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The cosmological Higgs vacuum stability has been an attractive research subject, and it is crucial to
accurately follow the development of the Higgs fluctuations. In this work, we thoroughly investigate how
the vacuum fluctuations of the Higgs field affect the stability of the electroweak vacuum in Friedmann-
Lemaitre-Robertson-Walker (FLRW) background. Adopting adiabatic Wentzel-Kramers-Brillouin method
approximation or adiabatic regularization methods, we clearly show that vacuum fluctuations of the Higgs
field in the FLRW background depend on the curvature and also masses of the Higgs or other scalar fields.
The Higgs fluctuations can generate true vacuum bubbles and trigger off a collapse of the electroweak
vacuum. Furthermore we clearly show that the effective Higgs potential in the FLRW background is
modified by the Higgs vacuum fluctuations. The vacuum fluctuations of the standard model fields can
stabilize or destabilize the effective Higgs potential through backreaction effects. Considering the improved
effective Higgs potential with the Higgs vacuum fluctuations hδϕ2i in various backgrounds, we provide
new cosmological constraints on the mass of the Higgs-coupled scalar fields and a quantitative description
of the Higgs stability in the FLRW background.

DOI: 10.1103/PhysRevD.98.103521

I. INTRODUCTION

The Large Hadron Collider (LHC) experiments discov-
ered the Higgs boson and established the Standard Model
(SM) of particle physics. But currently central values
of the Higgs boson mass mh ¼ 125.09� 0.21ðstatÞ �
0.11ðsystÞ GeV [1–4] and the top quark mass mt ¼
172.44� 0.13ðstatÞ � 0.47ðsystÞ GeV [5] suggest that
the effective Higgs potential develops an instability about
the scale ΛI ≈ 1011 GeV. Therefore, if there are no new
physics to stabilize the Higgs field, the current electroweak
vacuum is not stable and finally causes a vacuum decay
through quantum tunneling [6–8]. Fortunately, the vacuum
decay time scale is longer than the age of the Universe
[9–12], and therefore, it has been thought that the meta-
stability of our electroweak vacuum does not cause
cosmological problems to the observed Universe.

However, the recent investigations [13–27] reveal that
the metastable electroweak vacuum becomes incompatible
with large-field inflation models. It is well known that the
vacuum fluctuations hδϕ2i of the quantum field glow
rapidly in the inflationary de Sitter phase. If the inflationary
de Sitter fluctuations of the Higgs field hδϕ2i overcome
the barrier of the effective Higgs potential VeffðϕÞ, an
unwanted vacuum transition to a Planck-scale true vacuum
immediately occurs and causes a collapse of the Universe.
Furthermore, even after the inflation, the large vacuum
fluctuations of the Higgs field are generated via parametric
resonance or tachyonic resonance, and can become poten-
tially problematic [28–33]. Besides that, the false vacuum
decay of the Higgs can be enhanced in Schwarzschild
background [34–42], and therefore the existence of the tiny
primordial black holes might not favor the metastability
of the Higgs vacuum. The cosmological Higgs vacuum
stability has been an attractive research subject, and it is
crucial to accurately follow the development of the Higgs
fluctuations.
In the present paper we thoroughly investigate how the

vacuum fluctuations of the Higgs field affect the stability
of the electroweak vacuum in Friedmann-Lemaitre-
Robertson-Walker (FLRW) background spacetime. We
consider the vacuum fluctuations of the Higgs field
described by the two-point correlation function hδϕ2i using
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several methods of the quantum field theory (QFT) in
curved spacetime like adiabatic Wentzel-Kramers-Brillouin
method (WKB) approximation or adiabatic regularization.
Then, we derive the improved effective potential in FRW
background based on Ref. [43]. Previous works [13–27]
about the Higgs vacuum stability in FRW background are
based on the standard effective potential in curved space-
time such as Eq. (121). However, the vacuum fluctuations
hδϕ2i of the Higgs field can modify the effective potential,
and we must consider the modified effective potential such
as Eq. (124) or (125). This matter was not pointed out in
previous investigations except for our paper [25], but it is
not in a comprehensive manner. The vacuum fluctuations
hδϕ2i depend on the mass, the couplings, or the back-
ground, and therefore, we consider various situations in
Secs. IV and V. Considering the improved effective Higgs
potential with the Higgs vacuum fluctuations hδϕ2i in
various backgrounds, we provide new cosmological con-
straints on the mass of the Higgs-coupled scalar fields and a
quantitative description of the Higgs vacuum stability in the
FLRW background.1

This paper is organized as follows. In Sec. II we derive the
standard effective potential in curved spacetime by using the
adiabatic (WKB) approximation. In Sec. III we consider the
renormalized vacuum fluctuations in the FLRW background
where the mass of the quantum field is larger than the
curvature scale. In Sec. IV we discuss the renormalized
vacuum fluctuations of the massless fields in the FLRW
background and provide the detail calculations of the
renormalized vacuum fluctuations in the adiabatic regulari-
zation methods. In Sec. V we consider the renormalized
vacuum fluctuations in the dynamical scalar field back-
ground. In Sec. VI we discuss how the vacuum fluctuations
of the Higgs field affect the stability of the electroweak
vacuum.We clearly show that the large Higgs fluctuations in
the FLRW background modify the standard effective Higgs
potential as the backreaction effects and also generate true
vacuum bubbles or domains. We discuss various cosmo-
logical constraints on the metastable electroweak vacuum in
the FLRW background. Finally, in Sec. VII we conclude
our work.

II. STANDARD EFFECTIVE POTENTIAL
IN CURVED BACKGROUND

The cosmological dynamics of the Higgs field can be
determined by the effective potential. The matters of the
effective potential in curved background has been thor-
oughly investigated in the literature [43–62], and there are a

variety of formulations to derive the effective potential in
curved background. In this section, we discuss the standard
effective potential via the adiabatic (WKB) approximation
method following the literature [43]. This formulation can
clearly handle the UV divergences of the vacuum field
fluctuations and simply derive the effective potential in
curved background.
In the present paper, we assume the FLRW background

which is described by the FLRW metric

gμν ¼ diag

�
−1;

a2ðtÞ
1 − Kr2

; a2ðtÞr2; a2ðtÞr2sin2θ
�
; ð1Þ

where a ¼ aðtÞ express the scale factor with the cosmic
time t and K is the spatial curvature parameter. The
positive, zero, and negative values of the spatial curvature
parameter K are related with closed, flat, and hyperbolic
spacetime. For the spatially flat spacetime, we can take
K ¼ 0 and the Ricci scalar is given as

R ¼ 6

��
ȧ
a

�
2

þ
�
ä
a

��
¼ 6

�
a00

a3

�
; ð2Þ

where η is the conformal time and is defined by dη ¼ dt=a.
In the radiation dominated universe, the scale factor
becomes aðtÞ ∝ t1=2 and the Ricci scalar is expressed as
R ¼ 0. On the other hand, in the matter dominated
universe, the scale factor becomes aðtÞ ∝ t2=3 and the
Ricci scalar is expressed as R ¼ 3H2. Finally, in the de
Sitter universe, the scale factor becomes aðtÞ ∝ eHt and the
Ricci scalar is expressed as R ¼ 12H2.
The bare (unrenormalized) action for the Higgs field

with the potential VðϕÞ in curved background is given by

S½ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕþ VðϕÞ

�
; ð3Þ

where we assume the simple form for the Higgs potential
with bare parameters as

VðϕÞ ¼ 1

2
ðm2 þ ξRÞϕ2 þ λ

4
ϕ4: ð4Þ

Thus, the Klein-Gordon equation for the Higgs field are
written as

□ϕ −m2ϕ − ξRϕ − λϕ3 ¼ 0; ð5Þ

where □ expresses the generally covariant d’Alembertian
operator,□ ¼ gμν∇μ∇ν ¼ 1=

ffiffiffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp ∂μÞ, and ξ is the
nonminimal Higgs-gravity coupling constant.
In the QFT, we treat the Higgs field ϕðη; xÞ as the field

operator acting on the ground states, and then the Higgs
field ϕðη; xÞ is decomposed into a classic field and a
quantum field as

1In this paper we focus on the vacuum fluctuations of the Higgs
field and neglect backreaction effects of other field fluctuations
such as gauge bosons or fermions. These backreaction effects
would also become crucial for the Higgs vacuum stability in the
FLRW background. We plan to perform a detailed analysis of the
Higgs vacuum stability including these effects in the future works.
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ϕðη; xÞ ¼ ϕc þ δϕðη; xÞ; ð6Þ

where the vacuum expectation value of the Higgs field is
ϕc ¼ h0jϕðη; xÞj0i and h0jδϕðη; xÞj0i ¼ 0. By introducing
the renormalized parameters and the counterterms as
m2 ¼ m2ðμÞ þ δm2, ξ ¼ ξðμÞ þ δξ, and λ ¼ λðμÞ þ δλ,
we can obtain the Klein-Gordon equations in the one-loop
approximation as

□ϕc − ðm2ðμÞ þ δm2Þϕc − ðξðμÞ þ δξÞRϕc ð7Þ

−3ðλðμÞ þ δλÞhδϕ2iϕc − ðλðμÞ þ δλÞϕ3
c ¼ 0;

ð□ −m2ðμÞ − ξðμÞR − 3λðμÞϕ2
cÞδϕ ¼ 0: ð8Þ

From here we drop the subscript of the classic field ϕc for
convenience. The quantum Higgs field δϕ is decomposed
into each k mode as

δϕðη; xÞ ¼
Z

d3kðakδϕkðη; xÞ þ a†kδϕ
�
kðη; xÞÞ; ð9Þ

where

δϕkðη; xÞ ¼
eik·x

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffiffi
CðηÞp δχkðηÞ; ð10Þ

with CðηÞ ¼ a2ðηÞ. Now, we can build a complete set of the
mode functions, which are orthonormal with respect to the
scalar product in curved background

ðδϕk;δϕk0 Þ ¼ −i
Z
Σ
dΣμ ffiffiffiffiffiffiffiffi

−gΣ
p ½δϕkð∂μδϕ

�
k0 Þ− ð∂μδϕkÞδϕ�

k0 �;

ð11Þ

where dΣμ ¼ nμdΣ is expressed by the unit timelike vector
nμ and the volume element dΣ. These orthonormal mode
solutions satisfy

ðδϕk; δϕk0 Þ ¼ δðk − k0Þ: ð12Þ

The creation and annihilation operators of δϕk are required
to satisfy the commutation relations

½ak; ak0 � ¼ ½a†k; a†k0 � ¼ 0; ½ak; a†k0 � ¼ δðk − k0Þ; ð13Þ

where the in-vacuum state j0i is defined as akj0i ¼ 0
and depends on the boundary conditions of the mode
functions δϕk. Different boundary conditions of δϕk
correspond to different initial states of the quantum
vacuum. The vacuum field fluctuations hδϕ2i of the
Higgs field can be written as

h0jδϕ2j0i ¼
Z

d3kjδϕkðη; xÞj2 ð14Þ

¼ 1

2π2CðηÞ
Z

∞

0

dkk2jδχkj2; ð15Þ

where hδϕ2i has ultraviolet (quadratic and logarithmic)
divergences, which require a regularization, e.g., cutoff
regularization or dimensional regularization, and must be
canceled by the counterterms of the couplings.
From Eq. (8), the Klein-Gordon equation for the quan-

tum rescaled field δχ is written by

δχ00k þ Ω2
kðηÞδχk ¼ 0; ð16Þ

where

Ω2
kðηÞ ¼ k2 þ CðηÞðm2 þ 3λϕ2 þ ðξ − 1=6ÞRÞ: ð17Þ

The orthonormal condition of Eq. (12) for the mode
functions δχ can be given by

δχkδχ
0�
k − δχ0kδχ

�
k ¼ i; ð18Þ

which is the normalization of the mode function δχðηÞ.
Equation (16) is consistent with the differential equation of
the harmonic oscillator with time-dependent mass. Thus,
we can rewrite the mode function δχðηÞ by the two complex
function αkðηÞ and βkðηÞ as

δχkðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðηÞ
p fαkðηÞδφkðηÞ þ βkðηÞδφ�

kðηÞg; ð19Þ

where δφkðηÞ are given by

δφkðηÞ ¼ exp

�
−i

Z
η
Ωkðη1Þdη1

�
: ð20Þ

From Eq. (16), we can obtain the relations for αkðηÞ and
βkðηÞ as the following:

α0k ¼
1

2

Ω0
k

Ωk
βkδφ

�
k
2ðηÞ; β0k ¼

1

2

Ω0
k

Ωk
αkδφ

2
kðηÞ: ð21Þ

The Wronskian condition can be written by

jαkðηÞj2 − jβkðηÞj2 ¼ 1: ð22Þ

The initial conditions for αkðη0Þ and βkðη0Þ correspond
to the choice of the in vacuum. From Eq. (19), the
vacuum field fluctuations hδϕ2i of the Higgs field can
be given by

hδϕ2i ¼ 1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k f1þ 2jβkj2

þ αkβ
�
kδφ

2
k þ α�kβkδφ

�
k
2g; ð23Þ
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where the number density of the created particles and the
corresponding energy density are given by

N ¼ 1

2π2a3ðηÞ
Z

∞

0

dkk2jβkj2; ð24Þ

ρ ¼ 1

2π2a4ðηÞ
Z

∞

0

dkk2Ωkjβkj2: ð25Þ

For simplicity, we define nk and zk as the following:

nk ¼ jβkj2; zk ¼ αkβ
�
kδφ

2
k: ð26Þ

From Eq. (21), nk and zk satisfy the following differential
equations:

n0k ¼
Ω0

k

Ωk
Rezk; z0k ¼

Ω0
k

Ωk

�
nk þ

1

2

�
− 2iΩkzk: ð27Þ

To solve Eq. (27), we must take adequately the initial
conditions. For simplicity, we choose the following
condition:

nkðη0Þ ¼ zkðη0Þ ¼ 0; ð28Þ

which is equivalent to αkðη0Þ ¼ 1, βkðη0Þ ¼ 0 and corre-
sponds to the Minkowski vacuum state which has no
excited particles.2 The quantity nk ¼ jβkðηÞj2 can be
interpreted as the number density created in the curved
background. By using nk and zk, we obtain the following
expression of the vacuum field fluctuations as

hδϕ2i ¼ 1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k f1þ 2nk þ 2Rezkg; ð29Þ

where we must adequately solve Eq. (27) and insert nk
and zk into Eq. (29) in order to obtain the vacuum field
fluctuations hδϕ2i of the Higgs field. It is difficult to solve
analytically Eq. (27), and therefore, we generally use the
adiabatic (WKB) approximation method, which is valid in
large mass, large momentum mode, or slowly varying
background as follows:

jΩ0
k=Ω2

kj ≪ 1: ð30Þ

By using the adiabatic approximation method, nk and zk
can be approximated as follows [43]:

nk ¼ nð2Þk þ nð4Þk þ � � � ; ð31Þ

Rezk ¼ Rezð2Þk þ Rezð4Þk þ � � � ; ð32Þ

where superscripts (i) express the adiabatic order and the
second order expressions are given by

nð2Þk ¼ 1

16

Ω02
k

Ω4
k

; ð33Þ

Rezð2Þk ¼ 1

8

Ω00
k

Ω3
k

−
1

4

Ω02
k

Ω4
k

: ð34Þ

The fourth order adiabatic expressions are given by

nð4Þk ¼ −
Ω0

kΩ000
k

32Ω6
k

þ Ω002
k

64Ω6
k

þ 5Ω02
kΩ00

k

32Ω7
k

−
45Ω04

k

256Ω8
k

; ð35Þ

Rezð4Þk ¼ −
Ω0000

k

32Ω5
k

þ 11Ω0
kΩ000

k

32Ω6
k

−
115Ω02

kΩ00
k

64Ω7
k

þ 7Ω002
k

32Ω6
k

þ 45Ω04
k

32Ω8
k

: ð36Þ

By using the adiabatic (WKB) approximation method, we
can obtain the following approximation of the vacuum field
fluctuations of the Higgs field as

hδϕ2i ¼ hδϕ2ið0Þ þ hδϕ2ið2Þ þ hδϕ2ið4Þ þ � � � ; ð37Þ

where

hδϕ2ið0Þ ¼ 1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k ; ð38Þ

hδϕ2ið2nÞ ¼ 1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k f2nð2nÞk þ 2Rezð2nÞk g:

ð39Þ

Although the higher order approximation can become
finite, the lowest order approximation has UV (quadratic
and logarithmic) divergences. However, the divergences in
the lowest order expression are the same as the divergences
in the flat background. Thus, we can regularize the
divergence integral via the cutoff regularization or the
dimensional regularization and offset the divergences by
the counterterms of the couplings.
By using the dimensional regularization, we obtain the

following lowest order expression as

hδϕ2ið0Þ ¼ M2ðϕÞ
16π2

�
ln

�
M2ðϕÞ
μ2

�
−
1

ϵ
− log 4π − γ − 1

�
;

ð40Þ

with

M2ðϕÞ ¼ m2ðμÞ þ 3λðμÞϕ2 þ ðξðμÞ − 1=6ÞR; ð41Þ
2Note that this state is not identified as the Bunch-Davies

vacuum which fixes the Bogoliubov coefficients with the sub-
horizon limit jkηj ≫ 1.
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where μ is the renormalization scale and γ is the Euler-
Mascheroni constant. The counterterms δm2, δξ, and δλ
must cancel these divergences and are given by

δm2 ¼ 3λðμÞm2ðμÞ
16π2

�
1

ϵ
þ log 4π þ γ

�
; ð42Þ

δξ ¼ 3λðμÞ
16π2

�
ξðμÞ − 1

6

��
1

ϵ
þ log 4π þ γ

�
; ð43Þ

δλ ¼ 9λðμÞ
16π2

�
1

ϵ
þ log 4π þ γ

�
: ð44Þ

Thus, the renormalized vacuum field fluctuations of the
Higgs field of the lowest order can be given by

hδϕ2ið0Þren ¼ M2ðϕÞ
16π2

�
ln

�
M2ðϕÞ
μ2

�
− 1

�
; ð45Þ

where the above expression corresponds to the renormal-
ized vacuum fluctuations in a flat background. From the
renormalized expression of Eq. (45), we can construct the
one-loop evolution equation as follows:

ϕ̈þ 3Hϕ̇þ ∂VeffðϕÞ
∂ϕ ¼ 0; ð46Þ

where the one-loop effective potential in curved back-
ground is given by

VeffðϕÞ ¼
1

2
m2ðμÞϕ2 þ 1

2
ξðμÞRϕ2 þ λðμÞ

4
ϕ4

þM4ðϕÞ
64π2

�
ln

�
M2ðϕÞ
μ2

�
−
3

2

�
; ð47Þ

From the one-loop effective potential of Eq. (47), the one-
loop β functions are given by

βλ ≡ dλ
d ln μ

¼ 18λ2

ð4πÞ2 ; ð48Þ

βξ ≡ dξ
d ln μ

¼ 6λ

ð4πÞ2 ðξ − 1=6Þ; ð49Þ

βm2 ≡ dm2

d ln μ
¼ 6λm2

ð4πÞ2 : ð50Þ

Although Eq. (46) is the standard expression to describe
the cosmological dynamics of the Higgs field ϕðtÞ, this
expression does not include the high-order vacuum fluctua-
tions hδϕ2ið2nÞ which correspond to the gravitational particle
productions in curved background. Therefore, the correct
effective-evolution equation is given as follows [43]:

ϕ̈þ 3Hϕ̇þ ∂VeffðϕÞ
∂ϕ þ 3λðμÞhδϕ2ið2nÞϕ ¼ 0; ð51Þ

which require the modification of the standard effective
potential. The redefined/modified effective potential in
curved background is given as follows:

VeffðϕÞ ¼
1

2
m2ðμÞϕ2 þ 1

2
ξðμÞRϕ2 þ 3λðμÞ

2
hδϕ2ið2nÞϕ2

þ λðμÞ
4

ϕ4 þM4ðϕÞ
64π2

�
ln

�
M2ðϕÞ
μ2

�
−
3

2

�
; ð52Þ

which properly includes gravitational vacuum effects. The
additional term originates from the particle production in
curved spacetime and depends on the vacuum state. Note
that in flat spacetime the vacuum state is unique and the
effective potential has no additional terms [60,62]. Here we
considered the modification of the effective potential from
the particle production effects in curved spacetime. On the
other hand, the particle production can also affect the
spacetime [63–66] as the backreaction effects.

III. RENORMALIZED VACUUM FLUCTUATIONS
FROM ADIABATIC (WKB) APPROXIMATION

METHOD

In the previous section we show that the lowest-order
(Minkowskian) vacuum field fluctuations contract the one-
loop effective potential. However, the higher-order adia-
batic vacuum field fluctuations appear as a result of the
particle production effects in curved background and,
therefore, provide a significant contribution to dynamical
evolutions of the Higgs field. To obtain the exact one-
loop evolution equation in curved background, we must
count up the higher order of the adiabatic approximation.
From Eq. (31), (32), and (39), the second (adiabatic)
order expressions of the vacuum field fluctuations are
given by [43]

hδϕ2ið2Þ ¼ 1

16π2CðηÞ
Z

∞

0

dkk2Ω−1
k

�
Ω00

k

Ω3
k

−
3

2

Ω02
k

Ω4
k

�
; ð53Þ

with

Ω2
k ¼ k2 þ CðηÞðm2 þ 3λϕ2 þ ðξ − 1=6ÞRÞ: ð54Þ

Thus, we can obtain the following expression as

hδϕ2ið2Þ ¼ 1

16π2CðηÞ
Z

∞

0

dkk2Ω−1
k

�ðM̄M̄00 þ M̄02Þ
Ω4

k

−
5

2

M̄2M̄02

Ω6
k

�
; ð55Þ

with

M̄2 ¼ CðηÞM2ðϕÞ: ð56Þ
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Now, we must perform the integral of Eq. (55). As already
pointed out, the high-order adiabatic expressions such
as hδϕ2ið2Þ are UV finite, and therefore there is no need to
renormalize the high-order vacuum field fluctuations.
The corresponding integrals converge to the finite
values by

IðαÞ≡
Z

∞

0

dkk2ðk2 þ M̄2Þ−α ð57Þ

¼ M̄3−2α

2

Γð3=2ÞΓðα − 3=2Þ
ΓðαÞ ; ð58Þ

where the above expression is valid for α > 3=2. By using
Eq. (58), the second (adiabatic) order of the vacuum field
fluctuations hδϕ2ið2Þ are given as follows:

hδϕ2ið2Þ ¼ 1

16π2CðηÞ
�
ðM̄M̄00 þ M̄02ÞI

�
5

2

�

−
5

2
M̄2M̄02I

�
7

2

��

¼ 1

48π2CðηÞ
M̄00

M̄
: ð59Þ

Thus, the renormalized vacuum fluctuations in curved
background via the adiabatic (WKB) approximation
method are given by

hδϕ2iren ¼ hδϕ2ið0Þ þ hδϕ2ið2Þ þ � � �

¼ M2

16π2

�
ln

�
M2

μ2

�
− 1

�
þ 1

48π2CðηÞ
M̄00

M̄
þ � � � ;

where the first term expresses the Minkowskian renor-
malized vacuum field fluctuations, and the second term
describes the dynamical contribution of the renormalized
vacuum fluctuations, which corresponds to the particle
production effects. Next let us consider the second
(adiabatic) order expression at proper time t as

hδϕ2ið2Þ ¼ 1

48π2

�
a00

a3
þ 2

a0

a2
M0

M
þ 1

a2
M00

M

�

¼ 1

48π2

�
ä
a
þ ȧ2

a2
þ 3

ȧ
a
Ṁ
M

þ M̈
M

�

¼ 1

48π2

�
ä
a
þ ȧ2

a2
þ 3

2

ȧ
a

ðξ − 1=6ÞṘþ 6λϕϕ̇

m2 þ ðξ − 1=6ÞRþ 3λϕ2

−
1

4

ððξ − 1=6ÞṘþ 6λϕϕ̇Þ2
ðm2 þ ðξ − 1=6ÞRþ 3λϕ2Þ2

þ 1

2

ðξ − 1=6ÞR̈þ 6λðϕϕ̈þ ϕ̇2Þ
m2 þ ðξ − 1=6ÞRþ 3λϕ2

�
: ð60Þ

If we consider the near-conformal coupling case ξ ≃ 1=6,
we can obtain the following expression3:

hδϕ2ið2Þ ¼ 1

48π2

�
ä
a
þ ȧ2

a2
þ 3

2

ȧ
a

6λϕϕ̇

m2 þ 3λϕ2

−
1

4

�
6λϕϕ̇

m2 þ 3λϕ2

�
2

þ 1

2

6λϕϕ̈þ 6λϕ̇2

m2 þ 3λϕ2

�

¼ 1

48π2

�
R
6
þ 3H

2

6λϕϕ̇

m2 þ 3λϕ2

−
1

4

�
6λϕϕ̇

m2 þ 3λϕ2

�
2

þ 1

2

6λϕϕ̈þ 6λϕ̇2

m2 þ 3λϕ2

�
: ð61Þ

For nearly constant Higgs field, the time-derivative terms
of ϕ̇ and ϕ̈ are negligible, and the second (adiabatic) order
expressions of the vacuum fluctuations are simplified as

hδϕ2ið2Þ ≃ R
288π2

: ð62Þ

Therefore, in the near-conformal coupling case (ξ ≃ 1=6
and m≲H), we have the high-order vacuum fluctuations
corresponding to the particle production effects as
follows:

hδϕ2iren ≃
R

288π2
þOðR2Þ þ � � � : ð63Þ

In the radiation dominated universe, the Ricci scalar
becomes R ¼ 0, and in the matter dominated universe, the
Ricci scalar becomes R ¼ 3H2. On the other hand, in the
de Sitter universe, the Ricci scalar becomes R ¼ 12H2.
Thus, we summarize the renormalized vacuum field
fluctuations in the massive conformal coupling case
(ξ ≃ 1=6 and m≲H) as follows:

hδϕ2iren ≃
8<
:

0 ðradiation dominated universeÞ;
H2=96π2 ðmatter dominated universeÞ;
H2=24π2 ðde Sitter universeÞ:

ð64Þ

Note that the massive vacuum field fluctuations in curved
background are described by Eq. (63). However, the
massless vacuum field fluctuations cannot satisfy the
adiabatic (WKB) condition of Eq. (30) to be

Ω0
k

Ω2
k

≃
2H
m

≪ 1; ð65Þ

3Note that if the nonminimal coupling is very small ξ ≪ 1, one
can safely neglect the curvature mass, and the perturbation
calculation breaks down in the large coupling case ξ ≫ 1. Thus,
we focus on the near-conformal coupling case ξ ≃ 1=6.
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where we assume m ¼ const, and therefore, the adiabatic
expansion method does not provide exact expressions in
the massless case. In a small mass or rapid varying
background, the vacuum field fluctuations are generally
enlarged to be

hδϕ2iren ≫ OðH2Þ; ð66Þ

where the vacuum field fluctuations in the nonadiabatic
case are generally larger than the adiabatic one. This
situation cosmologically occurs during inflation for
massless scalar fields or during the preheating stage of
the parametric resonance (see, e.g., Ref. [67]). In the next
section, we discuss vacuum field fluctuations in the
nonanabatic case.

IV. RENORMALIZED VACUUM FLUCTUATIONS
FROM ADIABATIC REGULARIZATION METHOD

In the nonanabatic case, e.g., a small mass or rapid
varying background, we must usually solve the following
equation with the suitable in vacuum:

hδϕ2iren ¼
1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k f2nk þ 2Rezkg; ð67Þ

where

n0k ¼
Ω0

k

Ωk
Rezk; z0k ¼

Ω0
k

Ωk

�
nk þ

1

2

�
− 2iΩkzk: ð68Þ

However, it is a hard task to calculate the above equations
in the nonanabatic case. If we assume unspecified initial
conditions or any initial vacuum, we obtain the following
expression of zk [43]:

zkðηÞ ¼
Z

η

η0

dη1
Ω0

kðη1Þ
Ωkðη1Þ

�
nkðη1Þ þ

1

2

�

× exp

�
−2i

Z
η

η1

dη2Ωkðη2Þ
�

þ zkðη0Þ exp
�
−2i

Z
η

η0

dη2Ωkðη2Þ
�
; ð69Þ

where we must adequately solve Eq. (68) and inset
into Eq. (67), and therefore, there is usually no other
way except numerical calculations in the nonanabatic
regime. However, if we analytically calculate the exact
mode function of δχ from the Klein-Gordon equation of
Eq. (67) with the suitable in vacuum, we can obtain the
renormalized vacuum fluctuations hδϕ2iren by removing
the UV divergences of hδϕ2i via adiabatic regularization or
point-splitting regularization.
Next, let us review the adiabatic regularization [68–76]

which is the extremely powerful method to obtain the
renormalized vacuum fluctuations even in the nonadiabatic

regime. The adiabatic regularization is not the mathemati-
cal method of regularizing divergent integrals like a kind
of dimensional regularization or cutoff regularization. As
previously discussed, the divergences of hδϕ2i come from
the lowest-order adiabatic mode, and therefore, we can
remove these divergences by subtracting the lowest-order
adiabatic (Minkowskian) vacuum field fluctuations hδϕ2ið0Þ
from hδϕ2i. Thus, we can obtain the renormalized expres-
sion of the adiabatic or the nonadiabatic vacuum fluctuations
as follows:

hδϕ2iren ¼ hδϕ2i − hδϕ2ið0Þ

¼ 1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k f2nk þ 2Rezkg

¼ 1

4π2CðηÞ
�Z

∞

0

dk2k2jδχkj2 −
Z

∞

0

dkk2Ω−1
k

�
;

ð70Þ

where we must obtain the exact mode function of δχk with
appropriate in vacuum. Note that the above formulation is
improved in comparison with the literature [68–76]. This
method is equivalent to the point-splitting regularization
which regularizes divergences via the point separation in the
two-point function.
As a concrete example, how to use the adiabatic

regularization, we consider the vacuum field fluctuations
of the massless minimally coupled scalar field (ξ ¼ 0 and
m ¼ 0) in de Sitter background (for the detailed discussions
see Refs. [73,74]). In this case, the mode function δχkðηÞ
can be exactly given by

δχkðηÞ ¼
1ffiffiffiffiffi
2k

p fαkδφkðηÞ þ βkδφ
�
kðηÞg; ð71Þ

where

δφkðηÞ ¼ e−ikη
�
1þ 1

ikη

�
: ð72Þ

In the massless minimally coupled case, the vacuum field
fluctuations hδϕ2i have not only ultraviolet divergences
but also infrared divergences. Thus, we assume that the
Universe changes from the radiation dominated universe
to the de Sitter universe in order to avoid the infrared
divergences

aðηÞ ¼
� 2 − η

η0
ðη < η0Þ;

η
η0

ðη > η0Þ;
ð73Þ

where η0 ¼ −1=H, and we choose the mode function as the
in-vacuum state

δχk ¼ e−ikη=
ffiffiffiffiffi
2k

p
ð74Þ
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during the radiation dominated region (η < η0). By requir-
ing the conditions δχkðηÞ and δχ0kðηÞ at the matching time
η ¼ η0, we obtain the corresponding coefficients of the
mode function as follows:

αk ¼ 1þH
ik

−
H2

2k2
; ð75Þ

βk ¼ −
H2

2k2
e
2ik
H ¼ αk þ

2ik
3H

þO
�
k2

H2

�
: ð76Þ

By using the above coefficients of αk and βk, we obtain the
suitable mode function of δχk. For small k modes in the
de Sitter universe (η > η0), we can approximate the mode
function to be

jδχkj2 ¼
1

2k

��
2

3Hη
þ 2þH2η2

6

�
2

þO
�
k2

H2

�
þ � � �

�
:

ð77Þ

Here it is notable that one has no infrared divergences
because k2jδχkj2 ≈OðkÞ. For large k modes, we can obtain
the following expression:

jδχkj2 ¼
1

2k

�
1þ 1

k2η2
−
H2

k2
cos ð2kð1=H þ ηÞÞ

þO
�
H3

k3

�
þ � � �

�
: ð78Þ

Here, we must require the cutoff of the k mode from the
adiabatic (WKB) condition Ω2

k > 0 to be k >
ffiffiffi
2

p
=jηj ¼ffiffiffi

2
p

aH. Therefore, we can obtain the renormalized vacuum
fluctuations from Eq. (70) as follows:

hδϕ2iren ¼ lim
Λ→∞

1

4π2CðηÞ
�Z

Λ

0

2k2jδχkj2dk

−
Z

Λffiffi
2

p
=jηj

dkk2Ω−1
k

�

¼ lim
Λ→∞

1

4π2CðηÞ
�Z

Λ

0

2k2jδχkj2dk

−
Z

Λffiffi
2

p
=jηj

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2=η2

p dk

�
ð79Þ

¼ lim
Λ→∞

1

4π2CðηÞ
�Z

Λ

0

2k2jδχkj2dk

−
Z

Λffiffi
2

p
=jηj

�
kþ 1

kη2
þ � � �

�
dk

�
: ð80Þ

For large kmodes, we can use Eq. (78) and subtract the UV
divergences as the following:

lim
Λ→∞

1

4π2CðηÞ
�Z

Λffiffi
2

p
=jηj

�
kþ 1

kη2

�
dk

−
Z

Λffiffi
2

p
=jηj

�
kþ 1

kη2

�
dk

�
¼ 0: ð81Þ

Thus, we obtain the following expression of the renormal-
ized vacuum fluctuations as

hδϕ2iren ¼
1

2π2CðηÞ
Z ffiffi

2
p

=jηj

0

k2jδχkj2dk

þ η2H2

4π2

Z
∞ffiffi
2

p
=jηj

�
−
H2

k2
cos ð2kð1=H þ ηÞÞ

þO
�
H3

k3

�
þ � � �

�
kdk: ð82Þ

At the late cosmic time (η ≃ 0 corresponds to Ntot ¼
Ht ≫ 1), we have the following approximation:

hδϕ2iren ≃
η2H2

2π2

Z ffiffi
2

p
=jηj

0

k2jδχkj2dk;

≃
1

9π2

Z
H

0

kdkþ H2

4π2

Z ffiffi
2

p
=jηj

H

1

k
dk; ð83Þ

where we approximate the mode function δχkðηÞ from
Eqs. (77) and (78) as the following:

jδχkj2 ≃
8<
:

1
2k

	
2

3Hη þ 2þ H2η2

6



2 ð0 ≤ k ≤ HÞ;

1
2k

	
1þ 1

k2η2



ðH ≤ k ≤

ffiffiffi
2

p
=jηjÞ:

ð84Þ

Therefore, we can finally obtain the well-known expression
as follows:

hδϕ2iren ≃
H2

18π2
þ H2

4π2

�
1

2
log 2þHt

�

≃
H3

4π2
t; ð85Þ

which grows as cosmic-time proceeds.
Next, let us consider the massive minimally coupled

scalar field (ξ ≪ 1 and m ≪ H) in de Sitter background.
This situation is cosmologically important in order to
understand the origin of the primordial perturbations or
the self-backreaction of the inflaton field in inflationary
universe (see, e.g., Refs. [77,78]). In this case, the mode
function δχkðηÞ can be given by

δχkðηÞ ¼
ffiffiffi
π

4

r
η1=2fαkHð2Þ

ν ðkηÞ þ βkH
ð1Þ
ν ðkηÞg; ð86Þ
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with

ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

H2

r
≃
3

2
−

m2

3H2
; ð87Þ

where Hð1;2Þ
ν ðkηÞ are the Hankel functions. For simplicity

we assume the spacetime transition from the radiation
dominated universe to the de Sitter universe and require the
matching conditions at η ¼ η0 to determine the Bogoliubov
coefficients

αk ¼
1

2i

ffiffiffiffiffiffiffiffiffiffi
πkη0
2

r ��
−iþ H

2k

�
Hð1Þ

ν ðkη0Þ −Hð1Þ0
ν ðkη0Þ

�
eik=H;

ð88Þ

βk ¼ −
1

2i

ffiffiffiffiffiffiffiffiffiffi
πkη0
2

r ��
−iþ H

2k

�
Hð2Þ

ν ðkη0Þ

−Hð2Þ0
ν ðkη0Þ

�
eik=H: ð89Þ

The renormalized vacuum fluctuations from Eq. (70) are
given as follows:

hδϕ2iren ¼ lim
Λ→∞

1

4π2CðηÞ
�Z

Λ

0

2k2jδχkj2dk

−
Z

Λffiffi
2

p
=jηj

dkk2Ω−1
k

�

¼ η2H2

2π2

Z
H

0

k2jδχkj2dkþ
η2H2

2π2

Z ffiffi
2

p
=jηj

H
k2jδχkj2dk:

ð90Þ

The divergence parts exactly cancel as previously discussed,

lim
Λ→∞

1

4π2CðηÞ
�Z

Λffiffi
2

p
=jηj

2k2jδχkj2dk −
Z

Λffiffi
2

p
=jηj

dkk2Ω−1
k

�
;

ð91Þ

where we must take the adiabatic mode cutoff as
k >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −m2=H2

p
=jηj ≃ ffiffiffi

2
p

=jηj. It is a more difficult task
in the massive case than in the massless case to obtain
exactly the renormalized vacuum fluctuations from Eqs. (88)
and (89). However, by using the asymptotic behavior of the
Hankel functions, we can easily get the renormalized
vacuum fluctuations of hδϕ2iren via the adiabatic regulari-
zation method (for the details, see Refs. [73,74]).
By using the following formula of the Hankel functions:

Hð1;2Þ0
ν ðkη0Þ ¼ Hð1;2Þ

ν−1 ðkη0Þ −
ν

kη0
Hð1;2Þ

ν ðkη0Þ; ð92Þ

and the Bessel function of the first kind defined by

Jν ¼ ðHð1Þ
ν þHð2Þ

ν Þ=2, we obtain the following expression:

jαk − βkj ¼
ffiffiffiffiffiffiffi
πk
2H

r ����Jν−1ðkη0Þ þ
�
i −

H
2k

þ νH
k

�
Jνðkη0Þ

����:
ð93Þ

For small k modes, the Bessel function and the Hankel
function asymptotically behave as

Jνðkη0Þ ≃
1

Γðνþ 1Þ
�
kη0
2

�
ν

; ð94Þ

Hð2Þ
ν ðkη0Þ ≃ −Hð1Þ

ν ðkη0Þ ≃
i
π
ΓðνÞ

�
kη0
2

�
−ν
: ð95Þ

Thus, we can obtain the following expression of the mode
function,

jδχkj2 ≃
π

4
jηjjαk − βkj2jHð2Þ

ν ðkηÞj2

≃
2

9k
ðHjηjÞ1−2ν ð0 ≤ k ≤ HÞ: ð96Þ

For large k modes, we can approximate the Bogoliubov
coefficients as αk ≃ 1 and βk ≃ 0 and evaluate the mode
function

δχkðηÞ ≃
ffiffiffi
π

4

r
η1=2Hð2Þ

ν ðkηÞ: ð97Þ

Thus, we obtain the following expression:

jδχkj2 ≃
jηj
16

�
kjηj
2

�
−2ν

ðH ≤ k ≤
ffiffiffi
2

p
=jηjÞ: ð98Þ

From Eqs. (96) and (98), the renormalized vacuum fluc-
tuations are given by

hδϕ2iren ≃
ðHjηjÞ3−2ν

9π2

Z
H

0

kdk

þ H2jηj3−2ν
4π2 · 23−2ν

Z ffiffi
2

p
=jηj

H
k2−2νdk ð99Þ

≃
H2

18π2
e−

2m2t
3H þ 3H4

8π2m2
ð1 − e−

2m2t
3H Þ: ð100Þ

For late cosmic time (Ntot ¼ Ht ≫ H2=m2), the renormal-
ized vacuum fluctuations hδϕ2iren in de Sitter background
are approximately written as

hδϕ2iren ≃
3H4

8π2m2
: ð101Þ
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These vacuum field fluctuations as described by
Eqs. (64) and (101) are corresponding to the quantum
particle creation from the curved background, and there-
fore, once generated vacuum fluctuations remain on the
cosmological timescale. However, if the created particles
can decay into other particles, the created vacuum field
fluctuations would disappear on the particle decay
timescale.

V. RENORMALIZED VACUUM FIELD
FLUCTUATIONS IN DYNAMICAL SCALAR

FIELD BACKGROUND

In the general cosmological situations, the background
Higgs field dynamically changes and does not stagnate for
all times. The dynamical variation of the Higgs field or
other scalar field coupled with the Higgs field provides a
varying effective mass and leads to real particle productions
or the vacuum fluctuations of the Higgs field. Even in the
slowly varying scalar field background, the generated
vacuum field fluctuations are non-negligible. In this sec-
tion, we consider the vacuum field fluctuations in the
slowly varying scalar field background following the
literature [43].

A. The Higgs field background

For convenience, we rewrite Eq. (67) in order to obtain
the renormalized vacuum field fluctuations on the dynami-
cal Higgs field background,

hδϕ2iren ¼
1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k f2nk þ 2Rezkg; ð102Þ

where nk and zk are determined by the differential equa-
tions of Eq. (68) as follows:

n0k ¼
Ω0

k

Ωk
Rezk; z0k ¼

Ω0
k

Ωk

�
nk þ

1

2

�
− 2iΩkzk: ð103Þ

For simplicity we assume the initial conditions to be
nkðη0Þ ¼ zkðη0Þ ¼ 0, and obtain the following equations:

nkðηÞ ¼
Z

η

η0

dη1

Z
η1

η0

dη2
Ω0

kðη1Þ
Ωkðη1Þ

Ω0
kðη2Þ

Ωkðη2Þ

× cos

�
2

Z
η1

η2

dη3Ωkðη3Þ
��

1

2
þ nkðη2Þ

�
; ð104Þ

RezkðηÞ ¼
Z

η

η0

dη1
Ω0

kðη1Þ
Ωkðη1Þ

cos

�
2

Z
η

η1

dη2Ωkðη2Þ
�

×

�
1

2
þ
Z

η1

η0

dη3
Ω0

kðη3Þ
Ωkðη3Þ

Rezkðη3Þ
�
: ð105Þ

Let us consider the following condition as

����
Z

η

η0

dη1
Ω0

kðη1Þ
Ωkðη1Þ

���� ≪ 1; ð106Þ

which corresponds to the small time difference of M̄2ðηÞ as
follows:

jM̄2ðηÞ − M̄2ðη0Þj ≪ 2M̄2ðηÞ or 2M̄2ðη0Þ: ð107Þ

In this assumption, we can approximate Eqs. (104) and
(105) as follows:

nkðηÞ ≃ 0;

RezkðηÞ ≃
1

2

Z
η

η0

dη1
Ω0

kðη1Þ
Ωkðη1Þ

cos

�
2

Z
η

η1

dη2Ωkðη2Þ
�
:

ð108Þ

Furthermore, we can approximate Eq. (108) as the
following:

RezkðηÞ≃
1

2

Z
η

η0

dη1
M̄ðη1ÞM̄0ðη1Þ

Ω2
kðη1Þ

cos
�
2

Z
η

η1

dη2Ωkðη2Þ
�

≃
1

2Ω2
kðηÞ

Z
η

η0

dη1M̄ðη1ÞM̄0ðη1Þcosf2ΩkðηÞðη−η1Þg:

ð109Þ

From Eq. (102), we obtain the renormalized vacuum field
fluctuations,

hδϕ2iren ¼
1

2π2CðηÞ
Z

∞

0

dkk2Ω−1
k fnk þ Rezkg

≃
1

2π2CðηÞ
Z

∞

0

dkk2Ω−3
k

Z
η

η0

dη1M̄ðη1ÞM̄0ðη1Þ

× cosf2ΩkðηÞðη − η1Þg: ð110Þ

By integration by parts, we have the following expression:

hδϕ2iren ≃
M̄2ðηÞ
8π2CðηÞ ðM̄

2ðη0Þ − M̄2ðηÞÞ
Z

∞

0

dkΩ−3
k

þ 1

4π2CðηÞ
Z

∞

0

dkΩ−1
k

Z
η

η0

dη1

× M̄ðη1ÞM̄0ðη1Þ cosf2ΩkðηÞðη − η1Þg

þ M̄2ðηÞ
4π2CðηÞ

Z
∞

0

dkΩ−2
k

Z
η

η0

dη1

× ðM̄2ðη1Þ − M̄2ðη0ÞÞ sinf2ΩkðηÞðη − η1Þg;
ð111Þ

which is equivalent to the result by using the perturbation
technique [79]. By performing the integration, we obtain
the following expression:
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hδϕ2iren ≃
1

8π2a2ðηÞ ðM̄
2ðη0Þ− M̄2ðηÞÞ

−
1

8π2a2ðηÞ
Z

η

η0

dη1M̄ðη1ÞM̄0ðη1ÞN0ð2M̄ðη− η1ÞÞ

þ M̄2ðηÞ
8π2a2ðηÞ

Z
η

η0

dη1ðη− η1Þ

× ðM̄2ðη1Þ− M̄2ðη0ÞÞFð2M̄ðη− η1ÞÞ; ð112Þ

where N0ðxÞ is the Bessel function, FðxÞ is the combina-
tion of Bessel function NαðxÞ and Struve functions HαðxÞ
defined by FðxÞ≡H0ðxÞN1ðxÞ þ N0ðxÞH−1ðxÞ, and M̄ðηÞ
is described by M̄ðηÞ ≃ 3λaðηÞϕ2ðηÞ.
When the expansion of the Universe is slow and the

background Higgs field ϕðηÞ evolves quickly on the
cosmological timescale, the vacuum field fluctuations
evolve in proportion to M̄ðηÞ. The vacuum field fluctua-
tions given by Eq. (112) would be approximately equal
to the first-order adiabatic approximation of Eq. (37)
where the odd-order adiabatic number density is zero as

nð2nþ1Þ
k ¼ 0. As previously discussed, the second-order

approximation of the vacuum field fluctuations are given
by Eq. (59),

hδϕ2iren ¼
1

48π2a2ðηÞ
M̄00ðηÞ
M̄ðηÞ ;

M̄2ðηÞ ¼ a2ðηÞðm2 þ 3λϕ2 þ ðξ − 1=6ÞRÞ: ð113Þ

Thus, we obtain the following expression of the second-
order adiabatic vacuum fluctuations to be

hδϕ2iren ¼
1

48π2

�
ä
a
þ ȧ2

a2
þ 3

2

ȧ
a

ðξ − 1=6ÞṘþ 6λϕϕ̇

m2 þ ðξ − 1=6ÞRþ 3λϕ2

−
1

4

ððξ − 1=6ÞṘþ 6λϕϕ̇Þ2
ðm2 þ ðξ − 1=6ÞRþ 3λϕ2Þ2

þ 1

2

ðξ − 1=6ÞR̈þ 6λðϕϕ̈þ ϕ̇2Þ
m2 þ ðξ − 1=6ÞRþ 3λϕ2

�
: ð114Þ

If the large background Higgs field ϕðtÞ exists, and we can
safely neglect the mass terms or the nonminimal curvature
terms, the second-order adiabatic expression of the vacuum
field fluctuations are written as

hδϕ2iren ≃
1

48π2

�
1

6
Rþ 3Hϕ̇

ϕ
þ ϕ̈

ϕ

�
: ð115Þ

From Eqs. (114) and (115), when the curvature effects are
negligible, and the Higgs background field evolves quickly
as ϕðtÞ ≈ e−MðϕÞt or ϕðtÞ ≈ sin ðMðϕÞtÞ, the renormalized
vacuum fluctuations on the dynamical Higgs field back-
ground can be approximated by

hδϕ2iren ≃
M2ðϕÞ
48π2

: ð116Þ

If the Higgs field has the large effective mass MðϕÞ, the
Higgs background field develops rapidly on the cosmo-
logical timescale and the vacuum field fluctuations of the
Higgs field glow in proportion to the Higgs mass MðϕÞ.

B. The scalar (inflaton) field background

When there are other coherent or classical scalar fields S
as the inflaton field which couples the Higgs field with λϕS,
the effective mass of the Higgs field can be generated as
m2

ϕS ¼ λϕSS2. The effective Higgs mass becomes M̄2ðηÞ ¼
a2ðηÞðm2 þ 3λϕ2 þ λϕSS2 þ ðξ − 1=6ÞRÞ and the second-
order adiabatic vacuum fluctuations are given as follows:

hδϕ2iren

¼ 1

48π2

�
ä
a
þ ȧ2

a2
þ 3

2

ȧ
a

ðξ − 1=6ÞṘþ 6λϕϕ̇þ 2λϕSSṠ

m2 þ ðξ − 1=6ÞRþ 3λϕ2 þ λϕSS2

−
1

4

ððξ − 1=6ÞṘþ 6λϕϕ̇þ 2λϕSSṠÞ2
ðm2 þ ðξ − 1=6ÞRþ 3λϕ2 þ λϕSS2Þ2

þ 1

2

ðξ − 1=6ÞR̈þ 6λðϕϕ̈þ ϕ̇2Þ þ 2λϕSðSS̈þ Ṡ2Þ
m2 þ ðξ − 1=6ÞRþ 3λϕ2 þ λϕSS2

�
:

ð117Þ

For large background scalar field SðtÞ, the second-order
adiabatic vacuum fluctuations are given by

hδϕ2iren ≃
1

48π2

�
1

6
Rþ 3HṠ

S
þ S̈
S

�
: ð118Þ

The evolution of the background scalar field SðtÞ is
determined by the effective scalar potential VeffðSÞ.
Thus, the renormalized vacuum fluctuations of the Higgs
field on the dynamical background scalar field are given by

hδϕ2iren ≃
m2

S

48π2
; ð119Þ

where mS is defined by V00
effðSÞ ¼ m2

S. The vacuum fluc-
tuations of the Higgs field expand in proportion to the
curvature scale R, the mass of the Higgs field ϕ or the scalar
field S in the FLRW background.

VI. ELECTROWEAK VACUUM INSTABILITY
IN FLRW BACKGROUND

So far we have discussed the vacuum field fluctuations
of the Higgs field in various situations. In this section, we
investigate the electroweak vacuum instability in the FLRW
background by using the results of Secs. III–V.
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The stability of the electroweak vacuum is determined
by the dynamics of the background Higgs field and the
vacuum fluctuations of the Higgs field. As previous
discussed in Sec. II, the one-loop effective evolution
equation of the Higgs field is written as follows:

ϕ̈þ 3Hϕ̇þ ∂VeffðϕÞ
∂ϕ ¼ 0; ð120Þ

where the one-loop standard model effective Higgs poten-
tial in curved background can written as [18,80]

VeffðϕÞ ¼
1

2
m2ðμÞϕ2 þ 1

2
ξðμÞRϕ2 þ λðμÞ

4
ϕ4

þ
X9
i¼1

ni
64π2

M4
i ðϕÞ

�
log

M2
i ðϕÞ
μ2

− Ci

�
; ð121Þ

M2
i ðϕÞ ¼ κiϕ

2 þ κ0i þ θiR; ð122Þ

where the coefficients ni, κi, κ0i, θi, and Ci are given by
Table I of Ref. [18]. The effective evolution equation and
the one-loop effective potential in curved background has
been well known in the literature [43–62].
As previously discussed, however, the additional con-

tribution from the gravitational vacuum fluctuations of the
Higgs field change the effective evolution equation of the
Higgs field as follows:

ϕ̈þ 3Hϕ̇þ ∂VeffðϕÞ
∂ϕ þ 3λðμÞhδϕ2irenϕ ¼ 0; ð123Þ

where the vacuum fluctuations term provides the effective
mass and this formulation was first discussed by the
literature [43]. This expression can be obtained even by
replacing the Higgs field ϕ2 → ϕ2 þ hδϕ2iren so as to
include the backreaction terms from the Higgs vacuum
fluctuations [25]. Thus, the standard model Higgs potential
in curved background should be modified as follows:

VeffðϕÞ ¼
1

2
m2ðμÞϕ2 þ 1

2
ξðμÞRϕ2 þ 3λðμÞ

2
hδϕ2irenϕ2

þ λðμÞ
4

ϕ4 þ
X9
i¼1

ni
64π2

M4
i ðϕÞ

�
log

M2
i ðϕÞ
μ2

− Ci

�
;

hδϕ2iren ¼
1

4π2CðηÞ
Z

∞

0

dkk2Ω−1
k f2nk þ 2Rezkg; ð124Þ

which includes the backreaction of the Higgs fluctuation.
Next let us discuss some issues of the renormalization

scale μ. Generally speaking, we take the renormalization
scale μ so as to suppress the high order log corrections
about log ðM2

i ðϕÞ=μ2Þ. In Minkowski spacetime as
R ¼ 0, we usually take the renormalization scale to be
μ ≈ ϕ. The renormalization scale μ corresponds to the

phenomenological/cosmological energy scale described
as the effective mass of the scalar field. Although the
log correction in Eq. (122) does not include the vacuum
fluctuation terms, the high-order expressions would have
these terms and therefore the renormalization scale should
be taken as μ2 ≈ ϕ2 þ hδϕ2iren þ R.
The running couplings m2ðμÞ, ξðμÞ, and λðμÞ change

depending on the renormalization scale μ. The running
Higgs self-coupling λðμÞ becomes negative at the high-
energy scale ΛI .

4 If the renormalization scale becomes
larger than the instability scale to be μ2 ≃ Rþ hδϕ2iren≳
Λ2
I , the running Higgs self-coupling λðμÞ becomes negative

and the backreaction term of the Higgs fluctuation desta-
bilizes the Higgs potential [25]. On the other hand, the
vacuum fluctuations of the W=Z bosons and the top quark
expressed by hδW2iren, hδZ2iren, and hδt2iren can stabilize
the effective Higgs potential. The modified effective Higgs
potential including the vacuum fluctuation of the various
SM fields can be written as follows:

VeffðϕÞ ¼
1

2
m2ðμÞϕ2 þ 1

2
ξðμÞRϕ2 þ 3λðμÞ

2
hδϕ2irenϕ2

þ λðμÞ
4

ϕ4 þ g2ðμÞ
8

hδW2irenϕ2

þ ½g2ðμÞ þ g02ðμÞ�
8

hδZ2irenϕ2 þ y2t ðμÞ
4

hδt2irenϕ2

þ
X9
i¼1

ni
64π2

M4
i ðϕÞ

�
log

M2
i ðϕÞ
μ2

− Ci

�
; ð125Þ

where the vacuum fluctuations of the Higgs, W=Z bosons,
and the top quark strongly depend on their masses.
Especially, these backreaction effects of the W=Z bosons
and top quark would become also crucial factors of the
Higgs vacuum stability in the FLRW background. In this
present paper, however, we focus on only the backreaction
of the Higgs fluctuation and leave detailed discussion of
the Higgs vacuum stability with the backreaction of the
SM particles for a forthcoming work.
The Higgs field can cosmologically acquire various

effective masses from various couplings. The nonminimal
curvature coupling ξðμÞ provides an extra contribution to
the Higgs field mass. Furthermore, if there are coherent
scalar fields to couple the Higgs field with λϕS, the
dynamical mass of the Higgs field can be generated by
the interaction λϕSS2 where S is the Higgs-coupled scalar
field. In this section, let us consider the curvature mass

4The instability scale ΛI can be approximately determined by
the value of the Higgs boson mass and the top quark mass. The
current measurements of the Higgs boson mass mh ¼ 125.09�
0.21ðstatÞ � 0.11ðsystÞ GeV [1–4] and the top quark mass mt ¼
172.44� 0.13ðstatÞ � 0.47ðsystÞ GeV [5] show the instability
scale to be ΛI ≈ 1011 GeV [81] although this instability scale ΛI
depends on the gauge (see [82–87] for the detailed discussions).
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ξðμÞR and the dynamical mass λϕSS2. The magnitude
relation of the effective mass m2

eff ≃ ξðμÞRþ λϕSS2 and
the renormalized vacuum fluctuations of the Higgs field
determine the stability of the effective Higgs potential. If
the effective Higgs potential is destabilized by the vacuum
field fluctuations, the Higgs effective potential becomes
negative as ∂VeffðϕÞ=∂ϕ≲ 0, and therefore, the coherent
Higgs field ϕðtÞ on the entire Universe rolls down to the
Planck-scale true vacuum.
For ξðμÞR ≫ λϕSS2 the renormalized vacuum fluctua-

tions of the Higgs field are summarized as

hδϕ2iren
�
≃R=288π2 ðξðμÞ≳Oð10−1ÞÞ;
≳OðRÞ ðξðμÞ≲Oð10−1ÞÞ: ð126Þ

For de Sitter background with R ¼ 12H2, the renormalized
Higgs fluctuations are given by [80]

hδϕ2iren ≃
�
H2=24π2 ðξðμÞ ≳Oð10−1ÞÞ;
H2=32π2ξðμÞ ðξðμÞ ≲Oð10−1ÞÞ; ð127Þ

where the above expressions are valid during the inflation.
However, after inflation, the nonminimal curvature term
ξðμÞR can generate the enormous Higgs vacuum fluctua-
tions via tachyonic resonance as hδϕ2iren ≫ OðRÞ where
the nonminimal curvature term ξðμÞ is relatively large. If
we assume the simple chaotic inflation model, we can
numerically obtain the constraint of the tachyonic reso-
nance not to generate the large Higgs vacuum fluctuations
as ξðμÞ≲Oð10Þ (see Refs. [28–33] for the detailed
discussions).
For μ2≃Rþhδϕ2iren≳Λ2

I , the Higgs self-coupling λðμÞ
becomes negative5 and the destabilization of the effective
Higgs potential can be determined by the following relation
ξðμÞR≲ jλðμÞjhδϕ2iren where we can assume λðμÞ ≃ −0.01.
In de Sitter background,6 we obtain the condition of
the nonminimal coupling to be ξðμÞ ≲Oð10−3Þ not to
destabilize the effective Higgs potential [25]. In the
radiation/matter dominated universe, we can expect the
same constraint of the nonminimal coupling. If ξðμÞ does
not satisfy this condition, the effective Higgs potential
VeffðϕÞ is destabilized, the coherent Higgs field goes out to

the negative Planck vacuum and leads to the collapse of
the Universe.
For ξðμÞR ≪ λϕSS2, the renormalized vacuum fluctua-

tions of the Higgs field are given by

hδϕ2iren ≃
�
M2ðϕÞ=48π2 ðλϕSS2 ≲ λϕ2Þ;
m2

S=48π
2 ðλϕSS2 ≳ λϕ2Þ; ð128Þ

where the above expressions are valid for the slowly
varying scalar field. In the rapid varying case, the Higgs
fluctuations become generally larger than the above expres-
sions. As well-known facts, in the parametric/tachyonic
resonance during the preheating stage, the vacuum fluctu-
ations exponentially grow where a complicated numerical
analysis is required. If we assume the simple m2

SS
2

chaotic inflation model, we can numerically obtain the
restriction of the parametric resonance not to generate
the large Higgs fluctuations as λϕS ≲Oð10−8Þ (see
Refs. [28–33] for the detail).
For μ2 ≃ Rþ hδϕ2iren ≳ Λ2

I , the effective Higgs poten-
tial is destabilized in λϕSS2 ≲ jλðμÞjhδϕ2iren. Considering
m2

SS
2 chaotic inflation where the inflaton field S has the

Planck-field value S ≈MPl ≈ 1019 GeV, the stabilization
condition during inflation is λϕS ≳Oð10−13Þ.7 Thus, the
inflaton-Higgs coupling λϕS can stabilize the Higgs poten-
tial during inflation. After inflation, however, the para-
metric/tachyonic resonance via the coherent oscillation of S
can generate the enormous Higgs fluctuations with the
relatively large coupling λϕS. Moreover, if the inflaton/other
scalar field S satisfy the following relations λðμÞhδϕ2iren ≃
λðμÞm2

S=48π
2 ≳ Λ2

I and λðμÞm2
S=48π

2 ≳ λϕSS2, the Higgs
fluctuations destabilize the effective Higgs potential. This
situation could easily happen after inflation. If we takeΛI ≈
1011 GeV and λðμÞ ≃ −0.01, we obtain a new constraint of
the mass of the inflaton/scalar field to be mS ≲ 1013 GeV.
On the other hand, the vacuum fluctuations of the Higgs

field expressed as hδϕ2iren can cause directly the vacuum
transition to the true vacuum [13–24,29]. This situation is
essentially different from the phenomenon discussed pre-
viously. If the inhomogeneous Higgs fields overcome the
hill of the effective potential, the localized Higgs fields
classically go out to the true vacuum and catastrophic anti–
de Sitter (AdS) domains are formed. Although not all Higgs
AdS domains threaten the existence of the Universe
[22,24], which highly depends on the evolution of the5For μ2 ≃ Rþ hδϕ2iren ≲ Λ2

I , the running Higgs self-coupling
λðμÞ becomes positive unless ϕ≳ ΛI . Thus, the homogeneous
Higgs field ϕðtÞ cannot classically roll down into the Planck-scale
true vacuum. However, the large vacuum fluctuations of the
Higgs field can generate AdS domains or bubbles as shown in
Eq. (134).

6During inflation, the curvature mass ξðμÞR stabilizes
the effective Higgs potential and suppresses AdS domains/
bubbles. Thus, the electroweak vacuum decay can be avoided
if the relatively large nonminimal curvature coupling ξðμÞ is
introduced.

7For m2
SS

2 chaotic inflation where mS ≈H ≈ 1014 GeV,
the renormalized vacuum fluctuations of the Higgs field are
written as

hδϕ2iren ≃
3H4

8π2λϕSS2
þ m2

S

48π2
;

where we ignore the curvature mass term ξðμÞ12H2.
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Higgs AdS domains (for the details see Refs. [24,38]),
some AdS domains expand, eating other regions of the
electroweak vacuum, and consume the entire Universe.
Thus, the existence of AdS domains in the Universe is still
serious and the creation of the Higgs AdS domains/bubbles
should not happen in our Universe.
Let us consider the conditions not to generate the AdS

domains/bubbles. The probability of the Higgs fluctuations
can be expressed as the Gaussian distribution function

PðϕÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhδϕ2iren

p exp

�
−

ϕ2

2hδϕ2iren

�
: ð129Þ

By using Eq. (129), the probability not to produce AdS
domains/bubbles is given by

Pðϕ < ϕmaxÞ≡
Z

ϕmax

−ϕmax

PðϕÞdϕ ð130Þ

¼ erf

�
ϕmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hδϕ2iren

p �
: ð131Þ

where we define ϕmax to be the effective Higgs potential
of Eq. (122), which takes its maximal value.8 Thus, the
probability that the localized Higgs fields roll down into the
true vacuum is given by

Pðϕ > ϕmaxÞ ¼ 1 − erf

�
ϕmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hδϕ2iren

p �

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hδϕ2iren

p
πϕmax

exp

�
−

ϕ2

2hδϕ2iren

�
: ð132Þ

The vacuum decay probability of the inflationary universe
can be expressed as

e3NhorPðϕ > ϕmaxÞ < 1; ð133Þ

where e3Nhor corresponds to the physical volume of the
Universe at the end of the inflation, and we can take the
e-folding number Nhor ≃ NCMB ≃ 60. By substituting

Eq. (133) into Eq. (132), we obtain the following relation
of the electroweak vacuum stability:

hδϕ2iren
ϕ2
max

<
1

6Nhor
: ð134Þ

The above condition can be determined by the effective
Higgs potential of Eq. (122) and the Higgs vacuum
fluctuations of Eqs. (126)–(128). The inflationary universe
restricts ξðμÞ ≳Oð10−2Þ or λϕS ≳Oð10−12Þ not to generate
the AdS domains/bubbles. These obtained constraints are
somewhat tighter than the destabilization conditions of the
effective Higgs potential. If the relatively large coupling ξ
or λϕS is introduced, the false Higgs vacuum can be safe
during inflation. But after inflation the large coupling ξ or
λϕS generate large Higgs fluctuations via the parametric/
tachyonic resonance.
After all the Higgs fluctuations in the nonadiabatic

case as discussed in Sec. IV generally destabilize the false
electroweak vacuum. On the other hand, the Higgs fluc-
tuations in the adiabatic case as discussed in Sec. III
have little effect on the electroweak vacuum stability.
However, if there are large inflaton fields or some scalar
fields S satisfying both relations λðμÞm2

S=48π
2 ≳ Λ2

I and
λðμÞm2

S=48π
2 ≳ λϕSS2, the Higgs fluctuations destabilize

the effective Higgs potential or generate the AdS domains/
bubbles. The cosmological stability of the electroweak
vacuum is highly unstable due to vacuum fluctuations
of the Higgs field and imposes severe cosmological
constraints.

VII. CONCLUSION AND SUMMARY

In this paper, we have thoroughly investigated the
stability of the electroweak vacuum in the FLRW back-
ground. Adopting the adiabatic (WKB) approximation or
adiabatic regularization methods, we have clearly shown
that the Higgs vacuum fluctuations depend on the curvature
scale and also the masses of the Higgs field or other scalar
field. Next, we have discussed the renormalization issues of
the vacuum field fluctuations and shown that the standard
effective potential is modified by the gravitational back-
reaction effects. Furthermore in Sec. VI we have shown
how the vacuum fluctuations of the Higgs field influence
the stability of the electroweak vacuum in a rigid manner
of the QFT in curved spacetime. The Higgs fluctuations
in the nonadiabatic case as discussed in Sec. IV generally
destabilize the effective Higgs potential, or generate the
Higgs AdS domains or bubbles. On the other hand, the
Higgs fluctuations in the adiabatic case as discussed in
Sec. III does not generally cause the collapse of the Higgs
vacuum. However, if there are large background scalar
fields as discussed in Sec. V, the vacuum fluctuations of the
Higgs field can destabilize the effective Higgs potential
and give the upper bound on the scalar mass to be

8The effective Higgs potential with the large effective mass
meff can be approximated as

VeffðϕÞ ≃
1

2
m2

effϕ
2

�
1 −

1

2

�
ϕ

ϕmax

�
2
�
;

where ϕmax is approximately given by

ϕmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−
m2

eff

λðμÞ

s
:

In numerical approximation, we can approximate the maximal
field value as ϕmax ≃ 10 ·meff for the effective Higgs potential.
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mS ≲ 1013 GeV. We have provided new cosmological
constraints and comprehensive descriptions about the
Higgs vacuum stability in the FLRW background.
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APPENDIX: ADIABATIC (WKB)
APPROXIMATION METHOD

In this Appendix we introduce a detailed description
of the adiabatic (WKB) approximation method following
literature [43,69]. In order to give the renormalized vacuum
field fluctuations we must solve Eq. (68) with the suitable
in vacuum as follows:

n0k ¼
Ω0

k

Ωk
Rezk; z0k ¼

Ω0
k

Ωk

�
nk þ

1

2

�
− 2iΩkzk: ðA1Þ

For simplicity we assume zk ¼ uk þ ivk, i.e., uk ¼ Rezk
and vk ¼ Imzk. By using these relations we can rewrite
Eq. (A1) as follows:

n0k ¼
Ω0

k

Ωk
uk; ðA2Þ

u0k ¼
Ω0

k

Ωk

�
nk þ

1

2

�
þ 2Ωkvk; ðA3Þ

v0k ¼ −2Ωkuk: ðA4Þ

Here, we introduce a single formal adiabatic parameter T
and a rescaling time variable τ≡ η=T. The adiabatic
(WKB) condition of Eq. (30) can be restated by

d
dη

Ωðη=TÞ ¼ 1

T
d
dτ

ΩðτÞ; ðA5Þ

with T → ∞. By using this procedure we can rewrite
Eqs. (A2)–(A4) as follows:

1

T
n0k ¼

1

T
Ω0

k

Ωk
uk; ðA6Þ

1

T
u0k ¼

1

T
Ω0

k

Ωk

�
nk þ

1

2

�
þ 2Ωkvk; ðA7Þ

1

T
v0k ¼ −2Ωkuk: ðA8Þ

Next we expand nk, uk, and vk in inverse powers of T as

nk ¼ nð0Þk þ 1

T
nð1Þk þ 1

T2
nð2Þk þ � � � ; ðA9Þ

uk ¼ uð0Þk þ 1

T
uð1Þk þ 1

T2
uð2Þk þ � � � ; ðA10Þ

vk ¼ vð0Þk þ 1

T
vð1Þk þ 1

T2
vð2Þk þ � � � ; ðA11Þ

where superscripts (i) express the adiabatic order, and the
zeroth order expressions are given by

nð0Þk ¼ const; uð0Þk ¼ 0; vð0Þk ¼ 0; ðA12Þ
where we solve Eqs. (A6)–(A8) with an iterative procedure.
The above integration constant can be determined by the
initial conditions for nkðη0Þ, and zkðη0Þ, which correspond
to the choice of the in vacuum. For the conformal vacuum
nkðη0Þ ¼ zkðη0Þ ¼ 0, the zeroth-order adiabatic number

density nð0Þk is zero. For the first adiabatic order, we can
obtain the following expression:

nð1Þk ¼0; uð1Þk ¼0; vð1Þk ¼−
1

2

Ω0
k

Ω2
k

�
nð0Þk þ1

2

�
; ðA13Þ

where the odd-order adiabatic number density is zero. Next
we can obtain the second order adiabatic expressions as
follows:

nð2Þk ¼ 1

16

Ω02
k

Ω4
k

; uð2Þk ¼ 1

8

Ω00
k

Ω3
k

−
1

4

Ω02
k

Ω4
k

; vð2Þk ¼ 0:

ðA14Þ
In the same way, the third order adiabatic expressions can
be given by

nð3Þk ¼ 0; uð3Þk ¼ 0; ðA15Þ

vð3Þk ¼ 1

16Ω4
k

�
Ω000

k − 7
Ω0

kΩ00
k

Ωk
þ 15

2

Ω03
k

Ω2
k

�
: ðA16Þ

Finally, the fourth order adiabatic expressions are given by

nð4Þk ¼ −
Ω0

kΩ000
k

32Ω6
k

þ Ω002
k

64Ω6
k

þ 5Ω02
kΩ00

k

32Ω7
k

−
45Ω04

k

256Ω8
k

; ðA17Þ

uð4Þk ¼ −
Ω0000

k

32Ω5
k

þ 11Ω0
kΩ000

k

32Ω6
k

−
115Ω02

kΩ00
k

64Ω7
k

þ 7Ω002
k

32Ω6
k

þ 45Ω04
k

32Ω8
k

; ðA18Þ

vð4Þk ¼ 0: ðA19Þ
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