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Neutrinos emitted from a supernova may undergo flavor conversions almost immediately above the core,
with possible consequences for supernova dynamics and nucleosynthesis. However, the precise conditions
for such fast conversions can be difficult to compute and require knowledge of the full angular distribution
of the flavor-dependent neutrino fluxes that is not available in typical supernova simulations. In this paper,
we show that the overall flavor evolution is qualitatively similar to the growth of a so-called “zero mode”
determined by the background matter and neutrino densities, which can be reliably predicted using only the
second angular moments of the electron lepton number distribution, i.e., the difference in the angular
distributions of the νe and ν̄e fluxes. We propose that this zero mode, which neither requires computing the
full Green’s function nor detailed knowledge of the angular distributions, may be useful for a preliminary
diagnosis of possible fast flavor conversions in supernova simulations with modestly resolved angular
distributions.
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I. INTRODUCTION

The interior of a supernova (SN) hosts a unique laboratory
to probe quantum correlations between neutrinos. For
instance, at distances r≲Oð102Þ km from the center of
the SN, the neutrino densitynν is so high that they themselves
produce a collective potentialμ ¼ ffiffiffi

2
p

GFnνe defined in terms
of the electron neutrino density nνe. This potential being
much larger than the neutrino oscillation frequency in
vacuum ωvac ¼ Δm2=ð2EÞ for a typical neutrino energy E
leads to correlated neutrino flavor evolution [1–3]. The past
decade of research in this area has unearthed many fascinat-
ing features in the collective oscillations of neutrinos [4–10].
See Refs. [11–14] for recent reviews.
In a series of papers [4,8,10], Sawyer has pointed out a

new mechanism for self-induced flavor conversions called
“fast” instabilities. These are expected to develop at very
short distances, r≲Oð1Þ m, from the neutrinosphere and
grow with a rate μ, i.e., not only faster than the usual
neutrino oscillations but also faster than the relatively

slower collective oscillations that lead to spectral splits
and swaps [7,9,15,16] growing at a rate

ffiffiffiffiffiffiffiffiffiffiffi
ωvacμ

p
[6].

Recently, several groups have confirmed these results
and further developed the original insights [17–23].
In particular, it has been understood that a necessary
condition for fast conversions is that there is a “crossing”
in the electron lepton number (ELN) angular distribution;
i.e., the difference of the νe and ν̄e densities must change its
sign as a function of the emission angle. This crossing
condition is similar to how collective spectral swaps require
a crossing in the energy spectrum [9]. In the neutrino
decoupling region inside a SN, where the different flavors
have significantly different angular distributions, a crossing
in the angular spectrum could be present. As a result, fast
conversions may occur and lead to potentially radical
changes in SN dynamics and neutrino signals.
The possibility of fast conversions needs to be explored

systematically in SN simulations. The first steps in this
direction were taken recently [24], where a dedicated
analysis of the angular distributions of the neutrino radi-
ation field for several spherically symmetric (1D) super-
nova simulations has not found any crossing in the ELN
near the neutrinosphere. Reference [23], on the other hand,
found an instability in a 8.8 M⊙ electron capture SN
simulation by the Garching group. More generally, 2D
or 3D models can exhibit lepton-emission self-sustained
asymmetry (LESA) [25], i.e., a large-scale dipole in the
ELN emission, which also makes a crossing more likely to
occur. Unfortunately, a study of fast oscillations in 2D or
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3D simulations has been lacking for two reasons. First, the
study of fast neutrino instabilities requires characterizing
the singularities of the Green’s function of the system [20].
This is a computationally demanding task even for the
simplest toy models and perhaps prohibitively difficult for
the multidimensional continuous angular distributions
found in SN simulations. Second, most of the state-of-
the-art simulations [25–33] maintain only the moments of
the angular distributions of fluxes and not the full distri-
butions. This lack of information seems to preclude even a
linear stability analysis that requires knowing these dis-
tributions. One may in fact worry whether these coarse-
grained distributions can correctly capture the physics of
fast oscillations. Therefore, it is necessary to consider an
alternative approach that uses available simulations in an
optimal fashion.
In this work, we propose a simple analytical tool to

diagnose fast instabilities. Our proposal is based on
identifying a specific Fourier mode of the flavor instability
field that we call the “zero mode.” The growth rate of this
mode calculated from the stability analysis crudely approx-
imates the growth of flavor conversions in detailed numeri-
cal calculations, essentially all the way until the instability
saturates. The zero mode has an easily calculable growth
rate that depends only on the second moments of the ELN.
Thus, the proposed method has the dual advantage of not
requiring complete knowledge of the neutrino distributions
and being computationally far less expensive compared to a
full-fledged numerical solution or a full characterization of
the Green’s function. In fact, in the absence of more
detailed knowledge of the ELN distributions, as appears
to be the case for available 2D and 3D SN simulations, this
may be the only practical recourse to look for possible
instabilities. Therefore, we expect that this method will be
useful to scan the different regions of a SN in multidi-
mensional simulations and study the possibility of fast
flavor conversions therein.
We discuss these issues in the following sections. In

Sec. II, we write down the equations of motion (EOMs) and
review the framework for studying fast neutrino oscilla-
tions. In Sec. III, we present our method for diagnosing
instabilities, and in Sec. IV, perform numerical tests of the
same, for simple boxlike angular distributions for the νe
and ν̄e as well as realistic angular distributions inspired by
1D SN models. Finally, in Sec. V, we conclude with a brief
summary.

II. EQUATIONS OF MOTION

Neglecting collisions, the dynamics of ϱp, the matrices
of neutrino phase space occupation number densities
for the momentum p, is described by the following
EOMs [34–39]

∂tϱp þ vp ·∇ϱp ¼ −i½Hp; ϱp�; ð1Þ

where, in the Liouville operator on the left-hand side, the
first term accounts for explicit dependence on time t, while
the second term, proportional to the neutrino velocity vp,
encodes the dependence on position x due to particle free
streaming. The right-hand side contains the oscillation
Hamiltonian

Hp ¼ Hvac þHmat þHνν; ð2Þ
where in a two-flavor approximation, one has

Hvac ¼ diagð−ωvac=2;þωvac=2Þ ð3Þ

in the mass basis, and

Hmat ¼
ffiffiffi
2

p
GFnediagð1; 0Þ ð4Þ

in the weak-interaction basis contains the refractive effect
of charged leptons in the medium, while

Hνν ¼
ffiffiffi
2

p
GF

Z
d3q=ð2πÞ3ðϱq − ϱ̄qÞð1 − vp · vqÞ ð5Þ

contains the similar effect due to background neutrinos.
Antineutrinos are described similarly using ϱ̄p, with Hvac

replaced by −Hvac.
The matrix ϱ can be written in the weak-interaction basis

as [19,20,40,41]

ϱ ¼ fνe þ fνx
2

�
1 0

0 1

�
þ fνe − fνx

2

�
s S

S� −s

�
; ð6Þ

where fνe and fνx are the occupation number densities at
momentum p, and νx is the relevant linear combination of
νμ and ντ. Here and onwards, we drop the subscript p,
which indicated that the ϱ were indexed by their momenta,
to lighten the notation.
One focuses on length and timescales over which fνe and

fνx can be taken to be homogeneous and static, and thus the
spatial and temporal dependence of ϱ is contained in S and s.
The complex scalar field Sðt;xÞ encodes the νeνx mean-field
flavor coherence and measures the extent of flavor con-
version. To begin with, the neutrinos are initially in their
unoscillated states; hence, the initial condition is
Sð0;xÞ ¼ 0. The real field sðt;xÞ encodes flavor occupation
number and satisfies s2 þ jSj2 ¼ 1 for each momentum p.
In the context of fast conversions, the effect of back-

ground neutrinos via Hνν far exceeds that of the vacuum
Hamiltonian Hvac, which mainly plays the role of generat-
ing an initial disturbance to seed the oscillations. Hence,
Hvac can be neglected, and the explicit dependence on
energy E via ωvac disappears from the EOMs. The neutrino
and antineutrino modes then enter the Hamiltonian in
Eq. (5) only via the difference of occupation number
densities integrated over energy, i.e., the ELN angular
distribution [17],

DASGUPTA, MIRIZZI, and SEN PHYS. REV. D 98, 103001 (2018)

103001-2



Gv ¼
ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½fνeðE; vÞ − fν̄eðE; vÞ�; ð7Þ

where we assume νx and ν̄x have identical distributions.
We will often use the “four-vector” notation, e.g., aμ ¼

ða0; aÞ, advocated in Ref. [19]. For the familiar quantities,
i.e., position xμ ¼ðt;xÞ, momentum pμ ¼ ðE;pÞ, and wave
vectors kμ ¼ ðω;kÞ and Kμ ¼ ðΩ;KÞ, the zeroth compo-
nent is denoted by its more recognizable symbol instead. The
neutrinos are taken to be ultrarelativistic, with E ¼ jpj, so
vμ ¼ ð1;p=EÞ; i.e., the zeroth component of their velocity is
1, and the spatial components are given by a unit vector
v ¼ p=E. In this notation, one can define a matter current
Λμ ¼ ffiffiffi

2
p

GFv
μ
ene and an ELN current Φμ ¼ R

dΓvμGv,
where dΓ ¼ dv=ð4πÞ, which contain the effect of Hmat
and Hνν, respectively.
The key feature which determines if the initial flavor

composition is unstable and can undergo fast conversions is
if the ELN distribution Gv crosses zero as a function of any
of its arguments. This essentially requires that the flux of
neutrinos is larger than that of antineutrinos in some
direction, while being smaller in another direction. If the
lepton asymmetry ε ¼ ðnνe − nν̄eÞ=nνe ¼ Φ0=μ is small,
then the ELN distribution Gv can have a crossing. This is
because the density of forward-going ν̄e can exceed that of
νe between the ν̄e and νe neutrinospheres.
The onset of the conversions can be examined by

linearizing Eq. (1), using that initially jSj ≪ 1 and s ≃ 1.
Starting from the linearized equations of motion [40], one
seeks plane wave solutions obeying [42]

Svðt;xÞ ¼ Qve−iðΩt−K·xÞ: ð8Þ

A specific eigenmode of flavor conversion can be labeled
by its frequency and wave vector Ω and K, respectively. If
there are modes that have a complex Ω, such modes may
lead to exponentially growing instabilities.
The currentsΦμ and Λμ lead to a common rotation for all

modes, which does not lead to any instabilities as such. So
it is more convenient to work in a rotating coordinate
system where this common rotation is not present. In such a
corotating frame, the different modes of flavor conversions
are labeled by the shifted frequency and wave vectors

ω ¼ Ω − ðΛ0 þΦ0Þ and ð9Þ

k ¼ K − ðΛþΦÞ; ð10Þ

respectively. Note that the frequency and wave vector of the
modes in the corotating frame ω and k have the same
imaginary parts as in the nonrotating frame. Hence, this shift,
while simplifying the EOMs, does not give rise to any
extra spurious instabilities. Of course, one must be careful
of the shift when identifying a specific mode of the
flavor conversion field S; e.g., the homogeneous mode,

previously labeled by K ¼ 0, now corresponds to the
mode k ¼ −ðΛþΦÞ.
The ω and k are related by the dispersion relation of the

system [19]

Dðω;kÞ ¼ det ½Πμνðω;kÞ� ¼ 0; ð11Þ

where

Πμν ¼ ημν þ
Z

dΓGv
vμvν

ω − k · v
; ð12Þ

with ημν ¼ diagðþ1;−1;−1;−1Þ being the metric tensor.
In the remainder of the paper, we will refer to the k ¼ 0
mode as the zero mode. This mode will be the focus of our
work, and we will come back to it in the next section.
We end this section with a brief remark about the

role of ordinary matter density. From the definition ω ¼
Ω − ðΛ0 þΦ0Þ, one sees that ImðωÞ has no dependence on
the ordinary matter density encoded in Λ0, which merely
leads to a shift in ReðωÞ, as noted in Refs. [42,43]. The
presence of a finite matter density only delays the onset by
suppressing the mixing angle, keeping the growth rate the
same. A nonzero ordinary matter current Λ, on the other
hand, can change ImðωÞ, but it is expected to be negligible
in a SN-like environment where the ordinary matter has
small velocity anisotropy. In the remainder of this paper, we
will ignore the effects of ordinary matter.

III. ZERO MODE AND MOMENTS

Our proposal in this paper is to focus on the zero mode
labeled by k ¼ 0. This is motivated by the fact that the
calculation of ω for this mode is significantly simpler than a
full characterization of the roots of the dispersion relations,
Dðω;kÞ [20]. In fact, for this mode, theω in Eq. (12) can be
pulled out of the integrals, and Eq. (11) becomes

Dðω; 0Þ ¼ det

�
ημν þ 1

ω
Vμν

�
¼ 0; ð13Þ

i.e.,Dðω; 0Þ is a polynomial in ω. The specific model of SN
neutrino fluxes and their angular distributions encoded in
the ELN only enters the equation through the tensor Vμν

that contains the second moments of velocity, namely,

Vμν ¼
Z

dΓvμvνGv: ð14Þ

This, in turn, depends on the second moments of the
neutrinos’ velocities evaluated using the flavor-dependent
phase space distributions, i.e.,

Vμν ¼ hvμvνiνe − hvμvνiν̄e ; ð15Þ

where the notation h…iνα refers to
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h…iνα ≡
ffiffiffi
2

p
GF

Z
d3p
ð2πÞ3 ð…ÞfναðpÞ: ð16Þ

For spherically symmetric SN simulations, which are
effectively 1D, Eq. (13) is explicitly quadratic in ω,

ðωþ V00Þðω − V11Þ þ ðV01Þ2 ¼ 0; ð17Þ

with the solution

ω ¼ 1

2

�
V11 − V00 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV00 þ V11Þ2 − 4ðV01Þ2

q �
: ð18Þ

The condition for the zero mode to become unstable is
simply that the discriminant become negative, i.e.,

Δ ¼ ðV00 þ V11Þ2 − 4ðV01Þ2 < 0: ð19Þ

If this condition is satisfied, the mode grows at a rate

ImðωÞ ¼ 1

2
½4ðV01Þ2 − ðV00 þ V11Þ2�1=2: ð20Þ

For multidimensional models, i.e., for 2D or 3D simula-
tions, Eq. (13) is a cubic or quartic equation for ω,
respectively. In either case, the instability growth rate is
similarly calculable as the imaginary part of ω, if the flavor-
dependent second moments hvμvνiνα are known.
We propose that one should check for fast instabilities in

a SN simulation by testing the condition in Eq. (19) locally
in each simulation cell. It is our understanding that SN
simulations often do not track the complete distribution
fðE; vÞ. This precludes an exhaustive search for fast
instabilities by studying the solution of the dispersion
relation. However, one can learn about the stability of
the zero mode without such detailed information. If the
ELN distribution Gv is spherically symmetric, the tensor
Vμν has no cross terms and only depends on h1iνα , hvriνα ,
and hv2riνα , i.e., the zeroth, first, and second moments of the
radial velocity. Such information is readily available even
in the spherically symmetric SN simulations, and a search
for instabilities using Eq. (19) is straightforward. In
general, the terms like hvμvνiνα are important. Some
multidimensional SN simulations can provide these cross
moments and may allow one to search for fast instabilities.
In these cases, if Eq. (13) has complex solutions for ω in
some region in a SN simulation, it indicates that fast
conversions should occur.
Finally, we note that besides the zero mode we have

identified, there are two other important modes. The true
homogeneous mode of the system is given by K ¼ 0,
which is now labeled by k ¼ −ðΛþΦÞ. This mode that
has conventionally been studied in calculations that enforce
an evolution in time and ignore spatial variations need not
have an instability, as will be clear from some of the

examples we study in the next section. Nonetheless, our
method cannot be used to predict the behavior of this mode.
On the other hand, the mode with the maximum growth rate
can be determined using the condition that the group
velocity of that flavor wave is zero, i.e., ∂ω=∂kjkmax

¼ 0

[20]. Predicting this mode and its growth rate also requires
knowing the full dispersion relation. Although our method
is not useful to study these modes directly, we will find that
the exponential growth of the zero mode, accurately
predicted by Eq. (20), is a good proxy for the overall
flavor evolution.

IV. NUMERICAL TESTS IN 1D

In this section, we demonstrate our proposed method
using the flavor evolution of models with continuous ELN,
in one spatial dimension z and time t, neglecting ordinary
matter (i.e., Λ ¼ 0). In one spatial dimension, the k and Φ
vectors can be labeled by their magnitudes k and Φ,
respectively. We numerically solve the nonlinear partial
differential EOMs, i.e., Eq. (1), for several models and
compare the flavor evolution thus obtained with the growth
rate predicted by the corresponding moments. First, we will
consider a few toy examples with boxlike angular distri-
butions for the νe and ν̄e, with a crossing at v ¼ vc, and
then show a calculation with more realistic distributions
inspired by SN simulations.
We work in units such that the neutrino potential μ ¼ 1,

and times and lengths are expressed in units of μ−1. In
vacuum, the oscillation frequency is taken to be ωvac ¼
9 × 10−5, while the effective mixing angle is ϑ ¼ 10−3. We
assume an inverted neutrino mass ordering, but the results
are insensitive to this choice. The solution is found over the
z − t plane, allowing z to take values in the interval
ð0∶zmaxÞ and t in ð0∶tmaxÞ. The boundary conditions are
chosen such that flavor-pure modes are emitted at all z
when t ¼ 0, with Sðz; 0Þ being a Gaussian wave packet
centered around z ¼ 100 with small width σ ¼ 1 and initial
amplitude 10−6 for both the real and imaginary parts of S.
Initially, the k ¼ 0mode peaks, and the seeds for all other k
modes are smaller.
As the first case, we take a boxlike distribution given by

ðGνe ; Gν̄eÞ ¼ ð0.3; 0.5Þ for −1 < v < 0 and ðGνe ; Gν̄eÞ ¼
ð1.2; 0.5Þ for 0 < v < 1. The ELN Gνe −Gν̄e changes sign
and presents a crossing at vc ¼ 0. In this case, there are
countergoing neutrinos, and one expects the instability to be
absolute, spreading around its origin without drifting [20].
In the left panel of Fig. 1, we show the numerical evolution

of jSðz; tÞj in the z − t plane. This is obtained by numerically
solving thenonlinear partial differential EOMs for themodel.
An instability corresponds to a growth of jSðz; tÞj. Here, we
see that an absolute instability is generated at t ≃ 30 and
gradually spreads over space without drifting. The nonlinear
regime is reached at t ≃ 60, when jSðz; tÞj ∼Oð10−1Þ.
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In order to estimate the temporal growth of the insta-
bility, we look at the Fourier transform of Sðz; tÞ as a
function of t,

ŜKðtÞ ¼
1

zmax

Z
zmax

0

dzeiKzSðz; tÞ: ð21Þ

The Sðz; tÞ we obtain from the numerical solution of the
EOMs is not in the corotating frame, and its Fourier modes
correspond to the unshifted wave numbers labeled by K, as
denoted above. However, we will continue to work in the
corotating frame and relabel the modes using k ¼ K −Φ to
obtain

ŜkðtÞ ¼
1

zmax

Z
zmax

0

dzeiðkþΦÞzSðz; tÞ: ð22Þ

We remind, the zero mode is labeled by k ¼ 0, the
homogeneous mode by k ¼ −Φ, and the mode with
maximum growth by k ¼ kmax.
In the right panel of Fig. 1, we plot log10 ŜkðtÞ versus t as

obtained from the numerical data for different kmodes. The
zero mode labeled by k ¼ 0 (continuous red line) shows an
initial slow growth until t≲ 30, followed by an exponential
rise until t≳ 60, after which the conversions saturate. The
initial slow phase has been identified as an “onset” phase
and depends logarithmically on the initial seed [22]. In the
regime with exponential growth, the agreement between
the numerical solution and the analytical prediction of the
growth rate (dashed red line) is excellent, both showing a
growth rate ImðωÞ ¼ 0.30. For comparison, we also show
the true homogeneous mode given by k ¼ −Φ (unbroken
green line) and the mode with the largest growth given by
k ¼ kmax (unbroken blue line). Note that in this example,
the homogeneous mode does not have a linear instability. It
is marked by a larger seed and a longer onset period, before
nonlinearity sets in. The k ¼ kmax mode, on the other hand,

clearly has a larger growth rate than the zero mode and
becomes nonlinear earlier. However, there is no simple
analytical expression for the growth rate of this mode. One
needs to find the complete dispersion relation setting k ¼
kmax in Eq. (11). We have identified this mode by numeri-
cally searching for the highest growth rate across all k.
As a second case, we consider a boxlike distribution with

only forward-going neutrinos ðv > 0Þ. In particular, we
take ðGνe ; Gν̄eÞ ¼ ð0.6; 1.0Þ for v < 0.5 and ðGνe ; Gν̄eÞ ¼
ð2.4; 1.0Þ for v > 0.5. In this case, there is a crossing in
ELN at vc ¼ 0.5 but no countergoing neutrinos, and we
expect a convective instability, where the instability advects
away from its point of origin [20].
The numerical solution of the EOMs for this case is

shown in left panel of Fig. 2. One finds that the instability is
indeed convective, drifting away from its origin at z ∼ 100
as it grows. In the right panel of Fig. 2, we compare the
growth rate for the zero mode (continuous red line)
obtained from the numerical solution of the EOMs, with
the analytical growth rate ImðωÞ predicted by Eq. (20)
(dashed red line). Clearly, in the exponential growth
regime, starting at t≳ 40, the agreement is again excellent,
with a growth rate ImðωÞ ¼ 0.17, all the way until
saturation. The true homogeneous mode (unbroken green
line) and the mode with the maximum growth (unbroken
blue line) are also shown for comparison.
As a final example, we consider realistic angular distri-

butions inspired by1DSNmodels simulated by theGarching
group shown in the left panel of Fig. 3. As discussed in the
Introduction, most 1D SN simulations do not present a
crossing in the ELN, unlike what may be expected in
multidimensional SN models. However, the angular distri-
butions are expected to be similar, and we only change the
relative weights of the νe and ν̄e fluxes within the range
predicted by models exhibiting LESA to get a crossing in
ELN at vc ¼ 0.3, as shown in the right panel of Fig. 3. This
ensures that the model shows fast conversions.

FIG. 1. Growth of absolute flavor instability for a toy model of neutrinos with a boxlike ELN distribution with a crossing at vc ¼ 0
given by ðGνe ; Gν̄eÞ ¼ ð0.3; 0.5Þ for v < vc and ðGνe ; Gν̄eÞ ¼ ð1.2; 0.5Þ for v > vc. Left panel: The instability is absolute and spreads
around its origin without drifting. Right panel: The numerically computed growth rate of the zero mode labeled by k ¼ 0 (continuous
red line), the true homogeneous mode labeled by k ¼ −Φ (unbroken green line), and the mode with the largest growth rate labeled by
k ¼ kmax (unbroken blue line). The numerically observed growth rate for the zero mode matches the analytical prediction using the
moments (dashed red line).

SIMPLE METHOD OF DIAGNOSING FAST FLAVOR … PHYS. REV. D 98, 103001 (2018)

103001-5



In the left panel of Fig. 4, we show the numerical
solution of the EOMs for these realistic angular distribu-
tions. The dense neutrino cloud has countergoing neutrinos
and the instability is absolute, spreading across space at

t≳ 50, without drifting away completely. For this model
we found, using Eq. (20), the growth rate to be
ImðωÞ ¼ 0.17. As shown in the right panel, the numerically
computed growth rate in the true model for the zero mode

FIG. 2. Growth of convective flavor instability for a toy model of neutrinos with a boxlike ELN distribution given by ðGνe ; Gν̄eÞ ¼ð0.6; 1.0Þ for 0 < v < vc and ðGνe ; Gν̄eÞ ¼ ð2.4; 1.0Þ for vc < v < 1.0, with vc ¼ 0.5. Left panel: The instability grows along a
particular direction, spreading around it, and advecting away from the original site of instability at z ¼ 100. Right panel: The
numerically computed growth rate of the zero mode labeled by k ¼ 0 (continuous red line), the true homogeneous mode labeled by
k ¼ −Φ (unbroken green line), and the mode with the largest growth rate labeled by k ¼ kmax (unbroken blue line). The numerically
observed growth rate for the zero mode agrees with the analytical prediction using the moments (dashed red line).

FIG. 3. Left panel: Zenith-angle distributions of νe and ν̄e inspired by 1D SN models simulated by the Garching group. The relative
weights of the fluxes have been changed to generate a smaller asymmetry that leads to a crossing at vc ¼ 0.3. Right panel: Difference of
angular spectra of νe and ν̄e showing a crossing at vc ¼ 0.3.

FIG. 4. Growth of absolute flavor instability for neutrino angular distributions following SN simulations, as shown in Fig. 3. Left
panel: The instability is absolute and spreads over space, without drifting. Right panel: The numerically computed growth rate of the
zero mode labeled by k ¼ 0 (continuous red line), the true homogeneous mode labeled by k ¼ −Φ (unbroken green line), and the mode
with the largest growth rate labeled by k ¼ kmax (unbroken blue line). The numerically observed growth rate for the zero mode matches
the analytical prediction using the moments (dashed red line).
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(continuous red line) agrees well with the analytical
prediction using the moments (dashed red line). The
development of the true homogeneous mode (unbroken
green line) and the mode with the maximum growth
(unbroken blue line) are similar. In fact, in this particular
example, the maximum growth rate is roughly the same as
that of the zero mode.

V. DISCUSSION AND CONCLUSIONS

Fast flavor conversions can occur close to the neutrino
decoupling region in a SN, where ELN angular distribu-
tions might have crossings. If these conversions take place,
they would bring into question the current paradigm of SN
simulations that do not include neutrino flavor conversions
in the spectra formation and in SN dynamics [44].
Therefore, it is imperative to scan over a large sample of
multidimensional SN simulations and search for fast
neutrino flavor instabilities. Unfortunately, the relevant
length scales for fast conversions are much smaller than
the resolution of SN simulations, and most multidimen-
sional supernova simulations do not provide detailed
neutrino angular distributions but rather only their inte-
grated moments. Also, numerically identifying the singu-
larities of the Green’s function, in order to find all possible
instabilities, is difficult and time consuming. Therefore, it is
perhaps necessary to adopt a schematic implementation of
these effects.
We argue that it is possible to analytically calculate the

growth of the zero mode determined by the background
matter and neutrino densities using only the first three
moments of the angular distributions. While the zero mode
does not necessarily have the largest growth rate, it allows
an easy estimate of possible fast flavor conversions in a
supernova. Using simple toy examples of box spectra, as
well as realistic angular distributions inspired by SN
simulations, we have demonstrated that the numerically
computed growth rate for the zero mode exactly matches
the predictions from the moments of the angular distribu-
tions. For completeness, we have also shown the homo-
geneous and fastest growing modes in all these examples.
In the cases we have checked, the zero mode gives a good
indication of the timescale over which fast instabilities lead
to large flavor conversions.

In a physical situation, triggering of the unstable modes
plays an equally important role in determining the insta-
bility of the system [45]. Our method, however, does not
take this information into account, and thus, one must
consider its limitations. It is possible that although the zero
mode is unstable, it is not seeded sufficiently. This may lead
to the system being stable even when the zero mode is
unstable. Of course, it is also possible for the system to be
unstable in cases where the zero mode is stable, if a different
mode is unstable and suitably excited. Despite these limi-
tations, going beyond which requires information that is not
available in contemporary simulations, the proposed method
can predict possible flavor instabilities in multi-D simula-
tions with information that is readily available.
We believe that this simplified approach to fast flavor

conversions may allow rapid progress in this line of
research. Indeed, with our simple recipe given in
Sec. III, it should be possible to perform a preliminary
scan for possible fast flavor instabilities in 2D and 3D
supernova (and neutron star merger) models. SN simulators
are likely to find the computational cost of this method to
be significantly lower and might want to use it as a
consistency check on their simulations. If unstable cases
are found, this would have a profound impact on SN
simulations, and one would be forced to include the effect
of fast conversions in state-of-the-art SN simulations in
order to obtain a correct description of the SN dynamics
and of the observable SN neutrino fluxes.
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