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The cosmological Higgs vacuum stability has been an attractive research subject, and it is crucial to
accurately follow the development of the Higgs fluctuations. In this work, we thoroughly investigate how
the vacuum fluctuations of the Higgs field affect the stability of the electroweak vacuum in Friedmann-
Lemaitre-Robertson-Walker (FLRW) background. Adopting adiabatic Wentzel-Kramers-Brillouin method
approximation or adiabatic regularization methods, we clearly show that vacuum fluctuations of the Higgs
field in the FLRW background depend on the curvature and also masses of the Higgs or other scalar fields.
The Higgs fluctuations can generate true vacuum bubbles and trigger off a collapse of the electroweak
vacuum. Furthermore we clearly show that the effective Higgs potential in the FLRW background is
modified by the Higgs vacuum fluctuations. The vacuum fluctuations of the standard model fields can
stabilize or destabilize the effective Higgs potential through backreaction effects. Considering the improved
effective Higgs potential with the Higgs vacuum fluctuations (5¢?) in various backgrounds, we provide
new cosmological constraints on the mass of the Higgs-coupled scalar fields and a quantitative description

of the Higgs stability in the FLRW background.
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I. INTRODUCTION

The Large Hadron Collider (LHC) experiments discov-
ered the Higgs boson and established the Standard Model
(SM) of particle physics. But currently central values
of the Higgs boson mass m;, = 125.09 + 0.21(stat) £
0.11(syst) GeV [1-4] and the top quark mass m, =
172.44 + 0.13(stat) 4 0.47(syst) GeV [5] suggest that
the effective Higgs potential develops an instability about
the scale A; ~ 10'! GeV. Therefore, if there are no new
physics to stabilize the Higgs field, the current electroweak
vacuum is not stable and finally causes a vacuum decay
through quantum tunneling [6—8]. Fortunately, the vacuum
decay time scale is longer than the age of the Universe
[9-12], and therefore, it has been thought that the meta-
stability of our electroweak vacuum does not cause
cosmological problems to the observed Universe.
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However, the recent investigations [13—27] reveal that
the metastable electroweak vacuum becomes incompatible
with large-field inflation models. It is well known that the
vacuum fluctuations (5¢?) of the quantum field glow
rapidly in the inflationary de Sitter phase. If the inflationary
de Sitter fluctuations of the Higgs field (5¢?) overcome
the barrier of the effective Higgs potential V (), an
unwanted vacuum transition to a Planck-scale true vacuum
immediately occurs and causes a collapse of the Universe.
Furthermore, even after the inflation, the large vacuum
fluctuations of the Higgs field are generated via parametric
resonance or tachyonic resonance, and can become poten-
tially problematic [28—33]. Besides that, the false vacuum
decay of the Higgs can be enhanced in Schwarzschild
background [34-42], and therefore the existence of the tiny
primordial black holes might not favor the metastability
of the Higgs vacuum. The cosmological Higgs vacuum
stability has been an attractive research subject, and it is
crucial to accurately follow the development of the Higgs
fluctuations.

In the present paper we thoroughly investigate how the
vacuum fluctuations of the Higgs field affect the stability
of the electroweak vacuum in Friedmann-Lemaitre-
Robertson-Walker (FLRW) background spacetime. We
consider the vacuum fluctuations of the Higgs field
described by the two-point correlation function (5¢?) using
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several methods of the quantum field theory (QFT) in
curved spacetime like adiabatic Wentzel-Kramers-Brillouin
method (WKB) approximation or adiabatic regularization.
Then, we derive the improved effective potential in FRW
background based on Ref. [43]. Previous works [13-27]
about the Higgs vacuum stability in FRW background are
based on the standard effective potential in curved space-
time such as Eq. (121). However, the vacuum fluctuations
(8¢*) of the Higgs field can modify the effective potential,
and we must consider the modified effective potential such
as Eq. (124) or (125). This matter was not pointed out in
previous investigations except for our paper [25], but it is
not in a comprehensive manner. The vacuum fluctuations
(5¢*) depend on the mass, the couplings, or the back-
ground, and therefore, we consider various situations in
Secs. IV and V. Considering the improved effective Higgs
potential with the Higgs vacuum fluctuations (5¢?) in
various backgrounds, we provide new cosmological con-
straints on the mass of the Higgs-coupled scalar fields and a
quantitative description of the Higgs vacuum stability in the
FLRW background.1

This paper is organized as follows. In Sec. Il we derive the
standard effective potential in curved spacetime by using the
adiabatic (WKB) approximation. In Sec. III we consider the
renormalized vacuum fluctuations in the FLRW background
where the mass of the quantum field is larger than the
curvature scale. In Sec. IV we discuss the renormalized
vacuum fluctuations of the massless fields in the FLRW
background and provide the detail calculations of the
renormalized vacuum fluctuations in the adiabatic regulari-
zation methods. In Sec. V we consider the renormalized
vacuum fluctuations in the dynamical scalar field back-
ground. In Sec. VI we discuss how the vacuum fluctuations
of the Higgs field affect the stability of the electroweak
vacuum. We clearly show that the large Higgs fluctuations in
the FLRW background modify the standard effective Higgs
potential as the backreaction effects and also generate true
vacuum bubbles or domains. We discuss various cosmo-
logical constraints on the metastable electroweak vacuum in
the FLRW background. Finally, in Sec. VII we conclude
our work.

II. STANDARD EFFECTIVE POTENTIAL
IN CURVED BACKGROUND

The cosmological dynamics of the Higgs field can be
determined by the effective potential. The matters of the
effective potential in curved background has been thor-
oughly investigated in the literature [43—62], and there are a

'In this paper we focus on the vacuum fluctuations of the Higgs
field and neglect backreaction effects of other field fluctuations
such as gauge bosons or fermions. These backreaction effects
would also become crucial for the Higgs vacuum stability in the
FLRW background. We plan to perform a detailed analysis of the
Higgs vacuum stability including these effects in the future works.

variety of formulations to derive the effective potential in
curved background. In this section, we discuss the standard
effective potential via the adiabatic (WKB) approximation
method following the literature [43]. This formulation can
clearly handle the UV divergences of the vacuum field
fluctuations and simply derive the effective potential in
curved background.

In the present paper, we assume the FLRW background
which is described by the FLRW metric

- @(t) 50 sy
G = diag —l,m,a (t)r=,a*(r)r*sin“0 |, (1)

where a = a(t) express the scale factor with the cosmic
time ¢t and K is the spatial curvature parameter. The
positive, zero, and negative values of the spatial curvature
parameter K are related with closed, flat, and hyperbolic
spacetime. For the spatially flat spacetime, we can take
K = 0 and the Ricci scalar is given as

@) )

where 7 is the conformal time and is defined by dn = dt/a.
In the radiation dominated universe, the scale factor
becomes a(t) « t'/? and the Ricci scalar is expressed as
R =0. On the other hand, in the matter dominated
universe, the scale factor becomes a(t) « t*/*> and the
Ricci scalar is expressed as R = 3H?. Finally, in the de
Sitter universe, the scale factor becomes a(f) o e’ and the
Ricci scalar is expressed as R = 12H”.

The bare (unrenormalized) action for the Higgs field
with the potential V(¢) in curved background is given by

sl = [ #5000+ V). @)

where we assume the simple form for the Higgs potential
with bare parameters as

V(g) = 5 (2 + ERVR 4 @

N[ =

Thus, the Klein-Gordon equation for the Higgs field are
written as

O — m*¢p — ERp — 2p* = 0, (5)

where [ expresses the generally covariant d’ Alembertian
operator, 1 = ¢*V,V, = 1/,/=g0,(,/=g0"), and £ is the
nonminimal Higgs-gravity coupling constant.

In the QFT, we treat the Higgs field ¢(#, x) as the field
operator acting on the ground states, and then the Higgs
field ¢(n,x) is decomposed into a classic field and a
quantum field as
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d(n.x) = ¢+ 6¢(n. x), (6)

where the vacuum expectation value of the Higgs field is
¢. = (0|¢(n, x)|0) and (0|5¢(n, x)|0) = 0. By introducing
the renormalized parameters and the counterterms as
m* = m*(u) +o6m?, &=E(u) +6E, and A= A(u) + 64,
we can obtain the Klein-Gordon equations in the one-loop
approximation as

D¢c - (mz(:u) + 5m2)¢c - (f(ﬂ) + 55)R¢c (7)

=3(A(w) +84)(6¢%) . — (4(n) + 8)p2 = 0,
(0= m?(u) = E(u)R = 34(u)d2)o¢ = 0. (8)
From here we drop the subscript of the classic field ¢, for

convenience. The quantum Higgs field d¢ is decomposed
into each k£ mode as

Mmm:/fmwmwm+dwmw» (9)

where
e ik-x

(27)*2/C(n)
with C(i7) = a*(57). Now, we can build a complete set of the
mode functions, which are orthonormal with respect to the
scalar product in curved background

Oy (1, x) = Sxi(n), (10)

(5. 60b) = —i /2 A5 /=G 604 (0,60,) — (0,50)50.
()

where d2 = n*dZX is expressed by the unit timelike vector
n* and the volume element dX. These orthonormal mode
solutions satisfy

(0pi, pye) = 6(k = k). (12)

The creation and annihilation operators of 8¢, are required
to satisfy the commutation relations

ay, ay) = [a}, al,] = 0,

lay.al] =8(k-Kk), (13)
where the in-vacuum state |0) is defined as a;|0) =0
and depends on the boundary conditions of the mode
functions o¢;. Different boundary conditions of &¢;
correspond to different initial states of the quantum
vacuum. The vacuum field fluctuations (5¢?) of the
Higgs field can be written as

(0l5¢2J0) = / kIS (n. ) (14)

1

— [T akls
ZIEZC(V[)A R

2, (15)

where (5¢?) has ultraviolet (quadratic and logarithmic)
divergences, which require a regularization, e.g., cutoff
regularization or dimensional regularization, and must be
canceled by the counterterms of the couplings.

From Eq. (8), the Klein-Gordon equation for the quan-
tum rescaled field Jy is written by

i + Qo = 0. (16)
where
Qi (n) = k2 4 C(n)(m* 432> + (£ = 1/6)R). ~ (17)

The orthonormal condition of Eq. (12) for the mode
functions dy can be given by

Sy’ — o = 1, (18)

which is the normalization of the mode function ().
Equation (16) is consistent with the differential equation of
the harmonic oscillator with time-dependent mass. Thus,
we can rewrite the mode function 8y () by the two complex
function a(17) and S (n) as

Sxi(n) = Lo (m)opi(n) + Br(m)dpi(m)},  (19)

2€(17)

where 8¢, (1) are given by

¢y (n) = exp {—i/n Qk(’h)d’h}- (20)

From Eq. (16), we can obtain the relations for a;(y) and
Br(n) as the following:

1€ 1€
@ =55 o), By :

=-—* 2(n). (21
2 Qk k 2 Qk aké(pk (I/I) ( )

The Wronskian condition can be written by

| (n)? = 1B (m)|? = 1. (22)

The initial conditions for a;(n9) and p;(ny) correspond
to the choice of the in vacuum. From Eq. (19), the
vacuum field fluctuations (5¢?) of the Higgs field can
be given by

1 0 _
68) = gy || e 1+ 2P

+ o fibpr + aifrdwi’ ) (23)
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where the number density of the created particles and the
corresponding energy density are given by

1 )
N=———— [ dki*B|? 24
sy (24)
p= L/m AKK2Q | |- (25)
272a*(n) Jo Kk

For simplicity, we define n; and z; as the following:

e = \ﬁk|2, ik = akﬁz&ﬂi‘ (26)
From Eq. (21), n; and z; satisfy the following differential
equations:

, Q 1
h= iR =g (mty) -2 @)
Q, 2

To solve Eq. (27), we must take adequately the initial
conditions. For simplicity, we choose the following
condition:

ni(no) = zi(no) = 0, (28)

which is equivalent to a;(19) = 1, Bi(19) = 0 and corre-
sponds to the Minkowski vacuum state which has no
excited particles.” The quantity n; = |$(7)|* can be
interpreted as the number density created in the curved
background. By using n; and z;, we obtain the following
expression of the vacuum field fluctuations as

1 [+
<5¢2> = WA dkkzglzl{l + 2}’lk + 2ReZk}, (29)

where we must adequately solve Eq. (27) and insert n;
and z; into Eq. (29) in order to obtain the vacuum field
fluctuations (5¢?) of the Higgs field. It is difficult to solve
analytically Eq. (27), and therefore, we generally use the
adiabatic (WKB) approximation method, which is valid in
large mass, large momentum mode, or slowly varying
background as follows:

/92| < 1. (30)

By using the adiabatic approximation method, n; and z;
can be approximated as follows [43]:

nk:n,(cz)+n,({4>+---, (31)
Rez;, = Rez,((2> + Rez,(f) +- (32)

*Note that this state is not identified as the Bunch-Davies
vacuum which fixes the Bogoliubov coefficients with the sub-
horizon limit |kn| > 1.

where superscripts (i) express the adiabatic order and the
second order expressions are given by

@_ 19%
=—— 33
TR (33)
@ 1Q 197}
R =- ———F. 34
TG Tag (34)
The fourth order adiabatic expressions are given by
n(4) _ Q/kQ///k Q//% SQ/zQ//k B 459/1 (35)
k 3200 64Q0 1 32Q]  256Q%°
Rez(4) _ Q////k 119/kQ///k B 1159/%9///(
, 32Q7 3200 64Q]
Q"2 45Q%
. £ (36)
32Q)  32Q7

By using the adiabatic (WKB) approximation method, we
can obtain the following approximation of the vacuum field
fluctuations of the Higgs field as

(507) = (602) 0 + (32)2) + (67 +--. (37)
where
1 o0
0 -— - -
6 = e A QT (38)
1

(320 =

¢ A dik*Q {2 + 2Rez™Y.

(39)

Although the higher order approximation can become
finite, the lowest order approximation has UV (quadratic
and logarithmic) divergences. However, the divergences in
the lowest order expression are the same as the divergences
in the flat background. Thus, we can regularize the
divergence integral via the cutoff regularization or the
dimensional regularization and offset the divergences by
the counterterms of the couplings.

By using the dimensional regularization, we obtain the
following lowest order expression as

sl

1
(69%)©) >_€_1og4ﬂ_y_1 :
(40)
with

M?(¢) = m? () + 34(u)p* + (E(u) — 1/6)R.  (41)
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where y is the renormalization scale and y is the Euler-
Mascheroni constant. The counterterms Sm?2, o0&, and o4
must cancel these divergences and are given by

2 _ 3Ap)m’ (k)

1
Sm2 — o (E + log 4 + 7) ; (42)
3 1\ /1
o6& = 16(:2) (5(#) _6> <g+ log4z + }’)’ (43)
92 1
A = 16(;:2) <E + log4n + 7) . (44)

Thus, the renormalized vacuum field fluctuations of the
Higgs field of the lowest order can be given by

(52 = ]Vllzid;) {ln <M;(2¢)) - 1], (45)

where the above expression corresponds to the renormal-
ized vacuum fluctuations in a flat background. From the
renormalized expression of Eq. (45), we can construct the
one-loop evolution equation as follows:

8Veff(¢)
¢

where the one-loop effective potential in curved back-
ground is given by

$+3Hep + =0, (46)

Vel d) = g ) + S Re? + 1) gt
M) [ (@) 3
e [111( P )‘5}’ 7

From the one-loop effective potential of Eq. (47), the one-
loop f functions are given by

i 1822
b= Fing = Gy )
_de 6,
_dm* _ 6im?
P = i~ 30)

Although Eq. (46) is the standard expression to describe
the cosmological dynamics of the Higgs field ¢(¢), this
expression does not include the high-order vacuum fluctua-
tions (5¢?)(>") which correspond to the gravitational particle
productions in curved background. Therefore, the correct
effective-evolution equation is given as follows [43]:

b+ 311+ 5D oy =0, (51

which require the modification of the standard effective
potential. The redefined/modified effective potential in
curved background is given as follows:

Verld) = 2m2 02 + 3 €G0RE + 2 (542)
A 4 2 3
+ Z’)qﬁ“ +A/6[ 4:]25) [In (Mﬂ(f)) —5], (52)

which properly includes gravitational vacuum effects. The
additional term originates from the particle production in
curved spacetime and depends on the vacuum state. Note
that in flat spacetime the vacuum state is unique and the
effective potential has no additional terms [60,62]. Here we
considered the modification of the effective potential from
the particle production effects in curved spacetime. On the
other hand, the particle production can also affect the
spacetime [63—66] as the backreaction effects.

III. RENORMALIZED VACUUM FLUCTUATIONS
FROM ADIABATIC (WKB) APPROXIMATION
METHOD

In the previous section we show that the lowest-order
(Minkowskian) vacuum field fluctuations contract the one-
loop effective potential. However, the higher-order adia-
batic vacuum field fluctuations appear as a result of the
particle production effects in curved background and,
therefore, provide a significant contribution to dynamical
evolutions of the Higgs field. To obtain the exact one-
loop evolution equation in curved background, we must
count up the higher order of the adiabatic approximation.
From Eq. (31), (32), and (39), the second (adiabatic)
order expressions of the vacuum field fluctuations are
given by [43]

1 o Q, 3Q2
5¢p*)?) :4/ dkk*Q {2k =22kl (53
") 162>C(n) Jo Fle 29 (53)

with

Q2 = k> + C(n)(m*> + 34> + (E—1/6)R). (54)

Thus, we can obtain the following expression as

1 S (MM" + M)
5¢?)@ :7/ dkaQ"{i
(04 162°C(n) Jo k Qf
5 M2M/2
- 29—} (55)
'k
with
M = C(n)M*(¢). (56)
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Now, we must perform the integral of Eq. (55). As already
pointed out, the high-order adiabatic expressions such
as (6¢?)?) are UV finite, and therefore there is no need to
renormalize the high-order vacuum field fluctuations.
The corresponding integrals converge to the finite
values by

I(a) = A " Ak (k2 + B2 (57)

_ MFT(3/2)(a—3/2)
2 [(a) ’

(58)

where the above expression is valid for « > 3/2. By using
Eq. (58), the second (adiabatic) order of the vacuum field
fluctuations (5¢*)? are given as follows:

5= 7
__MZMIZI -
>5(3))

1 M//
R 59
487*C(n) M (59)

Thus, the renormalized vacuum fluctuations in curved
background via the adiabatic (WKB) approximation
method are given by

<5¢2>ren = <5¢2>(0) + <5¢2>(2) + -
— M2 1 1\/12 _1 1 M//
_WHF) }erﬁ*“’

where the first term expresses the Minkowskian renor-
malized vacuum field fluctuations, and the second term
describes the dynamical contribution of the renormalized
vacuum fluctuations, which corresponds to the particle
production effects. Next let us consider the second
(adiabatic) order expression at proper time ¢ as

1 a// a/M/ IM//
N2 = — ) 4
(00" 2{a3+2azM+azM}

i

1 {a @ 3a (£—-1/6)R+ 6l
4872 \a ' a®  2am?+ (E—1/6)R + 31>
1 (6= 1/6)R + 6igpp)’
4(m?> + (6= 1/6)R + 31¢?)?
1(E=1/6)R +6A(¢gh + 472)}
2 m2+ (E—1/6)R+3p* |

If we consider the near-conformal coupling case & ~ 1/6,
we can obtain the following expression’:

1 (da a® 3a 6ipg
= g
1/ 6ipdp \2> 161pd+ 6d*
‘Z(m) +5W}
1 (R 3H 6lpp
:W{€+7m2+3z¢2
_1( 6Adpep )2 16/1¢<i5+6/1¢2} (61)
4 \m? + 30¢? 2 m? 347

For nearly constant Higgs field, the time-derivative terms
of ¢ and ¢ are negligible, and the second (adiabatic) order
expressions of the vacuum fluctuations are simplified as

R

5?0 =K
(0¢7) 28872

(62)

Therefore, in the near-conformal coupling case (6~ 1/6
and m < H), we have the high-order vacuum fluctuations
corresponding to the particle production effects as
follows:

~ K o)+ (63)

S 2
< d) >ren 28877,'2

In the radiation dominated universe, the Ricci scalar
becomes R = 0, and in the matter dominated universe, the
Ricci scalar becomes R = 3H?2. On the other hand, in the
de Sitter universe, the Ricci scalar becomes R = 12H?>.
Thus, we summarize the renormalized vacuum field

fluctuations in the massive conformal coupling case
(6~1/6 and m < H) as follows:

0 (radiation dominated universe),
H?/967°
H?/24x°

(60%) ren =

(matter dominated universe),
(de Sitter universe).

(64)

Note that the massive vacuum field fluctuations in curved
background are described by Eq. (63). However, the
massless vacuum field fluctuations cannot satisfy the
adiabatic (WKB) condition of Eq. (30) to be

Q' 2H
— k], 65
Q  m (65)

*Note that if the nonminimal coupling is very small & < 1, one
can safely neglect the curvature mass, and the perturbation
calculation breaks down in the large coupling case £ > 1. Thus,
we focus on the near-conformal coupling case &~ 1/6.
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where we assume m = const, and therefore, the adiabatic
expansion method does not provide exact expressions in
the massless case. In a small mass or rapid varying
background, the vacuum field fluctuations are generally
enlarged to be

(60%)ren > O(H?). (66)

where the vacuum field fluctuations in the nonadiabatic
case are generally larger than the adiabatic one. This
situation cosmologically occurs during inflation for
massless scalar fields or during the preheating stage of
the parametric resonance (see, e.g., Ref. [67]). In the next
section, we discuss vacuum field fluctuations in the
nonanabatic case.

IV. RENORMALIZED VACUUM FLUCTUATIONS
FROM ADIABATIC REGULARIZATION METHOD

In the nonanabatic case, e.g., a small mass or rapid
varying background, we must usually solve the following
equation with the suitable in vacuum:

1 o0
<5¢2>ren = W/O dkszzl{an + ZRCZ](}, (67)
where
Q' Q 1
I’l;c = Q—iRezk, Z;C = Q—Z <Ylk + 5) - ZiQka. (68)

However, it is a hard task to calculate the above equations
in the nonanabatic case. If we assume unspecified initial
conditions or any initial vacuum, we obtain the following
expression of z; [43]:

o) = [ an G () +3)

. 77
X exp {—21/ d’lzgk(ﬂz)}
m

T 2i(no) exp {—zi [ dnzszkmz)}, (69)

o

where we must adequately solve Eq. (68) and inset
into Eq. (67), and therefore, there is usually no other
way except numerical calculations in the nonanabatic
regime. However, if we analytically calculate the exact
mode function of dy from the Klein-Gordon equation of
Eq. (67) with the suitable in vacuum, we can obtain the
renormalized vacuum fluctuations (5¢?),, by removing
the UV divergences of (5¢?) via adiabatic regularization or
point-splitting regularization.

Next, let us review the adiabatic regularization [68—76]
which is the extremely powerful method to obtain the
renormalized vacuum fluctuations even in the nonadiabatic

regime. The adiabatic regularization is not the mathemati-
cal method of regularizing divergent integrals like a kind
of dimensional regularization or cutoff regularization. As
previously discussed, the divergences of (5¢*) come from
the lowest-order adiabatic mode, and therefore, we can
remove these divergences by subtracting the lowest-order
adiabatic (Minkowskian) vacuum field fluctuations (5¢>)()
from (5¢). Thus, we can obtain the renormalized expres-
sion of the adiabatic or the nonadiabatic vacuum fluctuations
as follows:

<5¢2>ren = <5¢2> - <5¢2>(0)

1 o0
=— dkk>Q;-1{2 2R
47[2(:(’7) A & { ny + eZk}
1 /oo 00
=—5—— dk2k*|5y, > — / dkaQ_l} ,
471'2C(7]) |: 0 ‘ )(k' 0 k

(70)

where we must obtain the exact mode function of dy; with
appropriate in vacuum. Note that the above formulation is
improved in comparison with the literature [68—76]. This
method is equivalent to the point-splitting regularization
which regularizes divergences via the point separation in the
two-point function.

As a concrete example, how to use the adiabatic
regularization, we consider the vacuum field fluctuations
of the massless minimally coupled scalar field (¢ = 0 and
m = 0) in de Sitter background (for the detailed discussions
see Refs. [73,74]). In this case, the mode function &y, (n)
can be exactly given by

S0e(n) = ﬁ{akwk(n) L RdgmY. (T1)

where

— ,—ikn L)

Spr(n) = e (1 —+ )’ (72)
In the massless minimally coupled case, the vacuum field
fluctuations (5¢?) have not only ultraviolet divergences
but also infrared divergences. Thus, we assume that the
Universe changes from the radiation dominated universe
to the de Sitter universe in order to avoid the infrared
divergences

o) {2—% (n <no), 73)
a(n) =

m (> no).
where n, = —1/H, and we choose the mode function as the

in-vacuum state

S = e~ /\2k (74)

103521-7
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during the radiation dominated region (3 < 7,). By requir-
ing the conditions &y, (n) and &y} (n) at the matching time
n =1y, we obtain the corresponding coefficients of the
mode function as follows:

H? 5 2ik 2
ﬂk:—ezf;:ak+l+0<>. (76)

By using the above coefficients of a; and f3;, we obtain the
suitable mode function of dy;. For small £k modes in the
de Sitter universe (7 > 7,), we can approximate the mode
function to be

1[/ 2 Hp K2
2 = ..
1574] 2k[<3H +2+— ) +(’)<H2>+ }

(77)

Here it is notable that one has no infrared divergences
because k2|y;|*> ~ O(k). For large k modes, we can obtain
the following expression:

1 1 H?

H3
ro(%) +
Here, we must require the cutoff of the k mode from the

adiabatic (WKB) condition Q7 > 0 to be k > v/2/|y| =

v/2aH. Therefore, we can obtain the renormalized vacuum
fluctuations from Eq. (70) as follows:

|5)(k‘2

: } . (78)

1 A
5¢p? = — 2k2|8y . |2dk
< ¢ >ren /\—>°0471'2C( ) |:A | )(k|
A
—/ dkaQ,:l}
V2/n]
= lim ; /A 2k2|5 |2dk
= A_m4”2C(l7) A X k
/A i dk} (79)
Va/lnl /K =2/

1 A
= lim ————— 2k> |5y, |>dk
AEEO4HZC(n) |:/O\ | )(k'

_/2/:1 <k+kif72+ >dk} (50)

For large k modes, we can use Eq. (78) and subtract the UV
divergences as the following:

. 1 A 1
A= 4> C(n) L) v/ kn

A G R

Thus, we obtain the following expression of the renormal-
ized vacuum fluctuations as

1 v2/n|
2/ " K216y Pdk
272°C(n) Jo
2772 2
17 H /00 ( H
+ ——-cos (2k(1/H + 1))
* V2/ln|

k2
H3
+o( )+

At the late cosmic time (3 ~0 corresponds to N =
Ht > 1), we have the following approximation:

212 (VAL
M / " 2|8y, 2dk,

272
V3
/ "L (83)

N_/ .

where we approximate the mode function 8y, () from
Egs. (77) and (78) as the following:

<5¢2>I‘61’1 =

: ) kdk. (82)

<5¢2 > ren

1 2 H22\ 2
% (F+2+ M) (0<k<H),

|6 = | 1
(1 +27) (H <k < V2/l).

(84)

Therefore, we can finally obtain the well-known expression
as follows:

H?> H?> [1

<6¢2>ren = @ + 4—”2 (Elog 2 + Ht)

H3

~ s —t, (85)
which grows as cosmic-time proceeds.

Next, let us consider the massive minimally coupled
scalar field (¢ < 1 and m <« H) in de Sitter background.
This situation is cosmologically important in order to
understand the origin of the primordial perturbations or
the self-backreaction of the inflaton field in inflationary
universe (see, e.g., Refs. [77,78]). In this case, the mode
function 8y, (1) can be given by

Sreln) = \/fﬂ‘“{akHi” (kn) + BH (kn)}.  (86)
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with
9 m*> 3 m?
YV (87)
where Hﬁl’z)(kn) are the Hankel functions. For simplicity

we assume the spacetime transition from the radiation
dominated universe to the de Sitter universe and require the
matching conditions at 7 = 7, to determine the Bogoliubov
coefficients

1 k. H ' .
o w(<_,~ N —) HY (ko) — HY (kﬂ0)>€'k/H,

2V 2 2k
(88)
1 mkng . HY 2
Pr = 5\ << l+2k)H” (kno)
- H£2>’<kno>) . (89)

The renormalized vacuum fluctuations from Eq. (70) are
given as follows:

1 A
o6¢?) ., = lim ——— 22|65y, |*dk
< ¢ >ren ATSO4”2C(]1) |:A | )(k|

A
- / dkkzﬂgl]
V2/n|

2H? [H 2H? (V2
_n 2/ k2|5;(k|2dk+’7 2/ "k2|6;(k|2dk.
2% o 27° Ju

(90)

The divergence parts exactly cancel as previously discussed,

A
2k2|6;(k|2dk—/

dkkzg,;l] ,
v2/n|

. 1 /
lim ———
A= 477 C(n) [ N
(91)

where we must take the adiabatic mode cutoff as

k> \/2—m?/H*/|n| ~+/2/|5|. It is a more difficult task

in the massive case than in the massless case to obtain
exactly the renormalized vacuum fluctuations from Eqgs. (88)
and (89). However, by using the asymptotic behavior of the
Hankel functions, we can easily get the renormalized
vacuum fluctuations of (5¢?),., via the adiabatic regulari-
zation method (for the details, see Refs. [73,74]).

By using the following formula of the Hankel functions:

1.2) 12 v 1,2
HL (ko) = HLZ o) = - HL ). (92)

and the Bessel function of the first kind defined by
J, = (H£1> + H£2>) /2, we obtain the following expression:

rk
lax = Pi] = \'2g

For small & modes, the Bessel function and the Hankel
function asymptotically behave as

(7))

HE k) =~ ) =2 r0) (*22) . 05)

2k k

Suesti) + (1= 3+ 54 )2 )

(93)

Jy(kUO) = (94)

Thus, we can obtain the following expression of the mode
function,

T 2
(624l 25 Inl v = B2\ HLP (k)|

2
ZQ(HM)]_ZD (0<k<H). (96)
For large k modes, we can approximate the Bogoliubov
coefficients as a; ~ 1 and f; ~0 and evaluate the mode

function

1) = \/§n1/2H£2><kn>. ©7)

Thus, we obtain the following expression:

—2v
o= ()T m<ksvaaD. o9

From Egs. (96) and (98), the renormalized vacuum fluc-
tuations are given by

o (Hp
Y Ll A kdk

72

H2 P> [Vl ,
2w L k=2 dk (99)
H? Cous 3H* ol
ﬁlgﬂ_ze 3H W(l—e 3H ) (100)

For late cosmic time (N, = Ht > H*/m?), the renormal-
ized vacuum fluctuations (5¢?),., in de Sitter background
are approximately written as

3H*

<5¢2>renzm‘ (101)
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These vacuum field fluctuations as described by
Egs. (64) and (101) are corresponding to the quantum
particle creation from the curved background, and there-
fore, once generated vacuum fluctuations remain on the
cosmological timescale. However, if the created particles
can decay into other particles, the created vacuum field
fluctuations would disappear on the particle decay
timescale.

V. RENORMALIZED VACUUM FIELD
FLUCTUATIONS IN DYNAMICAL SCALAR
FIELD BACKGROUND

In the general cosmological situations, the background
Higgs field dynamically changes and does not stagnate for
all times. The dynamical variation of the Higgs field or
other scalar field coupled with the Higgs field provides a
varying effective mass and leads to real particle productions
or the vacuum fluctuations of the Higgs field. Even in the
slowly varying scalar field background, the generated
vacuum field fluctuations are non-negligible. In this sec-
tion, we consider the vacuum field fluctuations in the
slowly varying scalar field background following the
literature [43].

A. The Higgs field background

For convenience, we rewrite Eq. (67) in order to obtain
the renormalized vacuum field fluctuations on the dynami-
cal Higgs field background,

1 o0
(647, = / dkk*Q7 {2n, + 2Rez; ), (102)

4”2C(’7) 0

where n; and z; are determined by the differential equa-
tions of Eq. (68) as follows:

Q Q) 1
nj, = Q_kReZk’ 7, = o <nk + 2> —2iQz.  (103)

For simplicity we assume the initial conditions to be
ny(no) = zx(179) = 0, and obtain the following equations:

- [ [t

Q k(’h (’72)
k(’lz)

><cos{2/’hl dﬂggk(ﬂ3)}<%+nk(ﬂ2)>’ (104)
Rezi(n) = /'7 : dm ?2,:((:7711)) 005{2 /'7 :7 d’lzgk(ﬂz)}
< (3 [ an B v ). o)

Let us consider the following condition as

<1, (106)

Ql
‘ / " dn, = (m)
Mo Qi (m)
which corresponds to the small time difference of M2 (1) as
follows:

|M2 () = M?(no)| < 2M(n) or 2M?(no).  (107)

In this assumption, we can approximate Egs. (104) and
(105) as follows:

ni(n) =0,

~1 7 Q' (m) n
Rez () —5/"0 dm Q:(ml) 005{2/11 dﬂzgk(ﬂz)}-
(108)

Furthermore, we can approximate Eq. (108) as the
following:

ReZk<’7)zl/nd’ﬁWCOS{2/nd’729k(’72)}

2 o Q%(’/Il) m

st @ ) eos (224 0=}

(109)

From Eq. (102), we obtain the renormalized vacuum field
fluctuations,

1 0
<5¢2>ren = / dkaQ]:1 {nk + RCZk}

2”2C(’7) 0

1 oo n _ _
S — dkk*Q3 / dn, M (n,) M’
27r2C(11)A X " mM(n )M’ (i,)

x cos{2Q(n)(n —m)}- (110)

By integration by parts, we have the following expression:

Mz(’]) 12 12 e —
s o0 - () [~ e

1 /00 n
+—— dkQ;! / dn
4”2C(’7) 0 k 1o :

X M ()M’ (1) cos{2Q () (n = m1)}
M) [ o, (7
+4”2C(’7) A dkQ;? /% dm,

< (M? (i) = M? (o)) sin{ 2 () (n = m1) }
(111)
which is equivalent to the result by using the perturbation

technique [79]. By performing the integration, we obtain
the following expression:

(607} ren =
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<6¢2>renz (MZ(WO)_MZ(”))

87°a* ()

- m n: diny M (ny)M' (1, )No(2M (n = ny))

_ i
+%/m} dny(n—m)

x (M2(ny) = M2 (no)) F2M (n —my)).  (112)
where Ny(x) is the Bessel function, F(x) is the combina-
tion of Bessel function N,(x) and Struve functions H,,(x)
defined by F(x) = H(x)N(x) + No(x)H_,(x), and M(n)
is described by M(n) ~3a(n)¢*(n).

When the expansion of the Universe is slow and the
background Higgs field ¢(n) evolves quickly on the
cosmological timescale, the vacuum field fluctuations
evolve in proportion to M(n). The vacuum field fluctua-
tions given by Eq. (112) would be approximately equal
to the first-order adiabatic approximation of Eq. (37)

where the odd-order adiabatic number density is zero as

nf"“) =0. As previously discussed, the second-order

approximation of the vacuum field fluctuations are given
by Eq. (59),

y L M'(n
<5¢ >ren - Waz(”) M(I’]) s
2(7) = a>(n)(m? + 302 + (£~ 1/6)R).

(113)

Thus, we obtain the following expression of the second-
order adiabatic vacuum fluctuations to be

i, @ 30 (- 1/OR+ o

487° {a a*> 2am?+ (6—1/6)R +3.¢°

1 (G- 1/6)R + 61
4(m?>+ (6—1/6)R + 31¢?)?
1 1/6>R+6A<¢¢'+¢2>}
2 m?+(E-1/6)R+ 3¢ |

<5¢2 > ren =

(114)

If the large background Higgs field ¢ () exists, and we can
safely neglect the mass terms or the nonminimal curvature
terms, the second-order adiabatic expression of the vacuum
field fluctuations are written as

o o L [l 3Hb ¢

(6% ) en b {6R + ¢ —l—d)}. (115)
From Egs. (114) and (115), when the curvature effects are
negligible, and the Higgs background field evolves quickly
as ¢(t) = e ™MD or $(t) ~ sin (M(¢)t), the renormalized
vacuum fluctuations on the dynamical Higgs field back-
ground can be approximated by

M>(¢)

2 ~
() en = 2 5

(116)

If the Higgs field has the large effective mass M(¢), the
Higgs background field develops rapidly on the cosmo-
logical timescale and the vacuum field fluctuations of the
Higgs field glow in proportion to the Higgs mass M(¢).

B. The scalar (inflaton) field background

When there are other coherent or classical scalar fields S
as the inflaton field which couples the Higgs field with 4,
the effective mass of the Higgs field can be generated as
mys = A4sS°. The effective Higgs mass becomes M?(i7) =

a*(n)(m? + 32¢* + A4sS* + (£ —1/6)R) and the second-
order adiabatic vacuum fluctuations are given as follows:

<5¢2>ren

1 fd @ 3a (E=1/6)R+ 64 + 21sSS

4872 {a a*  2am?+ (&= 1/6)R + 31* + AysS?
1 ((E=1/6)R + 6d¢pp + 22SS)?

4(m? + (= 1/6)R + 34¢” + 1455?)?

1(§=1/6)R + 6A(p + §*) + 2245(SS + SZ)}
2 m? + (E—1/6)R + 34> + AysS?

(117)

For large background scalar field S(z), the second-order
adiabatic vacuum fluctuations are given by

(00%) ren =

3HS S} (118)

1 (1
R4/
48n2{6 TS s

The evolution of the background scalar field S() is
determined by the effective scalar potential V g(S).
Thus, the renormalized vacuum fluctuations of the Higgs
field on the dynamical background scalar field are given by
m3

0P e = 5,
< ¢ >rcn 487[2

(119)

where my is defined by V”(S) = m%. The vacuum fluc-
tuations of the Higgs field expand in proportion to the
curvature scale R, the mass of the Higgs field ¢ or the scalar
field S in the FLRW background.

VI. ELECTROWEAK VACUUM INSTABILITY
IN FLRW BACKGROUND

So far we have discussed the vacuum field fluctuations
of the Higgs field in various situations. In this section, we
investigate the electroweak vacuum instability in the FLRW
background by using the results of Secs. III-V.
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The stability of the electroweak vacuum is determined
by the dynamics of the background Higgs field and the
vacuum fluctuations of the Higgs field. As previous
discussed in Sec. II, the one-loop effective evolution
equation of the Higgs field is written as follows:

OVt ()
o]

where the one-loop standard model effective Higgs poten-
tial in curved background can written as [18,80]

¢+ 3Hp + =0, (120)

Alw)

(06 + 5 &0Rg + 7 g
{ log M2¢ )—c,}, (121)
u?

(122)

1
Vet (¢) = Emz

+Z64

M (¢) = kip* + K; + O;R,

where the coefficients n;, k;, &}, 6;, and C; are given by
Table I of Ref. [18]. The effective evolution equation and
the one-loop effective potential in curved background has
been well known in the literature [43-62].

As previously discussed, however, the additional con-
tribution from the gravitational vacuum fluctuations of the
Higgs field change the effective evolution equation of the
Higgs field as follows:

Veff <¢>
¢

where the vacuum fluctuations term provides the effective
mass and this formulation was first discussed by the
literature [43]. This expression can be obtained even by
replacing the Higgs field ¢* — ¢* + (5¢*),, SO as to
include the backreaction terms from the Higgs vacuum
fluctuations [25]. Thus, the standard model Higgs potential
in curved background should be modified as follows:

()2 + 5 eluRg + )

$+3Hp +—S72

+ 3A(1) (0 )yentd = 0. (123)

<5¢2>ren¢2
) _ C,]

1 )
0 )en = 367 A dkK2QT {20, + 2Rez ). (124)

1
Vet () = 5’"2

Au) : n;
+ T¢4 + ;@Mﬂ@ [Iog

which includes the backreaction of the Higgs fluctuation.

Next let us discuss some issues of the renormalization
scale u. Generally speaking, we take the renormalization
scale u so as to suppress the high order log corrections
about log (M?(¢)/u*). In Minkowski spacetime as
R =0, we usually take the renormalization scale to be
u = ¢. The renormalization scale p corresponds to the

phenomenological/cosmological energy scale described
as the effective mass of the scalar field. Although the
log correction in Eq. (122) does not include the vacuum
fluctuation terms, the high-order expressions would have
these terms and therefore the renormalization scale should
be taken as y? ~ ¢* + (5¢*),en + R.

The running couplings m?(u), &(u), and A(u) change
depending on the renormalization scale x. The running
Higgs self-coupling A(x) becomes negative at the high-
energy scale A;. *If the renormalization scale becomes
larger than the instability scale to be u? ~ R + (5¢?) 00>
A?, the running Higgs self-coupling A() becomes negative
and the backreaction term of the Higgs fluctuation desta-
bilizes the Higgs potential [25]. On the other hand, the
vacuum fluctuations of the W/Z bosons and the top quark
expressed by (SW?) ..., (6Z%).,, and (6?) ., can stabilize
the effective Higgs potential. The modified effective Higgs
potential including the vacuum fluctuation of the various
SM fields can be written as follows:

1

Veald) = 3R + L E0RE + ) (507
A g1 T ) g
AW 2y g2 1 30 )

9 n: 2
+ ;64;2 ) { (d’) - C,}, (125)

where the vacuum fluctuations of the Higgs, W/Z bosons,
and the top quark strongly depend on their masses.
Especially, these backreaction effects of the W/Z bosons
and top quark would become also crucial factors of the
Higgs vacuum stability in the FLRW background. In this
present paper, however, we focus on only the backreaction
of the Higgs fluctuation and leave detailed discussion of
the Higgs vacuum stability with the backreaction of the
SM particles for a forthcoming work.

The Higgs field can cosmologically acquire various
effective masses from various couplings. The nonminimal
curvature coupling &(u) provides an extra contribution to
the Higgs field mass. Furthermore, if there are coherent
scalar fields to couple the Higgs field with A,g, the
dynamical mass of the Higgs field can be generated by
the interaction A,/)SS2 where S is the Higgs-coupled scalar
field. In this section, let us consider the curvature mass

“The instability scale A; can be approximately determined by
the value of the Higgs boson mass and the top quark mass. The
current measurements of the Higgs boson mass m;, = 125.09 +
0.21(stat) £+ 0.11(syst) GeV [1-4] and the top quark mass m, =
172.44 £ 0.13(stat) & 0.47(syst) GeV [5] show the instability
scale to be A; ~ 10'! GeV [81] although this instability scale A,
depends on the gauge (see [82—87] for the detailed discussions).
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&(u)R and the dynamical mass 1,55%. The magnitude
relation of the effective mass mZ; ~ E(u)R + A455* and
the renormalized vacuum fluctuations of the Higgs field
determine the stability of the effective Higgs potential. If
the effective Higgs potential is destabilized by the vacuum
field fluctuations, the Higgs effective potential becomes
negative as OV i (¢)/0¢ < 0, and therefore, the coherent
Higgs field ¢(¢) on the entire Universe rolls down to the
Planck-scale true vacuum.

For £(u)R > A45S* the renormalized vacuum fluctua-
tions of the Higgs field are summarized as

~R /2887

>O(R) (120

(607} en]

For de Sitter background with R = 12H?, the renormalized
Higgs fluctuations are given by [80]

H?/247°

2 ~
o= { e
where the above expressions are valid during the inflation.
However, after inflation, the nonminimal curvature term
E(u)R can generate the enormous Higgs vacuum fluctua-
tions via tachyonic resonance as (5¢*),., > O(R) where
the nonminimal curvature term &(u) is relatively large. If
we assume the simple chaotic inflation model, we can
numerically obtain the constraint of the tachyonic reso-
nance not to generate the large Higgs vacuum fluctuations
as &(p) SO(10) (see Refs. [28-33] for the detailed
discussions).

For p? =R+ (5¢*) o, 2 A2, the Higgs self-coupling A(u)
becomes negative5 and the destabilization of the effective
Higgs potential can be determined by the following relation
E(U)R Z|A(u)|(6¢?) en Where we can assume A(u) ~ —0.01.
In de Sitter background,” we obtain the condition of
the nonminimal coupling to be &(x) < O(1073) not to
destabilize the effective Higgs potential [25]. In the
radiation/matter dominated universe, we can expect the
same constraint of the nonminimal coupling. If £(u) does
not satisfy this condition, the effective Higgs potential
Vit () is destabilized, the coherent Higgs field goes out to

’For i ~ R + (5¢),., < A2, the running Higgs self-coupling
A(u) becomes positive unless ¢ > A;. Thus, the homogeneous
Higgs field ¢(7) cannot classically roll down into the Planck-scale
true vacuum. However, the large vacuum fluctuations of the
Higgs field can generate AdS domains or bubbles as shown in
Eq. (134).

During inflation, the curvature mass &(u)R stabilizes
the effective Higgs potential and suppresses AdS domains/
bubbles. Thus, the electroweak vacuum decay can be avoided
if the relatively large nonminimal curvature coupling &(u) is
introduced.

the negative Planck vacuum and leads to the collapse of
the Universe.

For &(u)R < 245S?, the renormalized vacuum fluctua-
tions of the Higgs field are given by

M2 ($)/487°  (ApsS? < A7),

128
m3/487° (ApsS? Z A?), (128)

(6)en = {

where the above expressions are valid for the slowly
varying scalar field. In the rapid varying case, the Higgs
fluctuations become generally larger than the above expres-
sions. As well-known facts, in the parametric/tachyonic
resonance during the preheating stage, the vacuum fluctu-
ations exponentially grow where a complicated numerical
analysis is required. If we assume the simple m2S?
chaotic inflation model, we can numerically obtain the
restriction of the parametric resonance not to generate
the large Higgs fluctuations as Ay S O(1078) (see
Refs. [28-33] for the detail).

For y? ~ R + (8¢),en = AZ, the effective Higgs poten-
tial is destabilized in 4,55% < |A(1)|(6¢*) en- Considering
m%S? chaotic inflation where the inflaton field S has the
Planck-field value S~ Mp ~ 10'° GeV, the stabilization
condition during inflation is Agg 2 O(10713).7 Thus, the
inflaton-Higgs coupling 4,45 can stabilize the Higgs poten-
tial during inflation. After inflation, however, the para-
metric/tachyonic resonance via the coherent oscillation of S
can generate the enormous Higgs fluctuations with the
relatively large coupling 4,5. Moreover, if the inflaton/other
scalar field S satisfy the following relations A(u)(5¢)*) e, =
Mu)m3/487* 2 A7 and A(u)m3 /487> 2 44557, the Higgs
fluctuations destabilize the effective Higgs potential. This
situation could easily happen after inflation. If we take A; ~
10'"" GeV and A(u) ~ —0.01, we obtain a new constraint of
the mass of the inflaton/scalar field to be mg < 10'3 GeV.

On the other hand, the vacuum fluctuations of the Higgs
field expressed as (5¢?).., can cause directly the vacuum
transition to the true vacuum [13-24,29]. This situation is
essentially different from the phenomenon discussed pre-
viously. If the inhomogeneous Higgs fields overcome the
hill of the effective potential, the localized Higgs fields
classically go out to the true vacuum and catastrophic anti—
de Sitter (AdS) domains are formed. Although not all Higgs
AdS domains threaten the existence of the Universe
[22,24], which highly depends on the evolution of the

"For m3S? chaotic inflation where mg~ H ~ 10" GeV,
the renormalized vacuum fluctuations of the Higgs field are
written as

3H* m%

52y
< ¢ >ren 871'2/14,552 4871-'2

where we ignore the curvature mass term &(u)12H>.
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Higgs AdS domains (for the details see Refs. [24,38]),
some AdS domains expand, eating other regions of the
electroweak vacuum, and consume the entire Universe.
Thus, the existence of AdS domains in the Universe is still
serious and the creation of the Higgs AdS domains/bubbles
should not happen in our Universe.

Let us consider the conditions not to generate the AdS
domains/bubbles. The probability of the Higgs fluctuations
can be expressed as the Gaussian distribution function

P(p) = (129)

I <_L>
272 (6¢%) on P\ 2067 )

By using Eq. (129), the probability not to produce AdS
domains/bubbles is given by

P < o) = | Pl (130)
_¢mux
o Drmax
— erf <2<5¢2>m>' (131)

where we define ¢, to be the effective Hig%s potential
of Eq. (122), which takes its maximal value.” Thus, the
probability that the localized Higgs fields roll down into the
true vacuum is given by

d)max
P(¢ > ¢max) =1- erf( 2<5¢2>ren>
~ 2<5¢2>I'C[1 ¢2
BT ( W) (132)

The vacuum decay probability of the inflationary universe
can be expressed as

NP > ) < 1. (133)

where e3Vior corresponds to the physical volume of the
Universe at the end of the inflation, and we can take the

e-folding number Ny, ~ Ncyg =~ 60. By substituting

The effective Higgs potential with the large effective mass
Mg can be approximated as

1 1 2
Ve () = 3 me? (1 ~3 ((ﬁi) ) .

where ¢, 1S approximately given by

2
_ Mg

Ap)

¢max =

In numerical approximation, we can approximate the maximal
field value as ¢ = 10 - mqi for the effective Higgs potential.

Eq. (133) into Eq. (132), we obtain the following relation
of the electroweak vacuum stability:

(5)n _ 1

—. 134

2max ON hor ( )
The above condition can be determined by the effective
Higgs potential of Eq. (122) and the Higgs vacuum
fluctuations of Egs. (126)—(128). The inflationary universe
restricts &(u) 2 0(1072) or A5 2 O(107'2) not to generate
the AdS domains/bubbles. These obtained constraints are
somewhat tighter than the destabilization conditions of the
effective Higgs potential. If the relatively large coupling &
or A4 is introduced, the false Higgs vacuum can be safe
during inflation. But after inflation the large coupling & or
Aps generate large Higgs fluctuations via the parametric/
tachyonic resonance.

After all the Higgs fluctuations in the nonadiabatic
case as discussed in Sec. IV generally destabilize the false
electroweak vacuum. On the other hand, the Higgs fluc-
tuations in the adiabatic case as discussed in Sec. III
have little effect on the electroweak vacuum stability.
However, if there are large inflaton fields or some scalar
fields S satisfying both relations A(u)m3/487* 2 A? and
Mu)ym3/48x* 2 A458%, the Higgs fluctuations destabilize
the effective Higgs potential or generate the AdS domains/
bubbles. The cosmological stability of the electroweak
vacuum is highly unstable due to vacuum fluctuations
of the Higgs field and imposes severe cosmological
constraints.

VII. CONCLUSION AND SUMMARY

In this paper, we have thoroughly investigated the
stability of the electroweak vacuum in the FLRW back-
ground. Adopting the adiabatic (WKB) approximation or
adiabatic regularization methods, we have clearly shown
that the Higgs vacuum fluctuations depend on the curvature
scale and also the masses of the Higgs field or other scalar
field. Next, we have discussed the renormalization issues of
the vacuum field fluctuations and shown that the standard
effective potential is modified by the gravitational back-
reaction effects. Furthermore in Sec. VI we have shown
how the vacuum fluctuations of the Higgs field influence
the stability of the electroweak vacuum in a rigid manner
of the QFT in curved spacetime. The Higgs fluctuations
in the nonadiabatic case as discussed in Sec. IV generally
destabilize the effective Higgs potential, or generate the
Higgs AdS domains or bubbles. On the other hand, the
Higgs fluctuations in the adiabatic case as discussed in
Sec. III does not generally cause the collapse of the Higgs
vacuum. However, if there are large background scalar
fields as discussed in Sec. V, the vacuum fluctuations of the
Higgs field can destabilize the effective Higgs potential
and give the upper bound on the scalar mass to be
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mg < 10'% GeV. We have provided new cosmological
constraints and comprehensive descriptions about the
Higgs vacuum stability in the FLRW background.
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APPENDIX: ADIABATIC (WKB)
APPROXIMATION METHOD

In this Appendix we introduce a detailed description
of the adiabatic (WKB) approximation method following
literature [43,69]. In order to give the renormalized vacuum
field fluctuations we must solve Eq. (68) with the suitable
in vacuum as follows:

P Re . ( + 1) 2iQ (A1)
n, = —Rezy, =7 |\ Mg T35 ) — 2184 %k
o kT, 2

For simplicity we assume z; = uy + ivy, i.e., u; = Rez;
and v, = Imgz;. By using these relations we can rewrite
Eq. (A1) as follows:

Q/
n, = Q_],: U, (A2)

Q 1
M;{ = Q—llz (nk + E) + ZQkUk, (A?))
1);( = —ZQkuk. (A4)

Here, we introduce a single formal adiabatic parameter T
and a rescaling time variable z=#/T. The adiabatic
(WKB) condition of Eq. (30) can be restated by

1d

d
4y 2/ T) = Q).

T dt (A3)

with T — oo. By using this procedure we can rewrite
Egs. (A2)—(A4) as follows:

1, 19
=k A
Tnk TQk uk’ ( 6)
1, 1 1
?u;( = ?—QZ (I’lk + §> + 2kak’ (A7)
1 /
?Uk = —2le/tk. (AS)

Next we expand ny, u;, and v, in inverse powers of 7" as

1 1

ng = n/iO) +?”l](<l) +Fl’l](<2) —+ -, (A9)
o, o, 1 @

Up = Uy +?uk —|—T2uk +ee (A10)
o, o 1 @

Ve = U T —|—ka +-ee (All)

where superscripts (i) express the adiabatic order, and the
zeroth order expressions are given by

n,(co) = const, u, =0, v, =0,

(A12)
where we solve Egs. (A6)—(A8) with an iterative procedure.
The above integration constant can be determined by the
initial conditions for n;(170), and z; (1), which correspond
to the choice of the in vacuum. For the conformal vacuum
ny(no) = zx(nno) =0, the zeroth-order adiabatic number
density n,({o) is zero. For the first adiabatic order, we can
obtain the following expression:

1Q 1
n;{])zo, u,ﬁ”:o, U,i”:———k(n,(co)—i—E), (A13)

where the odd-order adiabatic number density is zero. Next
we can obtain the second order adiabatic expressions as
follows:

@ _ 197 @ _ 19"

1Q7 2)
oo

(A14)

In the same way, the third order adiabatic expressions can
be given by

=0 4 =0 (A15)

(3) 1 1" Q" 15 Qli
= Q" =17 Z2k) . (Al6
Yoy ( e T (A16)

Finally, the fourth order adiabatic expressions are given by

(4) _ Q/kak Q”% SQ/%QHk B 459%

, Al7
" 3200 T 64Q¢ ' 32Q]  256Q8 (A17)
u(4) o Q////k llgle///k _ IISQ/%Q//k
=
3200 3208 64Q)]
Q72 450
£ £, (A18)
3200 ' 3208
4
=0 (A19)
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