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We analyze the electromagnetic-gravity interaction in a pure Horava-Lifshitz framework. To do so we
formulate the Horava-Lifshitz gravity in 4 4+ 1 dimensions and perform a Kaluza-Klein reduction to 3 + 1
dimensions. We use this reduction as a mathematical procedure to obtain the 3 + 1 coupled theory, which at
the end is considered as a fundamental, self-consistent theory. The critical value of the dimensionless
coupling constant in the kinetic term of the action is A = 1/4. It is the kinetic conformal point for the
nonrelativistic electromagnetic-gravity interaction. In distinction, the corresponding kinetic conformal
value for pure Horava-Lifshitz gravity in 3 + 1 dimensions is 4 = 1/3. We analyze the geometrical
structure of the critical and noncritical cases, they correspond to different theories. The physical degrees of
freedom propagated by the noncritical theory are the transverse traceless graviton, the transverse gauge
vector and two scalar fields. In the critical theory one of the scalars is absent, only the dilaton scalar field is
present. The gravity and vector excitations propagate with the same speed, which at low energy can be
taken to be the speed of light. The field equations for the gauge vector in the nonrelativistic theory have
exactly the same form as the relativistic electromagnetic field equations arising from the Kaluza-Klein
reduction of general relativity, and are equal to them for a particular value of one of the coupling constants.
The potential in the Hamiltonian is a polynomial of finite degree in the gauge vector and its covariant

derivatives.

DOI: 10.1103/PhysRevD.98.104018

I. INTRODUCTION

Horava-Lifshitz gravity [1] is a candidate for a pertur-
batively renormalizable theory of quantum gravity [2—16].
The main idea is to break the Lorentz symmetry in order to
allow higher order spatial derivative terms in the potential
which improve the quantum behavior of the theory without
the introduction of ghost fields [17]. There is no space-time
metric in the formulation since there is an anisotropic
scaling of the time and space coordinates. The geometrical
framework is a foliation with Riemannian leaves para-
metrized by the time variable. The theory is manifestly
invariant under the diffeomorphisms that preserve the
foliation. Only reparametrizations of the time variable
are allowed. Besides this Riemannian geometry the theory
introduces the lapse function and shift vector as fields
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defined on the leaves parametrized by the time coordinate.
This formulation allows the lapse function to have different
dimensions than in a space-time formulation. Moreover, the
overall coupling constant of the action becomes dimen-
sionless. The Horava-Lifshitz gravity may also arise from
the gauging of the Newton-Cartan geometry [18].

In this work we consider the nonprojectable version of
the Horava-Lifshitz gravity in 4 4+ 1 dimensions, and
perform a Kaluza-Klein (KK hereinafter) reduction to 3 +
1 dimensions. The main goal will be the analysis of the
gravity-vector interaction. Our final objective is to regard
the resulting theory in 3 + 1 dimensions as a fundamental,
self-consistent theory of gravity with couplings. Hence
there is no need of embedding it into a more fundamental
theory. In the same way that the pure Hotava theory is
power-counting renormalizable, we expect that the result-
ing coupled theory obtained by means of the dimensional
reduction is also a power-counting renormalizable in 3 + 1
dimensions. In this approach the fourth spatial dimension is
not physical. Therefore, the dimensional reduction we
employ is a mathematical approach to obtain the final
and self-consistent theory in 3 4+ 1 dimension. Once the
3+ 1 theory with couplings has been obtained one can
study any aspect of its dynamics. We remark that, although
the purely gravitational nonprojectable Hotava theory in
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3+ 1 dimensions is well established, the issue of its
couplings to fields and other matter sources is still an
open question. Our approach gives an answer in this sense.
With regards to vector fields, the Horava theory is fre-
quently coupled to the relativistic energy-momentum tensor
of the electromagnetic field. However, this approach is not
natural in the framework of the FDiff symmetry of the
Hotava theory. For this reason in this work we take the
point of view of starting from a FDiff-invariant theory from
the very beginning.

The Hotava theory in 4 4+ 1 dimensions includes up to
z = 4 interaction terms in the potential. In order to preserve
the invariance under diffeomorphisms on the leaves of the
foliation these terms in the potential have to be constructed
in terms of the 4-dimensional Riemannian tensor, the lapse
function and covariant derivatives of them [2]. Once this
requirement is satisfied one may dimensionally reduce to
3 + 1 dimensions a la KK. The same approach for GR in
4 + 1 dimensions gives rise to the relativistic coupling of
gravity and electromagnetism in 3 + 1 dimensions. Hence
our approach will determine how far the anisotropic
coupling to the vector field in Horava-Lifshitz theory is
from the relativistic one. This is a relevant point since
electrodynamics is a very well established theory. The
resulting coupled Hofava theory in 3 + 1 dimensions has
both z=1 and z =2, 3, 4 terms. The former are the
dominant ones in the physics of the large distances (infrared
limit). Since we want to contrast with the standard coupling
of electromagnetism with general relativity, at the level of the
3 + 1 theory we take the infrared limit by discarding all the
7z = 2,3,4.In this way we will end up with a theory of second
order in time and spatial derivatives. We notice that for this
limit we do not need the explicit expression of the z = 2, 3, 4
terms of the 4 4 1 theory.

The Horava theory has a critical point for the dimension-
less coupling constant of the kinetic term, 4, which is equal
to the inverse of the spatial dimensions. This point was
called the kinetic-conformal point in Ref. [13]. In the 4 4 1
theory this point correspond to 4 = 1/4. At this point the
extra scalar mode is dropped out from the phase space (see
[19] for the 3 + 1 case). Consequently, the Hamiltonian
formulation of this special case is not continuously con-
nected to the Hamiltonian formulation of the rest of
values of A. In particular, two additional second-class
constraints arise in the Hamiltonian formulation of the
kinetic-conformal case. For consistency, any analysis made
within the framework of the Hamiltonian formulation
must be done separately for the A # 1/4 and the 1 = 1/4
cases.

In Sec. II we present the Horava-Lifshitz theory in 4 4 1
dimensions, we distinguish the A# 1/4 and 1=1/4
theories. In Sec. III we analyze the 3 + 1 theory following
a KK reduction. In Sec. IV we discuss the gauge vector
field equations and compare to the Maxwell equations. In
Sec. V we consider in particular the 1 = 1/4 theory. Finally
in Sec. VI we give our conclusions.

II. HORAVA-LIFSHITZ IN FIVE DIMENSIONS

We consider a five dimensional manifold foliated by four
dimensional Riemannian leaves with metric G, dx* ® dx”,
u, v=1, 2, 3, 4, and parametrized by a time variable.
Besides a four vector N, and a scalar N under diffeomor-
phims on the Riemannian foliation are introduced, the shift
and the lapse respectively. Both are scalar densities under
time reparametrizations. The Horava-Lifshitz action on this
geometrical framework is given by

Hvs

S(G,,.N,.N) = / dtdx*[NVG(K ,,K" — IK*> + pHR + aa,a") = V(G,,.N)], (1)

where a, = 9,LnN and K, K* — 2K? is the Kinetic term
and the remaining terms describe the potential of the
theory. We have written explicitly the lowest order terms
in spatial derivatives, the higher order ones are contained
in V(G,,.N), and are constructed from powers of the four
dimensional Riemannian tensor and the covariant deriv-
atives of the lapse N. The highest order derivative terms of
the physical degrees of freedom (d.o.f.) should be at least
of order eight and with an elliptic symbol, in order to
obtain a power counting renormalizable theory. In this
section we consider the complete theory in 4 4 1 dimen-
sions. In the next section, after the KK reduction, in the
perturbative analysis we will consider only the dominant
terms at large distances, which are the terms of second
order in spatial derivatives. This second order truncation
in 34 1 dimensions is related to the Einstein-aether

|
theory [20-23]. K,
Riemannian leaves,

is the extrinsic curvature of the

I .
K;w = ﬁ (g/w - vﬂNU - quu)’ (2)

and K its trace
K =G"K,, (3)

A is a dimensionless coupling constant, while « and S are
the coupling constants at low energy in the potential of the
theory.

We proceed to reformulate the action using the
Hamiltonian formalism [24-27]. To do so we have to
distinguish the A # 1/4 and A = 1/4 cases. At A = 1/4 the
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kinetic term is conformal invariant. This is analogous to the
A =1/3 theory in the Horava-Lifshitz gravity in 3 + 1
dimensions which propagates the same d.o.f. as GR and has
the same quadrupole radiative behavior as GR [13,19,28].
We begin our analysis with the 4 # 1/4 case. The conjugate
momentum to G, is given by

oL
ﬂl“'/ = — = \/5<KMD - /IGMHK)’ <4)
8GW
and its trace by
7 =G = VG(1 - 4))K. (5)

Note that if A = 1/4, there arise the primary constraint
7 =0. As we commented above, this fact leads to a
different Hamiltonian formulation. The Hamiltonian den-
sity obtained from the Legendre transformation is

g R =
VGN ’” ~ YR - 3
H = (1—4/1)G p aaﬂa}
+ Znﬂ”VﬂNy +o6Py +V(G,,.N), (6)

Ap

g — —lNG’”’ |:” Tp A
2

Ve Ta-anve T

we have added the P, term with the Lagrange multiplier o
because the theory is subject to a primary constraint given by
the conjugate momentum to the lapse N equal to zero, since
no time derivatives of N appears in Lagrangian density.

The field equations arising from the canonical
Lagrangian are the following. The conservation of the
primary constraint, or equivalently variation with respect to
N vyields the Hamiltonian constraint

™', At
GM + (1= 42) e YR + aa,a" + 2aV ,a"
1 o6V
=0, 7
TGN 7

which ends up being a second class constraint. Variations
with respect to 7 gives

. 2Nm, 24
G, 2oy

—+V \Y%
Hv \/6 (]_4/1) Hv \/6—‘[_ ;th+ va (8)

while variations with respect to G, yields

Ve ta-ay e

{7[’” b A Tz

+ VG N{ R””—% RG"”} — BVG[VEVIN — GV, V*N]

1
- Ea\/ENG’““a,,a/’ +aVGNa'a* + 2V, [#?“NY)| = V [ NP] + —

where

AWBY) = — (A*BY + AYB"). (10)

N[ =

Finally, variations with respect to N, determine the first
class constraints of the theory

v, =0, (11)

Variations with respect to Py yields N = 6. This equation
merely fixes the Lagrange multiplier o.

The d.o.f. propagated by these nonlinear evolution
equations can be identified by means of a perturbative
analysis. The theory describe six d.o.f. in 4 4+ 1 dimen-
sions. These are five (transverse-traceless) tensorial modes
and one scalar mode. In Appendix B we show a perturba-
tive analysis for the 4 + 1 theory.

In the next section we analyze the exact KK reduction of
the Horava-Lifshitz in 4 4+ 1 dimensions. Among other

oV

50 ©)

properties we will determine the coupling of Horava-
Lifshitz gravity to the vector gauge potential and two scalar
fields.

III. NONPERTURBATIVE KALUZA-KLEIN
REDUCTION TO 3+1 DIMENSIONS

In this section we perform the KK reduction of the 4 + 1
full Horava theory in a nonpertubative approach. We
decompose the 4-dimensional Riemannian metric G, in
the following form

(12)

(G,) = <7ij+¢AiAj (f)Aj)
w) — s

PA; ¢

where y;; is a 3-dimensional Riemannian metric. We denote
det(y;;) =y, thus we have G = det(G,,) = y¢ > 0, hence
¢ > 0. The inverse metric is then given by
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Yl —AJ
G") = . , 13
( ) <_A1 é"’AkAk) ( )

where y¥/ are the components of the inverse of vij and
A" = yUA;. The decomposition (12) is invertible

GuGp
7y = Gij - 14
J J G44 ( )

Gy
A= 15
¢ = Guy. (16)
We then have
ﬂ#DGuu = ”ijj/ij + piAi + p¢’ (17)
where

pil = (18)
pl= 2¢Ajﬂij + 27 (19)
p =nIAA; + 21*A; + 1. (20)

p'pi

N B )
H:— 2.2 ij i
M[M PPt Sy -4

Equations (14)—(20) define a canonical transformation.
In fact,

(Gul0). 7 (3) oy = 5 (316 + 23)ox = 5). (21)
imply

(). P ) = 5 (855) + 35303 = 9). - (22)

(M) P )}y = Blox -3, (23)

(B0 )}y = 35— 5), 4)

and all other Poisson brackets being zero.

The canonical Lagrangian in 4 + 1 can now be reex-
pressed in terms of the new fields. We then consider the
reduced theory by taking 0, =0 on all fields (see
Appendix A). The reduced canonical Lagrangian is then
given by

L= piy;+ p'A; + pp+ PyN — H, (25)

where the Hamiltonian density is given by

(Pyij + pp)* — y$pPYR - ypaaa’

) 1 1 . -
—AO;p' - Aj (viP” - Eplyijik - §P7”8i¢> —oPy + V(Yij’Ak»‘ﬁ?N)v (26)

where V(y,-j,Ak, ¢.N) corresponds to V(G,,, N) evaluated
at d, = 0, that is

V(yij’Ak’ ¢vN) = V<GMJ’N)|04:O’ (27)
and,

HR=R-— %FUFU - %V,V"\/a (28)

R is the curvature and V; the covariant derivative associated
to the 3-dimensional metric y;;. Indices are raised and
lowered using 7,; and its inverse y”/. A and A; are the
Lagrange multipliers associated to a combination of the
constraints (11) while o is the Lagrange multiplier asso-
ciated to the constraint

Py=0 (29)

that is, the conjugate momentum to N equal zero. These are
the primary constraints of the formulation.

The KK reduction of the momentum constraint (11)
yields a constraint corresponding to its 4-component and
another one corresponding to the rest spatial directions.
After some manipulations, we obtain that these two
constraints are equivalent to

H*=0,p' =0 (30)

. 1 -
M =Vip! =3 p'" Fi =3 pr"0;¢ =0 (31)

We have then obtained the KK reduction of the full Horava
gravity in 4 + 1 dimensions.

We now analyze this theory at its z =1 limit. The
conservation of these primary constraints is satisfied and
the conservation of (29) yields the Hamiltonian constraint
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1 g ip. A . .
Hy= N [tﬁzpz + ppij + pzzl =y (PYyi; + pp)* — PropR + §7¢2FijFl]
+ 287/ V. VI B ] + a/ypa;a’ 4 2a,/7V(\/pa') V(rijs Aws ,N)] = 0. (32)

The Dirac’s procedure to determine the constraints of he . N ) Yij m VA
theory ends at this step. It turns out that (30) and (31) are Y4/ — N7 Pij Tt (1—42) (P 7im +PP)| + Vi,
first class constraints while (29) and (32) are second class

constraints. The first class constraints, once they are (33)
satisfied initially, they are preserved by the evolution ) Np; 1 "
equations obtained by taking variations of the action with A= — + 0N+ 5/\]‘7] Fiy (34)
respect to the independent fields. The second class ones rd
have to be imposed at any time. . N 1 .

We now consider the equations of motion resulting from ¢ = —= {217472 + (1 =42 (P"" ¥ im + P¢)¢} + 51\181'47-
variations of the canonical action with respect to p”/, p’ and Z
p- They give the equations (35)

Variations with respect to y;;, A; and ¢ yield the equations of motion

Ny 1 A N
ij — 2.2 Ik 1 Im 20
pi== f{fﬁp TP Pt g P pit gy Vzm+p¢)] T

1. 24 y R
x {219 pi+ o 2" PP+ (1= 41) (P"" Vi + p¢)p”] +N\1dp [5}'”

_ R‘/] + BTV (N ) = vV VE(N /)] +§N 79’

. ij .. . .
x {FmFﬁ - % anan] + BVTIYIOND N\ — 20N \/p]

i - o i L., .
+aN+\/y¢ {gakak - a’af} - Vi {pk(’A-’) - pAk} + = A plymFy,

2 2
I
+§PAI 5 ”[V(J’ipAk,fl",N)]a (36)
ij
i 3rji 1 k 0 ik 5 X/
P = POy (N1 FI') =S 0(Ap! = N1pH) == [V (1. Ar .V, (37)
3 3 PPy l(p"jn)z)
ij A 2 J _ J
[\f 2\/—17 pij = \/—pp, (1_4/1)<2\/$p+ i 2 g

y . . 1 . o .~
-7p (5 VOR - 3 \/EF’JFU) - maaia'] - ﬂ%vivl]v + Eai(PAl) o0 V(rij» Ax. @, N)J. (38)

Equations (30)—(38) are the complete set of field equations of the 3 + 1-dimensional theory, it describes the gauge vector-
gravity interaction together with two additional scalar fields as already mentioned in the 4 4 1-dimension formulation of the
previous section.

We may obtain the perturbative equations directly from this 3 + 1-formulation (in Appendix B we compare with a
perturbative analysis in 4 4+ 1 dimensions). In this analysis we only consider the interacting terms of second order in
derivatives. The background is the 3D Euclidean space plus the background conditions for the rest of field variables. They
are given by

Vij = 6ij» pY =0, N=1, A;=p' =0, $=1, p=0, Ni=N,=o0. (39)
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The perturbations around this background are defined by

introducing the variables h;;, €;;, n, n;, and ny in the
following way

}/ij:(s[j+€h[j, pijZSQij, Nl':€7’li,

N4 = €Ny, N=1 =+ en. (40)

For the scalar ¢ and the vector A; fields we have

Aizeéiv pi:(;é'i, ¢:1+€T9 P =€x. (41)
The perturbative expressions at linear order in € for the
Lagrange multipliers A and A; coincide with the corre-
sponding ones to N, and N;, respectively.

The linearized equations of motion become

%:21+ﬁ(;(+9), (42)

i= —/E}Ah — pAn, (43)

& =¢—Oing, (44)

Ci = P00, - 0,8, (45)

hij =29 + (fﬁwjﬂ) (Q+8) +204n).  (46)
Q; = —g (5,,- - aff) Ah +§Ahij

_ ﬂ<5,j - a‘f”) A (n + %) . (47)

Besides, from the constraints we have
0,Q;;=0 (48)
PAT + 2aAn + AR = 0. (49)

In order to identify the physical d.o.f. propagated at
linearized level we use the orthogonal transverse/longi-
tudinal decomposition [see Eqgs. (B20) and (B21) of
Appendix B], obtaining

&= (50)
(= pacl, (51)

so, combining (50) and (51) we get the following wave
equation for the vector excitation,

& - pAgT =0. (52)

This implies that the vector excitation propagates with
speed /. From Egs. (46) and (47) we obtain the following
wave equation for the graviton

T — BARTT = 0. (53)

We remark that the graviton has the same speed of
propagation that the gauge vector, i.e., v/3. The longi-
tudinal modes && and At are gauge modes. They are not
physical excitations. The remaining terms obtained from
the decomposition of the equations (46) and (47) are

Wl =207 Q7T + ), 54
+ (=43 Q" +x) (54)
Qf = —'gAhT —2pAn — pAr, (55)
and the longitudinal terms
4t O Q' +x) =0 (56)
n. _— pu—
T —4anA =

The above equation (56) allows to determine 7,. So, solving
(49) for An we get

P (A + anT), (57)

An = ——
a

and combining it with (42), (43), (54), and (55) we obtain

hT — 2% = BA(RT - 27) (58)

i . PU=NBF-2a) ¢
h +E=" (-4 AR +1).  (59)
Therefore, we have that the 3 + 1 theory describes the
propagation of six d.o.f. They are two transverse-traceless
tensorial modes, which are the same modes of GR, two
transverse vectorial modes, as in Maxwell theory, and two
scalar modes. We may interpret one of these scalar, W+,
as being part of the gravitational interaction of the Horava
theory, that is, the so-called extra mode of the Horava
theory. The other scalar, h” — 27, can be interpreted as part
of the coupling to the matter fields resulting from the KK
reduction. Indeed, the same KK reduction on GR relativity
gives raise to the 4’ — 27 scalar in the 3 + 1 dimensions.
The fact that the factor 1 — 44 arises in the denominator of
the right-hand side of Eq. (59) signals that the case A = 1/4
is a critical point of the theory, as we have commented. The
dynamics in this case is different, and not continuously
connected, to the 4 # 1/4 case due to the dropping out of
this scalar mode.
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IV. THE ELECTROMAGNETIC FIELD
EQUATIONS IN HORAVA FORMULATION

In this section we analyze in detail the dynamics of the
vectorial sector, considering the large distance limit, for
which we retain only the z = 1 terms. This is equivalent to
discard the higher order potential V. Let us analyze in more
details equations (30), (34), and (37). Since (30) is a first-
class constraint it generates a gauge transformation on A;,

8A; = {(C0;p’). Ai(x)} pp = 0 (). (60)

where
(OpT) = / PRE)0,p (D). (61)

The action and field equations are invariant under this
gauge transformation. Note that this holds even including
the higher order terms represented by V, since the con-
straint (30) keeps its form unaltered, and it is also
independent of all coupling constants. A; are Lagrange
multipliers associated to the first class constraints (31), they
can be fixed to zero in order to simplify the analysis of (34)
and (37). If we denote Ay = A and

FOi = Ai - aiA(), (62)

) 1 .
PO = — 1Ry, (63)

then solving p' in (34) and substituting it in (37), we obtain
the equation

Do(FUN\/y¢?) + pO;(FIIN\/y¢?) = 0. (64)

We now may compare with the standard Maxwell theory
written in relativistic variables. To this end, using the field
variables of the 3 + 1 Horava theory, we may build a four-
dimensional metric g,, decomposed in the standard ADM
way,

goo = —N* +y;;N'N/
9oi = gio = N, N; =y;N/
9ij = Vij» (65)

with inverse given by

1
00
TR
. - Ni
g(Jl — gzo — N2
y NN/
9 === (66)

For simplicity, if we fix N; = 0 as a gauge of the space-like
diffeomorphisms on the side of the relativistic theory, then
we have that from our definition of F* (63),

FO = gY%g"F,,. (67)

F,, being the four-dimensional definition of the curvature
of the potential A,, where A is the Lagrange multiplier of
the constraint (30), the generator of gauge transformation.

The nonrelativistic electromagnetic equations are exactly
the relativistic ones if # = 1. In fact, N /7 = /|g| and (64)
becomes the relativistic equations of the electromagnetic
field coupled to the dilaton field. If in addition ¢ = 1, we
have that Eq. (64) becomes

9,(V1glF*") =0, (68)

while (30) can be expressed, when ¢ = 1, as

8, (\/|glF*) = 0. (69)

The speed of propagation of the gauge vector excitation is
in general \/f and it is the same for the gravity excitation. It
is interesting that this property is a consequence of starting
with a purely gravitational FDiff-invariant theory in 5-
dimensions. We can now identify the gauge vector with the
electromagnetic potential. Equations (64) and (69) are the
anisotropic electromagnetic equations. We remark again
that (69), arising directly from (30), does not involve any
coupling constant. Since the potential in the Hamiltonian of
the 4 + 1 complete theory is constructed from polynomial
expressions in terms of the Riemann tensor and the lapse
function and its covariant derivatives up to 2z derivatives,
its reduction to 3 4+ 1 dimensions is a polynomial (of finite
degree) in the gauge vector and its covariant derivatives.

V. THE KINETIC CONFORMAL
POINT IN 4 +1 DIMENSIONS

We discuss in this section the Hotava-Lifshitz gravity in
4 + 1 dimensions for 1 = 1/4 and its 3 + 1 reduction. It is
a different theory with respect to the 1 # 1/4 formulation
we have already considered. The propagating d.o.f. are
different in the two cases. The corresponding relation in
Horava-Lifshitz gravity in 3 4 1 dimensions is between the
A=1/3 and 1 +# 1/3 theories [13,19]. In the canonical
analysis in Sec. II, in the case 4 = 1/4, we obtain an
additional primary constraint

=G

v __
w =0,

u,v=12,3,4. (70)

The Hamiltonian density in this case is given by
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H = N\/—. PR — aa,a"
—|—27z"”VﬂNZ,—|—aPN+/m+V, (71)

where ¢ and p are Lagrange multipliers associated to two
primary constraints, as before Py is the conjugate momen-
tum to N. Additionally

V2 =0 (72)

is the primary constraint associated to the invariance under
the diffeomorphisms on the Riemannian leaves of the 4 4 1
foliation. It is a first-class constraint, it is preserved under
the evolution determined by the Hamiltonian.

The conservation of the primary constraints (70) and
Py =0 implies two new constraints, the Hamiltonian
constraint

'n, G, ov.
Y 1L 3R — #—~3pV,a
G + YR+ (a=3p)a,a" =3 \/_5G

2

(74)

The conservation of (73) and (74) determine Lagrange
multipliers in the formulation. The Dirac’s procedure to
determine the complete set of constraint of the theory ends
at this stage: (70), Py = 0, (73) and (74) are second class
constraints, (72) are first class constraints.

We now consider the complete set of field equations of
the theory. In order to derive them, we assume an
asymptotic decay to zero of the Lagrange multipliers of
the second class constraints. It is then correct to use the
Hamiltonian (71) without the explicit introduction of the
whole set of second class constraints via Lagrange multi-
pliers [29]. The field equations are, together with (70), (72),
(73), and (74), the following ones,

M 1 oV
T - BYR +aa,a" +2aV, 0" + ——— =0, (73)
G JG N .
G, = (75)
and - VG
|
1 ™, Pyt @ w14
—i" = —NG" —=L 4+ 2N + \/EN[ R —= RGHV}
2N TG 2
1
- pVG[VEVIN — GV, VAN — 5a\/ENGﬂ”apaﬂ +aVG
oV
x Na'a” 4 2V [#"WNY)| =V, [#"*NP| + pn + (76)

oG

2%

We now introduce the KK ansatz given by (12) and (13). We can perform the canonical transformation defined in Sec. III
and impose d;, = 0 on the fields to obtain a 3 + 1 formulation. The Hamiltonian in this formulation becomes

pi

N )
H:_ 2 2+ ij .
Vel AL R:

where (R has the expression (28) and V is defined in (27).

A perturbative analysis can be done in order to identify
the physical d.o.f. In this case we do not consider the higher
order terms. Following the analysis in Sec. III, we obtain
the perturbative equations

hil = pARLT (78)
AT = BAAT (79)
b= pAg (80)
' = ¢, (81)

= 2|V, "IN, + 6Py + ulpy;; + pg) + V. (77)

that is, comparing with the 1 # 1/4 theory there is only one
propagating scalar field. All physical modes propagate with
the same speed +/f. The longitudinal components h, AL
are gauge modes. We notice that the propagating d.o.f. are
the same to the ones in GR in interaction with the
electromagnetic and the dilaton fields arising from a KK
reduction of GR in 441 dimensions. Although the
Horava’s theory at the kinetic conformal point we are
considering breaks the relativistic symmetry, it propagates
the same d.o.f. as the corresponding one in GR.

The nonrelativistic electromagnetic field equations are
the same as in the previous section, however the other field
equations are different, in particular a new second class
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constraint appears in this formulation compared to the 1 #
1/4 theory.

It is important to discuss the field equations obtained
from the Hamiltonian in this section, Eq. (77), and in
Sec. III in comparison to the field equations arising from an
action in which it is assumed that the scalar field ¢ is in
its ground state, which we take to be ¢ =1, p =0.
In fact, variations of an action subject to the restriction
¢ =1, p =0 give rise to field equations which are not
equivalent to the ones in this section or in Sec. III on which
one imposes the ¢ = 1, p = 0 restriction.

It is straightforward to obtain the equations from the
action restricted by ¢ =1 and p = 0. In fact, variations
with respect to y;;, p'/, A;, p' determine the same field
equations obtained by taking variations of the canonical
Lagrangian associated to (77), in the A = 1/4 case, and
imposing afterwards ¢ = 1, p = 0. The main difference
being that in the restricted case there are not field equations
corresponding to variations on ¢ and its conjugate
momenta. The analysis of the field equations in the
restricted case show that the only physical d.o.f. in the

theory correspond to the A" tensorial modes and the A}

vectorial modes. The corresponding perturbation equations
are (78) and (79).

VI. CONCLUSIONS

We have obtained the gravitational theory of Horava in
3 4 1 dimensions coupled to vector and scalar fields in a
FDiff-invariant way. We have used a procedure of dimen-
sional reduction starting with a purely gravitational non-
projectable Hotava theory in 4 4 1 dimensions. These are
in principle power counting renormalizable theories pro-
vided all z =4 interaction terms are included in the
potential. This a relevant point because in some cases
the coupling to matter fields may damage the behaviour of
the divergences of the vacuum theory. For example it is
known [30] that pure GR is finite at one loop but it is badly
divergent at one loop when a scalar field is coupled to it.

In the 3 + 1 coupled theory there arise a gauge symmetry
in the vectorial sector, equivalent to the gauge symmetry of
the Maxwell electromagnetism on a curved background.
The gauge symmetry is generated by the same first class
constraint as in the electromagnetic-gravity theory in GR.
Moreover, the field equations for the gauge vector have the
same structure as in the relativistic case. In particular if we
take § = 1, the Horava-Lifshitz theory is still an anisotropic
formulation of the gravity-electromagnetic interaction in
which the field equations for the gauge vector are exactly
the Maxwell equations on a curved background. By means
of a perturbative approach, we have identified the excita-
tions of the gravitational, vector and scalar fields. With
respect to the speed of propagation of the graviton and the
gauge vector field, it is the same velocity +/f for both
excitations.

We have obtained the Hamiltonian, field equations of the
theory and determine the propagating d.o.f. We have
separated the A # 1/4 and the 1 = 1/4 cases, since they
correspond to two different dynamics of the physical d.o.f.
In the 4 # 1/4 case, the physical d.o.f. are the same as the
ones in the gravity+electromagnetic+dilaton interaction
described in GR, plus an additional scalar mode. In the
A =1/4 theory, the additional scalar mode is absent,
because the different structure of the constraints. This is
an extension of same result in [13,19] for the pure Horava-
Lifshitz gravity at the kinetic conformal point, A = 1/3 in
that case. It is interesting that the introduction of the
interaction of gravity with the gauge vector and dilaton
fields shifts the kinetic conformal point from A = 1/3 to
A= 1/4. This is an important point.

A further step could be to analyze explicitly the higher
order terms in the potential and to analyze the nonlinear,
nonrelativistic extension of the Maxwell equations. We
remark that the new nonlinear interaction terms are nec-
essarily polynomial of finite degree in the gauge vector field
and its covariant derivatives, since the metric and its inverse
are polynomial in the gauge vector field. This is different to
the couplings arising in some other theories, like the Born-
Infeld theory, where the expansion in the field strength is an
infinite series.

We have also commented on the case when the dilaton
field is in its ground state. That is, the case when ¢ is
constant in the Lagrangian. The theory in that case
propagates only the gravity and electromagnetic excita-
tions, the transverse traceless components of the metric and
the transverse gauge vector components just as in GR or
Maxwell equations.
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APPENDIX A: KALUZA-KLEIN REDUCTION
FOR LIFSHITZ-LIKE THEORIES

We take an anisotropic scalar-field model represented by
the real scalar field ¢, which depends on D + 1 spatial
dimensions and the time 7. The spatial base manifold is a
D + 1 flat manifold that has a compact component of large
2zL. We use the coordinate y to parametrize the compact
dimension, whereas x’ labels the rest of spatial coordinates.
We consider a Lifshitz model of z = 2 order of anisotropy.
The action of the model is

2rL ~ ~
S = / dtdPx / dy((0,9)* + apAg + ppA*ep), (Al)
0

where A is the flat spatial Laplacian in the D + 1 spatial
dimensions,
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A=A+0,, (A2)

A is the flat Laplacian in the D dimensions, and «a, f are
coupling constants.

We introduce the Fourier expansion of the scalar field,
namely

§ =21l Z [ drae [ ¢m¢m+a¢m< (%)2)%+ﬂ<¢mA2¢m—2<%>2¢mA¢m+ (%)445%1)].

Zqﬁmtx

m=—0o0

d(t,x,y) (A3)

where the modes ¢,, are restricted in order to the field
¢(t,x',y) be real. The action for the Fourier modes
becomes

(A4)

We emphasize that this is equal to the action (A1) since the Fourier expansion for ¢y € C®(X) converges pointwise. The

field equation for m # 0 is given by

b + Al + pA D, a( ) b =25 (%)2A¢m + (%)44)," =0

For each given m # 0, we take the L — 0 limit. In this
equation there are several coefficients that diverge, (%)4
being the one of highest order. Therefore, for the existence
of the solution in this limit it is necessary that ¢,, = 0 for
all m # 0.

The field equation for m = 0 is

—do + algy + pA Py = 0.

This equation can be obtained from the following action in
one dimension less,

(A6)

S = / didPx(~podby + apoAdbo + PhoAlebo). (A7)

APPENDIX B: THE DEGREES OF
FREEDOM IN 4 +1 DIMENSIONS

Here we perform a linear-order perturbative analysis on
the 4 + 1 theory around an Euclidean four dimensional
background together with the background conditions for
the rest of canonical variables. In this analysis we only
consider the z = 1 terms, hence we neglect the interacting
terms in V. The background is given by

G,

=0

1l = 0’

N=1.
(B1)

together with N, =0,

We introduce the perturbative variables according to

G = 6 + Ky

T — QHY
N,=n,
N=1+n. (B2)

(AS)
|
We obtain to first order
) 1 1 1 1
RM,,zzaﬁykﬂl+§8ﬂ81km—§8ﬂ8ykm—§AkW (B3)
@R = 0,0,k,y — Ak, (B4)

We will use the 7+ L decomposition of the four dimen-
sional tensors,

0,0,
A

1
k;u/ = k;uT +3 (5;41/

3 )kT+8kL+8kL (BS)

We obtain,

1 1 1 8,0,
@R, — EG},‘;)R =~ Ak 45 <5,w - >AkT (B6)

From (11) we obtain

QL =0
1 9,0,
Q, =Qll + 3 (% - "T> Q. (B7)
From (8) we get
kLl = 2017 (B8)
o 2(1=2)
k' = Qr B
(1—42) (B9)
ki =N, +——— 4 ”QT (B10)
H (1-42) A

From (9) we get
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olf :gAk,{,,T (B11)
Q' = —pAKT - 3pAn, (B12)

and from (7)
PAKT + 2aAn = 0. (B13)

Finally, we may combine the above equations to obtain

kIT = BAKLT (B14)
oo (1=2) (38— 2a)
k _ﬁ<1_4/1) p AKT, (B15)

we remark that these equations are gauge independent.
They describe the propagation of the six d.o.f. of the theory.
In particular (B14) describes the evolution of 5 tensorial
d.o.f. while (B15) describes the propagation of a scalar one.
It follows that when reducing a la KK these field equations
to a 3 + 1 dimensions, the 5 d.o.f. decompose into 2 +
2 4 1 corresponding to the graviton, two d.o.f. of a vector
gauge field and one d.o.f. of a scalar field, all of them
propagating with the same velocity /. In order to show
this decomposition we assume the fields are independent of
one spatial coordinate. We first invert the 7 + L decom-
position, to obtain

1 10, (0,0,k;
L _ — v ZAZeae Bl
ky Aa”k”” 2A< A ) (B16)
0,0,h,,
K=k, — % (B17)
1 2,0
6T = k-1 <5W - %> KT — 9k — kL. (BIS)
We now decompose k,, into
kij = hi
ky = A;
k44 - (]’7, (Blg)

and perform a three dimensional 7"+ L decomposition of
hi j and Ai

1 0,0,
hij = Wi 45 (5,-, - A’)hT +Ohk — 9k (B20)

A; = AT + QAL (B21)

By replacing (B20) and (B21) into (B16), (B17), and (B18),
we obtain

k- = Rt
ki = AL
k' =h" + ¢
KiT = AT

1
kif = 3 (29— hT)

7 =7 = (3= ) - (822
Finally, from (B14) we have
hIT = pAanlr (B23)
AT = pAAT (B24)
2¢ — h" = pA(2¢p — hT). (B25)

(B23) describes the propagation of the two d.o.f. of the
graviton, (B24) of the two d.o.f. of the gauge vector and
(B25) of the scalar field 2¢p — h”, all of them propagating
with velocity v/f. In addition, we have one propagating
scalar d.o.f. described by (B15). This is in complete
agreement with the results in Sec. III, where the perturba-
tive analysis was done in the 3 + 1 theory.
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