp; qÞ ¼ −ðdþ 2Þa3e3μ3−dγi
Z

dk0ddk
ð2πÞdþ1

1

k20 − a23k
6 −M6

; ð69Þ

where, to take care of infrared divergences, we again introduced the auxiliary mass parameter M.
Direct computation of these expressions at zero external momenta, yields

T1i ¼
ie32−d−1π−

d
2
−1
2a

1−d
3

3 Γð− d
6
− 3

2
ÞΓðd

6
þ 1ÞðmμÞd−3γi

9Γðd
2
Þ ≈ −

ie3γi
48π2ðd − 3Þ ∶ ð70Þ

T2i ¼
ie32−d−2ðd − 2Þðdðdþ 5Þ − 18Þπ1

2
ð−d−1Þa1−

d
3

3 md−3Γð1
2
− d

6
ÞΓðd

6
þ 1Þγi

3ðdþ 9ÞΓðd
2
þ 1Þ ≈

ie3γi
48π2ðd − 3Þ ; ð71Þ

T3i ¼ T4i ¼
ie32−dðd2 − 2dþ 4Þπ−d

2
−1
2a

1−d
3

3 md−3Γð1
2
− d

6
ÞΓðd

6
þ 1Þγi

dðdþ 3ÞΓðd
2
Þ ≈ −

7ie3γi
24π2ðd − 3Þ ; ð72Þ

T5i ¼
ie32−d−1ðdþ 2Þπ−d

2
−1
2a

1−d
3

3 μ3−dMd−3Γð1
2
− d

6
ÞΓðd

6
Þγi

3Γðd
2
Þ ≈ −

5ie3γi
4π2ðd − 3Þ −

5ie2γi
4π2

ln
M
μ
: ð73Þ

In the right-hand side of the above equations we explicitly quoted the pole parts at d ¼ 3. Notice that the divergent terms are
correctly absorbed by the renormalization of the parameter b1, as it was defined in (59).

ONE-LOOP CORRECTIONS IN THE z ¼ 3 LIFSHITZ … PHYS. REV. D 98, 105016 (2018)

105016-9



IV. WARD IDENTITIES

In the pure gauge sector, the one loop Ward identities have been verified in Eqs. (34), (35). Here we shall consider the
matter sector. In the tree approximation we have:

p0eγ0 − piV3iðp1 þ p;−pÞ ¼ ieðS−1ðpþ p1Þ − S−1ðp1ÞÞ: ð74Þ

Using this result for the two- and three-point vertex functions, in the one-loop order one should have

q0T10 þ qiT1iðp; qÞ ¼ ieðΣ1ðpþ qÞ − Σ1ðpÞÞ;
q0T20 þ qiðT2iðp; qÞ þ T3iðp; qÞ þ T4iðp; qÞÞ ¼ ieðΣ2ðpþ qÞ − Σ2ðpÞÞ;

qiT5i ¼ ieðΣ3ðpþ qÞ − Σ3ðpÞÞ: ð75Þ

Straightforward comparison of our results for the two and
three-point functions given by (46), (48), (57) and (63),
(64), (70)–(73) confirms the validity of these identities up
to terms linear in the momenta. Thus, we conclude that the
Ward identities are valid not only at the tree level but also at
the one-loop order.

V. THE RENORMALIZATION GROUP AND
LORENTZ SYMMETRY RESTORATION

The renormalized vertex functions of the model, con-
structed by removing the pole part of its regularized
amplitudes, depend on the scale parameter μ. The inves-
tigations on the changes of this parameter allows to relate
the amplitudes at different energy scales. The implementa-
tion of the renormalization group program is greatly
simplified by the fact that the divergences may be absorbed
in just the parameters a1, a2, and b1. Thus, because there
are no wave function renormalization of the basic fields,
the would be anomalous dimension is absent and the

renormalization group equation for the vertex function
ΓðNA0

;NAi
;Nψ Þ takes the simple form�

μ
∂
∂μþ βa1a1r

∂
∂a1r þ βa2a2r

∂
∂a2r þ βb1b1r

∂
∂b1r

�

× ΓN ½p; κ� ¼ 0; ð76Þ
where N ¼ ðNA0

; NAi
; Nψ Þ and the set of parameters of the

model and external momenta are symbolically represented
by κ and p. The β’s functions may be determined by
inserting in (76) the two point functions of the gauge and
spinor fields. By disregarding terms of order higher than e2,
we find

βa1a1r ¼
b1re2

6π2
; βa2a2r ¼

6a3re2

5π2
; βb1b1r ¼ −

11e2

6π2
:

ð77Þ
Taking into account that ΓNðp; κÞ has dimension

6 − 2NA0
− 3

2
Nψ , we may write

�
3p0

∂
∂p0

þ p
∂
∂pþ μ

∂
∂μþ 4a1r

∂
∂a1r þ 2a2r

∂
∂a2r þ 2b1r

∂
∂b1r þm

∂
∂m −

�
6 − 2NA0

−
3

2
Nψ

��
ΓðNÞ ¼ 0; ð78Þ

so that

�
−
∂
∂tþðβa1 −4Þa1r

∂
∂a1rþðβa2 −2Þa2r

∂
∂a2rþðβb1 −2Þb1r

∂
∂b1r−e

∂
∂e−m

∂
∂mþ

�
6−2NA0

−
3

2
Nψ

��
ΓðNÞðe3tp0;etp;κÞ¼0:

ð79Þ

At this point, we introduce effective (or running) couplings which satisfy

∂m̄
∂t ¼ −m̄;

∂ā1
∂t ¼ ðβā1 − 4Þā1;

∂ā2
∂t ¼ ðβā2 − 2Þā2;

∂b̄1
∂t ¼ ðβb̄1 − 2Þb̄1;

∂ē
∂t ¼ −ē; ð80Þ

that are subject to the condition that at t ¼ 0 they are equal to the original parameters i.e., a1ð0Þ ¼ a1r, a2ð0Þ ¼ a2r, etc.
Notice that, as a3 is dimensionless and does not have divergent radiative corrections, it is independent of t and may be

taken very small so that, for momenta k with a3k2 ≪ b1, it could be neglected in the effective Lagrangian.
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The above system may be solved by standard means furnishing

m̄ðtÞ ¼ e−tm; ēðtÞ ¼ e−te; ā2ðtÞ ¼
�
a2r þ

6a3re2

5π2
t

�
e−2t; b̄1ðtÞ ¼

�
b1r −

11e2

12π2
t

�
e−2t

ā1ðtÞ ¼
�
a1r þ

b1re2

6π2
t

�
e−4t: ð81Þ

These results explicitly exhibit the asymptotic freedom of
the model, all renormalized parameters vanishing at very
high energies. Thus, at very high energies and momenta the
perturbative methods we employed are safe. On the other
hand, for very low energies and momenta the parameters
increase and eventually these methods are no longer reliable.
Actually, even the absence of Lorentz symmetry restoration,
that the different behaviors of the effective parameters ā1 and
b̄1 with the energy/momenta scales seems to indicate, cannot
be taken as granted. However, before this extreme situation
is reached, we may adjust a3r and a2r to very small values so
that the higher derivative terms in the effective Lagrangian
may be disregarded. Thus, the model acquires a structure
similar to the one described by

L1 ¼ −
1

2
Fi0Fi0 −

a1r
4

FijFij þ ψ̄ ½iγ0ð∂0 − ieA0Þ
þ b1rðiγið∂i − ieAiÞÞ −m�ψ ; ð82Þ

which, as argued in [14], corresponds to QED in a material
medium of permittivity ϵ ¼ b1r and magnetic permeability
μ ¼ ϵ

a1r
. In [14] the model (82) was attained by the clever

introduction of an auxiliary “cutoff” ΛL which separates the
regions of high and low energies, and letting ΛL to become
very high.

VI. SUMMARY

We calculated the two-point functions of gauge and spinor
fields and also the three point functions in a z ¼ 3, d ¼ 3
QED. After obtaining the low momenta contributions to the
three point vector-spinor vertex function, we verified that our
results satisfy Ward identities which confirm their validity.
It turns out that, unlike the z ¼ 2 case [6], in this

work the two-point function of the gauge field receives a
nontrivial correction, and the contribution to the two-point
function of the spinor field involves the first derivatives not
only in time, but also in the space sector. Compared with
the z ¼ 2 case [6,15], this seems to indicate that the
perturbative restoration of Lorentz symmetry in the low
energy limit could take place. However, the presence of
divergences precludes such a conclusion as we shortly argue.
The renormalization aspects of this model are quite

interesting. The model is super renormalizable and up to

one-loop order the divergences are restricted just to the
vertices, FijFij, FijΔFij and ψ̄ðiγið∂i − ieAiÞÞψ . There are
no divergent renormalization of the mass m and the
charge e (see also [16]).
Furthermore, there is no wave function renormalization

of the basic fields and therefore the usual renormalization
group parameters γ’s vanish. The parameter a3, associated
with the vertices with highest derivative, is dimensionless
and does not receive divergent corrections. Consequently,
the renormalization group equation is very simple allowing
us to fix the energy dependence of the effective (running)
parameters in a straightforward way. Actually, the model is
asymptotically free, all effective parameters tending to
zero for high energies/momenta. This is a good aspect
implying that at very high energies perturbative methods
can be applied with confidence. On the other hand, at low
energies/momenta the effective parameters increase and the
perturbative results are no longer reliable. In particular, the
discussion of a possible emergence of Lorentz symmetry at
low energies is hampered by this fact. The one-loop results,
showing that the parameters ā1 and b̄1 move at different
rates in the energy scale, indicate that Lorentz symmetry
will not hold. In that situation, the usefulness of the model
will be restricted to very high energy domain where Lorentz
symmetry is probably broken.
It should be noticed that, still being compatible with the

renormalization group properties of the model, for energies
which are not very low, a3 and a2r may be adjusted so that
the higher derivative terms in the effective Lagrangian may
be neglected. One then obtains a Lagrangian which
corresponds to QED in a material medium. The occurrence
of this mechanism was proposed in a earlier paper [11], in
which an auxiliary cutoff ΛL separating the regions of high
and low energies was used. By lettingΛL → ∞ they arrived
to the mentioned effective Lagrangian. We emphasize that
this outcome will hold only for energies which are not
very small.
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