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A natural question arises from observable signatures of scalar, fermion, and vector degrees of freedom
(d.o.f.) in our Universe along with spin 2 symmetric tensor field in the form of gravity: why is our Universe
is free of any perceptible signature of massless antisymmetric tensor modes? This work brings out a natural
explanation of these phenomena through higher curvature quantum d.o.f. in the gravity sector that were
dominant in the early universe. In the backdrop of a FðRÞ gravity model, we propose how the scalar d.o.f.
associated with higher curvature term in the model can generate a heavily suppressed coupling between any
antisymmetric massless modes and various standard model fields.
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A surprising feature in the present Universe is that there
is no noticeable observable effect of antisymmetric tensor
fields in any natural phenomena. Apart from being a
massless representation of the underlying Lorentz group,
such higher rank antisymmetric tensor fields also appear as
a massless closed string mode in a heterotic string model
[1] and have considerable interests in the context of String
theory. In this context, the second rank antisymmetric
tensor field, known as the Kalb-Ramond (KR) field [2],
has been studied extensively. From dimensional consid-
eration it is easy to argue that the coupling of KR field to
matter should be ∼1=Mp (where Mp is the fundamental
scale of the gravity, namely the Planck scale), which is the
same as the coupling of gravity with matter. But there has
been no experimental evidence of the footprint of the KR
field on the present Universe. All experimental efforts
within their precision in the domain of cosmological and
astrophysical experiments so far have produced only nega-
tive results in terms of detecting any signatures of anti-
symmetric tensor fields. This indicates that if such tensor
fields exist, it must be severely suppressed at the present
scale of the Universe. Thus the question that arises is as
follows: why are the effects of the Kalb-Ramond field or

any higher rank antisymmetric tensor field less perceptible
than the force of gravitation? Attempts have been made to
answer the above question in the room of extradimensional
braneworld model where the effect of such antisymmetric
tensor fields are diluted on the visible brane through the
exponential warping of the spacetime geometry [3–6].
However, in the present work, we aim to show that

without bringing in any extra dimension, the origin of such
suppression of the KR as well as the other higher rank
antisymmetric fields can be explained in the light of higher
curvature F(R) theory in four spacetime dimensions. It is
well known that Einstein-Hilbert action can be generalized
by adding higher order curvature terms, which naturally
arise from diffeomorphism invariance of the action. Such
terms appear in string theory from quantum corrections.
FðRÞ [7–18], Gauss-Bonnet [19–21], or more generally
Lanczos-Lovelock gravity [22–24] are some of the candi-
dates in higher curvature gravitational theory. While the
Gauss-Bonnet and Lanczos-Lovelock gravitational theories
have nontrivial consequences only in higher dimension
(higher than 4), FðRÞ gravity has a significant role even in
four spacetime dimensions. However only for some spe-
cific choices of FðRÞ (for which F0ðRÞ > 0), it can be made
as free of ghost.
The field strength tensor of any massless rank n anti-

symmetric tensor field Xa1a2::::an can be expressed as

Ya1a2::::anþ1
¼ ∂ ½anþ1

Xa1a2::::an�:

In four-dimensional spacetime, the rank of antisymmetric
tensor field can at most be 3, beyond which the corre-
sponding field strength tensor vanishes identically.
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We begin our discussion with rank 2 antisymmetric KR
field. The action of massless KR field along with spin 1

2
fermion and gauge field in a background FðRÞ gravity in
four dimensions can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðRÞ
2κ2

−
1

4
HμνρHμνρ þ Ψ̄iγμDμΨ

−
1

4
FμνFμν −

1

Mp
Ψ̄γμσνρHμνρΨ

−
1

Mp
A½μFνρ�Hμνρ

�
; ð1Þ

where Hμνρ (¼ ∂ ½μBνρ�) is the field strength tensor of the
KR field Bμν and 1

2κ2
¼ M2

p. The third and fourth terms of
the above action are the kinetic Lagrangians of spin 1

2

fermion fields (symbolized by Ψ) and Uð1Þ gauge field
(symbolized by Aμ), respectively, with γμ representing
the gamma matrix satisfying fγμ; γνg ¼ 2gμν and Dμ

(¼ ∂μ þ ieAμ) being the covariant derivative. Further the
last two terms denote the coupling of Bμν with the fermion
and the gauge field, respectively. These interaction terms
play the key role in finding some observable signatures of
the KR field.
Introducing an auxiliary field AðxÞ, the above action (1)

can be equivalently written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
ðF0ðAÞðR − AÞ þ FðAÞÞ

−
1

4
HμνρHμνρ þ Ψ̄iγμDμΨ −

1

4
FμνFμν

−
1

Mp
Ψ̄γμσνρHμνρΨ −

1

Mp
A½μFνρ�Hμνρ

�
: ð2Þ

By the variation of the auxiliary field AðxÞ, one easily
obtains A ¼ R. Plugging back this solution A ¼ R into
action (2), initial action (1) can be reproduced. At this
stage, perform a conformal transformation of the metric as

gμνðxÞ → g̃μνðxÞ ¼ e−
ffiffi
2
3

p
κξðxÞgμνðxÞ

μ, ν run form 0 to 3. ξðxÞ is the conformal factor and related

to the auxiliary field as e−
ffiffi
2
3

p
κξ ¼ F0ðAÞ. Because of such

conformal transformation, the gamma matrices γμ and the
spin connection σνρ transform as

γμ → γ̃μ ¼ e
1
2

ffiffi
2
3

p
κξγμ

and

σνρ → σ̃νρ ¼ e
ffiffi
2
3

p
κξσνρ;

respectively. Using the above expressions along with the
aforementioned relation between ξðxÞ and AðxÞ, one ends
up with the following scalar-tensor action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

þ 1

2
g̃μν∂μξ∂νξ −

�
AF0ðAÞ − FðAÞ

2κ2F0ðAÞ2
�

−
1

4
e−

ffiffi
2
3

p
κξHμνρHαβδg̃μαg̃νβg̃ρδ −

1

4
FμνFαβg̃μαg̃νβ

þ e
ffiffi
2
3

p
κξΨþγ̃0iγ̃μDμΨ −

1

Mp
Ψþγ̃0γ̃μσ̃νρHμνρΨ

−
1

Mp
e−

ffiffi
2
3

p
κξA½αFβδ�Hμνρg̃μαg̃νβg̃ρδ

�
; ð3Þ

where R̃ is the Ricci scalar formed by g̃μν. The field ξðxÞ is a
scalar field with a potential AF0ðAÞ−FðAÞ

2κ2F0ðAÞ2 [¼ VðAðξÞÞ, say].
Thus the higher curvature degree of freedom (d.o.f.)
manifests itself through the scalar field d.o.f. ξðxÞ with a
potential VðξÞ that in turn depends on the form of FðRÞ.
Further it is evident that due to the appearance of the scalar
field ξðxÞ (from higher curvature d.o.f.), the kinetic terms of
the fermion field and the KR field become noncanonical
while the electromagnetic field remains still canonical. In
order to make such kinetic terms canonical, we redefine the
fields as follows:

Bμν → B̃μν ¼ e−
1
2

ffiffi
2
3

p
κξBμν

Ψ → Ψ̃ ¼ e
1
2

ffiffi
2
3

p
κξΨ

and

Aμ → Ãμ ¼ Aμ:

However, in terms of redefined fields, the above action
(3) can be expressed in Einstein frame as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

þ 1

2
g̃μν∂μξ∂νξ − VðξÞ

−
1

4
H̃μνρH̃μνρ −

1

4
F̃μνF̃μν þ ¯̃Ψiγ̃μD̃μΨ̃

−
1

Mp
eð−

1
2

ffiffi
2
3

p
κξÞ ¯̃Ψγ̃μσ̃νρH̃μνρΨ̃

−
1

Mp
eð−

1
2

ffiffi
2
3

p
κξÞÃ½αF̃βδ�H̃μνρ

þ terms proportional to∂μξ

�
; ð4Þ

where D̃μ ¼ ∂μ þ ieÃμ. It may be observed that the
interaction terms (between B̃μν and Ψ̃, Ãμ) of the canonical
scalar-tensor action [see Eq. (4)] carry an exponential factor

eð−
1
2

ffiffi
2
3

p
κξÞ over the usual gravity-matter coupling 1=Mp. As

mentioned earlier, the scalar field potential VðξÞ depends
on the form of FðRÞ. However in general, the stability of
VðξÞ follows from the following two conditions on FðRÞ:
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½2FðRÞ − RF0ðRÞ�<R> ¼ 0

and

�
F0ðRÞ
F00ðRÞ − R

�
<R>

> 0:

In order to achieve an explicit expression of a stable scalar
potential, we first consider the form of FðRÞ as an
exponential analytic function of the Ricci scalar,

FðRÞ ¼ Rþ αðe−βR − 1Þ; ð5Þ

where α and β are the free parameters (with mass
dimensions ½β� ¼ −2 and ½α� ¼ þ2) of the theory. This
model is considered as one of the strong and viable
candidates in the field of FðRÞ gravity for reasons such
as the following: (1) this model of FðRÞ gravity is free of
ghosts for αβ < 1, (2) it satisfies limR→0½FðRÞ − R� ¼ 0,
which indicates that there exists a flat spacetime solution,
and (3) such an exponential model has important conse-
quences in the context of inflationary cosmology as well as
late time acceleration as discussed in [16,17].
However, as we illustrate later, some other generic forms

of FðRÞ models also lead to the similar conclusions as
obtained for the model described in Eq. (5).
For the specific choice of FðRÞ shown in Eq. (5), the

potential VðξÞ becomes

VðξÞ ¼ α

2κ2
eð2

ffiffi
2
3

p
κξÞ

×

�ð1 − e−
ffiffi
2
3

p
κξÞ

αβ

�
ln

�
1 − e−

ffiffi
2
3

p
κξ

αβ

�
þ 1

�
þ 1

�
:

ð6Þ

This potential has a minimum at

hξi ¼ 1

κ

ffiffiffi
3

2

r
ln

�
1

1 − αβ

�
: ð7Þ

Equation (7) indicates that for a wide range of values of
the product αβ (between 0 and 1), the vacuum expectation
value (vev) of the scalar field ξðxÞ becomes of the order of 1κ
(∼1019 GeV). This suggests that at the early epoch of the
Universe, when the energy scale was high, the scalar field ξ
was a dynamical scalar d.o.f. giving rise to new interaction
vertices with fermion and gauge fields. However as the
Universe evolved into a lower energy scale due to cosmo-
logical expansion, ξ finally froze into its vacuum expect-
ation value hξi as given in Eq. (7). The action in Eq. (4)
therefore turns out to be

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−
1

4
H̃μνρH̃μνρ −

1

4
F̃μνF̃μν

þ ¯̃Ψiγ̃μD̃μΨ̃ −
1

Mp
eð−

1
2

ffiffi
2
3

p
κhξiÞ ¯̃Ψγ̃μσ̃νρH̃μνρΨ̃

−
1

Mp
eð−

1
2

ffiffi
2
3

p
κhξiÞÃ½αF̃βδ�H̃μνρ

�
; ð8Þ

where the terms proportional to ∂μξ vanish as ξðxÞ is frozen
at its vev. The last two terms in the above expression of
action give the coupling of KR field to fermion,Uð1Þ gauge
field and are given by

λKR-fermion ¼
1

Mp
eð−

1
2

ffiffi
2
3

p
κhξiÞ

¼ 1

Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αβ

p
ð9Þ

and

λKR-Uð1Þ ¼
1

Mp
eð−

1
2

ffiffi
2
3

p
κhξiÞ

¼ 1

Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αβ

p
; ð10Þ

respectively. The above two equations clearly demonstrate
that the product αβ must be less than unity; otherwise the
couplings of the KR field become imaginary, an unphysical
situation. However the condition αβ < 1 is also supported
by the fact that the higher curvature terms may have their
origin from quantum corrections, which from dimensional
argument are suppressed by Planck scale.
Equations (9) and (10) indicate that the coupling

strengths of KR field to matter fields are heavily suppressed
[as hξi is positive, see Eq. (7)] over the usual gravity-matter
coupling strength 1=Mp. Such suppression was also
reported in the context of the Randall-Sundrum higher
dimensional model [3]. Here, on the other hand the
suppression originates from higher curvature d.o.f. even
in four dimensions irrespective of choosing the background
geometry. This may explain why the present Universe is
dominated by spacetime curvature and carries practically
no observable signature of the rank 2 antisymmetric Kalb-
Ramond field (or equivalently the torsion field).
Let us now consider the rank 3 antisymmetric tensor

field Xαβρ with the corresponding field strength tensor
Yαβρδ (¼ ∂ ½αXβρδ�). The action for such a field in four
dimensions is

S½X� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
YαβρδYαβρδ:

Adopting the same procedure as for the KR field, one can
end up with the coupling of the field X to matter in the
canonical scalar-tensor action as
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ΩX-fermion ¼
1

Mp
eð−

1
2

ffiffi
2
3

p
κhξiÞ

¼ 1

Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αβ

p
ð11Þ

and

ΩX-Uð1Þ ¼
1

Mp
eð−

ffiffi
2
3

p
κhξiÞ

¼ 1

Mp
ð1 − αβÞ; ð12Þ

where ΩX-fermion and ΩX-Uð1Þ denote the coupling between
the X-fermion and X-Uð1Þ gauge field, respectively. Like
the case of KR field, ΩX-fermion and ΩX-Uð1Þ are also
suppressed in comparison to 1=Mp. However λKR-fermion

and ΩX-fermion carry the same suppression factor while the
interaction with the electromagnetic field becomes pro-
gressively smaller with the increasing rank of the tensor
field. Therefore the visibility of an antisymmetric tensor
field in our present Universe becomes lesser with the
increasing rank of the tensor field.
It may be observed that hξi [see Eq. (7)] and corre-

spondingly the couplings depend on the product of the
parameters α and β. Using the explicit expression of hξi
obtained in Eq. (7), Table I clearly reveals that all the
couplings are suppressed by an additional exponential
factor over the gravitational coupling 1=Mp. The suppres-
sion increases as the value of αβ tends to unity.
At this stage, it deserves mentioning that beside the

model presented in Eq. (5), there exist several other FðRÞ
models for which the intrinsic scalar d.o.f. suppresses the
coupling strengths of antisymmetric tensor fields with
matter fields by an additional reduced factor over the
gravity-matter coupling 1=Mp. In fact any generic form
of FðRÞ that corresponds to a stable scalar potential with a
vev of Planck order leads to the suppression of antisym-
metric tensor fields in the present context. Some such FðRÞ

models are (1) FðRÞ ¼ R − γ ln ðR=μ2Þ − δR2 [25] where
γ, μ, and δ are constants, (2) FðRÞ ¼ a½ebR − 1� where a, b
are constants, and (3) FðRÞ ¼ Rþ ωR2 þ ρ½e−σR − 1�
(ω, ρ, σ are constants). With appropriate choices of the
parameters, these FðRÞ models also lead to the suppression
on the coupling strengths between antisymmetric tensor
fields and various matter fields.
In conclusion, one important feature in FðRÞ gravity is the

intrinsic existence of an extra scalar d.o.f., besides the
massless graviton. Such a scalar field appears with a
potential that depends on the form of FðRÞ. Here, we
consider the form of FðRÞ as an exponential function of
Ricci scalar in four dimensions for which the scalar field
acquires a stable value. It turns out that this vacuum
expectation value of the scalar field suppresses the coupling
of all antisymmetric tensor fields to the matter fields over the
gravity-matter coupling strength 1=Mp. The suppression
actually increases with the rank of the tensor field. In this
context it may be noted that the Lagrangian of a higher spin
field represented by a higher rank symmetric tensor violates
gauge invariance under gauge transformation of the tensor
field when it couples to a curved background [26]. Since the
suppression of antisymmetric tensors has been shown to
originate from the higher curvature terms in an arbitrary
curved background, a similar argument for suppression of
higher spin fields cannot be extended here due to the
undesirable loss of gauge invariance. It has already been
demonstrated that such a loss of gauge invariance does not
happen for the antisymmetric tensor fields coupled to curved
background. Therefore, this may well serve as an explan-
ation of why the large scale behavior of our present Universe
is solely governed by gravity and carries practically no
observable footprints of antisymmetric tensor fields.
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