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in Hořava-Lifshitz theory

Jorge Bellorín,* Alvaro Restuccia,† and Francisco Tello-Ortiz‡

Departamento de Física, Facultad de ciencias básicas, Universidad de Antofagasta,
Casilla 170, Antofagasta, Chile

(Received 25 July 2018; revised manuscript received 11 September 2018; published 14 November 2018)

We analyze the electromagnetic-gravity interaction in a pure Hořava-Lifshitz framework. To do so we
formulate the Hořava-Lifshitz gravity in 4þ 1 dimensions and perform a Kaluza-Klein reduction to 3þ 1

dimensions. We use this reduction as a mathematical procedure to obtain the 3þ 1 coupled theory, which at
the end is considered as a fundamental, self-consistent theory. The critical value of the dimensionless
coupling constant in the kinetic term of the action is λ ¼ 1=4. It is the kinetic conformal point for the
nonrelativistic electromagnetic-gravity interaction. In distinction, the corresponding kinetic conformal
value for pure Hořava-Lifshitz gravity in 3þ 1 dimensions is λ ¼ 1=3. We analyze the geometrical
structure of the critical and noncritical cases, they correspond to different theories. The physical degrees of
freedom propagated by the noncritical theory are the transverse traceless graviton, the transverse gauge
vector and two scalar fields. In the critical theory one of the scalars is absent, only the dilaton scalar field is
present. The gravity and vector excitations propagate with the same speed, which at low energy can be
taken to be the speed of light. The field equations for the gauge vector in the nonrelativistic theory have
exactly the same form as the relativistic electromagnetic field equations arising from the Kaluza-Klein
reduction of general relativity, and are equal to them for a particular value of one of the coupling constants.
The potential in the Hamiltonian is a polynomial of finite degree in the gauge vector and its covariant
derivatives.
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I. INTRODUCTION

Hořava-Lifshitz gravity [1] is a candidate for a pertur-
batively renormalizable theory of quantum gravity [2–16].
The main idea is to break the Lorentz symmetry in order to
allow higher order spatial derivative terms in the potential
which improve the quantum behavior of the theory without
the introduction of ghost fields [17]. There is no space-time
metric in the formulation since there is an anisotropic
scaling of the time and space coordinates. The geometrical
framework is a foliation with Riemannian leaves para-
metrized by the time variable. The theory is manifestly
invariant under the diffeomorphisms that preserve the
foliation. Only reparametrizations of the time variable
are allowed. Besides this Riemannian geometry the theory
introduces the lapse function and shift vector as fields

defined on the leaves parametrized by the time coordinate.
This formulation allows the lapse function to have different
dimensions than in a space-time formulation. Moreover, the
overall coupling constant of the action becomes dimen-
sionless. The Hořava-Lifshitz gravity may also arise from
the gauging of the Newton-Cartan geometry [18].
In this work we consider the nonprojectable version of

the Hořava-Lifshitz gravity in 4þ 1 dimensions, and
perform a Kaluza-Klein (KK hereinafter) reduction to 3þ
1 dimensions. The main goal will be the analysis of the
gravity-vector interaction. Our final objective is to regard
the resulting theory in 3þ 1 dimensions as a fundamental,
self-consistent theory of gravity with couplings. Hence
there is no need of embedding it into a more fundamental
theory. In the same way that the pure Hořava theory is
power-counting renormalizable, we expect that the result-
ing coupled theory obtained by means of the dimensional
reduction is also a power-counting renormalizable in 3þ 1
dimensions. In this approach the fourth spatial dimension is
not physical. Therefore, the dimensional reduction we
employ is a mathematical approach to obtain the final
and self-consistent theory in 3þ 1 dimension. Once the
3þ 1 theory with couplings has been obtained one can
study any aspect of its dynamics. We remark that, although
the purely gravitational nonprojectable Hořava theory in
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3þ 1 dimensions is well established, the issue of its
couplings to fields and other matter sources is still an
open question. Our approach gives an answer in this sense.
With regards to vector fields, the Hořava theory is fre-
quently coupled to the relativistic energy-momentum tensor
of the electromagnetic field. However, this approach is not
natural in the framework of the FDiff symmetry of the
Hořava theory. For this reason in this work we take the
point of view of starting from a FDiff-invariant theory from
the very beginning.
The Hořava theory in 4þ 1 dimensions includes up to

z ¼ 4 interaction terms in the potential. In order to preserve
the invariance under diffeomorphisms on the leaves of the
foliation these terms in the potential have to be constructed
in terms of the 4-dimensional Riemannian tensor, the lapse
function and covariant derivatives of them [2]. Once this
requirement is satisfied one may dimensionally reduce to
3þ 1 dimensions a la KK. The same approach for GR in
4þ 1 dimensions gives rise to the relativistic coupling of
gravity and electromagnetism in 3þ 1 dimensions. Hence
our approach will determine how far the anisotropic
coupling to the vector field in Hořava-Lifshitz theory is
from the relativistic one. This is a relevant point since
electrodynamics is a very well established theory. The
resulting coupled Hořava theory in 3þ 1 dimensions has
both z ¼ 1 and z ¼ 2, 3, 4 terms. The former are the
dominant ones in the physics of the large distances (infrared
limit). Since we want to contrast with the standard coupling
of electromagnetismwith general relativity, at the level of the
3þ 1 theory we take the infrared limit by discarding all the
z ¼ 2, 3, 4. In thiswaywewill end upwith a theory of second
order in time and spatial derivatives. We notice that for this
limit we do not need the explicit expression of the z ¼ 2, 3, 4
terms of the 4þ 1 theory.

The Hořava theory has a critical point for the dimension-
less coupling constant of the kinetic term, λ, which is equal
to the inverse of the spatial dimensions. This point was
called the kinetic-conformal point in Ref. [13]. In the 4þ 1
theory this point correspond to λ ¼ 1=4. At this point the
extra scalar mode is dropped out from the phase space (see
[19] for the 3þ 1 case). Consequently, the Hamiltonian
formulation of this special case is not continuously con-
nected to the Hamiltonian formulation of the rest of
values of λ. In particular, two additional second-class
constraints arise in the Hamiltonian formulation of the
kinetic-conformal case. For consistency, any analysis made
within the framework of the Hamiltonian formulation
must be done separately for the λ ≠ 1=4 and the λ ¼ 1=4
cases.
In Sec. II we present the Hořava-Lifshitz theory in 4þ 1

dimensions, we distinguish the λ ≠ 1=4 and λ ¼ 1=4
theories. In Sec. III we analyze the 3þ 1 theory following
a KK reduction. In Sec. IV we discuss the gauge vector
field equations and compare to the Maxwell equations. In
Sec. V we consider in particular the λ ¼ 1=4 theory. Finally
in Sec. VI we give our conclusions.

II. HOŘAVA-LIFSHITZ IN FIVE DIMENSIONS

We consider a five dimensional manifold foliated by four
dimensional Riemannian leaves with metricGμνdxμ ⊗ dxν,
μ, ν ¼ 1, 2, 3, 4, and parametrized by a time variable.
Besides a four vector Nμ and a scalar N under diffeomor-
phims on the Riemannian foliation are introduced, the shift
and the lapse respectively. Both are scalar densities under
time reparametrizations. The Hořava-Lifshitz action on this
geometrical framework is given by

SðGμν; Nρ; NÞ ¼
Z

dtdx4½N
ffiffiffiffi
G

p
ðKμνKμν − λK2 þ βð4ÞRþ αaμaμÞ − VðGμν; NÞ�; ð1Þ

where aμ ¼ ∂μLnN and KμνKμν − λK2 is the kinetic term
and the remaining terms describe the potential of the
theory. We have written explicitly the lowest order terms
in spatial derivatives, the higher order ones are contained
in VðGμν; NÞ, and are constructed from powers of the four
dimensional Riemannian tensor and the covariant deriv-
atives of the lapse N. The highest order derivative terms of
the physical degrees of freedom (d.o.f.) should be at least
of order eight and with an elliptic symbol, in order to
obtain a power counting renormalizable theory. In this
section we consider the complete theory in 4þ 1 dimen-
sions. In the next section, after the KK reduction, in the
perturbative analysis we will consider only the dominant
terms at large distances, which are the terms of second
order in spatial derivatives. This second order truncation
in 3þ 1 dimensions is related to the Einstein-aether

theory [20–23]. Kμν is the extrinsic curvature of the
Riemannian leaves,

Kμν ¼
1

2N
ð_gμν −∇μNν −∇νNμÞ; ð2Þ

and K its trace

K ¼ GμνKμν; ð3Þ

λ is a dimensionless coupling constant, while α and β are
the coupling constants at low energy in the potential of the
theory.
We proceed to reformulate the action using the

Hamiltonian formalism [24–27]. To do so we have to
distinguish the λ ≠ 1=4 and λ ¼ 1=4 cases. At λ ¼ 1=4 the
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kinetic term is conformal invariant. This is analogous to the
λ ¼ 1=3 theory in the Hořava-Lifshitz gravity in 3þ 1
dimensions which propagates the same d.o.f. as GR and has
the same quadrupole radiative behavior as GR [13,19,28].
We begin our analysis with the λ ≠ 1=4 case. The conjugate
momentum to Gμν is given by

πμν ¼ ∂L
∂ _Gμν

¼
ffiffiffiffi
G

p
ðKμν − λGμνKÞ; ð4Þ

and its trace by

π ¼ Gμνπ
μν ¼

ffiffiffiffi
G

p
ð1 − 4λÞK: ð5Þ

Note that if λ ¼ 1=4, there arise the primary constraint
π ¼ 0. As we commented above, this fact leads to a
different Hamiltonian formulation. The Hamiltonian den-
sity obtained from the Legendre transformation is

H ¼
ffiffiffiffi
G

p
N

�
πμνπμν
G

þ λ

ð1 − 4λÞ
π2

G
− βð4ÞR − αaμaμ

�

þ 2πμν∇μNν þ σPN þ VðGμν; NÞ; ð6Þ

we have added the PN term with the Lagrange multiplier σ
because the theory is subject to a primary constraint given by
the conjugate momentum to the lapse N equal to zero, since
no time derivatives of N appears in Lagrangian density.
The field equations arising from the canonical

Lagrangian are the following. The conservation of the
primary constraint, or equivalently variation with respect to
N yields the Hamiltonian constraint

πμνπμν
G

þ λ

ð1 − 4λÞ
π2

G
− βð4ÞRþ αaμaμ þ 2α∇μaμ

þ 1ffiffiffiffi
G

p δV
δN

¼ 0; ð7Þ

which ends up being a second class constraint. Variations
with respect to πμν gives

_Gμν ¼
2Nπμνffiffiffiffi

G
p þ 2λ

ð1−4λÞGμνN
πffiffiffiffi
G

p þ∇μNνþ∇νNμ; ð8Þ

while variations with respect to Gμν yields

− _πμν ¼ −
1

2
NGμν

�
πλρπλρffiffiffiffi

G
p þ λ

ð1 − 4λÞ
π2ffiffiffiffi
G

p
�
þ 2N

�
πμλπνλffiffiffiffi

G
p þ λ

ð1 − 4λÞ
πμνπffiffiffiffi
G

p
�

þ β
ffiffiffiffi
G

p
N

�
ð4ÞRμν −

1

2
ð4ÞRGμν

�
− β

ffiffiffiffi
G

p
½∇ðμ∇νÞN −Gμν∇λ∇λN�

−
1

2
α

ffiffiffiffi
G

p
NGμνaρaρ þ α

ffiffiffiffi
G

p
Naμaν þ 2∇ρ½πρðμNνÞ� −∇ρ½πμνNρ� þ δV

δgμν
; ð9Þ

where

AðμBνÞ ¼ 1

2
ðAμBν þ AνBμÞ: ð10Þ

Finally, variations with respect to Nμ determine the first
class constraints of the theory

∇μπ
μν ¼ 0: ð11Þ

Variations with respect to PN yields _N ¼ σ. This equation
merely fixes the Lagrange multiplier σ.
The d.o.f. propagated by these nonlinear evolution

equations can be identified by means of a perturbative
analysis. The theory describe six d.o.f. in 4þ 1 dimen-
sions. These are five (transverse-traceless) tensorial modes
and one scalar mode. In Appendix B we show a perturba-
tive analysis for the 4þ 1 theory.
In the next section we analyze the exact KK reduction of

the Hořava-Lifshitz in 4þ 1 dimensions. Among other

properties we will determine the coupling of Hořava-
Lifshitz gravity to the vector gauge potential and two scalar
fields.

III. NONPERTURBATIVE KALUZA-KLEIN
REDUCTION TO 3+ 1 DIMENSIONS

In this section we perform the KK reduction of the 4þ 1
full Hořava theory in a nonpertubative approach. We
decompose the 4-dimensional Riemannian metric Gμν in
the following form

ðGμνÞ ¼
�
γij þ ϕAiAj ϕAj

ϕAi ϕ

�
; ð12Þ

where γij is a 3-dimensional Riemannian metric. We denote
detðγijÞ≡ γ, thus we have G≡ detðGμνÞ ¼ γϕ > 0, hence
ϕ > 0. The inverse metric is then given by
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ðGμνÞ ¼
�

γij −Aj

−Ai 1
ϕ þ AkAk

�
; ð13Þ

where γij are the components of the inverse of γij and
Ai ¼ γijAj. The decomposition (12) is invertible

γij ¼ Gij −
Gi4Gj4

G44

ð14Þ

Aj ¼
G4j

G44

ð15Þ

ϕ ¼ G44: ð16Þ

We then have

πμν _Gμν ¼ πij _γij þ pi _Ai þ p _ϕ; ð17Þ

where

pij ¼ πij ð18Þ

pi ¼ 2ϕAjπ
ij þ 2πi4ϕ ð19Þ

p ¼ πijAiAj þ 2πi4Ai þ π44: ð20Þ

Equations (14)–(20) define a canonical transformation.
In fact,

fGμνðxÞ; πρλðx̃ÞgPB ¼ 1

2
ðδρμδλν þ δρνδλμÞδðx − x̃Þ; ð21Þ

imply

fγijðxÞ; pklðx̃ÞgPB ¼ 1

2
ðδki δlj þ δkjδ

l
iÞδðx − x̃Þ; ð22Þ

fAiðxÞ; pjðx̃ÞgPB ¼ δjiδðx − x̃Þ; ð23Þ

fϕðxÞ; pðx̃ÞgPB ¼ δðx − x̃Þ; ð24Þ

and all other Poisson brackets being zero.
The canonical Lagrangian in 4þ 1 can now be reex-

pressed in terms of the new fields. We then consider the
reduced theory by taking ∂4 ¼ 0 on all fields (see
Appendix A). The reduced canonical Lagrangian is then
given by

L ¼ pij _γij þ pi _Ai þ p _ϕþ PN
_N −H; ð25Þ

where the Hamiltonian density is given by

H ¼ Nffiffiffiffiffiffi
γϕ

p
�
ϕ2p2 þ pijpij þ

pipi

2ϕ
þ λ

ð1 − 4λÞ ðp
ijγij þ pϕÞ2 − γϕβð4ÞR − γϕαaiai

�

− Λ∂ipi − Λj

�
∇ipij −

1

2
piγjkFik −

1

2
pγij∂iϕ

�
− σPN þ Ṽðγij; Ak;ϕ; NÞ; ð26Þ

where Ṽðγij; Ak;ϕ; NÞ corresponds to VðGμν; NÞ evaluated
at ∂4 ¼ 0, that is

Ṽðγij; Ak;ϕ; NÞ ¼ VðGμν; NÞj∂4¼0; ð27Þ

and,

ð4ÞR ¼ R −
ϕ

4
FijFij −

2ffiffiffiffi
ϕ

p ∇i∇i
ffiffiffiffi
ϕ

p
; ð28Þ

R is the curvature and∇i the covariant derivative associated
to the 3-dimensional metric γij. Indices are raised and
lowered using γij and its inverse γij. Λ and Λj are the
Lagrange multipliers associated to a combination of the
constraints (11) while σ is the Lagrange multiplier asso-
ciated to the constraint

PN ¼ 0 ð29Þ

that is, the conjugate momentum to N equal zero. These are
the primary constraints of the formulation.
The KK reduction of the momentum constraint (11)

yields a constraint corresponding to its 4-component and
another one corresponding to the rest spatial directions.
After some manipulations, we obtain that these two
constraints are equivalent to

H4 ≡ ∂ipi ¼ 0 ð30Þ

Hj ≡∇ipij −
1

2
piγjkFik −

1

2
pγij∂jϕ ¼ 0 ð31Þ

We have then obtained the KK reduction of the full Hořava
gravity in 4þ 1 dimensions.
We now analyze this theory at its z ¼ 1 limit. The

conservation of these primary constraints is satisfied and
the conservation of (29) yields the Hamiltonian constraint
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HN ≡ 1ffiffiffiffiffiffi
γϕ

p
�
ϕ2p2 þ pijpij þ

pipi

2ϕ
þ λ

ð1 − 4λÞ ðp
ijγij þ pϕÞ2 − βγϕRþ β

4
γϕ2FijFij

þ 2βγ
ffiffiffiffi
ϕ

p ∇i∇i
ffiffiffiffi
ϕ

p �
þ α

ffiffiffiffiffiffi
γϕ

p
aiai þ 2α

ffiffiffi
γ

p ∇ið
ffiffiffiffi
ϕ

p
aiÞ þ δ

δN
½Ṽðγij; Ak;ϕ; NÞ� ¼ 0: ð32Þ

The Dirac’s procedure to determine the constraints of he
theory ends at this step. It turns out that (30) and (31) are
first class constraints while (29) and (32) are second class
constraints. The first class constraints, once they are
satisfied initially, they are preserved by the evolution
equations obtained by taking variations of the action with
respect to the independent fields. The second class ones
have to be imposed at any time.
We now consider the equations of motion resulting from

variations of the canonical action with respect to pij, pi and
p. They give the equations

_γij ¼
Nffiffiffiffiffiffi
γϕ

p
�
2pij þ

2γijλ

ð1 − 4λÞ ðp
lmγlm þ pϕÞ

�
þ∇ðiΛjÞ;

ð33Þ

_Ai ¼
Npiffiffiffiffiffiffiffiffi
γϕ3

p þ ∂iΛþ 1

2
Λjγ

jkFik ð34Þ

_ϕ ¼ Nffiffiffiffiffiffi
γϕ

p
�
2pϕ2 þ 2λ

ð1 − 4λÞ ðp
lmγlm þ pϕÞϕ

�
þ 1

2
Λi∂iϕ:

ð35Þ

Variations with respect to γij, Ai and ϕ yield the equations of motion

_pij ¼ N
2

γijffiffiffiffiffiffi
γϕ

p
�
ϕ2p2 þ plkplk þ

1

ϕ
plpl þ

λ

ð1 − 4λÞ ðp
lmγlm þ pϕÞ2

�
−

Nffiffiffiffiffiffi
γϕ

p

×

�
2pikpj

k þ
1

2ϕ
pipj þ 2λ

ð1 − 4λÞ ðp
lmγlm þ pϕÞpij

�
þ N

ffiffiffiffiffiffi
γϕ

p
β

�
R
2
γij

− Rij

�
þ β

ffiffiffi
γ

p ½∇ði∇jÞðN
ffiffiffiffi
ϕ

p
Þ − γij∇k∇kðN

ffiffiffiffi
ϕ

p
Þ� þ β

2
N

ffiffiffiffiffiffiffiffi
γϕ3

q

×

�
FinFj

n −
γij

4
FmnFmn

�
þ β

ffiffiffi
γ

p ½γij∂lN∂l
ffiffiffiffi
ϕ

p
− 2∂iN∂j

ffiffiffiffi
ϕ

p
�

þ αN
ffiffiffiffiffiffi
γϕ

p �
γij

2
akak − aiaj

�
−∇k

�
pkðiΛjÞ −

pij

2
Λk

�
þ 1

2
ΛiplγjmFlm

þ 1

2
pΛi∂jϕ −

δ

δγij
½Ṽðγij; Ak;ϕ; NÞ�; ð36Þ

_pi ¼ β∂j

�
N

ffiffiffiffiffiffiffiffi
γϕ3

q
Fji

�
−
1

2
∂kðΛkpi − ΛipkÞ − δ

δAi
½Ṽðγij; Ak;ϕ; NÞ�; ð37Þ

_p ¼ −
Nffiffiffi
γ

p
�
3

2

ffiffiffiffi
ϕ

p
p2 −

1

2
ffiffiffiffiffi
ϕ3

p pijpij −
3

4
ffiffiffiffiffi
ϕ5

p pipi þ
λ

ð1 − 4λÞ
�
3

2

ffiffiffiffi
ϕ

p
p2 þ ppijγijffiffiffiffi

ϕ
p −

1

2

ðpijγijÞ2ffiffiffiffiffi
ϕ3

p
�

− γβ

�
1

2

ffiffiffiffi
ϕ

p
R −

3

8

ffiffiffiffi
ϕ

p
FijFij

�
−

γ

2
ffiffiffiffi
ϕ

p αaiai
�
− β

ffiffiffi
γ

p
ffiffiffiffi
ϕ

p ∇i∇iN þ 1

2
∂iðpΛiÞ − δ

δϕ
½Ṽðγij; Ak;ϕ; NÞ�: ð38Þ

Equations (30)–(38) are the complete set of field equations of the 3þ 1-dimensional theory, it describes the gauge vector-
gravity interaction together with two additional scalar fields as already mentioned in the 4þ 1-dimension formulation of the
previous section.
We may obtain the perturbative equations directly from this 3þ 1-formulation (in Appendix B we compare with a

perturbative analysis in 4þ 1 dimensions). In this analysis we only consider the interacting terms of second order in
derivatives. The background is the 3D Euclidean space plus the background conditions for the rest of field variables. They
are given by

γ̂ij ¼ δij; p̂ij ¼ 0; N̂ ¼ 1; Âi ¼ p̂i ¼ 0; ϕ̂ ¼ 1; p̂ ¼ 0; N̂i ¼ N̂4 ¼ 0: ð39Þ

ANISOTROPIC COUPLING OF GRAVITY AND … PHYS. REV. D 98, 104018 (2018)

104018-5



The perturbations around this background are defined by
introducing the variables hij, Ωij, n, ni, and n4 in the
following way

γij ¼ δij þ ϵhij; pij ¼ ϵΩij; Ni ¼ ϵni;

N4 ¼ ϵn4; N ¼ 1þ ϵn: ð40Þ

For the scalar ϕ and the vector Ai fields we have

Ai ¼ ϵξi; pi ¼ ϵζi; ϕ¼ 1þ ϵτ; p¼ ϵχ: ð41Þ

The perturbative expressions at linear order in ϵ for the
Lagrange multipliers Λ and Λi coincide with the corre-
sponding ones to N4 and Ni, respectively.
The linearized equations of motion become

_τ ¼ 2χ þ 2λ

ð1 − 4λÞ ðχ þ ΩÞ; ð42Þ

_χ ¼ −
β

2
Δh − βΔn; ð43Þ

_ξi ¼ ζi − ∂in4; ð44Þ

_ζi ¼ β∂jð∂iξj − ∂jξiÞ; ð45Þ

_hij ¼ 2Ωij þ
2δijλ

ð1 − 4λÞ ðΩþ ξÞ þ 2∂ðinjÞ; ð46Þ

_Ωij ¼ −
β

2

�
δij −

∂i∂j

Δ

�
Δhþ β

2
Δhij

− β

�
δij −

∂ði∂jÞ
Δ

�
Δ
�
nþ τ

2

�
: ð47Þ

Besides, from the constraints we have

∂iΩij ¼ 0 ð48Þ

βΔτ þ 2αΔnþ βΔh ¼ 0: ð49Þ

In order to identify the physical d.o.f. propagated at
linearized level we use the orthogonal transverse/longi-
tudinal decomposition [see Eqs. (B20) and (B21) of
Appendix B], obtaining

_ξTi ¼ ζTi : ð50Þ

_ζTi ¼ βΔξTi ; ð51Þ

so, combining (50) and (51) we get the following wave
equation for the vector excitation,

̈ξTi − βΔξTi ¼ 0: ð52Þ

This implies that the vector excitation propagates with
speed

ffiffiffi
β

p
. From Eqs. (46) and (47) we obtain the following

wave equation for the graviton

ḧTTij − βΔhTTij ¼ 0: ð53Þ

We remark that the graviton has the same speed of
propagation that the gauge vector, i.e.,

ffiffiffi
β

p
. The longi-

tudinal modes ξL and hLi are gauge modes. They are not
physical excitations. The remaining terms obtained from
the decomposition of the equations (46) and (47) are

_hT ¼ 2ΩT þ 4λ

ð1 − 4λÞ ðΩ
T þ χÞ; ð54Þ

_ΩT ¼ −
β

2
ΔhT − 2βΔn − βΔτ; ð55Þ

and the longitudinal terms

ni þ
λ

ð1 − 4λÞ
∂i

Δ
ðΩT þ χÞ ¼ 0; ð56Þ

The above equation (56) allows to determine ni. So, solving
(49) for Δn we get

Δn ¼ −
β

2α
ðΔτ þ ΔhTÞ; ð57Þ

and combining it with (42), (43), (54), and (55) we obtain

ḧT − 2̈τ ¼ βΔðhT − 2τÞ ð58Þ

ḧT þ ̈τ ¼ β

α

ð1 − λÞð3β − 2αÞ
ð1 − 4λÞ ΔðhT þ τÞ: ð59Þ

Therefore, we have that the 3þ 1 theory describes the
propagation of six d.o.f. They are two transverse-traceless
tensorial modes, which are the same modes of GR, two
transverse vectorial modes, as in Maxwell theory, and two
scalar modes. We may interpret one of these scalar, hT þ τ,
as being part of the gravitational interaction of the Hořava
theory, that is, the so-called extra mode of the Hořava
theory. The other scalar, hT − 2τ, can be interpreted as part
of the coupling to the matter fields resulting from the KK
reduction. Indeed, the same KK reduction on GR relativity
gives raise to the hT − 2τ scalar in the 3þ 1 dimensions.
The fact that the factor 1 − 4λ arises in the denominator of
the right-hand side of Eq. (59) signals that the case λ ¼ 1=4
is a critical point of the theory, as we have commented. The
dynamics in this case is different, and not continuously
connected, to the λ ≠ 1=4 case due to the dropping out of
this scalar mode.
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IV. THE ELECTROMAGNETIC FIELD
EQUATIONS IN HOŘAVA FORMULATION

In this section we analyze in detail the dynamics of the
vectorial sector, considering the large distance limit, for
which we retain only the z ¼ 1 terms. This is equivalent to
discard the higher order potential V. Let us analyze in more
details equations (30), (34), and (37). Since (30) is a first-
class constraint it generates a gauge transformation on Ai,

δAi ¼ fhζ∂jpji; AiðxÞgPB ¼ ∂iζðxÞ; ð60Þ

where

hζ∂ipii ¼
Z

d3x̃ζðx̃Þ∂ipiðx̃Þ: ð61Þ

The action and field equations are invariant under this
gauge transformation. Note that this holds even including
the higher order terms represented by V, since the con-
straint (30) keeps its form unaltered, and it is also
independent of all coupling constants. Λi are Lagrange
multipliers associated to the first class constraints (31), they
can be fixed to zero in order to simplify the analysis of (34)
and (37). If we denote A0 ≡ Λ and

F0i ≡ _Ai − ∂iA0; ð62Þ

F0i ≡ −
1

N2
γijF0j; ð63Þ

then solving pi in (34) and substituting it in (37), we obtain
the equation

∂0ðF0iN
ffiffiffiffiffiffiffiffi
γϕ3

q
Þ þ β∂jðFjiN

ffiffiffiffiffiffiffiffi
γϕ3

q
Þ ¼ 0: ð64Þ

We now may compare with the standard Maxwell theory
written in relativistic variables. To this end, using the field
variables of the 3þ 1 Hořava theory, we may build a four-
dimensional metric gμν decomposed in the standard ADM
way,

g00 ¼ −N2 þ γijNiNj

g0i ¼ gi0 ¼ Ni; Ni ¼ γijNj

gij ¼ γij; ð65Þ

with inverse given by

g00 ¼ −
1

N2

g0i ¼ gi0 ¼ Ni

N2

gij ¼ γij −
NiNj

N2
: ð66Þ

For simplicity, if we fix Ni ¼ 0 as a gauge of the space-like
diffeomorphisms on the side of the relativistic theory, then
we have that from our definition of F0i (63),

F0i ¼ g0μgiνFμν; ð67Þ

Fμν being the four-dimensional definition of the curvature
of the potential Aμ, where A0 is the Lagrange multiplier of
the constraint (30), the generator of gauge transformation.
The nonrelativistic electromagnetic equations are exactly

the relativistic ones if β ¼ 1. In fact, N
ffiffiffi
γ

p ¼ ffiffiffiffiffijgjp
and (64)

becomes the relativistic equations of the electromagnetic
field coupled to the dilaton field. If in addition ϕ ¼ 1, we
have that Eq. (64) becomes

∂μð
ffiffiffiffiffi
jgj

p
FμiÞ ¼ 0; ð68Þ

while (30) can be expressed, when ϕ ¼ 1, as

∂μð
ffiffiffiffiffi
jgj

p
Fμ0Þ ¼ 0: ð69Þ

The speed of propagation of the gauge vector excitation is
in general

ffiffiffi
β

p
and it is the same for the gravity excitation. It

is interesting that this property is a consequence of starting
with a purely gravitational FDiff-invariant theory in 5-
dimensions. We can now identify the gauge vector with the
electromagnetic potential. Equations (64) and (69) are the
anisotropic electromagnetic equations. We remark again
that (69), arising directly from (30), does not involve any
coupling constant. Since the potential in the Hamiltonian of
the 4þ 1 complete theory is constructed from polynomial
expressions in terms of the Riemann tensor and the lapse
function and its covariant derivatives up to 2z derivatives,
its reduction to 3þ 1 dimensions is a polynomial (of finite
degree) in the gauge vector and its covariant derivatives.

V. THE KINETIC CONFORMAL
POINT IN 4 + 1 DIMENSIONS

We discuss in this section the Hořava-Lifshitz gravity in
4þ 1 dimensions for λ ¼ 1=4 and its 3þ 1 reduction. It is
a different theory with respect to the λ ≠ 1=4 formulation
we have already considered. The propagating d.o.f. are
different in the two cases. The corresponding relation in
Hořava-Lifshitz gravity in 3þ 1 dimensions is between the
λ ¼ 1=3 and λ ≠ 1=3 theories [13,19]. In the canonical
analysis in Sec. II, in the case λ ¼ 1=4, we obtain an
additional primary constraint

π ¼ Gμνπ
μν ¼ 0; μ; ν ¼ 1; 2; 3; 4: ð70Þ

The Hamiltonian density in this case is given by
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H ¼ N
ffiffiffiffi
G

p �
πμνπμν
G

− βð4ÞR − αaμaμ
�

þ 2πμν∇μNν þ σPN þ μπ þ V; ð71Þ

where σ and μ are Lagrange multipliers associated to two
primary constraints, as before PN is the conjugate momen-
tum to N. Additionally

∇μπ
μν ¼ 0 ð72Þ

is the primary constraint associated to the invariance under
the diffeomorphisms on the Riemannian leaves of the 4þ 1
foliation. It is a first-class constraint, it is preserved under
the evolution determined by the Hamiltonian.
The conservation of the primary constraints (70) and

PN ¼ 0 implies two new constraints, the Hamiltonian
constraint

πμνπμν
G

− βð4ÞRþ αaμaμ þ 2α∇μaμ þ
1ffiffiffiffi
G

p δV
δN

¼ 0; ð73Þ

and

2
πμνπμν
G

þβð4ÞRþðα−3βÞaμaμ−3β∇μaμ−
Gμνffiffiffiffi
G

p δV
δGμν

¼ 0:

ð74Þ

The conservation of (73) and (74) determine Lagrange
multipliers in the formulation. The Dirac’s procedure to
determine the complete set of constraint of the theory ends
at this stage: (70), PN ¼ 0, (73) and (74) are second class
constraints, (72) are first class constraints.
We now consider the complete set of field equations of

the theory. In order to derive them, we assume an
asymptotic decay to zero of the Lagrange multipliers of
the second class constraints. It is then correct to use the
Hamiltonian (71) without the explicit introduction of the
whole set of second class constraints via Lagrange multi-
pliers [29]. The field equations are, together with (70), (72),
(73), and (74), the following ones,

_Gμν ¼
2Nπμνffiffiffiffi

G
p þ μGμν þ∇μNν þ∇νNμ; ð75Þ

− _πμν ¼ −
1

2
NGμν

πλρπλρffiffiffiffi
G

p þ 2N
πμλπνλffiffiffiffi

G
p þ β

ffiffiffiffi
G

p
N

�
ð4Þ
R
μν
−
1

2

ð4Þ
RGμν

�

− β
ffiffiffiffi
G

p
½∇ðμ∇νÞN −Gμν∇λ∇λN� − 1

2
α

ffiffiffiffi
G

p
NGμνaρaρ þ α

ffiffiffiffi
G

p

× Naμaν þ 2∇ρ½πρðμNνÞ� −∇ρ½πμνNρ� þ μπμν þ δV
δGμν

: ð76Þ

We now introduce the KK ansatz given by (12) and (13). We can perform the canonical transformation defined in Sec. III
and impose ∂4 ¼ 0 on the fields to obtain a 3þ 1 formulation. The Hamiltonian in this formulation becomes

H ¼ Nffiffiffiffi
G

p
�
ϕ2p2 þ pijpij þ

pipi

2ϕ
− βGð4ÞR − αGaμaμ

�
− 2½∇μπ

μν�Nν þ σPN þ μ½pijγij þ pϕ� þ Ṽ; ð77Þ

where ð4ÞR has the expression (28) and Ṽ is defined in (27).

A perturbative analysis can be done in order to identify
the physical d.o.f. In this case we do not consider the higher
order terms. Following the analysis in Sec. III, we obtain
the perturbative equations

ḧTTij ¼ βΔhTTij ð78Þ

ÄT
i ¼ βΔAT

i ð79Þ

ϕ̈ ¼ βΔϕ ð80Þ

hT ¼ ϕ; ð81Þ

that is, comparing with the λ ≠ 1=4 theory there is only one
propagating scalar field. All physical modes propagate with
the same speed

ffiffiffi
β

p
. The longitudinal components hLi , A

L

are gauge modes. We notice that the propagating d.o.f. are
the same to the ones in GR in interaction with the
electromagnetic and the dilaton fields arising from a KK
reduction of GR in 4þ 1 dimensions. Although the
Hořava’s theory at the kinetic conformal point we are
considering breaks the relativistic symmetry, it propagates
the same d.o.f. as the corresponding one in GR.
The nonrelativistic electromagnetic field equations are

the same as in the previous section, however the other field
equations are different, in particular a new second class
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constraint appears in this formulation compared to the λ ≠
1=4 theory.
It is important to discuss the field equations obtained

from the Hamiltonian in this section, Eq. (77), and in
Sec. III in comparison to the field equations arising from an
action in which it is assumed that the scalar field ϕ is in
its ground state, which we take to be ϕ ¼ 1, p ¼ 0.
In fact, variations of an action subject to the restriction
ϕ ¼ 1, p ¼ 0 give rise to field equations which are not
equivalent to the ones in this section or in Sec. III on which
one imposes the ϕ ¼ 1, p ¼ 0 restriction.
It is straightforward to obtain the equations from the

action restricted by ϕ ¼ 1 and p ¼ 0. In fact, variations
with respect to γij, pij, Ai, pi determine the same field
equations obtained by taking variations of the canonical
Lagrangian associated to (77), in the λ ¼ 1=4 case, and
imposing afterwards ϕ ¼ 1, p ¼ 0. The main difference
being that in the restricted case there are not field equations
corresponding to variations on ϕ and its conjugate
momenta. The analysis of the field equations in the
restricted case show that the only physical d.o.f. in the
theory correspond to the hTTij tensorial modes and the AT

i

vectorial modes. The corresponding perturbation equations
are (78) and (79).

VI. CONCLUSIONS

We have obtained the gravitational theory of Hořava in
3þ 1 dimensions coupled to vector and scalar fields in a
FDiff-invariant way. We have used a procedure of dimen-
sional reduction starting with a purely gravitational non-
projectable Hořava theory in 4þ 1 dimensions. These are
in principle power counting renormalizable theories pro-
vided all z ¼ 4 interaction terms are included in the
potential. This a relevant point because in some cases
the coupling to matter fields may damage the behaviour of
the divergences of the vacuum theory. For example it is
known [30] that pure GR is finite at one loop but it is badly
divergent at one loop when a scalar field is coupled to it.
In the 3þ 1 coupled theory there arise a gauge symmetry

in the vectorial sector, equivalent to the gauge symmetry of
the Maxwell electromagnetism on a curved background.
The gauge symmetry is generated by the same first class
constraint as in the electromagnetic-gravity theory in GR.
Moreover, the field equations for the gauge vector have the
same structure as in the relativistic case. In particular if we
take β ¼ 1, the Hořava-Lifshitz theory is still an anisotropic
formulation of the gravity-electromagnetic interaction in
which the field equations for the gauge vector are exactly
the Maxwell equations on a curved background. By means
of a perturbative approach, we have identified the excita-
tions of the gravitational, vector and scalar fields. With
respect to the speed of propagation of the graviton and the
gauge vector field, it is the same velocity

ffiffiffi
β

p
for both

excitations.

We have obtained the Hamiltonian, field equations of the
theory and determine the propagating d.o.f. We have
separated the λ ≠ 1=4 and the λ ¼ 1=4 cases, since they
correspond to two different dynamics of the physical d.o.f.
In the λ ≠ 1=4 case, the physical d.o.f. are the same as the
ones in the gravity+electromagnetic+dilaton interaction
described in GR, plus an additional scalar mode. In the
λ ¼ 1=4 theory, the additional scalar mode is absent,
because the different structure of the constraints. This is
an extension of same result in [13,19] for the pure Hořava-
Lifshitz gravity at the kinetic conformal point, λ ¼ 1=3 in
that case. It is interesting that the introduction of the
interaction of gravity with the gauge vector and dilaton
fields shifts the kinetic conformal point from λ ¼ 1=3 to
λ ¼ 1=4. This is an important point.
A further step could be to analyze explicitly the higher

order terms in the potential and to analyze the nonlinear,
nonrelativistic extension of the Maxwell equations. We
remark that the new nonlinear interaction terms are nec-
essarily polynomial of finite degree in the gauge vector field
and its covariant derivatives, since the metric and its inverse
are polynomial in the gauge vector field. This is different to
the couplings arising in some other theories, like the Born-
Infeld theory, where the expansion in the field strength is an
infinite series.
We have also commented on the case when the dilaton

field is in its ground state. That is, the case when ϕ is
constant in the Lagrangian. The theory in that case
propagates only the gravity and electromagnetic excita-
tions, the transverse traceless components of the metric and
the transverse gauge vector components just as in GR or
Maxwell equations.
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APPENDIX A: KALUZA-KLEIN REDUCTION
FOR LIFSHITZ-LIKE THEORIES

We take an anisotropic scalar-field model represented by
the real scalar field ϕ, which depends on Dþ 1 spatial
dimensions and the time t. The spatial base manifold is a
Dþ 1 flat manifold that has a compact component of large
2πL. We use the coordinate y to parametrize the compact
dimension, whereas xi labels the rest of spatial coordinates.
We consider a Lifshitz model of z ¼ 2 order of anisotropy.
The action of the model is

S ¼
Z

dtdDx
Z

2πL

0

dyðð∂tϕÞ2 þ αϕΔ̃ϕþ βϕΔ̃2ϕÞ; ðA1Þ

where Δ̃ is the flat spatial Laplacian in the Dþ 1 spatial
dimensions,
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Δ̃ ¼ Δþ ∂yy; ðA2Þ

Δ is the flat Laplacian in the D dimensions, and α, β are
coupling constants.
We introduce the Fourier expansion of the scalar field,

namely

ϕðt; xi; yÞ ¼
X∞

m¼−∞
ϕmðt; xiÞeim

L y; ðA3Þ

where the modes ϕm are restricted in order to the field
ϕðt; xi; yÞ be real. The action for the Fourier modes
becomes

S ¼ 2πL
X∞

m¼−∞

Z
dtdDx

�
−ϕmϕ̈m þ αϕm

�
Δ −

�
m
L

�
2
�
ϕm þ βðϕmΔ2ϕm−2

�
m
L

�
2

ϕmΔϕm þ
�
m
L

�
4

ϕ2
m

��
: ðA4Þ

We emphasize that this is equal to the action (A1) since the Fourier expansion for ϕ ∈ C∞ðΣÞ converges pointwise. The
field equation for m ≠ 0 is given by

−ϕ̈m þ αΔϕm þ βΔ2ϕm − α

�
m
L

�
2

ϕm − 2β

�
m
L

�
2

Δϕm þ
�
m
L

�
4

ϕm ¼ 0: ðA5Þ

For each given m ≠ 0, we take the L → 0 limit. In this
equation there are several coefficients that diverge, ðmLÞ4
being the one of highest order. Therefore, for the existence
of the solution in this limit it is necessary that ϕm ¼ 0 for
all m ≠ 0.
The field equation for m ¼ 0 is

−ϕ̈0 þ αΔϕ0 þ βΔ2ϕ0 ¼ 0: ðA6Þ
This equation can be obtained from the following action in
one dimension less,

SKK ¼
Z

dtdDxð−ϕ0ϕ̈0 þ αϕ0Δϕ0 þ βϕ0Δ2ϕ0Þ: ðA7Þ

APPENDIX B: THE DEGREES OF
FREEDOM IN 4+ 1 DIMENSIONS

Here we perform a linear-order perturbative analysis on
the 4þ 1 theory around an Euclidean four dimensional
background together with the background conditions for
the rest of canonical variables. In this analysis we only
consider the z ¼ 1 terms, hence we neglect the interacting
terms in V. The background is given by

Gμν ¼ δμν; πμν ¼ 0; together with Nμ ¼ 0; N¼ 1:

ðB1Þ

We introduce the perturbative variables according to

Gμν ¼ δμν þ kμν

πμν ¼ Ωμν

Nμ ¼ nμ

N ¼ 1þ n: ðB2Þ

We obtain to first order

ð4ÞRμν¼
1

2
∂λ∂νkμλþ

1

2
∂μ∂λkνλ−

1

2
∂μ∂νkλλ−

1

2
Δkμν ðB3Þ

ð4ÞR ¼ ∂μ∂λkμλ − Δkμμ: ðB4Þ

We will use the T þ L decomposition of the four dimen-
sional tensors,

kμν ¼ kTTμν þ 1

3

�
δμν −

∂μ∂ν

Δ

�
kT þ ∂νkLμ þ ∂μkLν : ðB5Þ

We obtain,

ð4ÞRμν −
1

2
Gð4Þ

μν R ¼ −
1

2
ΔkTTμν þ 1

3

�
δμν −

∂μ∂ν

Δ

�
ΔkT: ðB6Þ

From (11) we obtain

ΩL ¼ 0

Ωμν ¼ ΩTT
μν þ 1

3

�
δμν −

∂μ∂ν

Δ

�
ΩT: ðB7Þ

From (8) we get

_kTTμν ¼ 2ΩTT
μν ðB8Þ

_kT ¼ 2ð1 − λÞ
ð1 − 4λÞΩ

T ðB9Þ

_kLμ ¼ Nμ þ
λ

ð1 − 4λÞ
∂μ

Δ
ΩT: ðB10Þ

From (9) we get
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_ΩTT
μν ¼ β

2
ΔkTTμν ðB11Þ

_ΩT ¼ −βΔkT − 3βΔn; ðB12Þ

and from (7)

βΔkT þ 2αΔn ¼ 0: ðB13Þ

Finally, we may combine the above equations to obtain

k̈TTμν ¼ βΔkTTμν ðB14Þ

k̈T ¼ β
ð1 − λÞ
ð1 − 4λÞ

ð3β − 2αÞ
α

ΔkT; ðB15Þ

we remark that these equations are gauge independent.
They describe the propagation of the six d.o.f. of the theory.
In particular (B14) describes the evolution of 5 tensorial
d.o.f. while (B15) describes the propagation of a scalar one.
It follows that when reducing a la KK these field equations
to a 3þ 1 dimensions, the 5 d.o.f. decompose into 2þ
2þ 1 corresponding to the graviton, two d.o.f. of a vector
gauge field and one d.o.f. of a scalar field, all of them
propagating with the same velocity

ffiffiffi
β

p
. In order to show

this decomposition we assume the fields are independent of
one spatial coordinate. We first invert the T þ L decom-
position, to obtain

kLν ¼ 1

Δ
∂ρkρν −

1

2

∂ν

Δ

�∂λ∂ρkλρ
Δ

�
ðB16Þ

kT ¼ kμμ −
∂ρ∂λhρλ

Δ
ðB17Þ

kTTμν ¼ kμν −
1

3

�
δμν −

∂μ∂ν

Δ

�
kT − ∂μkLν − ∂νkLμ : ðB18Þ

We now decompose kμν into

kij ¼ hij

k4i ¼ Ai

k44 ¼ ϕ; ðB19Þ

and perform a three dimensional T þ L decomposition of
hij and Ai

hij ¼ hTTij þ 1

2

�
δij −

∂i∂j

Δ

�
hT þ ∂ihLj − ∂jhLi ðB20Þ

Ai ¼ AT
i þ ∂iAL: ðB21Þ

By replacing (B20) and (B21) into (B16), (B17), and (B18),
we obtain

kLi ¼ hLi

kL4 ¼ AL

kT ¼ hT þ ϕ

kTT4i ¼ AT
i

kTT44 ¼ 1

3
ð2ϕ − hTÞ

kTTij ¼ hTTij −
1

6

�
δij −

∂i∂j

Δ

�
ð2ϕ − hTÞ: ðB22Þ

Finally, from (B14) we have

ḧTTij ¼ βΔhTTij ðB23Þ

ÄT
i ¼ βΔAT

i ðB24Þ

2ϕ̈ − ḧT ¼ βΔð2ϕ − hTÞ: ðB25Þ

(B23) describes the propagation of the two d.o.f. of the
graviton, (B24) of the two d.o.f. of the gauge vector and
(B25) of the scalar field 2ϕ − hT , all of them propagating
with velocity

ffiffiffi
β

p
. In addition, we have one propagating

scalar d.o.f. described by (B15). This is in complete
agreement with the results in Sec. III, where the perturba-
tive analysis was done in the 3þ 1 theory.
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Hořava-Lifshitz-type gravities, Classical Quantum Gravity
26, 155021 (2009).

[7] F. W. Shu and Y. S. Wu, Stochastic quantization of the
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