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We study the OðNÞ3 symmetric quantum field theory of a bosonic tensor ϕabc with sextic interactions.
Its large N limit is dominated by a positive-definite operator, whose index structure has the topology
of a prism. We present a large N solution of the model using Schwinger-Dyson equations to sum the
leading diagrams, finding that for 2.81 < d < 3 and for d < 1.68 the spectrum of bilinear operators
has no complex scaling dimensions. We also develop perturbation theory in 3 − ϵ dimensions including
eight OðNÞ3 invariant operators necessary for the renormalizability. For sufficiently large N, we find a
“prismatic” fixed point of the renormalization group, where all eight coupling constants are real. The large
N limit of the resulting ϵ expansions of various operator dimensions agrees with the Schwinger-
Dyson equations. Furthermore, the ϵ expansion allows us to calculate the 1=N corrections to operator
dimensions. The prismatic fixed point in 3 − ϵ dimensions survives down toN ≈ 53.65, where it merges with
another fixed point and becomes complex. We also discuss the d ¼ 1 model where our approach gives a
slightly negative scaling dimension for ϕ, while the spectrum of bilinear operators is free of complex
dimensions.
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I. INTRODUCTION

In recent literature, there has been considerable interest
in models where the degrees of freedom transform as
tensors of rank 3 or higher. Such models with appropriately
chosen interactions admit new kinds of large N limits,
which are not of ’t Hooft type and are dominated by the so-
called melonic Feynman diagrams [1–5]. Much of the
recent activity (for a review see [6]) has been on the
quantum mechanical models of fermionic tensors [4,5],
which have largeN limits similar to that in the Sachdev-Ye-
Kitaev (SYK) model [7–14].
It is also of interest to explore similar quantum theories

of bosonic tensors [5,15,16]. In [5,15] an OðNÞ3 invariant
theory of the scalar fields ϕabc was studied:

S4 ¼
Z

ddx

�
1

2
ð∂μϕ

abcÞ2 þ g
4!
Otetra

�
;

Otetra ¼ ϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa2b2c1 : ð1:1Þ

This quantum field theory (QFT) is super-renormalizable in
d < 4 and is formally solvable using the Schwinger-Dyson

equations in the large N limit where gN3=2 is held fixed.
However, this model has some instabilities. One problem is
that the “tetrahedral” operator Otetra is not positive definite.
Even if we ignore this and consider the large N limit
formally, we find that in d < 4 theOðNÞ3 invariant operator
ϕabcϕabc has a complex dimension of the form d

2
þ iαðdÞ

[15].1 From the dual anti–de Sitter (AdS) point of view,
such a complex dimension corresponds to a scalar field
whose m2 is below the Breitenlohner-Freedman stability
bound [21,22]. The origin of the complex dimensions was
elucidated using perturbation theory in 4 − ϵ dimensions:
the fixed point was found to be at complex values of the
couplings for the additional OðNÞ3 invariant operators
required by the renormalizability [15]. In [15] an OðNÞ5
symmetric theory for tensor ϕabcde and sextic interactions
was also considered. It was found that the dimension of
operator ϕabcdeϕabcde is real in the narrow range
dcrit < d < 3, where dcrit ≈ 2.97. However, the scalar
potential of this theory is again unstable, so the theory
may be defined only formally. In spite of these problems,
some interesting formal results on melonic scalar theories
of this type were found recently [23].
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1Such complex dimensions appear in various other large N
theories; see, e.g., [17–20].
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In this paper, we continue the search for stable bosonic
large N tensor models with multiple OðNÞ symmetry
groups. Specifically, we study theOðNÞ3 symmetric theory
of scalar fields ϕabc with a sixth-order interaction, whose
Euclidean action is

S6 ¼
Z

ddx

�
1

2
ð∂μϕ

abcÞ2

þ g1
6!

ϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa3b3c1ϕa3b2c3ϕa2b3c3

�
:

ð1:2Þ

This QFT is super-renormalizable in d < 3. When the fields
ϕabc are represented by vertices and index contractions by
edges, this interaction term looks like a prism (see Fig. 11
in [5]); it is the leftmost diagram in Fig. 1. Unlike with the
tetrahedral quartic interaction (1.1), the action (1.2) is
positive for g1 > 0. In Secs. II and III, we will show that
there is a smooth largeN limit where g1N3 is held fixed and
derive formulas for various operator dimensions in con-
tinuous d. We will call this large N limit the “prismatic”
limit: the leading Feynman diagrams are not the same as the
melonic diagrams, which appear in the OðNÞ5 symmetric
ϕ6 QFT for a tensor ϕabcde [15]. However, as we discuss in
Sec. II, the prismatic interaction may be reduced to a
tetrahedral one, (2.1), by introducing an auxiliary tensor
field χabc.
The theory (1.2) may be viewed as a tensor counterpart

of the bosonic theory with random couplings, which was
introduced in Sec. VI. B of [16]. Since both theories are
dominated by the same class of diagrams in the large N
limit, they have the same Schwinger-Dyson equations for
the 2-point and 4-point functions. We will confirm the
conclusion of [16] that the d ¼ 2 theory does not have a
stable IR limit; this is due to the appearance of a complex
scaling dimension. However, we find that in the ranges
2.81 < d < 3 and d < 1.68, the large N prismatic theory
does not have any complex dimensions for the bilinear
operators. In Sec. V we use renormalized perturbation
theory to develop the 3 − ϵ expansion of the prismatic QFT.
We have to include all eight operators invariant under the
OðNÞ3 symmetry and the S3 symmetry permuting the
OðNÞ groups; they are shown in Fig. 1 and written down
in (A1). For N > Ncrit, where Ncrit ≈ 53.65, we find a
prismatic RG fixed point where all eight coupling constants
are real. At this fixed point, ϵ expansions of various

operator dimensions agree in the large N limit with
those obtained using the Schwinger-Dyson equations.
Furthermore, the 3 − ϵ expansion provides us with a
method to calculate the 1=N corrections to operator
dimensions, as shown in (5.8), (5.9). At N ¼ Ncrit the
prismatic fixed point merges with another fixed point, and
for N < Ncrit both become complex.
In Sec. VI we discuss the d ¼ 1 version of the model

(1.2). Our large N solution gives a slightly negative scaling
dimension, Δϕ ≈ −0.09, while the spectrum of bilinear
operators is free of complex scaling dimensions.

II. LARGE N LIMIT

To study the large N limit of this theory, we will find it
helpful to introduce an auxiliary field χabc so that2

S ¼
Z

ddx

�
1

2
ð∂μϕ

abcÞ2

þ g
3!
ϕa1b1c1ϕa1b2c2ϕa2b1c2χa2b2c1 −

1

2
χabcχabc

�
; ð2:1Þ

where g ∼ ffiffiffi
g

p
1
. Integrating out χabc gives rise to the action

(1.2). The advantage of keeping χabc explicitly is that the
theory is then a theory withOðNÞ3 symmetry dominated by
the tetrahedral interactions, except it now involves two
rank-3 fields; this shows that it has a smooth large N limit.
Thus, a prismatic large N limit for the theory with one
3-tensor ϕabc may be viewed as a tetrahedral limit for two
3-tensors.
Let us define the following propagators:

hϕðpÞϕðqÞi ¼ ð2πÞdδdðpþ qÞGðpÞ;
hχðpÞχðqÞi ¼ ð2πÞdδdðpþ qÞFðpÞ: ð2:2Þ

In the free theoryGðpÞ ¼ G0ðpÞ ¼ 1
p2, andFðpÞ ¼ F0 ¼ 1.

In the strong coupling limit the self-energies of the fields are
given by the inverse propagators: GðpÞ−1 ¼ Σϕ and
FðpÞ−1 ¼ Σχ . The Schwinger-Dyson equations for the exact
two-point functions can be written as:

FIG. 1. Diagrammatic representation of the eight possible OðNÞ3 invariant sextic interaction terms.

2If we added fermions to make the tensor model supersym-
metric [5,16,24,25] then χabc would be interpreted as the highest
component of the superfield Φabc.
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FðpÞ ¼ F0 þ g2N3F0

Z
ddqddk
ð2πÞ2d Gðp − q − kÞ

×GðqÞGðkÞFðpÞ;

GðpÞ ¼ G0ðpÞ þ 3g2N3G0ðpÞ
Z

ddqddk
ð2πÞ2d

×Gðp − q − kÞFðqÞGðkÞGðpÞ; ð2:3Þ

and represented in Fig. 2.
Multiplying the first equation by F−1

0 on the left and
FðpÞ−1 on the right, and likewise for the second equation,
we obtain:

FðpÞ−1¼F−1
0 −λ2

Z
ddqddk
ð2πÞ2d Gðp−q−kÞGðqÞGðkÞ;

GðpÞ−1¼G0ðpÞ−1−3λ2
Z

ddqddk
ð2πÞ2d Gðp−q−kÞFðqÞGðkÞ;

ð2:4Þ

where λ2 ¼ N3g2 ∼ N3g1. We have to take the large N limit
keeping λ2 fixed. In the IR limit, let us assume

GðpÞ ¼ A
p2a ; FðpÞ ¼ B

p2b :

a is related to the scaling dimension of ϕ, Δϕ via
a ¼ d=2 − Δϕ.
For what range of a and b can we drop the free terms in

the gap equations above? In the strong coupling limit we
require b < 0 and a < 1. Since b ¼ −3aþ d, we have
d=3 < a < 1. In terms of Δϕ, we then find

3Δϕ þ Δχ ¼ d; d=2 − 1 < Δϕ < d=6: ð2:5Þ

Notice that if we had the usual kinetic term for the χ field,
the allowed range for Δϕ would be larger. Therefore, our
solution may also apply to a model with two dynamical
scalar fields interacting via the particular interaction given
above.

The gap equation is finally:

FðpÞ−1 ¼ −λ2
Z

ddqddk
ð2πÞ2d Gðp − q − kÞGðqÞGðkÞ;

GðpÞ−1 ¼ −3λ2
Z

ddqddk
ð2πÞ2d Gðp − q − kÞFðqÞGðkÞ: ð2:6Þ

Dimensional analysis of the strong coupling fixed point
actually does not fix a: we get b ¼ −3aþ d from the first
equation and a ¼ −2a − bþ d from the second equation.
Let us try to solve the above equations, in the hope that
numerical factors arising from the Feynman integrals may
determine a. The overall constant A is not determined from
this procedure, but note that ½λ� ¼ 3 − d, and therefore

A ∼ λ
2ða−1Þ
3−d . This procedure is analogous to solving an

eigenvalue equation, and perhaps it is not surprising that
we have to do this, since a solution for a also determines the
anomalous dimension of a composite operator ϕ3. We then
find

FðpÞ ¼ −1
A3λ2

ð2πÞ2d
Ldða; aÞLdð2a − d=2; aÞ

1

p2b ; ð2:7Þ

where

Ldða; bÞ ¼ πd=2
Γðd=2 − aÞΓðd=2 − bÞΓðaþ b − d=2Þ

ΓðaÞΓðbÞΓðd − a − bÞ :

ð2:8Þ
The condition that must be satisfied by a is then:

3
Ldð2a − d=2; d − 3aÞ

Ldð2a − d=2; aÞ ¼ 1: ð2:9Þ

In position space, the IR two-point functions take the
form

GðxÞ ¼ Γðd=2 − aÞ
πd=222aΓðaÞ

A
ðx2ÞΔϕ

; ð2:10Þ

FðxÞ¼ Γðd=2−bÞ
πd=222bΓðbÞ

ð2πÞ2d
A3λ2Ldða;aÞLdð2a−d=2;aÞ

1

ðx2Þd−3Δϕ
:

ð2:11Þ

In terms of Δϕ, (2.9) may be written as

fðd;ΔϕÞ≡1

3

Γðd
2
−3ΔϕÞΓð−d

2
þ3ΔϕÞΓðΔϕÞΓðd−ΔϕÞ

Γðd
2
−ΔϕÞΓð−d

2
þΔϕÞΓð3ΔϕÞΓðd−3ΔϕÞ

¼ 1:

ð2:12Þ

A. The scaling dimension of ϕ

It can be verified numerically that solutions to (2.12)
within the allowed range (2.5) do exist in d < 3.

FIG. 2. Diagrammatic representation of the Schwinger-Dyson
equations. Solid lines denote ϕ propagators, and dashed lines
denote χ propagators.
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For example, for d ¼ 2.9 we have the solution shown in
Fig. 3:

Δϕ ≈ 0.456; Δχ ≈ 1.531: ð2:13Þ

For d ¼ 2.99, we find Δϕ ¼ 0.495, and d ¼ 2.999,
Δϕ ¼ 0.4995, consistent with the 3 − ϵ expansion (4.1).
For d ¼ 2, (2.9) simplifies to

3ð3Δϕ − 1Þ2 ¼ ðΔϕ − 1Þ2: ð2:14Þ

The solution Δϕ ¼ 1
13
ð4 − ffiffiffi

3
p Þ lies within the allowed

range (2.5), while the one with the other branch of the
square root is outside it.
For d < 2 we find multiple solutions within the allowed

range (2.5), as shown for d ¼ 1 in Fig. 4. One of the
solutions gives Δϕ ¼ 0; this produces singularities in the
large N dimensions of scalar bilinears, and we will not use
it. The other solution,

Δϕ ≈ −0.09055; Δχ ≈ 1.2717; ð2:15Þ

appears to be acceptable. Although Δϕ is negative, it lies
above the unitarity bound. We note that there is also a

positive solution Δϕ ≈ 0.225, which lies outside of the
allowed range (although it would be allowed if the χ field
was dynamical).
There is an interesting transition in behavior which

happens at d ¼ dc where there is a double root at
Δϕ ¼ 0. The critical dimension dc is the solution of

2þ dcπ cotðdcπ=2Þ þ dcðγ þ ψðdcÞÞ ¼ 0: ð2:16Þ
Its numerical value is dc ¼ 1.35287. For d slightly above dc
one of the solutions forΔϕ is zero, while the other is positive;
we have to pick the positive one. However, for d slightly
belowdc one of the solutions forΔϕ is zero, while the other is
negative. Special care may be needed for continuation to
d < dc, in particular, for studying the d ¼ 1 case.

III. BILINEAR OPERATORS

There are three types of scalar bilinears one can consider,
which are of the schematic form: A ¼ ϕðξ · ∂Þsð∂2Þnϕ, B ¼
ϕðξ · ∂Þsð∂2Þnχ and C ¼ χðξ · ∂Þsð∂2Þnχ, where ξμ is an
auxiliary null vector introduced to encode the spin of the
operators, ξ · ∂ ¼ ξμ∂μ, and ∂2 ¼ ∂μ∂μ. We note that there
is mixing of operators of type A and C. It is easy to
convince oneself that there is no mixing with the B
operators by drawing a few diagrams.

A. Bilinears of type B

Let us consider a bilinear of type B, of spin s and scaling
dimension Δ, for which there is no mixing. The three-point
functions take the form [26,27]:

hϕabcðx1Þχabcðx2ÞBsðx3; ξÞi
¼ vðBÞðx1; x2; x3Þ

¼ Qs
3

x
τþΔϕ−Δχ

31 x
τþΔχ−Δϕ

32 x
ΔϕþΔχ−τ
12

→ vðBÞs;τ ðx1; x2Þ

¼ ðx12 · ξÞsxτ−Δϕ−Δχ

12 ; ð3:1Þ
where τ ¼ Δ − s is the twist of the bilinear, ξ is the null
polarization vector, Q3 is the conformally invariant tensor
structure defined in [26,27] and we took the limit x3 → ∞
in the second line. The eigenvalue equation, obtained using
the integration kernel depicted schematically in Fig. 5, is

vs;τðx1; x2Þ ¼ 3λ2
Z

ddyddzFðx2; yÞGðy; zÞ2

×Gðz; x1Þvs;τðy; zÞ: ð3:2Þ

0.455 0.460 0.465 0.470 0.475 0.480

−2

−1

1

2

3

FIG. 3. Solving (2.12) for d ¼ 2.9.

−0.5 −0.4 −0.3 −0.2 −0.1 0.1

−2

−1

1

2

3

FIG. 4. Solving (2.12) for d ¼ 1. FIG. 5. The integration kernel for type B bilinears.
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When s ¼ 0, we have:

jx1 − x2j−Δϕ−ΔχþΔ ¼ 3Ã3B̃λ2
Z

ddyddz
1

jx2 − yj2Δχ jy − zj5ΔϕþΔχ−Δjz − x1j2Δϕ
; ð3:3Þ

which translates into

gðBÞðd;ΔÞ≡ −3
Γð3ΔϕÞ sin ð12 πðd − 6ΔϕÞÞΓðd2 − ΔϕÞΓð− d

2
þ 3Δϕ þ 1ÞΓðΔ

2
− ΔϕÞΓð12 ðd − Δ − 2ΔϕÞÞ

πΓðΔϕÞΓðΔ2 þ ΔϕÞΓðd−Δ2 þ ΔϕÞ
¼ 1: ð3:4Þ

We can solve equation (3.4) numerically to find the
allowed scaling dimensions for type B operators in various
dimensions. In d ¼ 2.9 the type B scaling dimensions are

ΔB ¼ 2.30120; 4.00173; 5.99214; 7.98983; 9.98891;…;

ð3:5Þ

as shown in Fig. 6. In the pure ϕ language, the first one can
be identified with the tetrahedral operator. The type B
scaling approaches the asymptotic formula:

ΔB → 2nþ Δϕ þ Δχ ¼ 2nþ 1.98747: ð3:6Þ

For example, for n ¼ 54 we numerically find Δ ¼
109.98749, which is very close to (3.6).
For spin s > 0 the eigenvalue equation is:

ðx12 ·ξÞsjx1−x2j−Δϕ−ΔχþΔ

¼ 3Ã3B̃λ2
Z

ddyddz
ððy−zÞ ·ξÞs

jx2−yj2Δχ jy− zj5ΔϕþΔχ−Δjz−x1j2Δϕ
:

ð3:7Þ

Note that the spectrum of type B bilinears does not contain
the stress tensor, which is of type A=C.
Processing the equation we have the following condition

for the allowed twists of higher spin bilinears:

gðBÞðd; τ; sÞ≡ −3
Γð3ΔϕÞ sin ð12 πðd − 6ΔϕÞÞΓðd2 − ΔϕÞΓð− d

2
þ 3Δϕ þ 1ÞΓð1

2
ðd − 2Δϕ − τÞÞΓðs − Δϕ þ τ

2
Þ

πΓðΔϕÞΓðd2 þ Δϕ − τ
2
ÞΓðsþ Δϕ þ τ

2
Þ ¼ 1: ð3:8Þ

Using this equation one can find the allowed twists of
spin-s type B bilinears. For example, the spectrum when
s ¼ 2 and d ¼ 2.9 is found from Fig. 7 to be τ ¼ 2.08;
3.99; 5.99; 7.99;…, which approach Δχ þ Δϕ þ 2n ¼
1.99þ 2n from above.

We find that the spectrum of type B bilinears appears
to be real for all d < 3. However, there are ranges
of d where the spectrum of type A/C operators do
contain complex eigenvalues, as we discuss in the next
section.

2 4 6 8

−1

1

2

FIG. 6. The spectrum of type B bilinears in d ¼ 2.9.
The red lines correspond to asymptotes at 2nþ Δϕ þ Δχ ¼
2nþ 1.98747.

1 2 3 4 5 6

−1

1

2

FIG. 7. Solving equation (3.8) in d ¼ 2.9 for the allowed twists
of spin-2 type B bilinears.
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B. Mixing of bilinears of type A and C

Let us now study the spectrum of bilinear operators of
type A and C. As mentioned earlier, by drawing a few
diagrams (see Fig. 8) one can see that these operators mix,
in the sense that the two-point function hAsCsi ≠ 0. Let
τ ¼ Δ − s be the twist of mixture of A and C operators,
which we denote as Ãs. As in the previous subsection, from
the three-point functions hϕabcðx1Þϕabcðx2ÞÃsðx3; ξÞi and
hχabcðx1Þχabcðx2ÞÃsðx3; ξÞi, we define

vðAÞs;τ ðx; yÞ ¼ ððx − yÞ · ξÞs
ðx − yÞ2Δϕ−τ

; vðCÞs;τ ðx; yÞ ¼ ððx − yÞ · ξÞs
ðx − yÞ2Δχ−τ

:

ð3:9Þ
We now define the following kernels, depicted sche-

matically in Fig. 8:

KAA½vðAÞ� ¼ 3

Z
ddxddyGðx1; xÞGðx2; yÞGðx; yÞ

Fðx; yÞvðAÞs;τ ðx; yÞ ð3:10Þ

KCA½vðAÞ� ¼ 3

Z
ddxddyFðx1; xÞFðx2; yÞGðx; yÞ2vðAÞs;τ ðx; yÞ

ð3:11Þ

KAC½vðCÞ� ¼ 3

Z
ddxddyGðx1;xÞGðx2;yÞGðx;yÞ2vðCÞs;τ ðx;yÞ:

ð3:12Þ

Note the factor of 3, which appears from a careful counting
of the Wick contractions.
The integration kernel gives rise to the following matrix:

�
2KAA½vðAÞ�=vðAÞ KAC½vðCÞ�=vðAÞ
KCA½vðAÞ�=vðCÞ 0

�
≡

�
2K1 K3

K2 0

�
:

ð3:13Þ

The condition for it to have eigenvalue 1, which determines
the allowed values of τ, is

gðAÞðd; τ; sÞ≡ 2K1 þ K3K2 ¼ 1: ð3:14Þ

Luckily, this condition is independent of the constant A, as
one can see from the following expressions,

K1 ¼
3ðd − 6ΔϕÞΓð3ΔϕÞ sin ð12 πðd − 6ΔϕÞÞΓðd − 3ΔϕÞΓðd2 − ΔϕÞ2ΓðΔϕ − τ

2
ÞΓð− d

2
þ sþ Δϕ þ τ

2
Þ

2πΓðΔϕÞ2Γðd − Δϕ − τ
2
ÞΓð1

2
ðdþ 2s − 2Δϕ þ τÞÞ ;

K2 ¼
3πd24ðd−2ΔϕÞΓð3ΔϕÞ2Γðd2 − ΔϕÞ4Γðd − 3Δϕ − τ

2
ÞΓð1

2
ðdþ 2s − 6Δϕ þ τÞÞ

A4λ2ΓðΔϕÞ4Γðd2 − 3ΔϕÞ2Γð3Δϕ − τ
2
ÞΓð− d

2
þ sþ 3Δϕ þ τ

2
Þ ;

K3 ¼
3A4π−dλ228Δϕ−4dΓðΔϕÞ2ΓðΔϕ − τ

2
ÞΓð− d

2
þ sþ Δϕ þ τ

2
Þ

Γðd
2
− ΔϕÞ2Γðd − Δϕ − τ

2
ÞΓð1

2
ðdþ 2s − 2Δϕ þ τÞÞ : ð3:15Þ

Thus, the equation we need to solve is:

ΓðΔϕÞ2Γðd2 − 3ΔϕÞ2Γð3Δϕ − d
2
ÞΓð3Δϕ − τ

2
ÞΓðd − Δϕ − τ

2
ÞΓð− d

2
þ sþ 3Δϕ þ τ

2
ÞΓð1

2
ðdþ 2s − 2Δϕ þ τÞÞ

3Γð3ΔϕÞΓðd2 − ΔϕÞ2ΓðΔϕ − τ
2
ÞΓð− d

2
þ sþ Δϕ þ τ

2
Þ

¼ 3Γð3ΔϕÞΓ
�
3Δϕ −

d
2

�
Γ
�
d − 3Δϕ −

τ

2

�
Γ
�
1

2
ðdþ 2s − 6Δϕ þ τÞ

�

− 2Γ
�
d
2
− 3Δϕ

�
Γðd − 3ΔϕÞΓ

�
3Δϕ −

τ

2

�
Γ
�
−
d
2
þ sþ 3Δϕ þ

τ

2

�
: ð3:16Þ

FIG. 8. The integration kernels KAA, KCA and KAC, respectively, for mixtures of type A and C bilinears.
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One can check that the stress-tensor, which has s ¼ 2 and
τ ¼ d − 2, appears in this spectrum for any d.
The Schwinger-Dyson equations have a symmetry under

Δ → d − Δ. In a given conformal field theory (CFT), only
one of this pair of solutions corresponds to a primary
operator dimension, while the other one is its “shadow.”
The s ¼ 0 spectrum contains complex modes for
1.6799 < d < 2.8056. In d ¼ 2.9 the graphical solution
for the scaling dimensions in the type A/C sector is shown
in Fig. 9. The lowest few are

Δ¼ 1.064;1.836;2.9;3.114;4.912;5.063;6.913;7.063;…:

ð3:17Þ
The eigenvalue at Δ ¼ 2.9 is exact, and in general Δ ¼ d is
an eigenvalue for any d. The solution 1.836 corresponds to
the shadow of 1.064. As d is further lowered, the part of the
graph between 1 and 2 moves up so that the two solutions
become closer. In d ¼ dcrit, where dcrit ≈ 2.8056, the two

solutions merge into a single one at d=2 (for discussions of
mergers of fixed points, see [28–30]). For d < dcrit, the
solutions become complex d

2
� iαðdÞ and the prismatic

model becomes unstable. The plot for d ¼ 2.75 is shown
in Fig. 10.
For d ≤ 1.68, the spectrum of bilinears is again real. The

plot for d ¼ 1.68, where Δϕ ≈ 0.0867, is shown in Fig. 11.
At this critical value of d there are two solutions at d=2; one
is the shadow of the other.

IV. LARGE N RESULTS IN 3− ϵ DIMENSIONS

Let us solve the Schwinger-Dyson equations in
d ¼ 3 − ϵ. The results will be compared with renormalized
perturbation theory in the following section. The scaling
dimension of ϕabc is found to be

Δϕ ¼ 1

2
−
ϵ

2
þ ϵ2 −

20ϵ3

3
þ
�
472

9
þ π2

3

�
ϵ4

þ
�
7ζð3Þ − 12692

27
−
56π2

9

�
ϵ5 þOðϵ6Þ: ð4:1Þ

This is within the allowed range (2.5) and is close to its
upper boundary. The scaling dimension of χabc is

Δχ ¼ d − 3Δϕ ¼ 3

2
þ ϵ

2
− 3ϵ2 þ 20ϵ3 −

�
472

3
þ π2

�
ϵ4

− 3

�
7ζð3Þ − 12692

27
−
56π2

9

�
ϵ5 þOðϵ6Þ: ð4:2Þ

Let us consider the s ¼ 0 type A/C bilinears. For the first
eigenvalue we find

Δϕ2 ¼ 1 − ϵþ 32ϵ2 −
976ϵ3

3
þ
�
30320

9
þ 32π2

3

�
ϵ4

þOðϵ5Þ: ð4:3Þ

2 4 6 8

−1

1

2

(A)(2.9, , 0)g

FIG. 9. The spectrum of type A/C scalar bilinears in d ¼ 2.9.
The green lines correspond to the 2Δχ þ 2n asymptotics and the
red ones to 2Δϕ þ 2n asymptotics. We see that the solutions are
real and approach the expected values as n → ∞.

2 4 6 8

−1

1

2

(A)(2.75, , 0)g

FIG. 10. The spectrum of type A/C scalar bilinears in d ¼ 2.75.
The green lines correspond to the 2Δχ þ 2n asymptotics and the
red ones to 2Δϕ þ 2n asymptotics. We see that two real solutions
are no longer present; they are now complex.

2 4 6 8

−1.0

−0.5

0.5

1.0

1.5

2.0

2.5
g(A)(1.68, , 0)

FIG. 11. The spectrum of type A/C scalar bilinears in d ¼ 1.68.
The green vertical lines correspond to the 2Δχ þ 2n asymptotics,
the red ones to the 2Δϕ þ 2n asymptotics.
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It corresponds to the scaling dimension of operator
ϕabcϕabc, as we will show in the next section. The next
eigenvalue is the shadow dimension d − Δϕ2 .
The next solution of the Schwinger-Dyson equation is

Δ ¼ d ¼ 3 − ϵ for all d. While this seems to correspond to
an exactly marginal operator, we believe that the corre-
sponding operator is redundant: it is a linear combination of
ϕabc∂2ϕabc and χabcχabc. Similar redundant operators with
h ¼ 1 showed up in the Schwinger-Dyson analysis of
multiflavor models [12,31]. They decouple in correlation
functions [12] and were shown to vanish by the equations
of motion [31]. The next eigenvalue is

Δprism ¼ 3þ ϵþ 6ϵ2 − 84ϵ3 þ
�
1532

3
þ 10π2

�
ϵ4

þ
�
18ζð3Þ − 6392

3
−
452π2

3

�
ϵ5 þOðϵ6Þ: ð4:4Þ

It should correspond to the sextic prism operator (1.2),
which is related by the equations of motion to a linear
combination of ϕabc∂2ϕabc and χabcχabc.
The subsequent eigenvalues may be separated into two

sets. One of them has the form, for integer n ≥ 0,

Δ−
n ¼ 5þ 2n − ϵþ 2ϵ2 −

40ϵ3

3
þ ð2ð472þ 3π2Þnð2nþ 7Þðnð2nþ 7Þ þ 11Þ þ 180π2 þ 28212Þϵ4

9ðnþ 1Þðnþ 2Þð2nþ 3Þð2nþ 5Þ þOðϵ5Þ: ð4:5Þ

For large n this approaches 4þ 2nþ 2Δϕ, as expected for
an operator of the form ϕabcð∂2Þ2þnϕabc. The other set of
eigenvalues has the form, for integer n ≥ 0,

Δþ
n ¼ 5þ 2nþ ϵ − 6ϵ2 þ 4

�
9

nþ 2
−

18

2nþ 3

−
6

2nþ 5
þ 3

nþ 1
þ 10

�
ϵ3 þOðϵ4Þ: ð4:6Þ

For large n this approaches 2þ 2nþ 2Δχ , as expected for
an operator of the form χabcð∂2Þ1þnχabc. These simple
asymptotic forms suggest that for large n the mixing
between operators ϕabcð∂2Þ2þnϕabc and χabcð∂2Þ1þnχabc

approaches zero.
We can also use (3.4) to derive the 3 − ϵ expansions of

the dimensions of type B operators,

OB;n ¼ χabcð∂μ∂μÞnϕabc þ…; ð4:7Þ

where the additional terms are there to make them
conformal primaries. For n ¼ 0 we find

ΔB;0 ¼ 2þ 6ϵ − 68ϵ2 þ 2848þ 24π2

3
ϵ3 þOðϵ4Þ: ð4:8Þ

This scaling dimension corresponds to the operator
ϕabcχabc, which in the original ϕ language is the tetrahe-
dron operator Otetra. For the higher operators we get

ΔB;1 ¼ 4þ 4ϵ3 − 44ϵ4 þOðϵ5Þ; ð4:9Þ

ΔB;2 ¼ 6 −
7

5
ϵ2 þ 331

30
ϵ3 −

�
199547

2250
þ 7π2

15

�
ϵ4 þOðϵ5Þ;

ð4:10Þ

ΔB;3 ¼ 8 −
12

7
ϵ2 þ 9139

735
ϵ3 −

�
7581556

77175
þ 4π2

7

�
ϵ4

þOðϵ5Þ; etc: ð4:11Þ

Using the equations of motion, we can write OB;1, up to a
total derivative, as a sum of the three 8-particle operators
shown in the leftmost column of Fig. 9 in [31]. In general,
for n > 0,

ΔB;n ¼ 2nþ 2 − 2

�
1 −

3

nð2nþ 1Þ
�
ϵ2 þOðϵ3Þ; ð4:12Þ

which agrees for large n with the expected asymptotic
behavior

ΔB;n → 2nþ Δϕ þ Δχ ¼ 2nþ 2 − 2ϵ2 þOðϵ3Þ: ð4:13Þ

A. Higher spin spectrum

Let us also present the ϵ expansions for the higher spin
bilinear operators which are mixtures of type A and C. The
lowest eigenvalue of twist τ ¼ Δ − s for spin s is

τ0 ¼ 1 − ϵþ 8ðs2 − 4Þϵ2
4s2 − 1

þ
4ϵ3ð27ð1 − 4s2ÞHs−1

2
− 2sð80s3 þ sð54 logð4Þ − 508Þ þ 45Þ − 244þ 27 logð4ÞÞ

3ð1 − 4s2Þ2 þOðϵ4Þ;

ð4:14Þ
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whereHn is the harmonic number and the last two terms (as
well as all higher-order terms) vanish when s ¼ 2 as
expected. In the large s limit, this becomes:

τ0 → 1 − ϵþ ϵ2
�
2 −

15

2s2
þOðs−3Þ

�

þ ϵ3
�
−
40

3
þ −9 logð4sÞ − 9γ þ 78

s2
þOðs−3Þ

�

þOðϵ4Þ: ð4:15Þ

Comparing with (5.8), we see that

τ0 ¼ 2Δϕ þO

�
1

s2

�
: ð4:16Þ

This is the expected large spin limit [32–35] for an operator
bilinear in ϕ, indicating that for large spin the mixing with χ
bilinears is suppressed.
The next two twists are

τ1 ¼ 3 − ϵþ 8sðsþ 2Þϵ2
4sðsþ 2Þ þ 3

þ 4ϵ3

3ð4sðsþ 2Þ þ 3Þ2
�
−4ð40sðsþ 4Þ þ 157Þs2 þ 6ðsþ 27Þ − 27γð4sðsþ 2Þ þ 3Þ

− 27ð4sðsþ 2Þ þ 3Þ logð4Þ − 27ð4sðsþ 2Þ þ 3Þψ
�
sþ 3

2

��
þOðϵ4Þ; ð4:17Þ

and

τ2 ¼ 3þ ϵþ
�

36

4sðsþ 2Þ þ 3
− 6

�
ϵ2 þ 4ϵ3

ð4sðsþ 2Þ þ 3Þ2
�
4sð2sð20sðsþ 4Þ þ 56þ 9 log 4Þ − 105þ 36 log 4Þ

þ 18γð4sðsþ 2Þ þ 3Þ þ 18ð4sðsþ 2Þ þ 3Þψ
�
sþ 3

2

�
− 297þ 54 log 4

�
þOðϵ4Þ; ð4:18Þ

where ψðxÞ is the digamma function. In the large s limit, these take the form,

τ1 → 3 − ϵþ ϵ2
�
2 −

3

2s2
þOðs−3Þ

�
þ ϵ3

�
−
40

3
−
3ð3 logðsÞ þ logð64Þ þ 3γ − 7Þ

s2
þOðs−3Þ

�
þOðϵ4Þ

¼ 2Δϕ þ 2þO

�
1

s2

�
; ð4:19Þ

and

τ2 → 3þ ϵþ ϵ2
�
−6þ 9

s2
þOðs−3Þ

�
þ ϵ3

�
40þ 18ðlogðsÞ þ logð4Þ þ γ − 6Þ

s2
þOðs−3Þ

�
þOðϵ4Þ

¼ 2Δχ þO
�
1

s2

�
: ð4:20Þ

In general, for large spin we find the two towers of twists labeled by an integer n,

τAn ¼ 2nþ 1 − ϵþ 2ϵ2 −
40ϵ3

3
þOðϵ4Þ ¼ 2Δϕ þ 2nþ…

τCn ¼ 2nþ 3þ ϵ − 6ϵ2 þOðϵ3Þ ¼ 2Δχ þ 2nþ…; ð4:21Þ

again in agreement with the expected asymptotics and suppression of mixing at large spin.
We can similarly derive explicit results for spinning operators in the type B sector using (3.8). For the lowest two twists,

we find
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τ0 ¼ 2þ 6ϵ

2sþ 1
þ
2ϵ2ð3ð2sþ 1Þ2ðHs−1

2
þ logð4ÞÞ − 8s3 − 84s2 − 72s − 34Þ

ð2sþ 1Þ3 þOðϵ3Þ

¼ ð2 − 2ϵ2 þOðϵ3ÞÞ þO

�
1

s

�
;

τ1 ¼ 4 −
4sϵ2

2sþ 3
þ
2ϵ3ð9ð2sþ 3ÞHsþ1

2
þ 80s2 þ 12sð8þ logð8ÞÞ þ 54 logð2ÞÞ

3ð2sþ 3Þ2 þOðϵ4Þ

¼
�
4 − 2ϵ2 þ 40ϵ3

3
þOðϵ4Þ

�
þO

�
1

s

�
; ð4:22Þ

and higher twists may be analyzed similarly. One can see
that these results are also in agreement with the expected
large spin limit τn → Δϕ þ Δχ þ 2n for fixed n.

V. RENORMALIZED PERTURBATION
THEORY

In this section we use the renormalized perturbation
theory to carry out the 3 − ϵ expansion for finite N. We will
find a fixed point with real couplings, whose large N limit
reproduces the results found using the 3 − ϵ expansion of
the Schwinger-Dyson solution in the previous section. This
is an excellent check of the Schwinger-Dyson approach to
the prismatic theory.
To carry out the beta function calculation at finite N we

need to include all the OðNÞ3 invariant sextic terms in the
action (as usual in such calculations, we ignore the quartic
and quadratic operators which are relevant in d ¼ 3). The
11 such single-sum terms are shown diagrammatically in
Fig. 5 of [31]. We will impose the additional constraint that
the action is invariant under the permutation group S3
which acts on the threeOðNÞ symmetry groups. This leaves
us with 8 operators: 5 single-sum, 2 double-sum and 1
triple-sum. They are written down explicitly in (A1) and
shown schematically in Fig. 1. The first one, and the most
essential one for achieving the solvable large N limit, is the
“prism” term (1.2); it is positive definite and symmetric
under the interchanges of the three OðNÞ groups.
Our action is a special case of a general multifield ϕ6

tensor theory:

S ¼
Z

ddx

�
1

2
∂μϕ

abc∂μϕabc

þ 1

6!
gκ1κ2κ3κ4κ5κ6ϕ

κ1ϕκ2ϕκ3ϕκ4ϕκ5ϕκ6

�
: ð5:1Þ

The beta functions and anomalous dimensions for such a
general sextic coupling were calculated in [36,37]; see also
[38,39] for earlier results on the OðnÞ invariant sextic
theory. The diagram topology contributing to the leading
two-loop beta function is shown in Fig. 12.

In our case each index κ1; κ2…; κ6 has three sub indices
κi ¼ ðaibiciÞ. The coupling gκ1κ2κ3κ4κ5κ6 contains 8 different
types of interactions:

gκ1κ2κ3κ4κ5κ6 ¼ g1T
ð1Þ
κ1κ2κ3κ4κ5κ6 þ g2T

ð2Þ
κ1κ2κ3κ4κ5κ6

þ � � � þ g8T
ð8Þ
κ1κ2κ3κ4κ5κ6 ; ð5:2Þ

which can be graphically represented as in Fig. 1. Each

tensor structure TðkÞ
κ1κ2κ3κ4κ5κ6 consists of a sum of product of

δ functions, which are symmetrized over the colors ðabcÞ
and over the indices κ1;…; κ6.
The two-loop beta functions and anomalous dimensions

for general N are given in the Appendix. Let us use the
large N scaling

g1 ¼ 180 · ð8πÞ2ϵ g̃1
N3

; g2;4;6;7 ¼ 180 · ð8πÞ2ϵ g̃2;4;6;7
N5

;

g3;5 ¼ 180 · ð8πÞ2ϵ g̃3;5
N4

; g8 ¼ 180 · ð8πÞ2ϵ g̃8
N7

;

ð5:3Þ

which is chosen in such a way that all beta functions retain
nonvanishing quadratic terms in the large N limit:

β̃1 ¼ −2g̃1 þ 2g̃21;

β̃2 ¼ −2g̃2 þ 4g̃1ð3g̃1 þ 2g̃5Þ;
β̃3 ¼ −2g̃3 þ 12g̃21;

β̃4 ¼ −2g̃4 þ
2

3
ð2ð3g̃1 þ g̃3Þ2 þ g̃25 þ 12g̃1g̃5Þ;

β̃5 ¼ −2g̃5 þ 4g̃1ð6g̃1 þ g̃5Þ;
β̃6 ¼ −2g̃6 þ 4g̃1ð3g̃1 þ g̃5 þ 2g̃6Þ;
β̃7 ¼ −2g̃7 þ 6g̃21;

β̃8 ¼ −2g̃8 þ
4

3
ðg̃23 þ 4g̃7g̃3 þ g̃25 þ 6g̃26 þ 2g̃27

þ 6g̃5g̃6 þ 3g̃1ðg̃5 þ 6g̃6ÞÞ: ð5:4Þ
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The unique nontrivial fixed point of these scaled beta
functions is at

g̃�1 ¼ 1; g̃�2 ¼ −42; g̃�3 ¼ 6; g̃�4 ¼ 54;

g̃�5 ¼ −12; g̃�6 ¼ 6; g̃�7 ¼ 3; g̃�8 ¼ 84: ð5:5Þ

For this fixed point, the eigenvalues of the matrix ∂β̃i∂g̃j are

λi ¼ 6; 2; 2; −2; −2; −2; −2; −2: ð5:6Þ
That there are unstable directions at the “prismatic” fixed
point also follows from the solution of the Schwinger-Dyson
equations.3 Using (4.3) we see that the largeN dimension of
the triple-trace operator ðϕabcϕabcÞ3 is 3ð1 − ϵÞ þOðϵ2Þ,
which means that it is relevant in d ¼ 3 − ϵ and is one of the
operators corresponding to eigenvalue −2. On the other
hand, the prism operator is irrelevant and corresponds to
eigenvalue 2. Another irrelevant operator is Otetraϕ

abcϕabc;
from (4.8) it follows that its large N dimension is
3þ 5ϵþOðϵ2Þ, so it corresponds to eigenvalue 6.
We have also calculated the 1=N corrections to the fixed

point (5.5):

g̃�1 ¼ 1 −
6

N
þ 18

N2
þ…;

g̃�2 ¼ −42þ 384

N
þ 8592

N2
þ…;

g̃�3 ¼ 6þ 1848

N2
þ…;

g̃�4 ¼ 54 −
132

N
þ 16392

N2
þ…;

g̃�5 ¼ −12þ 30

N
þ 2340

N2
þ…;

g̃�6 ¼ 6þ 36

N
−
1320

N2
þ…;

g̃�7 ¼ 3þ 174

N
þ 7080

N2
þ…;

g̃�8 ¼ 84þ 6732

N
þ 309204

N2
þ…: ð5:7Þ

For the scaling dimension of ϕ, we find from (A10):

Δϕ ¼ d − 2

2
þ γϕ ¼ 1

2
−
ϵ

2
þ ϵ2

�
1 −

12

N
þ 75

N2
þ…

�

þOðϵ3Þ: ð5:8Þ

In the large N limit, (5.8) is in agreement with the solution
of the Schwinger-Dyson equation (4.1). For the scaling
dimension of ϕabcϕabc, we find

Δϕ2 ¼ d − 2þ γϕ2 ¼ 1 − ϵþ 32ϵ2
�
1 −

12

N
þ 75

N2
þ…

�

þOðϵ3Þ: ð5:9Þ

In the large N limit this is in agreement with (4.3).
In general, calculating the 1=N corrections in tensor models
seems to be quite difficult [40], but it is nice to see that
in the prismatic QFT the 3 − ϵ expansion provides us
with explicit results for the 1=N corrections to scaling
dimensions of various operators.
The scaling dimension of the marginal prism operator is

Δprism ¼ dþ dβ̃1
dg̃1

¼ 3 − ϵ − 2ϵþ 4ϵg̃�1 þ… ¼ 3þ ϵ

þOðϵ2Þ; ð5:10Þ

which is in agreement with (4.4).
We have also performed two-loop calculations of the

scaling dimensions of the tetrahedron and pillow operators;
see the Appendix for the anomalous dimension matrix. In
the large N limit, we find

Δtetra ¼ 2ðd − 2Þ þ γtetra ¼ 2þ 6ϵþOðϵ2Þ;
Δpillow ¼ 2ðd − 2Þ þ γpillow ¼ 2 − 2ϵþOðϵ2Þ; ð5:11Þ

which is in agreement with the Schwinger-Dyson result
(4.8). Thus, we see that the large N 3 − ϵ expansions from
the Schwinger-Dyson approach have passed a number of
2-loop consistency checks.
We have also solved the equations for the fixed points of

two-loop beta functions numerically for finite N. The
results for the prismatic fixed point are shown in
Table I. These results are in good agreement with the
analytic 1=N expansions (5.7) for N ≥ 200. At N ¼ Ncrit,
where Ncrit ≈ 53.65, the prismatic fixed point in 3 − ϵ
dimensions merges with another fixed point4; they are
located at

FIG. 12. The two-loop contribution to the beta function.

3At finite N, using the beta functions given in the Appendix,
we are able to find and study additional fixed points numerically.
The analysis of behavior of the beta functions shows that they
are all saddle points and, therefore, neither stable in the IR nor in
the UV.

4This is similar, for example, to the situation in the OðNÞ
invariant cubic theory in 6 − ϵ dimensions [41,42], where
Ncrit ≈ 1038.266. For general discussions of mergers of fixed
points, see [28,30].
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g̃�1 ¼ 0.89; g̃�2 ¼ −32.90; g̃�3 ¼ 8.24;

g̃�4 ¼ 92.01; g̃�5 ¼ −11.15; g̃�6 ¼ 7.00;

g̃�7 ¼ 35.33; g̃�8 ¼ 3155.29: ð5:12Þ

For N < Ncrit both of them become complex. For example,
for N ¼ 53.6 the two complex fixed points are at

g̃�1 ¼ 0.89 − 0.0002i; g̃�2 ¼ −32.89þ 0.04i;

g̃�3 ¼ 8.24þ 0.15i; g̃�4 ¼ 91.98þ 3.51i;

g̃�5 ¼ −11.15 − 0.01i; g̃�6 ¼ 7.00þ 0.06i;

g̃�7 ¼ 35.19þ 3.61i; g̃�8 ¼ 3107.77þ 554.01i;

ð5:13Þ
and at the complex conjugate values.

VI. BOSONIC QUANTUM MECHANICS

The action (1.2) for d ¼ 1 describes the quantum
mechanics of a particle moving in N3 dimensions with a
non-negative sextic potential which vanishes at the origin.5

Such a problem should exhibit a discrete spectrum with
positive energy levels, and it is conceivable that in the large
N limit the gaps become exponentially small, leading to a
nearly conformal behavior. For moderate values of N, this
quantum mechanics problem may even be accessible to
numerical studies.
Solving for the scaling dimensions of type A/C bilinears

in d ¼ 1, we find that the low-lying eigenvalues are

Δ ¼ 1; 1.57; 2; 3.29; 4.12; 5.36; 6.14; 7.38; 8.15; 9.39;

10.15; 11.40;…: ð6:1Þ
The plot for the eigenvalues is shown in Fig. 13.

The smallest positive eigenvalue, Δ ¼ 1, is the continu-
ation of the solution Δ ¼ d present for any d. As discussed
in Sec. IV, it may correspond to a redundant operator. The
next scaling dimension, Δ ¼ 1.57317, may correspond to a
mixture involving ϕabcϕabc. The appearance of scaling
dimension 2, which was also seen for the fermionic SYK
and tensor models, means that the its dual6 should involve
dilaton gravity in AdS2 [47–50].
Let us also list the type B scaling dimensions, i.e., the

ones corresponding to operators ϕabc∂2n
t χabc. Here we find

real solutions Δ ¼ 1.01; 2.96; 4.94; 6.93;….
For large excitation numbers n, the type A/C scaling

dimensions appear to (slowly) approach −2Δϕ þ 2n and
−2Δχ þ 2n rather than 2Δϕ þ 2n and 2Δχ þ 2n, as shown
in Fig. 4. The type B scaling dimensions also appear
to slowly approach −Δϕ − Δχ þ 2n rather than
Δϕ þ Δχ þ 2n. This is likely due to the fact that Δϕ is
negative. Further work is needed to understand better the
new features of the large N solution in the regime where
d < 1.35 and Δϕ < 0.

TABLE I. The numerical solutions for the coupling constants defined in (5.3).

N g̃�1 g̃�2 g̃�3 g̃�4 g̃�5 g̃�6 g̃�7 g̃�8 γϕ=ϵ2

54 0.89 −33.06 7.87 83.69 −11.13 6.86 27.37 2047.16 0.80
100 0.94 −37.56 6.23 55.35 −11.53 6.28 5.98 212.08 0.89
200 0.97 −39.90 6.05 53.8 −11.80 6.15 4.09 127.90 0.94
400 0.99 −40.99 6.01 53.78 −11.91 6.08 3.48 103.03 0.97
2000 1.00 −41.81 6.00 53.94 −11.98 6.02 3.09 87.45 0.99
5000 1.00 −41.92 6.00 53.97 −11.99 6.01 3.04 85.36 0.998
10000 1.00 −41.96 6.00 53.99 −12.00 6.00 3.02 84.68 0.999
100000 1.00 −42.00 6.00 54.00 −12.00 6.00 3.00 84.07 1.00

2 4 6 8

−1

1

2

3

4

g(A)(1, )

FIG. 13. The spectrum of scalar type A/C bilinears in 1d. Red
vertical lines are asymptotes corresponding to −2Δϕ þ 2n, and
green vertical lines are asymptotes corresponding to −2Δχ þ 2n.

5A very similar d ¼ 1 model with a stable sextic potential was
studied in [43,44] using the formulation [45] where a rank-3
tensor is viewed as D matrices. It was argued [43,44] that the
sextic bosonic model does not have a good IR limit. We, however,
do not find an obvious problem with the prismatic d ¼ 1 model
because the complex scaling dimensions are absent for the
bilinear operators. We note that the negative scaling dimension
(2.15), which we find for ϕ, is quite far from the 1=6mentioned in
[43,44].

6Of course, as observed in [31,46], there are important
differences between the holographic duals of tensor models
and SYK models.
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VII. DISCUSSION

In this paper we presented exact results for the OðNÞ3
invariant theory (1.2) in the prismatic large N limit where
g1N3 is held fixed. This approach may be generalized to an
OðNÞp invariant theory of a rank-p bosonic tensor ϕa1…ap,
with odd p ≥ 3. It has a positive potential of order 2p:

S2p ¼
Z

ddx

�
1

2
ð∂μϕ

abcÞ2 þ g1
ð2pÞ! ðϕ

pÞa1…apðϕpÞa1…ap

�
:

ð7:1Þ

To solve these models in the large N limit where g1Np is
held fixed, we may rewrite the action with the help of an
additional tensor field χ:

S ¼
Z

ddx
�
1

2
ð∂μϕ

abcÞ2 þ g
p!

ðϕpÞa1…apχa1…ap

−
1

2
χa1…apχa1…ap

�
: ð7:2Þ

For discussions of the structure of the interaction vertex
with odd p > 3, see [5,51,52]. The models (7.1) are tensor
counterparts of the SYK-like models introduced in [16];
therefore, the Schwinger-Dyson equations derived there
should be applicable to the tensor models. It would be
interesting to study the large N solution of theories with
p > 3 in more detail using methods analogous to the ones
used for p ¼ 3.
In this paper we analyzed the renormalization of the

prismatic theory at the two-loop order, using the beta
functions in [36,37]. The general four-loop terms are also
given there, and it would be interesting to study the effects
they produce. It should be possible to extend the calcu-
lations to even higher loops by modifying the calculations
in [39] to an arbitrary tensorial interaction, which we leave
as a possible avenue for future work. In this context, it
would also be interesting to study the possibility of fixed
points with other large N scalings, perhaps dominated by
the “wheel” interaction (g2) of Fig. 1, in addition to the
large N fixed point dominated by the prism interaction (g1)
studied in this paper.7

Another interesting extension of the OðNÞ3 symmetric
model (1.2) is to add a 2-component Majorana fermion
ψabc, so that the fields can be assembled into a d ¼ 3

N ¼ 1 superfield

Φabc ¼ ϕabc þ θ̄ψabc þ θ̄θχabc: ð7:3Þ

Then the prismatic scalar potential follows if we assume a
tetrahedral superpotential for Φabc [5]. Large N treatments

of supersymmetric tensor and SYK-like models with two
supercharges have been given in [16,25], and we expect the
solution of the N ¼ 1 supertensor model in d < 3 to work
analogously. An advantage of the tensor QFT approach is
that one can also develop the 3 − ϵ expansion using the
standard renormalized perturbation theory. In the super-
symmetric case, it is sufficient to introduce only three
coupling constants:

W ¼ g1Φa1b1c1Φa1b2c2Φa2b1c2Φa2b2c1

þ g2ðΦa1b1c1Φa1b1c2Φa2b2c1Φa2b2c2

þΦa1b1c1Φa2b1c1Φa1b2c2Φa2b2c2

þΦa1b1c1Φa1b2c1Φa2b1c2Φa2b2c2Þ
þ g3Φa1b1c1Φa1b1c1Φa2b2c2Φa2b2c2 ; ð7:4Þ

and it is possible to find explicit expressions for the beta
functions and operator scaling dimensions [54]. Also,
directly in d ¼ 3 it is possible to couple the N ¼ 1 theory
with the above superpotential to OðNÞk1 ×OðNÞk2 ×
OðNÞk3 supersymmetric Chern-Simons gauge theory with
levels k1, k2, k3, and derive the corresponding beta
functions for couplings gi [54].
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APPENDIX: THE TWO-LOOP BETA FUNCTIONS
AND ANOMALOUS DIMENSIONS

In this Appendix we state our explicit two-loop results
for the OðNÞ3 invariant theory with the 8 coupling
constants and interaction terms7A d ¼ 0 theory with wheel interactions was studied in [53].
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g1
6!

ϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa3b3c1ϕa3b2c3ϕa2b3c3 þ g2
6!

ϕa1b1c1ϕa1b2c2ϕa2b2c3ϕa2b3c1ϕa3b3c2ϕa3b1c3

þ g3
3 · 6!

ðϕa1b1c1ϕa2b1c1ϕa1b2c2ϕa2b2c3ϕa3b3c2ϕa3b3c3 þ ϕa1b1c1ϕa1b2c1ϕa2b1c2ϕa2b2c3ϕa3b3c2ϕa3b3c3

þ ϕa1b1c1ϕa2b1c1ϕa1b2c2ϕa2b3c2ϕa3b2c3ϕa3b3c3Þ
þ g4
3 · 6!

ðϕa1b1c1ϕa1b1c2ϕa2b2c2ϕa2b2c3ϕa3b3c3ϕa3b3c1 þ ϕa1b1c1ϕa2b1c1ϕa2b2c2ϕa3b2c2ϕa3b3c3ϕa1b3c3

þ ϕa1b1c1ϕa1b2c1ϕa2b2c2ϕa2b3c2ϕa3b3c3ϕa3b1c3Þ
þ g5
3 · 6!

ðϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa3b2c1ϕa2b3c3ϕa3b3c3 þ ϕa1b1c1ϕa2b1c2ϕa1b2c2ϕa1b2c3ϕa3b2c3ϕa3b3c3

þ ϕa1b1c1ϕa2b2c1ϕa2b1c2ϕa1b2c3ϕa3b3c2ϕa3b3c3Þ þ g6
6!

ϕabcϕabcϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa2b2c1

þ g7
3 · 6!

ϕabcϕabcðϕa1b1c1ϕa1b1c2ϕa2b2c1ϕa2b2c2 þ ϕa1b1c1ϕa2b1c1ϕa1b2c2ϕa2b2c2 þ ϕa1b1c1ϕa1b2c1ϕa2b1c2ϕa2b2c2Þ

þ g8
6!

ðϕabcϕabcÞ3: ðA1Þ

We find

β1 ¼ −2g1ϵþ
1

270ð8πÞ2 ððg
2
5 þ 3ðg21 þ 8g26ÞÞN3 þ 3ð3g25 þ 4ð2g1 þ 3g2 þ 4g6Þg5 þ 6g1ðg1 þ 3g2ÞÞN2

þ 2ð32g25 þ ð90g1 þ 72g2 þ 96g6Þg5 þ 6g4ð9g2 þ 4g5Þ þ 9ð5g21 þ 6g2g1 þ 16g6g1 þ 8g7g1 þ 9g22

þ 24g2g6ÞÞN þ 2g23ðNðN þ 6Þ þ 55Þ þ 2g3ð9Nðg1ðN þ 8Þ þ 8g2Þ þ 6g4ðN þ 6Þ
þ 2g5ðN þ 10Þð2N þ 5Þ þ 2ð60g1 þ 63g2 þ 96g6 þ 16g7ÞÞ þ 2ð36g24 þ 36ð5g1 þ 3g2 þ 2g5Þg4
þ 80g25 þ 4g5ð45g1 þ 4ð9g2 þ 6g6 þ 8g7ÞÞ þ 3ð34g21 þ 12ð7g2 þ 4g6 þ 2g7 þ 20g8Þg1 þ 27g22

þ 128g26 þ 48g2ðg6 þ 2g7ÞÞÞ; ðA2Þ

β2 ¼ −2g2ϵþ
1

270ð8πÞ2 ðg5ð12g1 þ g5ÞN2 þ 2ð13g25 þ 18ðg1 þ g2Þg5 þ 9g1ðg1 þ 2g4 þ 8g6Þ þ 72g2g7ÞN

þ 2g23ðNðN þ 6Þ þ 19Þ þ 2g3ð3Nð3g2ðN þ 4Þ þ 8g1Þ þ 6g4ðN þ 2Þ þ 6g5ðN þ 6Þ þ 30g1 þ 36g2

þ 32g7Þ þ 2ð36g21 þ 54g2g1 þ 96g7g1 þ 45g22 þ 12g24 þ 20g25 þ 12g4ð3g1 þ 9g2 þ 2g5Þ
þ 12g5ð4g1 þ 3g2 þ 8g6Þ þ 72g2g7 þ 720g2g8ÞÞ; ðA3Þ

β3 ¼ −2g3ϵþ
1

270ð8πÞ2 ð2ðg
2
5 þ 8g27ÞN3 þ 3ð6g21 þ 12g5g1 þ 27g22 þ 5g25ÞN2 þ 2ð83g25 þ 2ð66g1

þ 63g2 þ 48g6 þ 64g7Þg5 þ 9ð2g1 þ 3g2Þð4g1 þ 3g2Þ þ 96ðg1 þ 3g2Þg7ÞN þ g23ðNðNð2N þ 31Þ
þ 244Þ þ 388Þ þ 18g24ðNðN þ 16Þ þ 12Þ þ 12g4ð3g1ðN þ 1ÞðN þ 14Þ þ g5ð5NðN þ 6Þ þ 72Þ
þ ðN þ 2Þð9g2ðN þ 3Þ þ 8g7NÞ þ 96g6 þ 64g7Þ þ 4g3ð3g4ðNðNðN þ 6Þ þ 28Þ þ 102Þ
þ Nðg5ð11N þ 74Þ þ 6ðg1 þ 3g2 þ 4g7ÞN þ 66g1 þ 72g2 þ 60g6 þ 84g7Þ þ 194g5

þ 3ð71g1 þ 81g2 þ 32g6 þ 76g7 þ 120g8ÞÞ þ 4ð92g25 þ 2ð93g1 þ 90g2 þ 72g6 þ 80g7Þg5
þ 128g27 þ 9ð7g21 þ 15g2g1 þ 9g22 þ 24ðg1 þ g2Þg6Þ þ 144ðg1 þ g2Þg7ÞÞ; ðA4Þ
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β4 ¼ −2g4ϵþ
1

270ð8πÞ2 ððg
2
5 þ 8g27ÞN3 þ 4g5ð3g1 þ g5ÞN2 þ 6ð3g21 þ 9g25 þ 8ðg1 þ 3g2Þg7

þ 2g5ð5g1 þ 9g2 þ 4ðg6 þ 3g7ÞÞÞN þ 2g23ðNðNðN þ 7Þ þ 34Þ þ 113Þ þ 9g24ðNðN þ 2Þ2 þ 52Þ
þ 4g3ð9g2ðN þ 2Þ2 þ 3g1ðN þ 1ÞðN þ 13Þ þ Nðg4ð6N þ 75Þ þ g5ð6N þ 31Þ þ 8g7ðN þ 4ÞÞ
þ 16ð3g4 þ 5g5 þ 6g6 þ 5g7ÞÞ þ 12g4ð3g1ðN þ 12Þ þ 2g5ðNðN þ 6Þ þ 13Þ þ 8Nðg7ðN þ 2Þ þ 3g6Þ
þ 48g2 þ 44g7 þ 120g8Þ þ 2ð54g21 þ 162g2g1 þ 96g7g1 þ 81g22 þ 58g25 þ 128g27

þ 4g5ð27g1 þ 27g2 þ 24g6 þ 32g7ÞÞÞ; ðA5Þ

β5 ¼ −2g5ϵþ
2

270ð8πÞ2 ðð3ðg1g5 þ 8g6g7ÞN3 þ 2ð9g21 þ 9ð3g2 þ g5Þg1 þ g5ð27g2 þ 6g5 þ 16g7ÞÞN2

þ ð99g21 þ 6ð45g2 þ 35g5 þ 36g6 þ 40g7Þg1 þ 81g22 þ 216g2ðg5 þ g6Þ
þ 4g5ð21g5 þ 42g6 þ 38g7ÞÞN þ g23ðNð5N þ 52Þ þ 161Þ þ 36g24ðN þ 3Þ
þ 3g4ð12g1ðNðN þ 5Þ þ 12Þ þ g5ðNðNðN þ 6Þ þ 52Þ þ 132Þ þ 6ðN þ 2Þð4g6N þ 9g2Þ
þ 96g6 þ 64g7Þ þ 2g3ð6g1ðNð3N þ 16Þ þ 37Þ þ 9g2ð10N þ 23Þ þ Nðg4ð6N þ 39Þ
þ g5ðNðN þ 13Þ þ 97Þ þ 24g6ðN þ 4ÞÞ þ 6ð23g4 þ 33g5 þ 32g6 þ 24g7ÞÞ þ 270g21

þ 243g22 þ 212g25 þ 432g1g2 þ 444g1g5 þ 504g2g5 þ 432g1g6 þ 432g2g6

þ 384g5g6 þ 384g1g7 þ 288g2g7 þ 328g5g7 þ 768g6g7 þ 720g5g8ÞÞ; ðA6Þ

β6 ¼ −2g6ϵþ
2

270ð8πÞ2 ð2ðg5g7 þ 3g6ðg1 þ 12g8ÞÞN3 þ ð6ð9g2g6 þ 4ðg1 þ 2g6Þg7Þ

þ g5ð3g1 þ 12g6 þ 10g7 þ 72g8ÞÞN2 þ ð7g25 þ 2ð3g1 þ 9g2 þ 12g6 þ 32g7 þ 72g8Þg5
þ 3ð3g1 þ 12ð2g6 þ g7 þ 12g8Þg1 þ 48g26 þ 8ð3g2 þ 5g6Þg7ÞÞN þ g23ð4N þ 6Þ
þ 3g4ð12g1N þ g5ðNðN þ 6Þ þ 10Þ þ 4g7ðN þ 2Þ þ 18g2 þ 60g6Þ þ 2g3ð6g1ðN þ 4Þ
þ g5ðNðN þ 6Þ þ 19Þ þ 3g6ðNðN þ 10Þ þ 4Þ þ 2g7NðN þ 5Þ þ 9g2 þ 21g4 þ 18ðg7 þ 4g8ÞÞ
þ 13g25 þ 48g27 þ 36g1g2 þ 30g1g5 þ 18g2g5 þ 48g1g6 þ 72g2g6 þ 108g5g6 þ 120g1g7

þ 36g2g7 þ 92g5g7 þ 120g6g7 þ 432g2g8 þ 144g5g8 þ 1296g6g8Þ; ðA7Þ

β7 ¼ −2g7ϵþ
1

270ð8πÞ2 ð4ð3g5g6 þ g7ð2g3 þ 3g4 þ 36g8ÞÞN3 þ ð10g23 þ 24ðg4 þ 3g6

þ 2ðg7 þ 6g8ÞÞg3 þ 7g25 þ 3ð9g24 þ 8ð3g6 þ 2ðg7 þ 9g8ÞÞg4 þ 8ð5g27 þ ðg1 þ 3g2 þ 2g5Þg7
þ ð3g1 þ g5Þg6ÞÞÞN2 þ ð9g21 þ 54g5g1 þ 72g6g1 þ 216g7g1 þ 48g23 þ 63g24 þ 22g25 þ 216g26
þ 216g27 þ 216g2g6 þ 216g5g6 þ 144g2g7 þ 160g5g7 þ 576g6g7 þ 144ð3g1 þ 9g2 þ 5g5Þg8
þ 6g4ð6g1 þ 18g2 þ 21g5 þ 36g6 þ 52g7 þ 72g8Þ þ 4g3ð3g1 þ 9g2 þ 36g4 þ 19g5 þ 42g6

þ 90g7 þ 144g8ÞÞN þ 2ð27g21 þ 3ð9g2 þ 23g3 þ 30g4 þ 12g5 þ 48g6 þ 40g7 þ 144g8Þg1
þ 9g2ð7g3 þ 6ðg5 þ 2g6 þ 4g7ÞÞ þ 2ð31g23 þ ð81g4 þ 50g5 þ 114g6 þ 112g7 þ 216g8Þg3
þ 54g24 þ 21g25 þ 108g26 þ 96g27 þ 66g5g6 þ 106g5g7 þ 144g6g7 þ 72ð2g5 þ 9g7Þg8
þ 3g4ð17g5 þ 36g6 þ 66g7 þ 72g8ÞÞÞÞ; ðA8Þ
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β8 ¼ −2g8ϵþ
1

270ð8πÞ2 ð2ðg5ð2ð3g6ðN
2 þ N þ 3Þ þ 7g7ðN þ 1Þ þ 36g8Þ þ 3g1Þ þ 2ð3g26N3

þ g27N
3 þ 18g28ð3N3 þ 22Þ þ 3g27N

2 þ 12g6g7N2 þ 72g8ðg7ðN2 þ N þ 1Þ þ 3g6NÞ þ 9g26N

þ 21g27N þ 12g6g7N þ g1ð9g6N þ 6g7Þ þ 6g26 þ 23g27 þ 9g2g6 þ 48g6g7Þ þ g25ðN þ 1Þ
þ 3g4ð2ð6g6N þ g7ðNðN þ 3Þ þ 5Þ þ 36g8Þ þ 3g5ÞÞ þ g23ð2N þ 9Þ þ 4g3ð3g4N þ 3g6ð2N þ 5Þ
þ 2g7ðNðN þ 3Þ þ 7Þ þ 36g8N þ 2g5Þ þ 9g22 þ 39g24Þ; ðA9Þ

and

γϕ ¼ 1

12 · 902ð8πÞ4 ðð3g
2
1 þ 9g22 þ g23 þ 3g24 þ g25 þ 12g26 þ 4g27 þ 72g28ÞN6 þ ð6g23 þ 2ð3g1 þ 9g2

þ 6ðg4 þ g5Þ þ 8g7Þg3 þ 9g24 þ 5g25 þ 12g27 þ 54g1g2 þ 24g1g5 þ 24g5g6 þ 48g6g7

þ 12g4ðg5 þ 2g7Þ þ 144g7g8ÞN5 þ ð81g21 þ 12ð9g3 þ 6g4 þ 5g5 þ 12g6 þ 2g7Þg1 þ 81g22

þ 39g23 þ 27g24 þ 51g25 þ 36g26 þ 84g27 þ 108g3g4 þ 76g3g5 þ 72g4g5 þ 96g3g6 þ 144g4g6

þ 48g5g6 þ 80g3g7 þ 96g4g7 þ 88g5g7 þ 48g6g7 þ 36g2ð2g3 þ g4 þ 4g5 þ 2g7Þ
þ 144ðg3 þ g4 þ 3g6 þ g7Þg8ÞN4 þ ð102g21 þ 6ð75g2 þ 47g3 þ 54g4 þ 64g5 þ 24g6

þ 68g7 þ 24g8Þg1 þ 54g22 þ 160g23 þ 171g24 þ 143g25 þ 120g26 þ 148g27 þ 432g28 þ 288g3g4

þ 344g3g5 þ 336g4g5 þ 336g3g6 þ 288g4g6 þ 360g5g6 þ 336g3g7 þ 336g4g7 þ 296g5g7

þ 336g6g7 þ 144ð2g3 þ 3ðg4 þ g5Þ þ g7Þg8 þ 18g2ð19g3 þ 24g4 þ 14g5 þ 32g6 þ 12g7 þ 24g8ÞÞN3

þ 2ð189g21 þ 6ð45g2 þ 58g3 þ 66g4 þ 49g5 þ 72g6 þ 54g7 þ 108g8Þg1 þ 216g22 þ 177g23

þ 189g24 þ 176g25 þ 216g26 þ 120g27 þ 318g3g4 þ 330g3g5 þ 336g4g5 þ 360g3g6 þ 288g4g6

þ 312g5g6 þ 328g3g7 þ 312g4g7 þ 372g5g7 þ 336g6g7 þ 72ð4g3 þ 4g4 þ 5g5 þ 4g7Þg8
þ 18g2ð17g3 þ 19g4 þ 20g5 þ 12g6 þ 26g7 þ 12g8ÞÞN2 þ 4ð81g21 þ 3ð63g2 þ 63g3

þ 51g4 þ 64g5 þ 60g6 þ 70g7 þ 36g8Þg1 þ 81g22 þ 87g23 þ 72g24 þ 90g25 þ 72g26 þ 96g27

þ 207g3g4 þ 185g3g5 þ 189g4g5 þ 156g3g6 þ 216g4g6 þ 204g5g6 þ 184g3g7 þ 174g4g7

þ 182g5g7 þ 168g6g7 þ 36ð6g3 þ 3g4 þ 5g5 þ 12g6 þ 4g7Þg8 þ 9g2ð23g3 þ 18g4 þ 19g5

þ 24g6 þ 18g7 þ 36g8ÞÞN þ 4ð48g21 þ ð90g2 þ 78g3 þ 90g4 þ 84g5 þ 72g6 þ 60g7 þ 72g8Þg1
þ 45g22 þ 43g23 þ 51g24 þ 42g25 þ 48g26 þ 52g27 þ 144g28 þ 72g3g4 þ 82g3g5 þ 78g4g5 þ 96g3g6

þ 72g4g6 þ 72g5g6 þ 84g3g7 þ 96g4g7 þ 76g5g7 þ 96g6g7 þ 18g2ð4g3 þ 5g4 þ 5g5 þ 4ðg6 þ g7ÞÞ
þ 72ðg3 þ 2g4 þ g5 þ 2g7Þg8ÞÞ: ðA10Þ

At the two-loop level we also find the relation γϕ2 ¼ 32γϕ.
We can study the anomalous dimensions for quartic operators

O1 ¼ Otetra ¼ ϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa2b2c1 ;

O2 ¼ Opillow ¼ 1

3
ðϕa1b1c1ϕa2b1c1ϕa1b2c2ϕa2b2c2 þ ϕa1b1c1ϕa1b2c1ϕa2b1c2ϕa2b2c2 þ ϕa1b1c1ϕa1b1c2ϕa2b2c1ϕa2b2c2Þ

O3 ¼ Od:t: ¼ ϕa1b1c1ϕa1b1c1ϕa2b2c2ϕa2b2c2 : ðA11Þ
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The matrix of anomalous dimensions for quartic operators can be written in the following way:

γ11O ¼ 1

720π2
ð2ð6g1 þ 2g3 þ 3g4 þ 5g5 þ 2g7 þ 12g8Þ þ g1ðN3 þ 12N þ 8Þ þ 4ðg5 þ 3g6 þ g7ÞN

þ 9g2N2 þ 2g5N2 þ g3ð6N þ N2ÞÞ;

γ12O ¼ 1

2160π2
ð2ð9g2 þ 9g3 þ 6g4 þ 11g5 þ 12g6 þ 8g7Þ þ 6g1ð6þ 3N þ 2N2Þ þ 36g2N þ 6g4N

þ 12g6ð2N þ N2Þ þ 2g3ð5N þ N2Þ þ g5ð24N þ 5N2 þ N3ÞÞ

γ13O ¼ 1

180π2
ð6g2 þ 2g3 þ 6g1N þ g6ð8þ N3Þ þ g5ð2þ 2N þ N2ÞÞ

γ21O ¼ 1

720π2
ð2ð12g1 þ 9g2 þ 11g3 þ 12g4 þ 9g5 þ 12g6 þ 8g7Þ þ g5N3

þ 2ð3g1 þ 9g2 þ 7g3 þ 9g4 þ 9g5 þ 6g6 þ 10g7ÞN þ 2ð3ðg1 þ g3 þ g4Þ þ g5ÞN2Þ

γ22O ¼ 1

2160π2
ð64g3 þ 66g4 þ 62g5 þ 48g6 þ 60g7 þ 72g8 þ 6g1ðN þ 1ÞðN þ 8Þ þ 18g2ð4þ 2N þ N2Þ

þ 3g4ð18N þ 4N2 þ N3Þ þ 2g3ð27N þ 6N2 þ N3Þ þ 4ð6g6N þ 4g7ð2N þ N2Þ þ g5ð10N þ 3N2ÞÞÞ

γ23O ¼ 1

180π2
ð6g3 þ 6g4 þ 4g5 þ 8g7 þ 3g1ðN þ 2Þ þ 9g2N þ 5g5N þ g7N3 þ 3g4ðN2 þ NÞ þ 2g3ð2N þ N2ÞÞ

γ31O ¼ 1

720π2
ð3g2 þ 3g5 þ 4g6 þ 8g7 þ 3g1N þ g3ð5þ 2NÞ þ 6g4N þ g5ðN2 þ NÞ þ 4ðg7N þ 9g8N þ g7N2Þ

þ 2g6ð3N þ N3ÞÞ

γ32O ¼ 1

2160π2
ð6g1 þ 7g5 þ 24g6 þ 22g7 þ 36g8 þ 2g3ð5þ 3N þ N2Þ þ 3g4ð5þ 3N þ N2Þ þ 7g5N

þ 12g6ðN þ N2Þ þ 36g8ðN þ N2Þ þ 2g7ð13N þ 3N2 þ N3ÞÞ: ðA12Þ

The results for the quartic operator dimensions in the
prismatic large N limit are listed in (5.11).
A consistent truncation of the system of eight coupling

constants is to keep only g8 nonvanishing, since the triple-
trace term is the only one which has OðN3Þ symmetry.
Then we find

β8 ¼ −2g8ϵþ
1

15ð8πÞ2 g
2
8ð3N3 þ 22Þ;

γϕ ¼ 1

1350ð8πÞ4 g
2
8ðN3 þ 2ÞðN3 þ 4Þ; ðA13Þ

in agreement with [37,39]. Thus, there is a fixed point with

g�8 ¼
30ð8πÞ2ϵ
3N3 þ 22

;

g�i ¼ 0;

i ¼ 1;…; 7: ðA14Þ

At this fixed point,

∂β8=∂g8 ¼ −2ϵþ 2

15ð8πÞ2 g
�
8ð3N3 þ 22Þ ¼ 2ϵþOðϵ2Þ;

ðA15Þ

so the triple-trace operator is irrelevant. However, the other
7 operators appear to be relevant for sufficiently large N.
For example,

∂β1
∂g1 ¼ −2ϵþ 2g�8

9ð8πÞ2 ¼ ϵ

�
−2þ 20

3ð3N3 þ 22Þ
�
þOðϵ2Þ:

ðA16Þ

So, this fixed point has 7 unstable directions. Examination
of 4-loop and higher corrections [37,39] shows that the
3 − ϵ expansions of operator dimensions at this fixed point
do not generally have a finite large N limit starting with
order ϵ3. This is in contrast with the prismatic fixed point
where all the g�i are nonvanishing and scale as (5.3); as a
result, the large N limit is smooth.
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