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Understanding the properties of dark matter has proved to be one of the most challenging problems of
particle phenomenology. In this paper, we have tried to understand the phenomenology of dark matter in
light of very well understood properties of cosmic microwave background (CMB) anisotropy. To connect
these two, inflation and its subsequent evolution known as the reheating phase play an important role.
Following the previous analysis, we first established one-to-one correspondence between the CMB power
spectrum and the reheating temperature assuming the perturbative reheating scenario. Further by
incorporating a possible dark matter candidate through the radiation annihilation process during reheating
and the current value of dark matter abundance, we constrain the dark matter parameter space through the
inflationary power spectrum for different inflationary models.
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I. INTRODUCTION

The inflationary paradigm [1–3] was introduced initially
to solve the initial condition problem of the hot big bang
model of standard cosmology. Associated with the infla-
tion, the generic inflation energy scale is assumed to be
≥1010 GeV. On the other hand, successful big bang
nucleosynthesis (BBN) predicting the current light ele-
ments abundance requires our universe to be radiation
dominated with the minimum temperature to be TBBN ∼
1 MeV [4–7]. Therefore, the evolution of our universe from
the inflation to BBN needs highly nontrivial dynamics,
which not only produces all the matter particles we see
today but also connects these widely separated energy scales
through the complex nonlinear process and thermalization.
The signatureof the inflationary evolution canbe extracted

from the cosmic microwave background (CMB) measure-
ments [8,9]. On the other hand, the BBN is very successful in
explaining the light element abundance in the present
universe. However, until now the period between the afore-
mentioned two cosmological eras is poorly understood. One
of the reasons is our observational limitations to directly
probe this phase, and most importantly the dynamics during
this phase, are expected to be highly nonlinear in nature as
just noted above. This phase, which has been dubbed as the

reheating era [10–13], is, in general, parametrized by
reheating temperature Tre which is defined at the instant
when the inflaton decay rate becomes equal to the expansion
rate of the universe during reheating. After the reheating
period is over, the reheating temperature can be directly
connected with the current CMB temperature through back-
ground expansion. Therefore, it is possible to constrain the
inflationary models through the subsequent reheating phase
and CMB anisotropy [14–16]. This idea of the reheating
constraint on inflation dynamics has recently been studied
extensively for various inflationary models [17–23].
One of the important assumptions of the aforementioned

reheating constraint analysis is that during the reheating
phase, the inflaton decays only into the radiation compo-
nent. Therefore, it has an inherent limitation to extend the
analysis beyond radiation. In this paper, our main goal is to
extend and generalize the existing analysis of reheating
constraints considering the effect of dark matter production
during the reheating phase. In the current epoch, apart from
the cosmological constant, dark matter and CMB are the
two main components of our universe. From the observa-
tional point of view CMB is the most powerful probe to
understand the evolution of the universe. Through CMB,
we not only understand the background expansion of our
universe but also understand various physical processes
acting during the formation of a large-scale structure we
see today. Dark matter is believed to play one of the
important roles in the aforementioned processes of struc-
ture formation. However, because of very weak interac-
tion with the visible matter field, dark matter is very
difficult to detect. From the background evolution, we
only know our universe to be 23% dark matter dominant
out of the total energy budget of the universe. This fact
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motivates us to understand the following question: does
the CMB have any role to play in understanding the dark
matter phenomenology?
To answer this question, we think it is the reheating

phase that has the potential to shed some light on the
possible connection between the CMB and the current dark
matter abundance. With this in mind and following our
previous work [24], we assume decaying dynamics of the
inflaton to be perturbative during reheating and dark matter
is produced through annihilation of the radiation compo-
nent. Inflation decaying into various fields and their
observable effects has already been extensively studied
before [25–31]. However, as already emphasized, our main
goal is to connect the dark matter phenomenology and
CMB anisotropy via inflation and reheating. Therefore our
analysis will be an important generalization of the previous
work [14].
Since inflaton is decaying through a perturbative proc-

ess, the assumption of a complete conversion of inflation
into radiation at the instant of reheating will not hold, which
has been extensively considered before. This assumption is
applicable if the reheating is instantaneous. But in general,
this is not the case. Therefore, we will see that there will be
a significant correction in the reheating temperature as only
a fraction of total inflaton energy is converted into radiation
at the time [25] when Γϕ ¼ H. For simplicity, we will
assume that the dark matter is produced only through an
annihilation channel from the radiation component. We
believe our study can also help us gain more insight into the
production mechanism of dark matter intimately tied with
the inflationary and reheating dynamics. We leave explicit
model construction for our future studies.
To this end let us point out an important observation we

made through our analysis. The production of dark matter
particle in an expanding universe such as ours generally can
be of two types. Depending upon the initial energy density
and the rate of background expansion, if the annihilation
cross section to dark matter is large, the produced particle
will reach thermal equilibrium before freeze-out to current
abundance [32–41], which is the well-known “freeze-out”
mechanism. On the other hand, if the annihilation cross
section is small enough, the comoving dark matter particle
density becomes constant much before it can reach thermal
equilibrium with the background radiation. This production
mechanism is known as the “freeze-in” mechanism. In the
particle physics context, the existing model of this type is
known as feebly interacting dark matter [42–45].
Interestingly, if we consider the reheating process to be
perturbative, our analysis shows that for dark matter mass
much larger than the reheating temperature, the current
dark matter abundance can be produced only via the freeze-
in mechanism. The reason is the unique boundary con-
ditions set by the inflation. However, for dark matter mass
smaller than the reheating temperature, both mechanisms
will work. For the present purpose, we have explicitly

considered the freeze-in mechanism. A detailed analysis of
different mechanisms will be studied elsewhere.
The remainder of this work is organized as follows. In

the first two sections, we essentially review the well-known
results to set the stage for our current analysis. In Sec. II, we
will discuss the inflationary observables and its connection
with CMB. In Sec. III, we describe the set of Boltzmann
equations that describes the dynamics of the reheating
phase. As has been mentioned in the Introduction, we will
calculate the reheating temperature and corresponding
e-folding number considering the explicit decay of inflaton.
For this, we solve the system of Boltzmann equations
numerically and identify the individual components during
reheating with their current abundance. With this identi-
fication, we are able to shed light on the dark matter
through CMB anisotropy. We study different inflationary
models and their constraints on the dark matter phenom-
enology. Finally, we conclude in Sec. V.

II. INFLATIONARY OBSERVABLES
CONNECTION WITH CMB

One of the important observables in CMB is the
correlation of temperature fluctuations, which is directly
related to the inflationary observable known as scalar
spectral index ns. The equations governing the dynamics
of the aforementioned scalar field called inflaton ϕ with a
potential VðϕÞ is

ϕ̈þ ð3H þ ΓϕÞ _ϕþ V 0ðϕÞ ¼ 0; ð1Þ

H2 ¼
�
_a
a

�
2

¼ 1

3M2
p
ρt; ð2Þ

where we consider the following Friedmann-Robertson-
Walker (FRW) spacetime background ds2 ¼ −dt2 þ
aðtÞ2ðdx2 þ dy2 þ dz2Þ. H is the Hubble expansion rate
and Mpð¼1=

ffiffiffiffiffiffiffiffiffi
8πG

p Þ is the effective Planck mass. In this
paper, we will discuss our results based on the canonical
scalar field models. A more general model will be con-
sidered elsewhere. The decay term Γϕ

_ϕ in the above
equation is assumed to be negligible during inflation;
however, it will become important during the reheating
period. Therefore, during inflation total energy density of
the universe will be dominated by the inflaton energy
ρt ¼ ρϕ. As is well known, that almost homogeneous
temperature T0 ≃ 2.7 K of the CMB can be shown to be
intimately tied with the slow-roll nature of inflaton dynam-
ics, and it is parametrized in terms of potential VðϕÞ as
follows:

ϵ ¼ 1

2
M2

p

�
V 0ðϕÞ
VðϕÞ

�
2

η ¼ M2
p

�
V 00ðϕÞ
VðϕÞ

�
: ð3Þ

Once we define the background inflationary dynamics, the
main quantities of interest are the amplitude of the inflaton
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fluctuation As, the spectral index ns, and the tensor-to-
scalar ratio r, which in terms of the slow-roll parameters are

ns ¼ 1 − 6ϵk þ 2η; r ¼ 16ϵ: ð4Þ

The CMB normalization and the temperature correlation
are in one-to-one correspondence with As and ns, respec-
tively. Therefore, those observables are directly used to
constrain the inflationary models. Tensor to scalar ratio r,
which is related to the inflationary energy scale, has its
signature in the polarization B mode of CMB, which has
not yet been observed. All those quantities are defined for
a particular cosmological scale k which is the pivot scale
of CMB, k=a0 ¼ 0.05 Mpc−1. The latest bound on the
scalar spectral index is [9] given as ns ¼ 0.9659� 0.0082
for ΛCDMþ r model from Planck data alone or ns ¼
0.9670� 0.0074 from Planck and BK14 and BAO data. In
our subsequent analysis, we will assign all the inflationary
parameters at the aforementioned CMB scale at the time of
its horizon crossing during inflation.
Further, important inflationary quantities that will be

considered are the Hubble parameter Hk and e-folding
number Nk for a particular scale k (CMB pivot scale) at its
horizon crossing. Those quantities will be described in the
appropriate places, but before that in the next section, we
will review the Boltzmann equation for three different
energy components, namely inflaton, radiation, and dark
matter.

III. DARK MATTER DURING REHEATING

A. Basic equations

As has been emphasized in our previous discussions, the
information of CMB has the potential to shed light on the
dark matter sector through the reheating phase. Production
of dark matter–like particles considering different models
and its phenomenology has already been worked out in
detail in the literature considering the decaying inflaton
during reheating [26–29,43,46–53]. Also, how a nonzero
Higgs vacuum expectation value during inflation can
impact the standard reheating history of the universe has
been discussed in [54–56]. However, the direct connection
of the aforementioned analysis with the CMB has never
been carefully looked into. Therefore, combining the
analysis mentioned in the previous section with the existing
reheating analysis, in the subsequent sections, we will
uncover a surprising connection between the CMB and
dark matter phenomenology. Our study opens up a new
avenue toward understanding the detail properties of the
dark matter though CMB observations.
It is well known that after the end of inflation the

universe becomes extremely homogeneous. Therefore, to
set in the subsequent evolution, the inflaton field has to go
through the reheating phase when it decays into other
fields and radiation. Depending upon the coupling with the

inflaton field, the reheating field can have either perturba-
tive or nonperturbative production. For our current analysis,
we will consider the purely perturbative reheating process.
Therefore, we essentially follow the existing analysis by
considering the evolution of Boltzmann equations for three
different energy components consisting of the inflation
energy density ρϕ, the radiation energy density ρϕ, and the
dark matter particle number density nX [25,57],

dρϕ
dt

¼ −3Hð1þ wϕÞρϕ − Γϕð1þ wϕÞρϕ; ð5Þ

dρR
dt

¼ −4HρR þ Γϕρϕ þ hσvi2hEXi½n2X − ðnX;eqÞ2�; ð6Þ

dnX
dt

¼ −3HnX − hσvi½n2X − ðnX;eqÞ2�; ð7Þ

and the background expansion is given by

H2 ¼ 8π

3M2
Pl

ðρϕ þ ρR þ ρXÞ; ð8Þ

where hEXi ¼ ρX=nX ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X þ ð3TÞ2
p

is the average
energy density of a single component dark matter X particle
and neqX is the equilibrium number density of the matter
particle of massMX at the equilibrium background temper-
ature T. Γϕ is the inflaton decay constant. As has been
mentioned, the dark matter particles create and annihilate
into radiation with a thermal-averaged cross section hσvi.
wϕ is the average equation of state for an oscillating scalar
field (inflaton) [58],

wϕ ¼ pϕ

ρϕ
≃
hϕV 0ðϕÞ − 2VðϕÞi
hϕV 0ðϕÞ þ 2VðϕÞi : ð9Þ

For an inflaton potential VðϕÞ ∝ ϕn, it is found to be
wϕ ¼ ðn − 2Þ=ðnþ 2Þ. At this point let us state an impor-
tant difference of our work and that of [14,23]. In those
works, the equation of state parameters for the reheating
period is expressed as that of an effective single fluid
(comprising inflaton and its decay products) equation of
state. This is taken to be constant during the entire reheating
period. In the present work, as we are explicitly solving
the Boltzmann equations for different components of the
universe during reheating, we need not consider the single
field equation of the state parameter, but rather the quantity
that is important here is the equation of state parameter for
the homogeneous component of inflaton during oscillation.
We will see that, for the models considered in the present
work, the inflation equation of state is effectively given
wϕ ¼ 0. The general equation of state will have a consid-
erable effect on the reheating state, which we will consider
in separate work. At this stage let us emphasize the fact that
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nonperturbative decay could have a potential impact on our
conclusion, which we leave for our future studies.
Our goal of this paper is to look into a wide range of dark

matter mass, MX, which can be greater as well as less than
the reheating temperature. We also assume the dark matter
to follow the fermionic distribution having the internal
degree of freedom g. Therefore, in thermal equilibrium the
number density at temperature T can be expressed as

nX;eq ¼
g
2π2

Z
∞

mX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

X

p
eE=T þ 1

EdE≃
gT3

2π2

�
MX

T

�
2

K2

�
MX

T

�
;

ð10Þ

where K2 is the modified Bessel function of the second
kind [25].
Now, in order to solve the equations numerically, it is

convenient to work in terms of the following dimensionless
quantities:

Φ≡ ρϕA3

m4
ϕ

; R≡ ρRA4

m4
ϕ

; X ≡ nXA3

m3
ϕ

: ð11Þ

The Boltzmann equations (7) in terms of these comoving
dimensionless variables are

dΦ
dA

¼ −c1
A1=2

H
Φ; ð12Þ

dR
dA

¼ c1
A3=2

H
Φþ c2

A−3=22hEXihσviMpl

H
ðX2 − X2

eqÞ;
ð13Þ

dX
dA

¼ −c2
A−5=2hσvimϕMpl

H
ðX2 − X2

eqÞ; ð14Þ

where H ¼ ðΦþ R=Aþ XhEXi=mϕÞ1=2 is the Hubble
expansion rate in terms of new variables. In the above
equation we compute all the dynamical changes with
respect to the normalized cosmic scale factor during the
reheating period: A≡ a=aI with 1=aI ≡mϕ as an arbitrary
scale, which is identified with the mass of the inflation.
The constants c1 and c2 are defined as

c1 ¼
ffiffiffiffiffiffiffiffiffi
π2g�
30

r �
TΓ

mϕ

�
2

; c2 ¼
ffiffiffiffiffiffi
3

8π

r
: ð15Þ

Here Mplð¼
ffiffiffiffiffiffi
8π

p
MpÞ is the Planck mass. The initial

conditions for solving the above set of Boltzmann equa-
tions are

Φð1Þ ¼ 3

8π

M2
plH

2
I

m4
ϕ

; Rð1Þ ¼ Xð1Þ ¼ 0; ð16Þ

where the initial Hubble expansion rate is expressed as
H2

I ¼ ð8π=3M2
plÞρendϕ . The set of Boltzmann equations can

be solved for a given inflaton decay constant Γϕ, which, for
notational convenience, has been parametrized as

Γϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�
45

r
T2
Γ

Mpl
: ð17Þ

Notice that TΓ here is just a parameter related to the decay
rate of inflation. Usually, TΓ is identified as the reheating
temperature by assuming an instantaneous conversion of
inflaton energy into radiation at the instant of reheating
[i.e., when HðtÞ ¼ Γϕ]. We will define temperature during
the reheating period in terms of radiation energy density as
T ≡ Trad ¼ ½30=π2g�ðTÞ�1=4ρ1=4R . Hence, as we have men-
tioned in the Introduction, the reheating temperature Tre is
measured from the radiation temperature Trad at the instant
of maximum transfer of inflation energy into radiation
when HðtÞ ¼ Γϕ.
Another important bit of information we must keep in

mind while connecting reheating with CMB is the exist-
ence of maximum radiation temperature during the reheat-
ing era [25,26,59]. The maximum temperature depends
upon the reheating temperature as well as the initial
condition of reheating. The approximate analytic expres-
sion for the maximum temperature can be obtained as
[25,26] (i.e., when H ≫ Γϕ)

Tmax ≡
�
3

8

�
2=5

�
40

π2

�
1=8 g1=8� ðTreÞ

g1=4� ðTmaxÞ
M1=4

p H1=4
I T1=2

re : ð18Þ

Depending upon the initial value of the Hubble rate, the
maximum temperature can be many orders of magnitude
higher than the reheating temperature. Hence, for any
physically acceptable model, this temperature must be less
than the inflationary energy scale at the end of inflation.
The significance of this maximum temperature is that when
producing a particle of mass greater than the reheating
temperature, the abundance will not be exponentially
suppressed by the reheating temperature [26].

B. Dark matter relic abundance

As we have emphasized, our final aim is to study the
constraints on dark matter phenomenology through CMB
anisotropy. Therefore, two essential parameters of our
interest would be the current dark matter relic abundance
ΩX, and the CMB scalar spectral index ns. Conventionally
the dark matter abundance is expressed in terms of radiation
abundance ΩR (ΩRh2 ¼ 4.3 × 10−5), as

ΩXh2 ¼
ρXðTFÞ
ρRðTFÞ

TF

Tnow
ΩRh2 ð19Þ

¼ hEXi
XðTFÞ
RðTFÞ

TF

Tnow

AF

mϕ
ΩRh2; ð20Þ
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where TF is the temperature at a very late time when the
universe became radiation dominated and the dark matter,
as well as radiation comoving density, became constant.
The current CMB temperature is given by Tnow ¼
2.35 × 10−13 GeV. A semianalytic expression for the relic
abundance can be arrived at by considering different
production mechanisms in different regimes of the ther-
mal evolution. The expressions and their derivation can be
found in [25] (see also [27,28] for an alternative deriva-
tion). In the next section, we will see how the dark matter
parameter space (MX, hσvi) can be constrained by the
CMB anisotropies through the inflationary power spec-
trum ns. We will consider different inflationary models
and their CMB constraints as our input parameters to
understand the dark matter phenomenology.

IV. CONSTRAINTS FROM CMB: DARK MATTER
PHENOMENOLOGY

In this section, we explicitly show how the CMB
anisotropy can shed light on the dark matter sector
considering the present value of its abundance. As
emphasized before we will not consider any specific
model of dark matter. The main ingredient of our analysis
will be a specific model of inflation and its perturbative
decay to radiation and then radiation to dark matter during
the reheating phase. Considering a specific model of
dark matter would be interesting to analyze. However,

an important point one should remember when construct-
ing a particle physics model is that all our analyses are at
an energy of the order of inflation scale. Therefore, proper
high energy modification should be taken into account for
any particle physics model of dark matter. Anyway, for the
present purpose, we will consider the simplest case as
described before. In the subsequent subsection, we first try
to illustrate the general procedure to compute the dark
matter abundance in terms of the CMB parameter for a
chaotic inflation, and then we will apply for other models
and discuss the constraints.

A. Connecting CMB and reheating via inflation

In this section, we will discuss in detail the deep
connection between the reheating phase and the CMB
[14]. During inflation, the perturbation modes that became
comparable to the horizon are the ones that we observe
today. The PLANCK set the pivot scale k ¼ 0.05 Mpc−1

for determining the spectral index ns. The comoving
Hubble scales akHk ¼ k at (A) and (D) in Fig. 1 are
connected through the reheating period through the follow-
ing equation:

ln
�
akHk

a0H0

�
¼ −Nk − Nre − ln

�
areHk

a0H0

�
: ð21Þ

In order to proceed further specifically from the radiation
dominated era to the present CMB time, one important

FIG. 1. The comoving scales connect the inflationary phase with the CMB. The solution of Boltzmann equations for inflaton decay
will connect the end of inflation denoted by the point B and beginning of radiation domination denoted by the point C, and the consistent
solution exists only for a specific inflaton decay constant Γre. All other decay constants ðΓ1;Γ2Þ shown as red lines will not give the
correct CMB temperature. Given a particular inflation model, the Boltzmann equations are solved considering three unknown
parameters ðΓϕ; hσvi;MXÞ. However, imposing two other constraints [Eqs. (30)] for our physical universe, we uniquely fix the value of
ðΓϕ ¼ Γre; hσviÞ and consequently the reheating parameters ðNre; TreÞ for a given dark matter mass MX . One of the aforementioned
constraint equations essentially sets the correct initial condition for the radiation domination at (C), which evolves to the currently
observed CMB through standard big-bang evolution. In the conventional approach the expansion of the universe during the reheating
phase is parametrized by a time-independent effective equation of state wre. Therefore, decay of inflaton cannot be directly constrained.
Here, however, we have considered the dynamical situation.
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assumption we need to make is that there is no extra entropy
production in primordial plasma after reheating. More
specifically the entropy is conserved. This assumption is
necessary if we want to compute the reheating temperature
from CMB; otherwise, we will only be able to give a bound
on the reheating temperature through CMB. With this
assumption that the reheating entropy is preserved in the
CMB and the neutrino background one can arrive at the
following relation:

aðtÞ3s ¼ const ⇒ greT3
re ¼

�
a0
are

�
3
�
2T3

0 þ 6 ×
7

8
T3
ν0

�
;

ð22Þ
where s is the entropy density. T0 ¼ 2.725 K is the present
CMB temperature, Tν0 ¼ ð4=11Þ1=3T0 is the neutrino tem-
perature, and gre is the effective number of light species. H0

is the present value of the Hubble parameter. Therefore,
combining the above two equations, one arrives at the
following important equation:

Tre ¼
�

43

11gre

�1
3

�
a0T0

k

�
Hke−Nke−Nre : ð23Þ

This equation thus establishes the connection between the
CMB anisotropy with the reheating temperature once we
know the e-folding number during reheating Nre.
Now, we can have two ways to determine Nre: (i) solve

the scale factor and the evolution equation for the total
energy density during reheating by using an effective
equation of state parameter (wre) [14] of the fluid compris-
ing inflaton and radiation during reheating, or (ii) explicitly
solve the Boltzmann equation for decaying inflaton during
reheating. The first method has been widely studied in the
literature. For the convenience of the reader, let us note the
expression of Nre in terms of inflationary observables and
reheating parameters following the references [14,23],

Nre ¼
4

3wre − 1

�
Nk þ ln

�
k

a0T0

�
þ 1

4
ln

�
40

π2g�

�

þ 1

3
ln

�
11g�
43

�
−
1

2
ln

�
π2M2

prAs

2V
1
2

end

��
; ð24Þ

where Nk, r, As, etc., are known for specific inflationary
models in terms of the spectral index ns. wre is assumed to
be an effective time-independent equation of state during
reheating. The main disadvantage of this method is that it
does not shed light on the microphysics of the reheating
phase and its effect on the subsequent evaluation. We
propose the second method [24] with added advantages that
we have largely exploited in this paper. We have also stated
the limitations of our approach and possible extensions. For
both the cases the initial conditions will be at point “B” in
Fig. 1, which is set by slow roll inflation constrained by the
CMB observation. This connection is clearly depicted in
Fig. 1. From the figure, it is clear that a particular infla-
tionary model with a scalar spectral index ns sets unique

initial conditions for the Boltzmann equations for decaying
inflaton and its decay products during reheating. And in
this phase, one of the important parameters is the inflaton
decay constant Γϕ that controls the dynamics with a strong
constraint that the dominant energy component will be the
inflaton and the radiation. This requirement fixes a specific
value of Γϕ ¼ Γre for which Boltzmann equations predict a
particular reheating e-folding number Nre and reheating
temperature Tre, which finally evolves to the current value
of the CMB temperature T0 ¼ 2.7 K. Hence, the first part
of our calculation is to figure out Γre. Finally solving the
Boltzmann equations has added advantages as opposed to
the conventional effective equation of state method. As
mentioned earlier, because of considering the explicit decay
of inflaton, apart from radiation we can easily consider an
additional component such as dark matter in our analysis.
Because of the constraint of dark matter abundance in the
present universe, we can establish a direct connection
between the CMB anisotropy and the dark matter phe-
nomenology. Therefore, this approach will lead us to
establish a direct connection between the CMB and the
dark matter through the inflation and reheating.

B. Methodology: CMB to dark matter
via reheating

Let us now summarize again the connection between
the CMB and dark matter phenomenology via reheating.
The CMB power spectrum provides the initial conditions
for the reheating phase through inflationary observables.
While the CMB temperature is intimately connected to the
reheating temperature, the reheating phase links the end of
inflation and the beginning of the radiation phase para-
metrized by the reheating temperature. All the particles
including dark matter in the universe were created during
the phase of reheating through inflaton decay. Therefore,
we can clearly understand the deep connection between the
CMB and the dark matter we see today via the reheating
phase. In this section, we will discuss the methodology
toward establishing this connection between the CMB
anisotropy and the dark matter phenomenology we just
mentioned. For any general canonical inflation model, we
first identify the inflation model dependent input param-
eters such as [Nk,Hk, VendðϕkÞ] for a particular CMB scale
k (CMB pivot scale) at its horizon crossing. As has been
pointed out before, given a canonical inflaton potential
VðϕÞ, the inflationary e-folding number Nk and Hubble
constant Hk can be expressed as

Hk ¼
πMp

ffiffiffiffiffiffiffi
rAs

p
ffiffiffi
2

p ;

Nk ¼ ln

�
aend
ak

�
¼

Z
ϕend

ϕk

H
_ϕ
dϕ ¼

Z
ϕend

ϕk

1ffiffiffiffiffiffiffiffi
2ϵV

p jdϕj
Mp

:

ð25Þ
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In order to define the above quantities, we use the following
slow-roll approximated equations:

3H _ϕ ¼ −V 0ðϕÞ; H2
k ¼

VðϕkÞ
3M2

p
; ð26Þ

where the field value ϕend is computed from the condition
of the end of inflation,

ϵðϕendÞ ¼
1

2M2
p

�
V 0ðϕendÞ
VðϕendÞ

�
2

¼ 1; ð27Þ

while the field ϕk at the horizon crossing in terms of the
scalar spectral index nks can be found by inverting the
following equation:

nks ¼ 1 − 6ϵðϕkÞ þ 2ηðϕkÞ: ð28Þ

Once we identify all the required parameters from the
inflation, the subsequent reheating phase will be described
by the appropriate Boltzmann equations (14) and also
the background dynamics for the scale factor a. As
emphasized earlier we will consider all the decay process
to be perturbative. During the reheating phase, one of the
important parameters is the reheating e-folding number
Nre. It connects the scale factor between the end of
inflation aend and the end of reheating are with the
following definition: Nre ¼ lnðare=aendÞ. In order to estab-
lish the relation among the reheating temperature Tre, the
inflationary index ns, and dark matter parameters ðMX; σÞ
we simultaneously solve the set of Boltzmann equa-
tions (14) with the following three initial conditions for
three components of energy density:

Φð1Þ ¼ 3

8π

M2
plHIðnksÞ2
m4

ϕ

; Rð1Þ ¼ Xð1Þ ¼ 0: ð29Þ

While solving Boltzmann equations we simultaneously
satisfy the following two constraint equations:

ΩXh2 ¼ 0.12; Tre ¼
�

43

11gre

�1
3

�
a0T0

k

�
Hke−Nke−Nre ;

ð30Þ

which are related to current dark matter abundance, and
evolution of Tre to current CMB temperature T0 ¼ 2.7 K.
Therefore, we essentially solve the Boltzmann equa-
tions (14) starting from the end of inflation till the dark
matter freezes out considering constraints equations (30).
Once the dark matter freezes out to the current value of

dark matter abundance, one of the dark matter parameters,
for instance, the cross section hσvi, can be fixed for a

given set of values of ðΓϕ;MXÞ. By using a further
condition on the end of reheating with the e-folding
number Nre ¼ lnðare=aendÞ,

HðareÞ2 ¼
_are
are

¼ 8π

3M2
Pl

½ρϕðΓϕ;MXÞ þ ρRðΓϕ;MXÞ

þ ρXðΓϕ;MXÞ� ¼ Γ2
ϕ; ð31Þ

we fix the value of Γϕ in terms of scalar spectral index ns
and the dark matter mass MX. In the above expression all
the energy densities are written as a function of ðΓϕ;MXÞ
at the end of reheating. Upon getting the solution for all
the energy components we express the reheating temper-
ature as

Tre ≡ Tend
rad ¼ ½30=π2g�ðTÞ�1=4ρRðΓϕ; ns;MXÞ1=4; ð32Þ

where radiation energy density is computed at the end of
reheating,

ρRðΓϕ; ns;MXÞ ¼
Rm4

ϕ

A4

����
H¼Γϕ

: ð33Þ

This is the temperature of the radiation component at the
end of reheating. In our numerical analysis, we will feed
this definition of reheating temperature into Eq. (30).
Hence for a given dark matter mass, the reheating temper-
ature will be fixed by the spectral index ns. As mentioned
earlier the connection between the reheating temperature
and the inflation scalar spectral index was first pointed
out in [14]. After solving all the above equations we are
left with one free parameter that is the mass of the dark
matter MX.
With this strategy in hand, we will numerically solve the

Boltzmann equations starting from the end of inflation and
show how for a specific dark matter mass MX one can
constrain the dark matter annihilation cross section through
the CMB anisotropy. For this, wewill consider some specific
inflationary models. As we have mentioned, we will use the
CMB pivot scale of PLANCK, k=a0 ¼ 0.05 Mpc−1. All the
quantities of our interest such as ðTre; Nre; hσviÞ will be
studied at the aforementioned scale with respect to the
inflationary power spectrum ns ¼ 0.9659� 0.0082 for
ΛCDMþ r model from Planck data.
At this point we must mention that the production of

dark matter prior to the nucleosynthesis era may have
important consequences on the subhorizon perturbations
of the radiation and the dark matter [60] and may also
affect the annihilation rate of the dark matter [61]. A
detailed study of these effects is done by following the
evolution equations for perturbations of the above three
components and the appropriate transfer function. These
studies are beyond the scope of the present work and will
be considered in a future publication.
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C. Chaotic inflation: General results

To elucidate our method and discuss the general results,
in this section we discuss the chaotic inflationary model in
detail. For all the other models we will see the qualitative
behavior will be the same. The chaotic type models are
represented by the power-law potentials of the form

VðϕÞ ¼ 1

2
m4−nϕn; ð34Þ

where m is the mass scale associated with the inflation.
The initial conditions for Boltzmann equations are pro-
vided by the inflation energy density at the beginning of
the reheating, which in turn will depend on the infla-
tionary power spectrum ns. To establish such a connection
and its effect on the subsequent evolution we compute the
field value at the end of inflation ϕend ¼ Mp

nffiffi
2

p using the

condition for the end of slow roll inflation ϵðϕÞ ¼ 1.
Therefore, using this we get the initial condition for the
reheating phase as defined in Eq. (16),

Φð1Þ ¼ 3

8π

M2
plH

2
I

m4
ϕ

≃
4Vend

3m4
ϕ

¼ 2

3

m4−n

m4
ϕ

�
nMpffiffiffi

2
p

�
n
;

Rð1Þ ¼ Xð1Þ ¼ 0: ð35Þ
Other important quantities that are directly connected with
the CMB anisotropy through the relations equation (21)
are

Hk ¼
πMp

ffiffiffiffiffiffiffiffiffi
rkAs

p
ffiffiffi
2

p ¼
πMp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n
nþ2

ð1 − nksÞAs

q
ffiffiffi
2

p ;

Nk ¼ ln

�
aend
ak

�
¼

�
nþ 2

2ð1 − nksÞ
−
n
4

�
; ð36Þ

where the scalar spectral index nks and consequently the
tensor to scalar ratio rk, for a particular CMB scale k, are
expressed in terms of the inflaton field as

nks ¼ 1 −
2nð1 − nÞM2

p

ϕ2
k

−
3n2M2

p

ϕ2
k

;

rk ¼
8n

nþ 2
ð1 − nksÞ: ð37Þ

ϕk is the inflaton field value for a particular scale k. And
finally, using Eqs. (25), (26), (36), and (37), the parameter
m in terms of the spectral index is found to be

m ¼ Mpð3π2rAsÞ 1
4−n

�
1 − ns

nðnþ 2Þ
� n

2ð4−nÞ
: ð38Þ

Another important quantity before solving the Boltzmann
equations is to know the equation of state parameter,
which for the power-law potential is given in Eq. (9).
For n ¼ 2, the homogeneous inflaton field will behave as
pressureless dust with equation of state wϕ ¼ 0.

Now, in order to establish the relation between the
reheating temperature Tre and the inflationary index ns,
we follow the methodology explained before. The numeri-
cal procedure would be to first solve the set of Boltzmann
equations (14) considering inflaton decay constant Γϕ and
annihilation cross section hσvi as free parameters. The
initial condition for the inflaton energy density is fixed by
the spectral index as discussed earlier. Once the solution for
the radiation energy density during reheating is known, we
simultaneously solve Eqs. (31) and (23) relating the
reheating temperature with the current CMB temperature
in a self-consistent manner.
For any other model, we will follow the same procedure

discussed above. As we have already mentioned and elab-
orated in the Introduction, in the usual reheating constraint
analysis [14], the connection between the inflationary
parameters ðnks; NkÞ, the reheating parameters ðTre; NreÞ,
and the CMB temperature T0 are established based on two
important assumptions. First one is the effective single fluid
description of the reheating phase with a time independent
equation of state. The second assumption is that the inflaton
energy is completely transferred into radiation at an instant
H ¼ Γϕ. We have already stressed earlier that those two
assumptions are obviously not correct. In addition, we also
have considered an additional darkmatter field in the picture.
Therefore, we compare our result with the usual formalism
and the difference will be displayed in various plots.
Including the dark matter component in the reheating

constraint analysis and generalizing the formalism given in
[24], we will solve the system of Boltzmann equation (14)
taking inflaton decay rate Γϕ as a free parameter. For this, the
initial condition is set by the CMB power spectrum via
inflation as given in Eq. (35). From our analysis, we will see
that one of the free parameters Γϕ will be fixed by ns through
reheating temperature [see Eq. (23)]. At this point, there are
several important questions we will ask such as (a) Does the
dark matter mass have any effect on the reheating temper-
ature?Aswehave already stated in the Introduction, (b)Does
the CMB play any role in understanding the properties of
dark matter and its production mechanisms?
Throughout the subsequent discussions, we will try to

answer the aforementioned questions. Even though the
dark matter will play an important role after reheating we
have not found any significant effect of it is mass or the
annihilation cross section on ðTre; NreÞ provided the pro-
duced dark matter relic abundance is within the current dark
matter relic abundance. In Fig. 2, we have plotted ðNre; TreÞ
with respect to ns. An important observation is the
existence of a maximum reheating temperature where
two radiation temperatures Tmax and Tre meet at around
(nmax

s ≃ 0.9656, Tmax
re ≃ 1015 GeV). This is the point where

the reheating process is almost instantaneous. If we con-
sider the 1σ range of ns from PLANCK, one also gets
minimum reheating temperature Tmin

re ≃ 6 × 107 GeV for
ns ≃ 0.962. At this point let us emphasize the difference
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between the result of our analysis (solid line) and the usual
reheating constraint analysis (dashed line) following
Ref. [14]. It clearly shows 1 order of magnitude difference
in reheating temperature. The source of this difference is
coming from the incomplete decay of inflaton to radiation
field. Finally, we numerically fit the data, and the relation
between the reheating temperature Tre and spectral index ns
is found as

logðTreÞ ≃Qp½Aþ Bðns − 0.962Þ þ Cðns − 0.962Þ2�;
ð39Þ

where the dimensionless constants A ¼ 8, B ¼ 1.8 × 103,
and C ¼ 5.5 × 104 turned out to be almost model inde-
pendent. The reason may have its origin in the same
mechanism that is responsible for the inflaton decay into
the radiation. Model dependence in the above expression
for reheating temperature comes only through the param-
eter Qp. To complete the discussion, let us mention here
that for a chaotic and α-attractor model with α ¼ 1, the
value of Qp turned out to be unity. Also, our numerical
fitting shows that for different α values Qp ∼ log10ðαÞ=α1=2
and for natural inflation Qp ∝ 1=fb.
Let us now turn to question (b), which is the main

purpose of this work. In the previous section, we have
established one-to-one correspondence between ns and
Tre. This fact provides us a way to figure out the direct
connection between the CMB anisotropy and the dark
matter via reheating. Before we discuss the constraints, we
emphasize again the fact that a dark matter production
mechanism can be either freeze-in or freeze-out depend-
ing upon the couplings as has been discussed in the
Introduction. However, we will consider the dark matter

production via the freeze-in mechanism in this work.
However, let us emphasize the fact that for MX ≫ Tre,
freeze-in is the only mechanism that satisfies correct dark
matter abundance, namely ΩXh2 ≤ 0.12. This is also
clearly seen for a specific case shown in Fig. 3. For
MX < Tre, we have only considered the dark matter
production via the freeze-in mechanism. We will study
other mechanisms in more detail in our subsequent
publication. Given a specific mechanism, we constrain
the dark matter parameter space depending upon a specific
inflationary model. In Fig. 4, we have plotted annihilation
cross section ðhσvi; nsÞ for different dark matter masses
considering specific chaotic model n ¼ 2. The important
point one infers from those plots is that the CMB temper-
ature correlation can directly constrain the dark matter
parameter space (MX, hσvi) through the inflationary power
spectrum ns. For a given value of ns, one can precisely
predict the value of annihilation cross section once the dark
matter mass is fixed. As an example given a dark matter
mass MX ¼ 2 × 103 GeV, CMB anisotropy restricts the
annihilation cross section within 10−35 GeV−2 > hσvi >
10−41 GeV−2 for the 2σ region of ns.
Depending upon the value of dark matter mass our main

results of the current paper are the following important
relations: (i) If MX > Tre, the dark matter freezes in before
the reheating and the relic abundance for a fixed dark matter
mass behaves as ΩXh2 ∝ hσviT7

re [25,26]. Therefore, we
established an important relation between the annihilation
cross section hσvi and the scalar spectral index ns consid-
ering the current value of the dark matter relic abundance as

hσvi
���
MX>Tre

∝ 10−7A−7Bðns−0.962Þ−7Cðns−0.962Þ2 : ð40Þ

(a) (b)

FIG. 2. Variation of (a) reheating e-folding number Nre and (b) the reheating temperature Tre and the maximum radiation temperature
Tmax with respect to ns have been plotted. For comparison, dashed lines are shown from Ref. [14] where the complete conversion from
inflaton to radiation has been assumed. We clearly see the order of magnitude difference in the temperature at the moment we include the
explicit decay of inflaton in the reheating analysis [24]. These two plots are independent of dark matter masses for a set of given initial
conditions.
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(ii) In a similar manner, for MX < Tre, the dark matter
freezes in during the radiation dominated phase following
the relation ΩXh2 ∝ hσviTre [62]. In this case also we will
have the following important relation in a different dark
matter mass regime:

hσvijMX<Tre
∝ 10−A−Bðns−0.962Þ−Cðns−0.962Þ2 : ð41Þ

So far, all our important findings were based on the
chaotic inflation. In the subsequent sections we will
consider various other prominent inflationary models.

D. Natural inflation

The natural inflation model [63,64] proposed in the early
1990s is one of the best theoretically motivated models

(a) (b)

FIG. 3. We have two different dark matter production mechanisms as described in the text: (a) Freeze-in and (b) Freeze-out as
discussed. Choosing the same dark matter mass and reheating temperature, we can realize these two production mechanisms depending
upon its annihilation cross section hσvi. The figures here show the evolution of different components (in some suitable units): the
inflaton (red dot dashed line), the radiation (brown dashed line), and the temperature (thick blue dashed line) with the normalized scale
factor (alternatively, the e-folding number after the end of inflation). Black dashed lines show the evolution of equilibrium dark matter
distribution while the black solid line is for the dark matter. In this work we will exclusively assume the dark matter production via
freeze-in mechanism when connecting the current relic abundance with CMB.

(a) (b)

FIG. 4. For fixed dark matter mass, we have plotted the contour ofΩXh2 ¼ 0.12 in the ns-hσvi plane. The reheating temperature that is
fixed once we know the spectral index is also plotted on the upper axis. The shaded region below the contour line is the parameter space
allowed by current dark matter abundance. Here, we have considered the dark matter masses (a) 109 GeV and (b) 103 GeV for the
chaotic m2ϕ2 model.
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of inflation. The prediction of this model is marginally
consistent with the recent observations.1 The inflationary
potential in this case is given by

VðϕÞ ¼ Λ4

�
1 − cos

�
ϕ

f

��
; ð42Þ

where Λ is the height of the potential setting the infla-
tionary energy scale and f is the width of the potential
known as the axion decay constant in particle physics. To
be consistent with the CMB data this model needs a super-
Planckian value of the axion decay constant. We have taken
f ¼ 10Mp and f ¼ 50Mp for illustration. During reheat-
ing, the potential may be approximated as a power-law
potential by expanding it around the minimum as long as
ϕ < f,

VðϕÞ ≃ 1

2

Λ4

f2
ϕ2: ð43Þ

From this expression of the potential it is easy to identify
the inflaton mass by tree-level expression

mϕ ¼ Λ2

f
; ð44Þ

while the inflation equation of state from Eq. (9) is found to
be wϕ ¼ 0.
The CMB normalization defined as As fixes the value of

Λ ≃ 1016 GeV. Therefore, by tuning the value of the axion
decay constant f we can fit model with respect to the
observation. For the usual quadratic axion potential near

its minimum, we consider the effective equation state
w ¼ 0 during reheating. From Fig. 5 the behavior of the
ðNre; TradÞ in terms of ns can be summarized as follows:
with decreasing f, the model becomes increasingly
disfavored as it is going out of the 1σ range of ns ¼
0.9682� 0.0062. This conclusion is true just from the
(ns, r) curve for the axion inflation. It is also interesting
to notice that for a particular ns, with decreasing f,
the reheating temperature increases in accord with the
decreasing reheating e-folding number Nre. Within the 1σ
range our numerical computation shows that f ¼ 6Mp is
disfavored as it predicts the maximum value of nmax

s ≃
0.957, which is outside the 1σ range of ns from PLANCK.
However, for f ¼ ð10; 50MpÞ, we found nmax

s ≃
ð0.9644; 0.9655Þ at which Nre ¼ ð1.72; 1.3Þ. For both
the cases, the lowest ns ≃ 0.962 corresponds to the mini-
mum reheating temperature Tmin

re ≃ ð4.9 × 109; 7.6 × 107Þ
in GeV units.
Now we are in a position to figure out the effect of the

axion inflation model in the dark matter phenomenology. In
Figs. 6 and 7, we have displayed the allowed regions of
parameter space for a single component dark matter based
on the constraints from CMB observation. The allowed
region in (ns vs hσvi) space from the current dark matter
relic abundance is shown in fig. 6 for two sample values
of dark matter mass MX ¼ ð2 × 103; 2 × 109Þ GeV. For
f ¼ 10Mp, the reheating temperatures for all the spectral
indexes are higher than both the masses, and they freeze-in
in the radiation dominated era. However, for f ¼ 50Mp

and the dark matter mass 109 GeV, we will have two
distinct behaviors given in Eqs. (40) and (41), which are
also reflected in the change of slopes of the contour plots in
Fig. 6 for ΩXh2 ¼ 0.12. The analytic expression for the
relic abundance in the different regions can be found in
[25,28]. In Fig. 7 we present the allowed region in
parameter space of (MX vs hσvi) for a fixed value of ns

(a) (b)

FIG. 5. Variations of (a) Nre and (b) ðTre; TmaxÞ with respect to ns have been plotted for axion decay constant f ¼ ð10; 50Þ Mp.
The duration of reheating increases with f, and as a result the reheating temperature decreases with increasing f.

1It has been shown in [65] that by considering the neutrino
properties in calculating ns, this model may comply well with
observation.
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corresponding to two different reheating temperatures
Tre ≃ ð5 × 1011; 5 × 109Þ GeV for two different values
f ¼ ð10; 50Þ Mp. From the physical point of view as
expected for a particular value of ns ¼ 0.963, there exists
a minimum value of the annihilation cross section hσvi ≃
ð5 × 10−47; 5 × 10−43Þ for f ¼ ð10; 50Þ Mp and MX ¼
ð5 × 1011; 5 × 109Þ GeV, which are of same order as the
reheating temperature. From the physical point of view, this
fact can be understood as follows: for dark matter mass
MX > Tre, the freeze-in temperature Tfreeze > Tre, during
which the radiation density is very small as most of the
energy is in the form of oscillating inflaton field. Therefore,
in order to achieve the current dark matter abundance
ΩXh2 ≃ 0.12 one needs to increase the annihilation cross
section as we increase the value of dark matter mass.
However, for MX < Tre, the freeze-in temperature is
obviously Tfreeze < Tre, which is in the radiation dominated
phase, and most importantly the radiation temperature Trad

becomes inversely proportional to the cosmological scale
factor. Therefore, dark matter abundance crucially depends
upon the freeze-in time or freeze-in temperature. With the
decreasing MX the freeze-in happens at a late time or, in
other words, at a lower value of the freeze-in temperature.
This late time freeze-in will naturally reduce the dark matter
abundance. Hence below the reheating temperature, with
decreasing MX, one needs to increase cross section hσvi in
order to produce correct dark matter abundance.

E. Alpha attractor

In this section will consider a class of models called
α-attractor model [66–71], which has recently been pro-
posed to unify different inflationary models parametrized
by parameter α. The uniqueness of this class of models is its
conformal property, which leads to a universal prediction
for the inflationary observables ðns; rÞ in favor of Planck
observation [9]. After the conformal transformation of a
large class of originally noncanonical inflaton field
Lagrangian, one generically gets a canonically normalized
inflaton field with an exponential potential of the following
form:

VðϕÞ ¼ Λ4
h
1 − e−

ffiffiffi
2
3α

p
ϕ
Mp

i2n
: ð45Þ

In the literature, this model is known as the E model. The
quantities that we will need for solving the Boltzmann
equation is the inflaton equation of state parameter and the
inflaton mass, which we will get by expanding the potential

around the minimum when
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3α ϕend

q
< Mp, which is

equivalent to choosing α > 0.5n2,

VðϕÞ ≃ Λ4

�
2

3α

�
n
�

ϕ

Mp

�
n
: ð46Þ

FIG. 7. The same contour plot as in Fig. 4 in theMX-hσvi space
for the natural inflation model. Axion decay constant for
(a) f ¼ 10Mp and (b) f ¼ 50Mp.

(a) (b)

FIG. 6. The same plot as in Fig. 4 for the natural inflation model. Axion decay constant for (a) f ¼ 10Mp and (b) f ¼ 50Mp.
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Now, it is easy to identify the inflaton mass with the tree-
level expression as

mϕ ¼ 2Λ2ffiffiffiffiffiffi
3α

p
Mp

; ð47Þ

and the equation of state parameter, as noted before, is
given by wϕ ¼ 0.
As has been discussed for natural inflation, in this case

also we found Λ ≃ 1016 GeV. The new parameter α
determines the shape of the canonically normalized
inflaton potential near the minimum. The qualitative
behavior of all the plots will be the same as for the other
models we have discussed so far. However, the reheating
temperature in this class of models can be very small
depending on the value of the α parameter. For the purpose

of our current study, we have taken n ¼ 1 and α ¼
ð1; 10; 100Þ for illustration. It is important to note that
α ¼ 1 encodes two important well studied inflationary
models, namely Starobinsky [72] and Higgs [73] inflation.
Nonetheless, some important facts can be observed from
Fig. 8 as follows: we clearly see that as one increases the
value of α, the reheating temperature decreases for a fixed
value of ns. For example, at ns ¼ 0.962, which is the
lowest of 1σ range from PLANCK, we found Tmin

re ≃
ð108; 103; 102Þ GeV for α ¼ ð1; 10; 100Þ, respectively.
The qualitative behavior on the constraints on the dark
matter parameter space appeared to be the same as that of
the chaotic and natural inflation cases discussed in the
previous sections. Specifically, let us emphasize again one
of the important results of our analysis shown in Eqs. (40)
and (41), which will be satisfied for the α-attractor model
as well. However, from Figs. 9 and 10, we point out that

(a) (b)

FIG. 8. Variations of (a) Nre and (b) ðTre; TmaxÞ with respect to ns have been plotted for α-attractor model. We have considered three
sample values of α ¼ ð1; 10; 100Þ.

(a) (b)

FIG. 9. The shaded region shows the region in the parameter space allowed by current dark matter abundance for two dark matter
masses in the α-attractor E model. (a) Corresponds to α ¼ 1, while (b) is for α ¼ 10.
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with increasing α, the annihilation cross section increases
for a fixed value of the dark matter mass. This fact could
be an interesting point to further understand from the
theoretical point of view. From our naive numerical
solution of Boltzmann equations one finds that for a
higher value of α, the annihilation cross section could be
arbitrarily large depending upon the value of ns or
equivalently the reheating temperature Tre. However, this
should not hold true as the unitarity limit on hσviMAX ¼
8π=M2

X restricts the allowed region of ns. Therefore, one
gets a lower limit on the value of ns which is coming from
the dark matter sector. For example, from Fig. 9 if one
considers α ¼ 10, MX ¼ 2 × 109 GeV, the lowest pos-
sible value is ns ¼ 0.9634 set by the unitarity limit (red
line). On the other hand, the highest value of the nmax

s ≃
0.968 does not depend upon the dark matter parameters as

has already been pointed out. This important constraint on
the ns coming from dark matter sector could be very
important to understand and needs further study.

V. SUMMARY AND OUTLOOK

Through our present work the first and foremost point we
wanted to bring to the reader’s notice is that it is an
important generalization of the work proposed in [14] by
considering explicit decay of inflaton into radiation and
dark matter into the reheating constraint analysis. At this
point let us also remind the reader that in all the PLANCK
analysis [9] on constraining the inflationary models, an
effective time independent equation of state weff during
reheating is assumed. One of the important messages we try
to convey through the present analysis is that those
assumptions have limited applicability. After the inflation,
every inflationary model has its own characteristic oscil-
latory period that contributes to the equation of state during
reheating. Therefore, considering weff as a free parameter
loses some of the fundamental characteristic properties of
the inflaton potential itself. Furthermore, if reheating
occurs for a longer period of time, the time dependent
weff should also be very important to get a precise
constraint on any inflationary model. This is where our
analysis not only can play an important role in better
understanding the inflationary models but also opens up the
possibility of understanding the microphysics of the reheat-
ing process through CMB physics. To further clarify, in
Table I we summarize and compare our analysis with that
of the existing analysis. As we can clearly see, the CMB
power spectrum constrains the value of inflation-radiation
coupling parametrized by Γϕ through reheating temperature
Tre, which we found to be expressed in terms of spectral
index ns as

logðTreÞ ∝ ½Aþ Bðns − 0.962Þ þ Cðns − 0.962Þ2�: ð48Þ

The usual relation Tre ∝
ffiffiffiffiffiffi
Γϕ

p
will not be exactly correct

any more once we consider inflaton decaying into various
matter fields. Further, in all the previous theoretical as well
as PLANCK analysis, complete decay of inflaton is
assumed at the beginning of the radiation era. This also
cannot be true because of the perturbative part of the
reheating. Another interesting point we point out is that
irrespective of the model under consideration, our analysis
indicates the existence of a universal value of the maximum
reheating temperature Tmax

re ≃ 1015 GeV and the maximum
value of inflationary e-folding number Nmax ≃ 56 [24].
In this work, our main goal was to understand the

connection between the CMB anisotropy and the proper-
ties of dark matter. Till now the only known quantity
related to the dark matter is the dark matter density
parametrized by the density parameter ΩXh2 ≃ 0.12,

FIG. 10. Considering a sample value of ns or equivalently Tre as
given, we plotted (hσvi vs MX) for α-attractor E model, for
α ¼ ð1; 10; 100Þ. The solid red line corresponds to the unitarity
limit hσvi ∝ 1=M2

X.

FIG. 11. Variation of effective equation of state weff ¼
hð3pϕ þ ρRÞ=3ðρϕ þ ρR þ ρXÞi during the reheating phase.
The vertical red dotted line corresponds to the end of reheating.
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which can be extracted from the CMB power spectrum.
However, in this paper for the first time to our knowledge,
we managed to establish the fact that CMB anisotropy not
only provides the background value but also can shed light
on the microscopic detail of dark matter. In this regard
thanks to Ref. [14], a beautiful connection between the
CMB power spectrum and the reheating temperature via
the inflation has been established. Here we have extended
their formalism by including the effect of explicit decay
of inflaton into the reheating study [24]. The main
assumption of our analysis was the perturbative decay
of inflation. In any inflationary model, the inflaton energy
is supposed to be the only source of energy of the current

universe. Therefore, in addition to the standard radiation
field, we have included the production of a stable dark
matter particle species during the reheating period. As has
been mentioned in the Introduction, detailed analysis on
this has been done in the literature [26–29,43,46–53]
without any constraint from the CMB. However, let us
emphasize again that we reanalyzed the dark matter
production considering the important constraints coming
from observed CMB anisotropy.
Other important conclusions of our analysis are that for a

particular inflation model, the inflationary scalar spectral
index that is directly connected with the CMB power
spectrum can uniquely fix the dark matter parameter space

TABLE I. Summary of two methods for reheating constraints.

Standard approach [14,16] Our approach

Assumptions ‐ During the reheating period time-
independent effective equation of state
wre is assumed to be a free parameter that
parametrizes the expansion of the
universe. No microphysics of inflaton
decay is considered.

‐ Instantaneous conversion of inflaton
energy into radiation.

‐ Reheating phase is described by
perturbative inflaton decay into various
other fields. Hence Γϕ is a free parameter.

‐ The inflaton equation state is that of the
homogeneous inflaton condensate. Hence,
total effective equation of state weff is time-
dependent Fig. 11.

Components of
the universe

‐ Assumes two component universe
comprising inflaton and radiation.

‐ In principle we can accommodate any
number of energy components, such as dark
matter and dark radiation, and do the
analysis.

Methodology ‐ Find out the inflationary quantities Nk, r,
Vend, etc., in terms of ns, As for a specific
inflation model.

‐ Calculate Nre in terms of wre
using Eq. (24).

‐ Finally one obtains the relation among
ETre, ns, and wre using Eq. (23).

‐ The inflaton decay constant is indirectly
defined through the reheating
temperature.

‐ Find out the inflationary quantities Nk, r,
Vend, etc., in terms of ns, As for a specific
inflation model.

‐ Solve the Boltzmann equation considering
(Γϕ, hσvi, MX) as free parameters.

‐ The “right” (Γϕ, hσvi) are uniquely
determined by the condition Eq. (30) for
given ðMX; nsÞ, which are a combination
of entropy conservation and background
evolution, and dark matter abundance.
Inflation fixes the value of ns. Therefore, we
only have dark matter mass as a free
parameter MX.

Relations with CMB and
primordial density
fluctuation

‐ With the conventional transfer function
connect the primordial spectral tilt with
the CMB anisotropy.

‐ In our present analysis we assumed the
conventional relation.

‐ However, our analysis connects dark matter
phenomenology with the inflationary
observables through reheating. Hence dark
matter observation can constrain the
inflationary dynamics.

‐ Therefore, to connect the primordial
spectral tilt with the CMB anisotropy
appropriate transfer function needs to be
derived, which explicitly includes the
dynamics of reheating.
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(MX, hσvi), through the following important relations for
different dark matter mass ranges:

hσvijMX>Tre
∝ 10−7A−7Bðns−0.962Þ−7Cðns−0.962Þ2 ;

hσvijMX<Tre
∝ 10−A−Bðns−0.962Þ−Cðns−0.962Þ2 : ð49Þ

As is clear from the above expressions for the dark matter
annihilation cross section, which turned out to be very
sensitive to the inflationary scalar spectral index because of
the power-law form, it is very important to pinpoint the
value of ns in the future CMB experiments. It is clear from
the expression that for a given dark matter mass and the
inflationary model, the dark matter scattering cross section
will be within the bound coming from the 2σ error bar on
ns ¼ 0.9670� 0.0074 from Planck and BK14 and BAO
data. For marginally relevant axion inflation models, we
found for axion decay constant f ¼ 10Mp and the dark
matter mass,MX ¼ 103 GeV, the dark matter cross section
should be with 10−39 > hσvi > 10−41 GeV−2, which is
very narrow within the 2σ error of ns mentioned before.
If we consider one of the observationally favorable models
of α attractor with α ¼ 10, we get a large range of
annihilation cross section 10−29 > hσvi > 10−42 GeV−2

possible for dark matter mass MX ¼ 103 GeV. More
details of this bound on the allowed range of hσi for
different mass ranges has already been discussed in the
main text considering various models of inflation.
Explicit model building in the dark matter sector during

the reheating period could be an important research
direction. In addition to the connection we have been
discussing, we also found that to satisfy the bound on the
current dark matter abundance, freeze-in is the only
mechanism through which dark matter with MX ≫ Tre
can be produced. Our numerical analysis also showed that
dark matter production during reheating does not signifi-
cantly affect the determination of reheating temperature.
In the present analysis, we have only considered the

homogeneous evolution. It would be of utmost importance
to analyze the evolution of perturbations of radiation and
dark matter components and study their spectral properties,
which can give further constraints on our parameters. Most
importantly in our analysis inflation and the subsequent
reheating control the dynamics of all the energy compo-
nents such as radiation and dark matter of our universe.
Reheating is effective in the subhorizon scale. Therefore
any small-scale observables related to CMB and matter
distribution could play an important role in constraining
inflationary models though our analysis. One of the
important such set of observables could be the well-known
small-scale μ-type and y-type spectral distortions of CMB.
The standard ΛCDM cosmology already predicts those
spectral distortions through standard photon-charge particle
interaction [74,75] at different redshift values. However, at
present those distortion parameters are tightly constrained

by COBE and FIRAS experiments, jμj < 9 × 105 and y <
1.5 × 105 [76]. However, future projected sensitivity of
those quantities in new experiments like PIXIE [77] and
PRISM [78] are within 10−8–10−9. Therefore, it would be
important to understand various physical processes that
can give rise to any deviation from a blackbody spectrum.
In our present analysis, we consider the scenario where the
energy is being extracted out of the radiation to dark matter
and, depending upon the dark matter mass and the infla-
tionary scalar spectral index, the freezing out of dark matter
happens in a large range of cosmological redshift values.
Therefore, this energy extraction process can leave its
footprint in the CMB spectral distortion parameters
[75,79], which can further constrain the inflationary mod-
els. We leave these important topics for our future studies.
An important assumption in our analysis that needs

further investigation is the assumption of the perturbative
decay of inflaton during reheating. The perturbative decay
of inflaton [11,12] has been parametrized by an effective
phenomenological friction term with inflaton decay con-
stant Γϕ. However, from the action principle, this is very
difficult to generate. Therefore, as has been mentioned
before, one should construct an explicit dark matter model.
Most importantly it has long been argued that the non-
perturbative decay of inflaton will be very important and
efficient at the initial stage of the reheating phase. In the
literature this phase is known as preheating [80–84].
However, once the amplitude of the oscillating inflaton
is small after preheating, the perturbative decay will
automatically come into play. Hence, it would be more
appropriate to understand the nonperturbative dynamics
and how it sets the initial conditions for the perturbative
reheating where our analysis will be important. This subject
is beyond the scope of our present work and will be
addressed in a future publication. Nonetheless, as long as
the coupling parameters are such that perturbative decay is
the only way to reheat the universe, all our conclusions will
be qualitatively correct.
To the end let us elaborate one more issue, which

we have already mentioned in the last point of Table I.
The issue is related to the relation between the CMB
anisotropy and primordial anisotropy originated from the
quantum fluctuation of the inflaton field. The evolution
of the primary power spectrum of the CMB is generally
determined through a transfer function. This transfer
function, which is intimately related to the Sachs-Wolfe
effect [85], entails a simple geometrical scaling relation.
Furthermore, there exists an inherent connection between
this aforementioned scaling relation and the well-known
geometrical parameter degeneracy in determining the
CMB spectra ([86], and references therein). The param-
eter degeneracy states that the same anisotropy spectrum
can be produced even if cosmological constant and spatial
curvature is varied, keeping the size of the last scattering
surface constant. In the usual analysis of this transfer
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function, the initial condition for the perturbation is set at
the BBN. However, the initial spectral density distribution
at the BBN for various matter components should origi-
nate from the primordial spectrum through the evolution
during the intermediate reheating phase. In our present
analysis we solved the homogeneous Boltzmann equa-
tions for all the important energy components of our
universe starting from the end of inflation, and we tried to
understand the constraints on inflation supplemented by
not only CMB but also the dark matter abundance. By this
we can establish a direct connection among the infla-
tionary dynamics, CMB anisotropy, and dark matter
phenomenology via the reheating phase. Therefore, to
have a complete correspondence between the CMB and
the primordial anisotropy, we need to have an additional
transfer function that can connect the anisotropy at the
end of inflation and the end of reheating. In order to find
out that additional transfer function, one needs to solve

inhomogeneous Boltzmann equations for various compo-
nents during the reheating phase. For those equations to
be solved, inflationary dynamics provides us precise
initial conditions at the end of inflation. In this additional
phase a new parameter degeneracy may appear or if we
include the dynamical generation of cosmological con-
stant from the inflaton during reheating, it may lift some
amount of degeneracy in the transfer function. All these
important questions we leave for our future studies.
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