
 

Chiral spiral in the presence of chiral imbalance
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The phase diagram of the two-dimensional Nambu–Jona-Lasinio (NJL2) (or chiral Gross-Neveu) model
is characterized by an order parameter in the form of a chiral spiral. Its radius vanishes at a critical
temperature, and its period depends only on the chemical potential. We generalize these findings to chirally
imbalanced systems by including a chiral chemical potential μ5. The relationship between the present static
approach and a previous, time-dependent one is traced back to a half-local symmetry which the NJL2

model shares with massless Dirac fermions, but which has been neglected so far. The structure of chiral
spiral matter is further elucidated by computing fermion and antifermion momentum distribution functions,
using a Bogoliubov transformation.
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I. INTRODUCTION

Much can be learned from exactly solvable quantum
field theories such as the Gross-Neveu model [1]. Here we
reconsider the version with Uð1Þ × Uð1Þ chiral symmetry,
i.e., the Nambu–Jona-Lasinio model [2] in 1þ 1 dimen-
sions (NJL2) with Lagrangian

LNJL2
¼ ψ̄i∂ψ þ g2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�: ð1Þ

The model is endowed with a UðNÞ flavor symmetry, thus
generating a useful expansion parameter, 1=N. We suppress
flavor indices in (1) as usual (ψ̄ψ ¼ P

N
i¼1 ψ̄ iψ i etc.).

Among many interesting results, the most striking one is
perhaps the structure of hot and dense matter, resulting in a
remarkably simple phase diagram as a function of temper-
ature T and chemical potential μ [3,4]. At zero temperature,
applying a linearly x-dependent, local chiral rotation to the
vacuum spinors shifts the spectrum rigidly up, thereby
pulling occupied fermion levels out from the bottom of the
Dirac sea—a manifestation of the chiral anomaly in 1þ 1
dimensions. At the same time, the order parameter changes
from a constant mass to a chiral spiral with helical symmetry
[5]. As an ultraviolet (UV) effect, the axial anomaly gives
rise to temperature-independent changes of thermodynamic
observables upon changing μ. Surprisingly, several global
observables mimic a free Fermi gas of massless particles,
although the physical fermions do acquire a (T-dependent)

dynamical mass due to spontaneous breaking of chiral
symmetry, at least below a certain critical temperature.
During the last few years, there has been increased

interest in chirally imbalanced matter with unequal den-
sities of left- and right-handed quarks. The motivation
stems primarily from the chiral magnetic effect and other
potentially observable signals from the chiral anomaly in
ultrarelativistic heavy ion collisions, compact stars, or
quasirelativistic condensed matter systems (for a recent
review, see [6]). This incites us to revisit the chiral spiral in
the context of chiral imbalance, even if this is not directly
relevant for real physical systems.
In 1þ 1 dimensions, the axial charge density ρ5 ¼

ψ̄γ0γ5ψ coincides with the vector current density
j ¼ ψ̄γ1ψ . Therefore a chirally imbalanced system carries
a nonvanishing current density. Its magnitude can be
controlled by introducing an axial chemical potential μ5,
conjugate to the axial charge Q5.
We are aware of a variational calculation of the NJL

model with isospin [pseudoscalar interaction term in (1)
replaced by ðψ̄iγ5τ⃗ψÞ2] in 1þ 1 dimensions, including a
chiral chemical potential [7,8]. The two references most
closely related to the present work are Refs. [9,10].
Reference [9] considers a more complicated four-fermion
model, where the Lagrangian (1) is augmented by a term
inducing Cooper pairing. The full phase diagram in
(T, μ, μ5) space is determined in a variational calculation,
using as ansatz potentials of chiral spiral type. We shall
compare this approach to the present one at the end of
Sec. II. As far as the simpler model (1) in 1þ 1 dimensions
is concerned, there is some recent work on the imbalanced
system at T ¼ 0 [10]. Because a system with finite fermion
density acquires a current density if viewed by an observer
in a moving inertial frame, it was argued that the mean
fields of systems with μ5 ¼ 0 and μ5 ≠ 0 should be related
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by a Lorentz transformation. Boosting the chiral spiral
necessarily yields space- and time-dependent condensates.
There is nothing wrong with this in principle, but it makes
the transition to finite temperature thermodynamics more
difficult.
Here we propose another, more straightforward approach

to the NJL2 model at finite T, μ, μ5, and present a full, static
Hartree-Fock (HF) solution. As a byproduct, we also clarify
the physics content of the chiral spiral state of matter by
evaluating new observables, namely momentum distribu-
tions of “quarks” and “antiquarks.” The relation between
the present static approach and the time-dependent one of
Ref. [10] will also be addressed.
This paper is organized as follows: In Sec. II, we

generalize the chiral spiral solution to μ5 ≠ 0 and derive
the full NJL2 phase diagram. In Sec. III, we discuss the
difference between this approach and a previous, time-
dependent one. In Sec. IV we give a more physical picture
of chiral spiral matter by computing quark and antiquark
momentum distributions. We finish with a short summary
and our conclusions in Sec. V.

II. FULL PHASE DIAGRAM WITH CHIRAL
CHEMICAL POTENTIAL

The purpose of this section is to map out the phase
diagram of the NJL2 model (1) as a function of chemical
potential μ, chiral chemical potential μ5, and temperature T.
We restrict ourselves to the ’t Hooft limit (N → ∞,
Ng2 ¼ const) where the relativistic version of thermal
Hartree-Fock theory is believed to become exact. The
calculation follows closely the one at μ5 ¼ 0 in [3], thus
we shall move rather quickly through some of the formal
steps. We work with the grand canonical ensemble, gener-
alized to two chemical potentials. The HF equations read

ð−γ5i∂x − μ − μ5γ5 þ γ0Sþ iγ1PÞψα ¼ ωαψα; ð2Þ
supplemented by the (finite temperature) self-consistency
conditions

S ¼ −g2hψ̄ψi ¼ −Ng2
X
α

ψ̄αψα
1

eβωα þ 1
;

P ¼ −g2hψ̄iγ5ψi ¼ −Ng2
X
α

ψ̄αiγ5ψα
1

eβωα þ 1
: ð3Þ

Next we transform away the chemical potentials from Eq. (2)
by the following local chiral transformation:

ψα ¼ eiμxγ5eiμ5xϕα: ð4Þ
Because of the γ5 matrix, this will also affect the scalar and
pseudoscalar potentials S, P. The Dirac equation, satisfied
by ϕα, becomes

ð−γ5i∂x þ γ0S̃þ iγ1P̃Þϕα ¼ ωαϕα ð5Þ

with �
S̃

P̃

�
¼

�
cos 2μx − sin 2μx

sin 2μx cos 2μx

��
S

P

�
: ð6Þ

As hψ̄ψi, hψ̄iγ5ψi transform in the same way as S, P
under (4), the self-consistency relations (3) go over into

S̃ ¼ −g2hϕ̄ϕi ¼ −Ng2
X
α

ϕ̄αϕα
1

eβωα þ 1
;

P̃ ¼ −g2hϕ̄iγ5ϕi ¼ −Ng2
X
α

ϕ̄αiγ5ϕα
1

eβωα þ 1
: ð7Þ

Equations (5) and (7) are just the thermal HF equations
for the NJL2 model at zero chemical potentials, where we
already know the answer. For the standard choice of the
global chiral phase,

S̃ ¼ m; P̃ ¼ 0; ð8Þ
with m the (T-dependent) dynamical fermion mass. Thus,
the original HF problem has been reduced to the free massive
Dirac equation with well-known spinors and spectrum

ωk ¼ �ϵk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: ð9Þ

From (6) and (8) we then infer that the mean fields at finite
chemical potentials μ, μ5 are

S ¼ m cos 2μx; P ¼ −m sin 2μx;

Δ ¼ S − iP ¼ me2iμx: ð10Þ
This is identical to the standard result for the chiral spiral,
independently of μ5.
For the sake of completeness, let us briefly recall how to

minimize the effective potential (free energy) density at
zero chemical potentials. One starts from the standard
expression

Veff

N
¼ m2

2Ng2
−
Z

Λ

−Λ

dk
2π

ϵk −
2

β

Z
dk
2π

ln ð1þ e−βϵkÞ ð11Þ

still containing the bare coupling constant Ng2 and an UV
cutoff Λ. This has to be minimized with respect to m, the
dynamical, T-dependent fermion mass. At T ¼ 0 in par-
ticular, denoting the mass at the minimum by m0, one finds
the vacuum gap equation

π

Ng2
− ln

2Λ
m0

¼ 0: ð12Þ

It can be used to renormalize the effective potential, trading
the dimensionless bare coupling against a dimensionful-
scale parameter m0,

Veff

N
¼ m2

4π

�
ln
m2

m2
0

− 1

�
þm2

0

4π
−
2

β

Z
dk
2π

ln ð1þ e−βϵkÞ:

ð13Þ
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This expression has been normalized to 0 atT ¼ 0 by adding
the term ∼m2

0. If one then minimizes expression (13) with
respect to m, one finds that m decreases monotonically,
vanishing at the critical temperature Tc ¼ m0eγE=π (γE ¼
Euler constant), cf. the original reference [11].
What changes at finite μ, μ5? Owing to the transformation

(4), we know that expression (11) remains valid for finite
chemical potential, at least formally. Since the double
counting correction [the first term in Veff , Eq. (11)] and
the fermion spectrum are independent of the chemical
potentials, the only place where these could affect the
effective potential is through the UV cutoff in the second
term. The third term, the only one depending on temperature,
is also independent of the chemical potentials. So let us focus
on the T ¼ 0 limit for the moment. We shall come back to
the full phase diagram later on. In the chirally symmetric
case (μ5 ¼ 0), it was argued that the UV cutoff has to be
changed fromΛ toΛþ μ to keep the cutoff in single particle
energies constant (see Fig. 1). This affects the number of
occupied levels, resulting in the fermion density

ρ

N
¼

Z
Λþμ

−Λ−μ

dk
2π

¼ Λ
π
þ μ

π
: ð14Þ

The divergent density of the Dirac sea ∼Λ should, of course,
be subtracted. The conventional picture of a Fermi gas is a
state where positive energy levels in the “Fermi sphere”
jkj < kf are filled in addition to the negative energy Dirac
sea. Here, instead, one works exclusively with negative
energy levels, with the benefit that the gap always remains at
the Fermi surface (“Peierls instability” in condensed matter
systems [12]). With this scenario in mind, it is now almost
trivial to treat chiral imbalance as well. In the UV region
where extra fermions are added (for matter, μ > 0) or
removed (for antimatter, μ < 0), we are dealing with states
of definite chirality, since the mass becomes irrelevant. The

chirality of a negative energy state ϕð−Þ
k is

ϕð−Þ†
k γ5ϕ

ð−Þ
k ¼ −

k
ϵk

→ −sgnðkÞ for jkj → ∞ ð15Þ

as can be verified with the explicit spinors below
[cf. Eqs. (44) and (45)]. Thus in order to change the density
of right-handed fermions, we only need to replace the lower
cutoff −ðΛþ μÞ by −ðΛþ μRÞ. To change the density of
left-handed fermions we replace the upper cutoff Λþ μ by
Λþ μL. Here, the chemical potentials

μR ¼ μþ μ5; μL ¼ μ − μ5 ð16Þ

are chemical potentials conjugate to the densities of right-
and left-handed quarks. At T ¼ 0, the difference between the
effective potentials at μ, μ5 and at μ ¼ μ5 ¼ 0 at T ¼ 0
[cf. Eq. (13)] is therefore

lim
β→∞

Veffðβ; μ; μ5Þ − Veffðβ; 0; 0Þ
N

¼ −
Z

ΛþμL

−Λ−μR

dk
2π

ϵk þ
Z

Λ

−Λ

dk
2π

ϵk

¼ −
Λμ
π

−
μ2

2π
−
μ25
2π

: ð17Þ

The densities ρ, ρ5 can either be obtained via thermodynamic
identities

ρ

N
¼ −

∂
∂μ

Veffðβ; μ; μ5Þ
N

¼ Λ
π
þ μ

π
;

ρ5
N

¼ −
∂
∂μ5

Veffðβ; μ; μ5Þ
N

¼ μ5
π
; ð18Þ

or else by direct computation

ρ

N
¼

Z
ΛþμL

−Λ−μR

dk
2π

¼ Λ
π
þ μ

π
;

ρ5
N

¼
Z

ΛþμL

−Λ−μR

dk
2π

�
−

k
ϵk

�
¼ μ5

π
; ð19Þ

with consistent results. The change in energy density at
T ¼ 0 in turn is given by

Eðμ; μ5Þ − Eð0; 0Þ
N

¼ lim
β→∞

Veffðβ; μ; μ5Þ − Veffðβ; 0; 0Þ
N

þ μ
ρ

N
þ μ5

ρ5
N

¼ μ2

2π
þ μ25
2π

: ð20Þ

Alternatively, we can write E=N as follows:

Eðμ; μ5Þ
N

¼
Z

ΛþμL

−Λ−μR

dk
2π

�
−ϵk þ μ − μ5

k
ek

�
; ð21Þ

where the integrand is the expectation value

ϕð−Þ†
k ð−iγ5∂x þ γ0mþ μþ μ5γ5Þϕð−Þ

k : ð22Þ

FIG. 1. Spectrum and filling of single particle states versus k in
HF approximation for vacuum (−ϵk ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, curve 1) and

chiral spiral (−ϵk þ μ, curve 2). The fermion density is increased
through the chiral anomaly.
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Since ϕð−Þ
k is an eigenvector of the grand canonical HF

Hamiltonian, but not of the HF Hamiltonian, it is the
expectation value which enters here. Equation (21) enables
us to illustrate how the picture of Fig. 1 changes upon
introducing μ5 (see Fig. 2). The cutoff in single particle
energies (or rather the expectation values of the single
particle Hamiltonian) is kept fixed while μ, μ5 is changed.
Whereas the chemical potential μ induces a rigid upward
shift of the vacuum picture, μ5 gives rise to a sideways shift
and a distortion.
A new observable at μ5 ≠ 0 is the momentum density.

Since the single particle states are not momentum eigen-
states (due to breaking of translational invariance), we
cannot simply sum up eigenvalues but need again the
expectation values

P
N

¼
Xocc
α

ψ†
α
1

i
∂xψα

¼
Xocc
α

ϕ†
α
1

i
∂xϕα þ μ

Xocc
α

ϕ†
αγ5ϕα þ μ5

Xocc
α

ϕ†
αϕα: ð23Þ

Using the same asymmetric cutoff as for the thermody-
namic potential, we get

P
N

¼
Z

ΛþμL

−Λ−μR

dk
2π

�
k − μ

k
ϵk

þ μ5

�

¼
Z

ΛþμL

−Λ−μR

dk
2π

kþ μ
ρ5
N

þ μ5
ρ

N
¼ μμ5

π
: ð24Þ

Let us compute the invariant mass of a chirally imbalanced
chunk of matter with size L,

E ¼ NL
μ2 þ μ25

2π

P ¼ NL
μμ5
π

M2 ¼ E2 − P2 ¼ N2L2

�
μ2 − μ25
2π

�
2

: ð25Þ

The invariant mass M is indeed a Lorentz scalar, propor-
tional to jjμjμj ¼ jρ2 − ρ25j. These results coincide with
what one would expect for a free gas of massless fermions
with different densities of left- and right-handed fermions.
Indeed, there one fills all positive energy levels using
asymmetric Fermi surfaces (see Fig. 3)

ρR ¼
Z

μR

0

dk
2π

¼ μR
2π

¼ μþ μ5
2π

;

ρL ¼
Z

0

−μL

dk
2π

¼ μL
2π

¼ μ − μ5
2π

;

E ¼
Z

μR

−μL

dk
2π

jkj ¼ μ2R þ μ2L
4π

¼ μ2 þ μ25
2π

;

P ¼
Z

μR

−μL

dk
2π

k ¼ μ2R − μ2L
4π

¼ μμ5
π

: ð26Þ

Vacuum subtraction is trivial here and amounts to ignoring
negative energy states of the Dirac sea. The coincidence
in all observables between the free massless Fermi gas and
the chiral spiral is nontrivial, since the integration limits, the
integrands, and the necessary vacuum subtraction are all
different in the two cases.
In Fig. 4 we map out the phase diagram in (μ, μ5, T)

space. Like at μ5 ¼ 0, the radius of the chiral spiral depends
only on T, the pitch only on μ. The critical temperature
where chiral symmetry is restored in a second-order phase
transition, Tc ¼ m0eγE=π, is independent of both chemical
potentials. No phase transition occurs as a function of μ
or μ5. The resulting phase diagram is therefore extremely
simple, exhibiting a single critical surface in the form of a

FIG. 2. As in Fig. 1, but for chirally imbalanced state. Curve 1
denotes vacuum, curve 3 denotes HF state with different chemical
potentials μR, μL. The expectation value of the single particle
Hamiltonian, Eq. (22), is plotted against k.

FIG. 3. Chirally imbalanced state for free massless Dirac
fermions, illustrating the origin of the results shown in Eq. (26).
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horizontal plane (Fig. 4). Above this sheet, chiral symmetry
is restored and we are dealing with a hot Fermi gas of
noninteracting, massless particles. Below the sheet, the
order parameter has the chiral spiral form (10) with m the
temperature-dependent mass, irrespective of μ5. The fer-
mion densities depend on μ, μ5, but not on temperature. If
we move inside this region with the chiral spiral order
parameter, there are nevertheless observables which depend
on all three variables (μ, μ5, T). This will be discussed in
greater detail in Sec. IV.
Finally, let us briefly comment on the relationship

between the present work and Ref. [9]. The authors of
[9] work out the phase diagram of an extended NJL2 model
including a Cooper pairing interaction. They use as
variational ansatz chiral spiral type potentials, both for
the quark-antiquark and diquark condensates. In case the
quark-antiquark pairing is stronger than diquark pairing,
they find that the diquark condensate vanishes. But this
means that there is no difference between the original NJL2

model (1) and the extended model, at least at the mean field
level. Thus we can compare our results directly to those of
Ref. [9]. We find that the value of the effective potential and
the densities ρ, ρ5 agree perfectly. This is also true for the
observation that the (μ, μ5) and temperature dependences
decouple in all observables. What we can add to Ref. [9] is
the result that this is a fully self-consistent HF solution,
rather than a variational approximation and the physical
picture as explained in Sec. IV.

III. RELATION TO TIME-DEPENDENT
APPROACH AT ZERO TEMPERATURE

Because a dense system carries both density and current
density if viewed from a moving Lorentz frame, it is
plausible that one can also deal with chiral imbalance by
applying a boost to a chirally symmetric system. This is the
attitude taken in Ref. [10]. If one boosts the standard chiral
spiral potential, it evidently becomes time dependent. It is
remarkable that the results of the time-dependent approach

in Ref. [10] and the present static one for energy density
and momentum density agree perfectly, yielding the correct
relativistic energy-momentum relation for a finite piece of
matter. This points to an ambiguity of the mean field. The
origin of this ambiguity is the subject of the present section.
In essence, the difference between Ref. [10] and the

present approach (at T ¼ 0) is the unitary transformation
used to “gauge away” the chemical potentials. Suppose
we start from the time-dependent HF equation rather
than from (2)

ð−γ5i∂x − μ − μ5γ5 þ γ0Sþ iγ1PÞψα ¼ i∂tψα: ð27Þ

One can eliminate μ5 either by the static transformation
expðiμ5xÞ as in Eq. (4), or by a time-dependent axial
transformation expðiμ5tγ5Þ. As far as μ is concerned, there
would be a time-dependent option as well, but we stick to
the static choice expðiμxγ5) for the present purpose. The
results for fermion densities, energy, and momentum do
not seem to depend on the particular choice, but the order
parameter (10) acquires a periodic time dependence if one
follows Ref. [10],

Δ ¼ S − iP ¼ e2iðμxþμ5tÞ: ð28Þ

This expression can be interpreted as a boosted chiral
spiral as follows. We have to distinguish the cases
jμ5j <> jμj. Starting from a chirally symmetric system
with μ ¼ μð0Þ, μ5 ¼ 0 and boosting it, we find

Δ ¼ e2iμ
ð0Þγðx−vtÞ; γ ¼ ð1 − v2Þ−1=2: ð29Þ

Matching (29) to (28) yields

μð0Þ ¼ sgnðμÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ25

q
; v ¼ −

μ5
μ
: ð30Þ

Likewise, starting from a maximally imbalanced system

with μ ¼ 0, μ5 ¼ μð0Þ5 and boosting it, we find

Δ ¼ e2iμ
ð0Þ
5
γðt−vxÞ ð31Þ

with the matching relations

μð0Þ5 ¼ sgnðμ5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 − μ2

q
; v ¼ −

μ

μ5
: ð32Þ

We have to face the puzzling situation that two qualita-
tively different mean fields in chirally imbalanced systems
yield identical global observables. Which is the correct
one?
In fact, we believe that both approaches are legitimate

and reflect a symmetry of the NJL2 model whose impact
has not yet been fully appreciated. The NJL2 Lagrangian
in 1þ 1 dimensions shares a well-known “half-local”

FIG. 4. Full phase diagram of NJL2 model in (μ, μ5, T) space,
in units where m0 ¼ 1. There is a single, horizontal critical
sheet at T ¼ Tc where chiral symmetry gets restored. Below this
sheet, the mean field has the form of the chiral spiral, independ-
ently of μ5.
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symmetry with the theory of free massless Dirac fermions.
The Lagrangian (1) is not only invariant under global chiral
transformations,

ψR → eiαψR; ψL → eiβψL; ð33Þ

but also under a more general class of such transformations
where α, β are arbitrary functions of one light cone variable
each,

ψR → eiαðx−tÞψR; ψL → eiβðxþtÞψL: ð34Þ

This symmetry is somewhat hidden in (1) but becomes
manifest upon introducing chiral spinor components and
light cone coordinates

z ¼ x − t; z̄ ¼ xþ t; ∂0 ¼ ∂̄ − ∂;
∂1 ¼ ∂̄ þ ∂: ð35Þ

The Lagrangian (1) then assumes the form

L ¼ 2iψ†
R∂̄ψR − 2iψ†

L∂ψL þ 2g2ðψ†
LψRÞðψ†

RψLÞ; ð36Þ

and is clearly invariant under

ψR → eiαðzÞψR; ψL → eiβðz̄ÞψL: ð37Þ

In Euclidean space where z, z̄ are complex conjugate, the
corresponding symmetry transformation is referred to as
“left holomorphic” and “right antiholomorphic” chiral
transformations. It plays an important role in conformal
field theory, affine current algebra, and bosonization, and is
at the origin of the fact that ρ5 ¼ j in 1þ 1 dimensions
[13]. It also has been found to be relevant in the context of
two-dimensional gauge theories on the light cone, where it
has been invoked to explain the appearance of massless
baryons in the ’t Hooft model [14].
Now consider the quotient of the unitary factors used in

the present work (UI) and in Ref. [10] (UII),

UI ¼ eiμxγ5eiμ5x; UII ¼ eiμxγ5eiμ5tγ5

U†
IIUI ¼ eiμ5ðx−γ5tÞ: ð38Þ

This fits nicely into the form of the symmetry (34). The
phase of the mean field Δ ¼ S − iP is not invariant under
transformation (34). It is well known that a constant phase
is not observable, due to invariance of the theory under
global chiral rotations (33). Now it seems that there is much
more freedom in the choice of the phase than that. This is
somewhat disconcerting and may force us to reconsider
more carefully the question to what extent the phase of the
mean field Δ ¼ S − iP is observable at all.
As a last remark, we come back to Ref. [9]. The authors

emphasize the duality between quark-antiquark and

quark-quark condensation, or chiral symmetry breaking
and Cooper pairing, originally pointed out in [15]. If we
apply the appropriate canonical transformation (i.e., a
particle-hole conjugation for left-handed quarks only) to
the NJL2 model, we can translate all our findings to a
model featuring superconductivity rather than chiral
symmetry breaking. Up to the interchange of μ and μ5
and a reinterpretation of the chiral condensate as Cooper
pair condensate, all results carry over in a one-to-one
fashion. This implies, for instance, the coexistence of
static and time-dependent chiral spiral realizations of the
Cooper pair model with two chemical potentials.
From a practical point of view, the present static

description has the advantage that it is easier to generalize
to finite temperature, using only conventional formalism.
Hence we shall stick to the static formulation here.

IV. PHYSICAL PICTURE OF THE CHIRAL SPIRAL

Although the HF solution presented in Sec. II seems to
be formally correct, it is not easy to interpret in terms of
physics. Let us briefly come back to Figs. 1 and 2. Curve 1
in either figure shows the spectrum and occupation of the
negative energy vacuum levels, i.e., the filled Dirac sea. As
is well known, the correct physical interpretation requires
one to redefine occupied and unoccupied states for negative
energy levels by a particle-hole conjugation. A hole in the
filled Dirac sea is an antiparticle (“antiquark”), whereas
particles (“quarks”) correspond to occupied positive energy
levels. Thus the vacuum contains neither quarks nor
antiquarks, a precondition for its Lorentz invariance. The
traditional HF picture of dense matter would suggest filling
a number of positive energy levels in addition to the sea.
Vacuum subtraction then simply amounts to ignoring the
fully occupied negative energy levels. The picture implied
by the chiral spiral is radically different (Fig. 1), which is
suggestive of adding occupied negative energy states in the
UV region by extending the cutoff. How do we interpret
this state? What is the correct definition of quarks and
antiquarks, and how do we subtract unobservable vacuum
effects? At this point, this is still very unclear. The same
holds true once we allow for chiral imbalance, as in curve 3
of Fig. 2.
To clarify the physics, we propose to compute observables

which give more detailed information about the structure of
dense matter, namely momentum distributions of quarks and
antiquarks. Since this has not yet been done before, we start
out with the chirally symmetric case (μ5 ¼ 0) and indicate
changes due to chiral imbalance later on.
To this end, we cast the transition (4) between chiral

spiral and vacuum spinors into the form of a Bogoliubov
transformation, following Ref. [16]. Recall that the HF
equation for the system with chemical potential μ is

ð−γ5i∂x − μþ γ0Sþ iγ1PÞψ ð�Þ
k ¼ �ϵkψ

ð�Þ
k ð39Þ
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with

S ¼ m cos2μx; P ¼ −m sin2μx; ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
:

ð40Þ

The transformation

ψ ð�Þ
k ¼ Uϕð�Þ

k ; U ¼ eiμxγ5 ð41Þ

maps this onto the vacuum HF equation

ð−γ5i∂x þ γ0mÞϕð�Þ
k ¼ �ϵkϕ

ð�Þ
k : ð42Þ

The explicit form of the vacuum spinors in the representation

γ0 ¼ −σ1; γ1 ¼ iσ3; γ5 ¼ γ0γ1 ¼ −σ2 ð43Þ

is

ϕðþÞ
k ¼ ukeikx; ϕð−Þ

k ¼ vkeikx; ð44Þ
where

uk ¼
1ffiffiffi
2

p
ϵk

�
ik −m

ϵk

�
; vk ¼

1ffiffiffi
2

p
ϵk

�
ik −m

−ϵk

�
: ð45Þ

The field operator ΨðxÞ (using the Schrödinger picture)

can be expanded either using free spinors ϕð�Þ
k , or using

the full HF spinors ψ ð�Þ
k

ΨðxÞ ¼
X
k

½akϕðþÞ
k ðxÞ þ bkϕ

ð−Þ
k ðxÞ�

¼
X
k

½Akψ
ðþÞ
k ðxÞ þ Bkψ

ð−Þ
k ðxÞ�: ð46Þ

The relation between the second quantized fermion
operators ak, bk, and Ak, Bk is then given by the
Bogoliubov transformation

ak ¼
X
l

½ðϕðþÞ
k ;ψ ðþÞ

l ÞAl þ ðϕðþÞ
k ;ψ ð−Þ

l ÞBl�;

bk ¼
X
l

½ðϕð−Þ
k ;ψ ðþÞ

l ÞAl þ ðϕð−Þ
k ;ψ ð−Þ

l ÞBl�: ð47Þ

The quark momentum distribution reads [16]

WqðkÞ ¼ hHFja†kakjHFi ¼
X
l

jðϕðþÞ
k ;ψ ð−Þ

l Þj2: ð48Þ

Here we have used the fact that in the HF state, all ψ ð−Þ
states are occupied. For the antiquarks, we perform the
particle-hole conjugation as usual and get

Wq̄ðkÞ ¼ 1 − hHFjb†−kb−kjHFi ¼ 1 −
X
l

jðϕð−Þ
−k ;ψ

ð−Þ
l Þj2:

ð49Þ

The relevant Bogoliubov coefficients can easily be evalu-
ated. We decompose U with the help of R/L projection
operators

U ¼ eiμxγ5 ¼ PReiμx þ PLe−iμx; PR;L ¼ 1� γ5
2

ð50Þ

and find

ðϕðþÞ
k ;ψ ð−Þ

l Þ ¼ δl;k−μu
†
kPRvl þ δl;kþμu

†
kPLvl;

ðϕð−Þ
−k ;ψ

ð−Þ
l Þ ¼ δl;−k−μv

†
−kPRvl þ δl;−kþμv

†
−kPLvl: ð51Þ

Consequently

WqðkÞ ¼ ju†kPRvk−μj2 þ ju†kPLvkþμj2;
Wq̄ðkÞ ¼ 1 − jv†−kPRv−k−μj2 − jv†−kPLv−kþμj2: ð52Þ

These expressions are only valid at μ ≠ 0. If μ ¼ 0, the
two terms on the right-hand side of (51) have to be added
coherently before squaring, so that both distribution
functions vanish identically. For μ ≠ 0, a simple compu-
tation using the explicit spinors (45) yields

WqðkÞ ¼
1

2
−
Vk−μð1þ VkÞ

4
þ Vkþμð1 − VkÞ

4
;

Wq̄ðkÞ ¼
1

2
−
Vkþμð1þ VkÞ

4
þ Vk−μð1 − VkÞ

4
; ð53Þ

where

Vp ¼ p
ϵp

¼ ∂ϵp
∂p ð54Þ

denotes the velocity of a free massive fermion with
momentum p. Notice that a change of sign of μ inter-
changes Wq and Wq̄, as expected. Both distribution
functions are even under k → −k. Actually, we can further
decompose Wq, Wq̄ according to chirality. The factors
ð1� VkÞ=2 occurring in (53) can be used to “tag” the L=R
components, since

u†kγ5uk ¼ v†−kγ5v−k ¼ Vk: ð55Þ

All we have to do to disentangle R=L contributions toWq,
Wq̄ is to decompose the constant 1=2 into

1

2
¼ 1

2

�
1þ Vk

2
þ 1 − Vk

2

�
: ð56Þ
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The result of this decomposition are momentum distri-
butions for R=L quarks/antiquarks,

WR
q ðkÞ ¼

�
1þ Vk

2

��
1 − Vk−μ

2

�
;

WL
q ðkÞ ¼

�
1 − Vk

2

��
1þ Vkþμ

2

�
;

WR
q̄ ðkÞ ¼

�
1þ Vk

2

��
1 − Vkþμ

2

�
;

WL
q̄ ðkÞ ¼

�
1 − Vk

2

��
1þ Vk−μ

2

�
: ð57Þ

Changing the sign of μ interchanges q=q̄, and changing
the sign of k interchanges R=L.
We first illustrate the distribution functions at low

(Fig. 5) and high (Fig. 6) densities. Both figures show
immediately that the structure of chiral spiral matter has
nothing to do with the UV region. At the smaller density,
we see a strongly relativistic signature with almost equal
densities of rather low momentum quarks and antiquarks.
Actually, the limit μ → 0 is

lim
μ→0

Wq ¼ lim
μ→0

Wq̄ ¼ W0 ¼
m2

2ðm2 þ k2Þ : ð58Þ

This does not describe the vacuum where all distribution
functions vanish, but should be thought of as the momen-
tum distribution in the low density limit, i.e., for a single
massless delocalized baryon. As pointed out in Refs. [17]
and [5], the baryon in the NJL2 picture is the simplest
realization of the Skyrme model [18] where baryon
number arises from winding number of the pion field.
This is supported by the equal distributions of quarks and

antiquarks as well as by the momentum distribution (58)
which agrees with the absolute square of the pion Bethe-
Salpeter amplitudes [3] up to a normalization factor. At
high densities (Fig. 6), the picture we get looks surpris-
ingly familiar. To a good approximation, we can neglect
antiquarks and recover the picture where quark levels are
filled up to a Fermi momentum. The only difference is the
fact that the Fermi surface is not sharp but rounded off,
similar to what happens at finite temperature. This picture
is quite different from the impression conveyed super-
ficially by curve 2 in Fig. 1.
Figures 7 and 8 show how the quark and antiquark

momentum distributions split up according to chirality into
R=L pieces. We have plotted the distributions from Eq. (57)
for a density in between the two cases shown in Figs. 5

FIG. 6. Same as Fig. 5, but at high density (m ¼ 1, μ ¼ 20,
μ5 ¼ 0).

FIG. 5. Momentum distributions of quarks (Wq) and antiquarks
(Wq̄), Eq. (53), for a system with low density (m ¼ 1, μ ¼ 0.1,
μ5 ¼ 0).

FIG. 7. Splitting up Wq into contributions with different
chiralities R=L; see Eq. (57). A case of intermediate density
(m ¼ 1, μ ¼ 5, μ5 ¼ 0) is shown.
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and 6. Notice that quarks and antiquarks with the same
chirality move predominantly into opposite directions.
An important cross-check of the whole formalism is the

evaluation of global observables in this new setting. The
fermion density can be evaluated analytically in a straight-
forward way, without introducing any UV cutoff,

ρ

N
¼

Z
dk
2π

ðWq −Wq̄Þ ¼
μ

π
: ð59Þ

This agrees with the result in Sec. II, confirming that the
cutoff chosen there was reasonable. In the present calcu-
lation, the vacuum subtraction happens when we perform
the ph-conjugation for negative energy levels, Eq. (52).
In order to compute the energy density, it is sufficient to
subtract at μ ¼ 0 to get a finite result (the μ ¼ 0 part is
evaluated differently and not of interest here). Thus

EðμÞ − Eð0Þ
N

¼
Z

dk
2π

ϵkðWq þWq̄ − 2W0Þ ¼
μ2

2π
: ð60Þ

Once again, no cutoff is needed, and we confirm our
previous result analytically.
As a last illustration of the chirally symmetric results

(μ5 ¼ 0), we go back to the μ5 ¼ 0 plane of the phase
diagram shown in Fig. 4. If we move vertically inside this
diagram (i.e., vary T at constant μ), the dynamical mass m
changes, vanishing at Tc. Figures 9 and 10 show the
evolution of quark and antiquark distribution functions at
μ ¼ 1 as m decreases from m ¼ 1 at T ¼ 0 to m ¼ 0 at
T ¼ Tc. At m ¼ 0, Wq goes over into the result for free
massless fermions (μ > 0)

WqðkÞ ¼ Θðμ − kÞ − Θð−μ − kÞ; Wq̄ðkÞ ¼ 0: ð61Þ

Thus restoration of chiral symmetry is also reflected in the
distribution functions. If we move along a horizontal path
through the phase diagram (by increasing μ at fixed T), the
distribution also approaches a rectangular shape of increas-
ing width. If we would plot it as a function of k=μ, the result
would look just like Figs. 9 and 10. The only difference
is the fact that the limit of a free massless Fermi gas,
signalling the restoration of chiral symmetry, would be
reached only at μ → ∞, as compared to a finite temperature
Tc before.
What changes if we introduce μ5, allowing for chiral

imbalance? Equation (39) gets replaced by

ð−γ5i∂x − μ − γ5μ5 þ γ0Sþ iγ1PÞψ ð�Þ
k ¼ �ϵkψ

ð�Þ
k ð62Þ

and the unitary matrix U in (41) by

FIG. 8. Same as Fig. 7, but for antiquark distribution Wq̄.
FIG. 9. Evolution of quark momentum distribution with
dynamical mass m, to illustrate restoration of chiral symmetry
as a function of temperature. Curves shown correspond to μ ¼ 1,
μ5 ¼ 0 and varyingm in steps of 0.1 between 1 (smoothest curve)
and 0 (rectangular curve).

FIG. 10. As in Fig. 9, but for antiquarks. The height of the
curves decreases as m is varied from 1 to 0. Note the different
scale as compared to Fig. 7.
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U ¼ eiμxγ5eiμ5x ¼ PReiμRx þ PLe−iμLx: ð63Þ

Apart from the fact that the momentum splitting becomes
asymmetric, the calculation of the Bogoliubov coefficients
is the same as before. The resulting quark and antiquark
momentum distributions are

WqðkÞ ¼ ju†kPRvk−μR j2 þ ju†kPLvkþμL j2;
Wq̄ðkÞ ¼ 1 − jv†−kPRv−k−μR j2 − jv†−kPLv−kþμL j2; ð64Þ

or, explicitly,

WqðkÞ ¼
1

2
−
Vk−μRð1þ VkÞ

4
þ VkþμLð1 − VkÞ

4
;

Wq̄ðkÞ ¼
1

2
−
VkþμRð1þ VkÞ

4
þ Vk−μLð1 − VkÞ

4
: ð65Þ

We can again decompose Wq, Wq̄ into R=L contributions

WR
q ðkÞ ¼

�
1þ Vk

2

��
1 − Vk−μR

2

�
;

WL
q ðkÞ ¼

�
1 − Vk

2

��
1þ VkþμL

2

�
;

WR
q̄ ðkÞ ¼

�
1þ Vk

2

��
1 − VkþμR

2

�
;

WL
q̄ ðkÞ ¼

�
1 − Vk

2

��
1þ Vk−μL

2

�
: ð66Þ

Of particular interest is the simple special case of vanishing
μ where μR ¼ −μL ¼ μ5, complementary to the case of
vanishing μ5 considered above. In this case, the HF

potential is homogeneous (S ¼ m, P ¼ 0), just as in the
vacuum. Then

WqðkÞ ¼
1

2
ð1 − VkVk−μ5Þ

Wq̄ðkÞ ¼
1

2
ð1 − VkVkþμ5Þ ¼ Wqð−kÞ: ð67Þ

The last symmetry follows from Vp ¼ −V−p, implies equal
densities of quarks and antiquarks, and is consistent with the
fact that the momentum density vanishes if μ ¼ 0 [see
Eq. (24)]. The decomposition according to chirality can be
inferred from (66) by specializing it to μR ¼ −μL ¼ μ5.
Examples of these distributions for small and large μ5 are
shown in Figs. 11 and 12. They actually look as expected. In
order to produce a current at zero density, one combines a
bunch of right-moving quarks with a bunch of left-moving
antiquarks. Forμ5 → ∞ orm → 0, the distributions approach
the expected rectangular ones for a free massless Fermi gas.
For the sake of completeness, we list the limit m → 0,

reached when approaching the critical surface T ¼ Tc from
below, for all distribution functions. Denoting the charac-
teristic function of the interval ½a; b� on the k axis by

hðk; ½a; b�Þ ¼ Θða − kÞ − Θðb − kÞ ðb > aÞ; ð68Þ
we find

WR
q ðkÞ ¼ hðk; ½0; μR�Þ;WR

q̄ ðkÞ ¼ 0 for μR > 0;

WR
q̄ ðkÞ ¼ hðk; ½0;−μR�Þ;WR

q ðkÞ ¼ 0 for μR < 0;

WL
q ðkÞ ¼ hðk; ½−μL; 0�Þ;WL

q̄ ðkÞ ¼ 0 for μL > 0;

WL
q̄ ðkÞ ¼ hðk; ½μL; 0�Þ;WL

q ðkÞ ¼ 0 for μL < 0: ð69Þ
All of these results agree with a free massless Fermi gas
with chiral imbalance. If one allows both μ and μ5 to be
nonzero, one gets distortions of these simple pictures.

FIG. 11. Quark and antiquark momentum distribution functions
for a system with maximal chiral imbalance [Eq. (67)] and rather
low current density (m ¼ 1, μ ¼ 0, μ5 ¼ 2).

FIG. 12. As in Fig. 11, but for large current density (m ¼ 1,
μ ¼ 0, μ5 ¼ 20).
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An example is shown in Fig. 13. Other cases can easily be
generated with the help of the above analytical formulas.
Finally, we check the computation of observables in

the case of chiral imbalance, a further test of the
asymmetric cutoff introduced in Sec. II. All calculations
can be done in closed analytical form and do not require
any cutoff, provided we subtract again the energy density
at μ ¼ μ5 ¼ 0. We find

ρR
N

¼
Z

dk
2π

ðWR
q −WR

q̄ Þ ¼
μR
2π

;

ρL
N

¼
Z

dk
2π

ðWL
q −WL

q̄ Þ ¼
μL
2π

;

ER

N
¼

Z
dk
2π

ϵkðWR
q þWR

q̄ −W0Þ ¼
μ2R
4π

;

EL

N
¼

Z
dk
2π

ϵkðWL
q þWL

q̄ −W0Þ ¼
μ2L
4π

;

PR

N
¼

Z
dk
2π

kðWR
q þWR

q̄ Þ ¼
μ2R
4π

;

PL

N
¼

Z
dk
2π

kðWL
q þWL

q̄ Þ ¼ −
μ2L
4π

; ð70Þ

where all observables have been split into contributions
from R/L fermions. This fully confirms the simpler, but
physically less transparent, cutoff calculation of Sec. II.

V. SUMMARY AND CONCLUSIONS

In this work, we have presented the full phase diagram
of the NJL2 model in (μ, μ5, T) space. Without chiral
imbalance (μ5 ¼ 0), it has been known for some time that
the physics is strongly dominated by a chiral spiral type
mean field. The radius of this helix structure in (S, P, x)
space is determined by the thermal mass, vanishing at a
critical temperature in a continuous fashion. The period is
determined by μ. By generalizing this construction to finite
μ5, we find that the mean field is unchanged, but that one
has to choose an asymmetric cutoff in momentum space
when summing over negative energy states. The resulting
observables look very reasonable and are consistent with
Lorentz covariance. To corroborate our choice of cutoff, we
then have evaluated for the first time momentum distribu-
tion functions for quarks and antiquarks, using a standard
Bogoliubov transformation. On the one hand, this confirms
the calculation of all global observables, now without need
to introduce an UV cutoff. On the other hand, it sheds light
onto the structure of matter which is somewhat obscure in
the original derivation. We find that at low densities, the
distribution functions reflect the close relation between
baryon density and the pion field characteristic for the
Skyrme picture. At high densities, one smoothly reaches
the limit of a free massless Fermi gas. In the opposite case
of μ ¼ 0, μ5 ≠ 0, one recovers the naively expected picture
of equal numbers of right-moving quarks and left-moving
antiquarks, but for a homogeneous mean field.
Perhaps the most surprising finding is the fact that one

can get the same global observables in this static way as in a
time-dependent approach, where the chiral spiral is boosted
and develops a space-time dependence. The fact that both
calculations agree on the global observables has been
traced back to a half-local symmetry, well known from
massless free fermions but disregarded so far in the NJL2

model. We do not believe that this ambiguity in the phase
of the mean field Δ ¼ S − iP renders our results for
observables less reliable. However, one may have to rethink
more fundamentally about how to deal with this half-local
symmetry in a nongauge theory, and which quantities are
really observable.
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