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The Skyrme model is extended with a sextic derivative term, called the BPS-Skyrme term, and a
repulsive potential term, called the loosely bound potential. A large part of the model’s parameter space is
studied for the 4-Skyrmion, which corresponds to the helium-4 nucleus, and emphasis is put on preserving
as much of the platonic symmetries as possible while reducing the binding energies. We reach classical
binding energies for helium-4 as low as 0.2%, while retaining the cubic symmetry of the 4-Skyrmion, and
after taking into account the quantum mass correction to the nucleon due to spin/isospin quantization, we
get total binding energies as low as 3.6%—still with the cubic symmetry intact.
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I. INTRODUCTION

The Skyrme model is an interesting approach to nuclear
physics that is related to fundamental physics; i.e., it is a
field theory [1,2]. Indeed, the soliton in the model is
identified with the baryon in the large-N limit of QCD
[3,4]. The soliton is called the Skyrmion. The most
interesting aspect of the Skyrmions is that, although a
single Skyrmion is identified with a single nucleon, multi-
Skyrmion solutions that can be identified with nuclei of
higher baryon numbers exist. This fact distinguishes the
Skyrme model from basically all other approaches to
nuclear physics; the nuclei are no longer bound states of
interacting point particles. What is more interesting is that,
since even the single Skyrmion is a spatially extended
object (as opposed to a point particle), the multi-Skyrmions
become extended objects with certain platonic symmetries
[5]. A particular useful ansatz for light nuclei was found
using a rational map [6]. For larger nuclei, however, there is
some consensus that when a pion mass term is included in
the model they are made of B=4 cubes—akin somewhat to
the alpha particle model of nuclei [7–11]—up to small
deformations.
A long-standing problem of the Skyrme model as a

model for nuclei is that the multi-Skyrmions are too
strongly bound; their binding energies are about 1 order
of magnitude larger than what is measured in nuclei
experimentally. One approach to solving this problem is

based on modifying the Skyrme model such that the
classical solutions can come close to a BPS-like energy
bound, in which case the classical energy is approximately
proportional to the topological charge. Hence, if such a
bound could be saturated, then classically the binding
energy would vanish exactly. In the last decade, this
approach has been taken in three different directions: the
vector meson Skyrme model [12–14], the BPS-Skyrme
model [15,16], and the lightly/loosely bound Skyrme
models [17–19].
The vector meson Skyrme model is inspired by approxi-

mate Skyrmion solutions obtained from instanton holon-
omies [20], and it is found that the instanton holonomy
becomes an exact solution in the limit where an infinite
tower of vector mesons is included; the complete theory can
be described simply as a 4þ 1-dimensional Yang-Mills
(YM) theory in flat spacetime [12]. The instanton is a half-
BPS state in the YM theory, and the Skyrmion saturates the
BPS bound if the theory is not truncated. The standard
Skyrme model is at the other end of the scale; all vector
mesons have been stripped off, leaving behind just the
pions. The model is in very close relation to holography,
although the discrete spectrum of vector mesons is due to
truncation of the theory and not due to an intrinsic curvature
of the background spacetime [12]. Indeed, in the Sakai-
Sugimoto model, the standard Skyrme model comes out as
the low-energy action of the zero modes [21]. The sextic
term, which we shall discuss shortly in a different context,
also comes out naturally by integrating out the first vector
meson in the Sakai-Sugimoto model [22].
The BPS-Skyrme model is based on a drastic modifi-

cation of the Skyrme model: remove the original terms, and
replace them with a sextic term, which we shall call the
BPS-Skyrme term, and a potential [15,16]. The model has
the advantage of simplicity in the following sense: the
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model in this limit is not only a BPS theory—in the sense of
being able to saturate a BPS-like energy bound—but it is
also integrable. That is, a large class of exact analytic
solutions has been obtained. The disadvantage is that the
kinetic term and the Skyrme term have to be quite
suppressed in order for the classical binding energy to
be of the order of magnitude seen in experimental data.
That issue is twofold; the first problem is that we would like
to maintain the coefficient of the kinetic term (the pion
decay constant) and pion mass of the order of the measured
values in the pion vacuum. The second problem is of a more
technical nature; close to the BPS limit, the coefficient of
the kinetic term (c2) is very small, and hence there are
certain points/lines in the Skyrmion solutions where the
solution can afford to have very large field derivatives—of
the order of 1=

ffiffiffiffiffi
c2

p
. In Ref. [18], the order of magnitude of

c2 for the classical binding energies to be in the ballpark
of the experimental values was estimated to be around
c2 ∼ 0.01, whereas their numerics was trustable only down
to about c2 ∼ 0.2.
The lightly bound Skyrme model is based on an energy

bound [17,23] for the Skyrme term and a potential to the
fourth power. Although this model has a saturable solution
in the 1-Skyrmion sector, no solutions saturate the bound
for higher topological degrees. Nevertheless, it turns out
that, although the solutions do not saturate the bound for
higher topological degrees, they can come quite close to the
bound, which in turn yields a small classical binding energy
[18]. The lightly bound model can indeed reduce the
binding energies, but it comes with a price; long before
realistic binding energies are reached, the platonic sym-
metries of the compact Skyrmions are lost, and the potential
has the effect of pushing out identifiable 1-Skyrmions,
which remain only very weakly bound. This limit was the
inspiration for a simplified kind of Skyrme model, called
the point particle model of lightly bound Skyrmions [24].
Said limit can also be obtained naturally in the Sakai-
Sugimoto model by considering the strong ’t Hooft
coupling limit [25].
In Ref. [19], we compared the potential made of the

standard pion mass term to the fourth power and the same
potential to the second power; we call them the lightly
bound and the loosely bound potentials, respectively. It
turns out that the loosely bound potential has the same
repulsive effect as the lightly bound potential does, but the
Skyrmions retain their platonic symmetries down to smaller
binding energies for the loosely bound potential as com-
pared to the lightly bound one. In Ref. [26], we further
established that if the potential is treated as a polynomial
in σ ¼ 1

2
Tr½U�, where U is the chiral field, then to second

order the loosely bound potential is the potential that can
reduce the binding energy the most while preserving
platonic symmetries of the Skyrmions.
In Ref. [27], we expanded the model by making a hybrid

model out of the BPS-Skyrme-type models and the loosely

bound model. Let us define the generalized Skyrme model
as the standard Skyrme model with the addition of the
sextic BPS-Skyrme term. Thus, in Ref. [27], we studied
the generalized Skyrme model with the pion mass term and
the loosely bound potential. More precisely, we studied the
model using the rational map ansatz for the 4-Skyrmion in
the regime where the coefficients for the BPS-Skyrme term,
c6, and the loosely bound potential, m2, were both taken to
be small (i.e., smaller than or equal to 1). Physical effects
on the observables of the model could readily be extracted
without the effort of full numerical partial differential
equation (PDE) calculations. Of course, that compromise
had the consequence that we could not detect the change of
symmetry in the Skyrmion solutions, and hence we inves-
tigated only a very restricted part of the parameter space.
In this paper, we perform the full PDE calculations for

the 4-Skyrmion in the generalized Skyrme model with the
loosely bound potential and a standard pion mass term, for
small values of the coefficient of the BPS-Skyrme term and
up to large values of the mass parameter of the loosely
bound potential; see Fig. 1. In particular, in this paper, we
study the following region of parameter space: c6 ∈ ½0; 1�
and m2 ∈ ½0; 6�. Note that it is m2

2 that enters the
Lagrangian, and hence 62 ¼ 36 is much larger than the
other coefficients in the Lagrangian (which are all of order
1). In fact, we are close to the limit of how far we can push
m2 with the current numerical codes. We have not con-
sidered the direction of large c6 in this work, as it will not
reduce the binding energy unless we also turn on a large
coefficient of the potential. That situation, however, yields
two possibilities: either we do not go beyond the limit
where the numerics becomes difficult as discussed above
or one has to take the near-BPS limit carefully, which will
require overcoming further technical obstacles than dealt
with here. Nevertheless, in the part of parameter space
we have studied in this paper,we are able to obtain a classical
binding energy of the 4-Skyrmion as low as 0.2%—
about a factor of 4 smaller than the experimental value
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FIG. 1. Parameter space of the model explored in this paper
(green) as well as what was studied in Ref. [27] (region inside the
blue box). The BSML is defined as c6 ∝ m2 → ∞, and the PPML
is c6 ¼ 0, m2 → ∞.
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for helium-4. After taking into account the quantum
correction to the mass of the nucleon due to the spin
contribution (as it is a spin-1

2
state in the ground state), the

binding energy increases to about 3.6%—about a factor of
4.5 too large. This fact suggests that we cannot leave out
further quantum corrections to the nuclear masses; we have
to take into account quantum corrections due to massive
modes [28], also called vibrational modes; see, e.g.,
Refs. [10,29,30].
The question remains how large a total contribution the

inclusion of the quantum corrections due to the massive
modes will give. It has been assumed all along that the
quantization of solitons can consistently be made in a
semiclassical fashion, in which the quantum corrections are
small compared to the (large) mass scale of the soliton. This
expectation is based on the assumption that the fluctuation
spectrum is weakly coupled, even though the soliton is
inherently a nonperturbative object. The simplest example
is to consider the mass correction to the kink in the λϕ4

model in 1þ 1 dimensions,

Lkink ¼ −
1

2
ð∂μϕÞ2 −

λ

4ℏ3

�
ϕ2 −

ℏm2

λ

�
2

: ð1Þ

We can estimate the kink mass with the following back-of-
an-envelope estimate: we rescale the length scale xμ →

ℏxμ=m and rescale the field ϕ →
ffiffi
ℏ
λ

q
mϕ; the Lagrangian

density is now dimensionless with an overall dimensionful
prefactor of m4

ℏλ. Assuming the kink exists, its mass must be

an order 1 number times m3

λ , where the ℏ=m came from
integrating over x1. Considering now the quantum correc-
tion due to massive modes, one obtains an order-1 number
times ℏω, where ω2 is the curvature of the effective
potential created by the kink solution [31]. That is, the
eigenvalue of the fluctuation around the kink is
ω2 ∼m2=ℏ2, and it follows in the harmonic approximation
that the quantum energy is ℏω ∼m. To realize this, it
suffices to note that the second variation of the potential
with respect to the field is − m2

ℏ2 þ 3 λ
ℏ3 ϕ

2
soliton and that the

soliton solution is proportional to ℏ
1
2λ−

1
2m; the resultant

effective potential for the fluctuations is thus independent
of λ. In this example, the mass dimensions of m and λ are 1
and 2, respectively. If λ ≪ m2, then the perturbation series
makes sense, and furthermore the quantum correction is
much smaller than the classical contribution

Mclassical þ δM ∝
m3

λ

�
1þO

�
λ

m2

��
: ð2Þ

The situation is more complicated in the case of the three-
dimensional Skyrmions than in the case of simple one-
dimensional kinks (which are integrable). First of all, to the
best of our knowledge, it is not known how weakly coupled

the fluctuation spectrum really is. Comparing to the kinks,
the question would be how small λeff is for the Skyrmions.
The scope in this paper, however, will be to focus on

reducing the classical binding energy of the Skyrmions
under the constraint of preserving as much symmetry of the
original Skyrmions as possible. This is thus in the spirit of
assuming that the fluctuation spectrum of the Skyrmions is
weakly coupled and thus the classical mass is the largest
contribution to the mass by far; the zero-mode quantization
gives the most important quantum corrections, and the
remaining modes give corrections to the mass of the order
of magnitude of the zero-mode contributions or less. The
reason for preserving as much symmetry as possible is first
of all to be able to keep some of the phenomenological
successes of the Skyrme model already obtained, such as
the Hoyle state and its corresponding rotational band
having a slope a factor of 2.5 lower than that of the ground
state [9]. Taking into account the vibrational spectrum
of the 4-Skyrmions vibrating between a flat square con-
figuration and a tetrahedral arrangement was crucial in
obtaining the right spectrum of oxygen-16, having a large
energy splitting between states of the same spins and
opposite parity [10]. Both of these results would fall apart
if the 4-Skyrmion were to lose its cubic symmetry. Finally,
and perhaps even more importantly, the larger the sym-
metry, the better the chances are that the symmetry can
eliminate unwanted degeneracies, e.g., the parity doubling
found in the B ¼ 5 cluster system in the model of Ref. [30].
The paper is organized as follows. In the next section,

we will introduce the model, define the observables,
and finally propose an order parameter for a quantitative
measure of the symmetry change. In Sec. III, we will
present the numerical results. Finally, Sec. IV concludes the
paper with a discussion of the results and what to do next.

II. MODEL

Themodelwe study in this paper is the generalized Skyrme
model—consisting of a kinetic term, theSkyrme term, and the
BPS-Skyrme term—with a pion mass term and the so-called
loosely bound potential. In physical units, we have

L ¼ f̃2π
4
L2 þ

1

e2
L4 þ

4c2c6
c24e

4f̃2π
L6 −

m̃2
πf̃

2
π

4m2
1

V; ð3Þ

where the kinetic term, the Skyrme term [1,2], and the
BPS-Skyrme term [15,16] are given by

L2 ¼
1

4
TrðLμLμÞ; ð4Þ

L4 ¼
1

32
Trð½Lμ; Lν�½Lμ; Lν�Þ; ð5Þ

L6¼
1

144
ημμ0 ðϵμνρσTr½LνLρLσ�Þðϵμ0ν0ρ0σ0Tr½Lν0Lρ0Lσ0 �Þ; ð6Þ
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with the left-invariant current defined as

Lμ ≡U†∂μU; ð7Þ

in terms of the chiral Lagrangian or Skyrme fieldU, which is
related to the pions as

U ¼ 12σ þ iτ · π; ð8Þ

with the nonlinear sigma model constraint detU ¼ 1 or
σ2 þ π · π ¼ 1 and τ being a 3-vector of the Pauli matrices.
The greek indices μ, ν, ρ, σ ¼ 0, 1, 2, 3 denote spacetime
indices, and we will use the mostly positive metric signature
throughout the paper.
We will now switch to (dimensionless) Skyrme units

following Refs. [26,27] and denote the quantities having
physical units with a tilde. In particular, for the energy and
length scale, we will take Ẽ ¼ λ̃E and x̃i ¼ μ̃xi, respec-
tively, where we have the units [27]

λ̃ ¼ f̃π
2e

ffiffiffiffiffiffiffiffiffi
c2c4

p ; μ̃ ¼
ffiffiffiffiffi
c2
c4

r
2

ef̃π
; ð9Þ

and finally the pion mass in physical units [27]

m̃π ¼
ffiffiffiffiffi
c4

p
2c2

ef̃πm1: ð10Þ

Hence, in dimensionless units, the Lagrangian (3) reads

L ¼ c2L2 þ c4L4 þ c6L − V: ð11Þ

For a positive definite energy density, we require c2 > 0,
c4 > 0 and c6 ≥ 0.[32].
The potential we will consider in this paper is due to the

results of Ref. [19], which showed that the pion mass term
squared lowers the binding energy further than the pion
mass term to the fourth power while keeping the sym-
metries of the 4-Skyrmion. We will also include the
standard pion mass term, and thus the total potential is

V ¼ V1 þ V2; ð12Þ

where we have defined

Vn ≡ 1

n
m2

nð1 − σÞn; ð13Þ

and σ ¼ 1
2
Tr½U�. Only V1 gives a contribution to the pion

mass. Both V1 and V2 break explicitly the chiral symmetry
SUð2ÞL × SUð2ÞR to the diagonal SUð2ÞLþR. The target
space is thus SUð2ÞL × SUð2ÞR=SUð2ÞLþR ≃ SUð2Þ ≃ S3.
Since the Skyrmion, which is identified with the baryon,
is a texture [36], it is characterized by the topological
degree, B,

π3ðS3Þ ¼ Z ∋ B; ð14Þ

where B is called the baryon number. The baryon number
or topological degree of a Skyrmion configuration can be
calculated by

B¼ 1

2π2

Z
d3xB0; Bμ ¼−

1

12
ϵμνρσTrðLνLρLσÞ: ð15Þ

Throughout the paper, we will denote Skyrmions of
degree B as B-Skyrmions.
Finally, for the numerical calculations, we have to settle

on a choice of normalization of the units, and we follow that
of Refs. [19,26,27],

c2 ¼
1

4
; c4 ¼ 1; ð16Þ

and hence the energies and lengths are given in units of
f̃π=e and 1=ðef̃πÞ, respectively, while the physical pion
mass is given by

m̃π ¼
ffiffiffiffiffi
c4

p
2c2

ef̃π

ffiffiffiffiffiffiffiffiffiffiffi
−
∂V
∂σ

r ����
σ¼1

¼ 2ef̃πm1; ð17Þ

where we have used the coefficients (16). In this paper,
we will use m1 ¼ 1=4 [19].

A. Observables

In this section, we will list the observables to be
measured in the numerical calculations. Since they are
greatly overlapping with our previous studies, we will only
review them briefly here and refer to Ref. [27] for details.
As in Refs. [26,27], we will only consider the 4-Skyrmion
in this paper, as it plays a unique role in the alpha-particle
interpretation of the Skyrme model and it is the building
block of the lattice structure appearing for large nuclei
[7–11]. More importantly, it is where to look for the change
in symmetry that inevitably kicks in for strongly repulsive
potentials; see, e.g., the point particle model [18,24] and
also Ref. [19].
As usual, we are interested in the classical and spin/

isospin quantum-corrected binding energies. The energy
of the 1-Skyrmion is obtained by minimizing the static
energy corresponding to (minus) the Lagrangian (11) for
the hedgehog

U ¼ 12 cos fðrÞ þ ix̂ · τ sin fðrÞ; ð18Þ

where x̂≡ x=r is the unit 3-vector at the origin and
r ¼ ffiffiffiffiffiffiffiffiffi

x · x
p

is the radial coordinate. We will call the energy
of the B-Skyrmion EB. As the initial condition for the
4-Skyrmion, we will use the rational map ansatz [6]

U ¼ 12 cos fðrÞ þ inR · τ sin fðrÞ; ð19Þ

SVEN BJARKE GUDNASON PHYS. REV. D 98, 096018 (2018)

096018-4



nR ¼
�

Rþ R̄
1þ jRj2 ;

iðR̄ − RÞ
1þ jRj2 ;

1 − jRj2
1þ jRj2

�
; ð20Þ

RðzÞ ¼ z4 þ 2
ffiffiffi
3

p
iz2 þ 1

z4 − 2
ffiffiffi
3

p
iz2 þ 1

; ð21Þ

for the c6 ¼ 0, m2 ¼ 0 solution, and z ¼ eiϕ tanðθ
2
Þ is the

Riemann sphere coordinate. Once a numerical solution
has been obtained, we can calculate the classical relative
binding energy (CRBE) of the 4-Skyrmion as

δ4 ¼ 1 −
E4

4E1

ð22Þ

and the quantum-corrected relative binding energy
(QRBE) as

δtot4 ¼ 1 −
E4

4ðE1 þ ϵ1Þ
; ð23Þ

where ϵ1 is the quantum correction due to the isospin
quantization of the 1-Skyrmion. The CRBE (22) is inde-
pendent of the physical units and thus independent of the
calibration of the model. The QRBE (23), on the other
hand, after factoring out the energy units, still depends on
the Skyrme coupling e.
Calibrating the Skyrme-like models can be done in

many ways, and often ways are invented to minimize
the problem of overbinding by compensating with a better
calibration. In this paper, we will not turn to the calibration
for compensating the overbinding but try to reduce the
binding energy by varying the parameters of the
Lagrangian (11). Thus, we will stick with a simple
calibration in which we set the mass and size of the
4-Skyrmion to those of helium-4. To calculate the electric
charge radius of the 4-Skyrmion, we note that the ground
state of helium-4 is an isospin-0 state, and thus the charge
radius in the Skyrme model is given entirely by the baryon
charge radius [27]

r24 ¼ r24;E ¼ r24;B ¼ 1

8π2

Z
d3xr2B0: ð24Þ

The calibration now reads [27]

f̃π ¼ 2
ffiffiffiffiffi
c2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4M̃4He

r̃4HeE4

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4M̃4He

r̃4HeE4

s
;

e ¼ 1ffiffiffiffiffi
c4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4E4

r̃4HeM̃4He

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4E4

r̃4HeM̃4He

s
; ð25Þ

where in the latter expressions, we plugged in the nor-
malization (16), and the experimental data used here are
M̃4He ¼ 3727 MeV and r̃4He ¼ 8.492 × 10−3 MeV−1.
With the calibration in place, we can now determine the

quantum correction to the mass of the 1-Skyrmion due to
(spin/)isospin quantization [with the normalization (16)]

m̃N ≡ M̃1 ¼
f̃π
e
ðE1 þ ϵ1Þ ¼ Ẽ1 þ ϵ̃1;

ϵ1 ¼
e4

2Λ
JðJ þ 1Þ; ð26Þ

where Λ is the diagonal component of the isospin inertia
tensor for the 1-Skyrmion, Uij ¼ Λδij, where Uij is given
in the next section in Eq. (33). For the hedgehog ansatz
(18), the expression for Λ reads

Λ¼8π

3

Z
drr2 sin2f

�
c2þc4f2rþ

c4
r2
sin2fþ2c6 sin2ðfÞf2r

r2

�
:

ð27Þ
Finally, for the ground state of the proton, J ¼ 1

2
, and thus

ϵ1 ¼ 3e4
8Λ. We will also consider the Δ resonance as a spin-3

2

excitation of the 1-Skyrmion [37], yielding

m̃Δ ¼ f̃π
e
ðE1 þ 5ϵ1Þ: ð28Þ

The Δ resonance is nevertheless problematic in the Skyrme
model; see the discussion.
As the ground state of helium-4 is a spin-0, isospin-0

state, there is no quantum correction to the mass due to
zero-mode quantization (although there are corrections due
to massive modes; see the discussion).
Finally, we will consider the electric charge radius of

the proton and the axial coupling. The details and tensor
expressions are given in Ref. [27], and we will just state the
final results here,

r21;E ¼ 1

2
r21;B þ

R
drr2ðc2r2sin2f þ c4sin2ðfÞðsin2f þ r2f2rÞ þ 2c6sin4ðfÞf2rÞ

2
R
drðc2r2sin2f þ c4sin2ðfÞðsin2f þ r2f2rÞ þ 2c6sin4ðfÞf2rÞ

; ð29Þ

gA ¼−
4π

3

Z
drr

�
c2ðsin2fþ rfrÞþc4

�
sin2f sin2f

r2
þ2sin2ðfÞfr

r
þ sinð2fÞf2r

�
þ2c6sin2f

r2

�
sin2ðfÞfr

r
þ sinð2fÞf2r

��
;

ð30Þ
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where the baryon charge radius is

r21;B ¼ −
2

π

Z
drr2sin2ðfÞfr; ð31Þ

and the axial coupling in physical units is given by

g̃A ¼ gA
c4e2

¼ gA
e2

; ð32Þ

which is obtained by multiplying the dimensionless ex-
pression by λ̃ μ̃ and in the last expression we have used the
normalization (16).
Some geometric observables that we will calculate are

the tensors of inertia corresponding to the spin and the
isospin of the 4-Skyrmion. For the generalized model (3),
they can be written as [38]

Uij ¼ −
1

2

Z
d3x

�
c2TrðTiTjÞ þ

c4
4
Trð½Lk; Ti�½Lk; Tj�Þ

−
c6
8
TrðTi½Lk; Ll�ÞTrðTj½Lk; Ll�Þ

�
; ð33Þ

Vij ¼ −
1

2

Z
d3xϵimnϵjpqxmxp

�
c2TrðLnLqÞ

þ c4
4
Trð½Lk; Ln�½Lk; Lq�Þ

−
c6
8
TrðLn½Lk; Ll�ÞTrðLq½Lk; Ll�Þ

�
; ð34Þ

Wij ¼
1

2

Z
d3xϵjmnxm

�
c2TrðTiLnÞþ

c4
4
Trð½Lk;Ti�½Lk;Ln�Þ

−
c6
8
TrðTi½Lk;Ll�ÞTrðLn½Lk;Ll�Þ

�
; ð35Þ

and they enter the kinetic energy of the Lagrangian (11) as

T ¼ 1

2
aiUijaj − aiWijbj þ

1

2
biVijbj; ð36Þ

where the isospin and spin angular momenta, respectively,
are defined as

ai ≡ −iTr½τiA−1 _A�; bi ≡ iTr½τi _BB−1�; ð37Þ

and they act on the static Skyrme field, U0ðxiÞ, as

U ¼ AU0ðRi
jx

jÞA−1; Ri
j ¼ Tr½τiBτjB−1�; ð38Þ

where BðtÞ (AðtÞ) is an SU(2) matrix that transforms the
static Skyrmion to the (iso)spinning Skyrmion.

B. Symmetry

One could contemplate how to extract the symmetries
from a numerical Skyrmion configuration. One guess could
be to use the tensors of inertia that encode geometrical
information about the soliton, in particular, related to its
spinning and isospinning. Another more brute-force attempt
could be to take moments of the energy, schematicallyR ðx1Þn1ðx2Þn2ðx3Þn3E. This, in principle, could extract fur-
ther geometrical information from the numerical Skyrmion.
However, we are interested in a particular symmetry,

namely, octahedral [39] symmetry, and would like to know
when it is broken to its tetrahedral subgroup. Therefore, we
can use the transformations of the octahedral symmetry that
are not symmetry transformations of the tetrahedral sub-
group. In the following, we place a cube such that the
Cartesian axes are perpendicular to three of its faces and the
origin is at the center of the cube. The tetrahedral symmetry
group contains the following transformations: the identity,
three C2 transformations, and eight C3 transformations.
The C2 transformations rotate the cube by π around one of
the Cartesian axes, and the C3 transformations rotate the
cube by �2π=3 around an axis in the (1,1,1), ð−1;−1; 1Þ,
ð1;−1;−1Þ, or ð−1; 1;−1Þ direction. The octahedral sym-
metry group includes another six C2 transformations as
well as three C4 transformations. The C2 transformations
rotate the cube by π in the (1,1,0), ð−1; 1; 0Þ, (1,0,1),
ð1; 0;−1Þ, ð0;−1; 1Þ, or ð0;−1;−1Þ direction, and the C4

transformations rotate the cube by π=2 around one of the
Cartesian axes. We should choose a transformation among
the latter two, which only resides in the octahedral
symmetry group and is lost when only a tetrahedral
subgroup of the symmetry is preserved.
We choose to construct an order parameter for the

octahedral symmetry as follows. Let us choose one of the
C4 symmetry transformations, say about the x axis.
The meaning of the Skyrmion possessing such a discrete
symmetry is, of course, that after rotating the Skyrmion by
π=2 about the x axis we must subsequently perform an
appropriate rotation in isospin space to get back to the original
Skyrmion. The appropriate isospin rotation to follow the
(spatial)C4;x rotation is a rotation by π in isospin space about
the π1 axis. The 4-Skyrmion possessing octahedral symmetry
will be invariant under these two subsequent transformations,
while the tetrahedrally symmetric 4-Skyrmionwill not be.We
can thus construct the order parameter for octahedral sym-
metry as follows.Weperform theC4 transformation aswell as
the C2 transformation in isospin space on the Skyrmion and
then subtract off the original Skyrmion, take a 2-norm of
the resulting field, and finally integrate over space. If the
symmetry is preserved, this integral vanishes. We thus define

σOh ≡ 1

V

Z
d3xTr½ððeiπÎ1eiπ

2
Ĵ1 − 1ÞUÞ†ðeiπÎ1eiπ

2
Ĵ1 − 1ÞU�;

ð39Þ
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where we have divided by the volume of the Skyrmion,
V ≡ 4

3
πr34, in order to get a dimensionless result.

With all observables at hand, we are now ready to turn to
the numerical calculations.

III. NUMERICAL RESULTS

The numerical calculations in this paper are all carried
out on cubic lattices of size 1213 with a spatial lattice
constant of about hx ¼ 0.08, and the derivatives are
approximated by a finite difference method using a
fourth-order stencil. In previous works, we were able to
use the relaxation method with a forward-time algorithm,
but that turned out to be too slow for the generalized
Skyrme model when including the BPS-Skyrme term
(with nonvanishing c6). In this paper, therefore, we used
the method of nonlinear conjugate gradients to find the
numerical solutions. Although standard implementations
of the algorithm work smoothly for small values of the
potential parameterm2 ≲ 1, some nontrivial tweaking and a
sophisticated line search algorithm were needed for ensur-
ing convergence in the large-m2 part of the parameter
space. In particular, we found a viable solution based on
switching between the Newton-Raphson algorithm and a
line search using a quadratic fit along the search direction
of the conjugate gradients method.
For a handle on the precision, we checked that the

numerically integrated baryon charge was captured by the
solution to within 0.15%. In addition to this, we stopped
the algorithm when a local precision of the equation of
motion better than 1.7 × 10−6 was obtained.
The solutions obtained and presented here are made on a

square grid in parameter space with c6 ¼ 0; 0.1; 0.2;…; 1
and m2 ¼ 0; 0.1; 0.2;…; 6, yielding a total of 671 numeri-
cal solutions. The baryon charge density isosurfaces are

shown in Figs. 11–13. As mentioned in the previous
section, the initial condition for the 4-Skyrmion at the
point ðm2; c6Þ ¼ ð0; 0Þ is given by the rational map
ansatz (19)–(21).
The figures in this section are contour plots in the

parameter space with m2 being the abscissa and c6 being
the ordinate. On all figures, we will overlay three lines with
the order parameter, σOh , which measures if the solutions
possess octahedral symmetry (σOh ¼ 0) or remain only
tetrahedrally symmetric (σOh > 0). From the top of the
figures and down, the curves correspond to σOh ¼ 0.1,
0.5, 1.
First, we plot the classical energies (masses) of the

1-Skyrmion and the 4-Skyrmion in Skyrme units in Fig. 2
just to get a feel for how the energy changes in parameter
space before calibrating the model. Both figures show
isocurves according to our expectation; i.e., the energy
increases roughly in quadrature from the contribution due
to the loosely bound potential with coefficient m2

2 and from
the BPS-Skyrme term with coefficient c6. The increase in
energy, nevertheless, is quite drastic. If we compare the
ðm2; c6Þ ¼ ð0; 0Þ point with the ðm2; c6Þ ¼ ð6; 1Þ point, the
energy increases with a factor of 5.42 for the 1-Skyrmion
and 5.95 for the 4-Skyrmion.
In Fig. 3, the calibration constants, i.e., the pion decay

constant, f̃π and the Skyrme coupling constant e are shown
in the parameter space. It is interesting that for small
m2 < 1 the pion decay constant [see Fig. 3(a)] with our
calibration convention is almost independent of c6. What
happens in this regime is that the sextic term increases both
the size and the energy of the 4-Skyrmion such that the ratio
is almost constant r4ðc6Þ=E4ðc6Þ ∝ const. For large m2,
however, the mass of the 4-Skyrmion increases faster than
the radius, and hence the above-mentioned linear relation
no longer holds; as a result, the pion decay constant
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FIG. 2. Energies of the (a) 1-Skyrmion and (b) 4-Skyrmion in Skyrme units. The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from
top to bottom.
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decreases for increasing c6. If we now hold c6 fixed, an
increase in m2 increases the mass and reduces the size of
the Skyrmions and hence always leads to a decrease in the
pion decay constant. The combined behavior is displayed
in Fig. 3(a). The pion decay constant is underestimated
everywhere, since in the pion vacuum its experimentally
measured value is about 184 MeV.
The Skyrme coupling constant e is shown in Fig. 3(b)

and depends on the product of the size and the energy of
the 4-Skyrmion and hence displays different behavior.
For small c6 ≪ 1, the increase in m2 has a mild behavior
since the loosely bound potential both increases the mass
and reduces the size of the Skyrmions. For c6 ¼ 0 and
m2 ≲ 0.7, the coupling reduces slightly with increasingm2,
whereas for m2 > 0.7, the coupling starts to increase. This

behavior for constant slices of c6 is continued, but the
turning point (0.7 above) moves slightly downward as c6 is
increased. For finite c6, the increase in m2 now leads to a
larger increase in the coupling e.
We will now show the spectrum of the model, starting in

Fig. 4 with the nucleon mass and the Δ mass. The nucleon
mass [Fig. 4(a)] in our calibration scheme is tightly related
to the total binding energy (QRBE), because we fit the mass
and size of the 4-Skyrmion to those of helium-4. Therefore,
once the binding energy is right, then so is the nucleon
mass. Wewill thus discuss this in more detail shortly, but let
us mention that in the top-right part of the parameter space,
i.e., for large m2 and large c6, the nucleon mass is only
overestimated by about 28 MeV, which is about 3% above
the experimentally measured value.
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FIG. 3. Calibration constants (a) f̃π (MeV) and (b) the Skyrme coupling constant e. The dashed lines show contours of σOh ¼ 0.1, 0.5,
1 from top to bottom.
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FIG. 4. (a) Nucleon mass, m̃N (MeV) and (b)Δmass, m̃Δ (MeV). The thick red dashed line in (b) is the experimentally measured mass
of the Δ resonance (m̃exp

Δ ≃ 1232 MeV). The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from top to bottom.
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The Δ mass is shown in Fig. 4(b). First of all, we should
warn the reader about identifying this spin excitation of the
1-Skyrmion with the Δ resonance, as it may be inherently
inconsistent (see also the discussion). Nevertheless, we will
show the results for completeness. As usual in a Skyrme-
like model with this interpretation of the Δ, its mass is
underestimated. What is worse is that where the binding
energy and nucleon mass tend to their experimentally
measured values the Δ mass tends to be the smallest
and hence farthest from its true value.
The pion mass is shown in Fig. 5(a). In our chosen

calibration scheme, the dependence on c6 is mild, and it
mostly depends on the value of m2; that is, the pion mass
decreases for increasingm2. For m2 ≃ 0.5–1, the pion mass
fits well with the experimentally measured value for our
choice of m1 ¼ 1=4. To get a more physical value of the
pion mass in the top-right corner of the parameter space, we
could increase the value of m1 to say about 0.5 in order to
compensate the decrease in the physical value caused by
the loosely bound potential. We have not done this, as this
is not a pressing issue for the model at the moment; the
value of the pion decay constant is very far from its
experimental value, and the QRBE is not quite at the
physical values either. One attitude about the low-energy
constants is that they should be “renormalized” to the in-
medium conditions that the inside of the baryons possess.
If this really justifies the pion decay constant to differ by
more than factors of 2 (4) from its experiment value, then
the same may apply to the pion mass.
The axial coupling of the nucleon is shown in Fig. 5(b).

In the region of parameter space where the sextic term
dominates (c6 ∼ 1 and m2 ¼ 0), the axial coupling is
generally too large (however, this may change for larger
values of c6 than studied here), whereas for large m2,
c6 ¼ 0, the axial coupling is generally too small. In the

top-right corner of parameter space where the binding
energy turns out to be smallest, the axial coupling takes on
intermediate values. Unfortunately, the experimentally
measured value (thick red dashed line) is reached just after
the cubic symmetry of the 4-Skyrmion is lost.
The quantum mass correction to the nucleon as a

1-Skyrmion is shown in Fig. 6(a), and the diagonal value
of the isospin inertia tensor Λ is shown in Fig. 6(b). The
two quantities are related by Eq. (26). As already men-
tioned, there are two limits where the classical binding
energy can become infinitesimally small: the point particle
model limit (PPML), which corresponds to c6 fixed,
m2 → ∞, and the BPS-Skyrme model limit (BSML),
which corresponds to c6=m2 fixed, m2 → ∞. It is interest-
ing to see—within the calibration scheme adopted here—
that the direction of the BPS-Skyrme model limit reaches
quantum mass corrections to the 1-Skyrmion that are
almost half the values obtained in the point particle model
limit. If this strategy for obtaining a physically sensible
Skyrme model is correct, it is important to see where the
quantum correction to the 1-Skyrmion can be suppressed
enough to reach physically measured values of the binding
energies. This viewpoint is typical for a purist particle
physicist who prefers as little fine-tuning as possible. Other
possibilities are, of course, that the physics at the atomic
scale is highly fine tuned and there are big corrections to
both the 1-Skyrmions and the B-Skyrmions canceling each
other out almost precisely, leaving behind binding energies
at the 1% level (see also the discussion).
The quantity ϵ̃1 contains the energy unit, the value of the

Skyrme coupling, and the isospin inertia tensor’s diagonal
value. To disentangle the various effects, we show the value
of the diagonal of the isospin inertia tensor, Λ, in Fig. 6(b).
As ϵ̃1 ∝ Λ−1, we can see that, overall, the above-mentioned
behavior indeed stems from Λ and not peculiarities of the
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FIG. 5. (a) pion mass, m̃π (MeV) and (b) axial coupling g̃A. The thick red dashed lines in (a) are the experimentally measured pion
masses (m̃exp

π ≃ 135.0 MeV; 139.6 MeV) and in (b) are the experimentally measured axial coupling of the nucleon (g̃expA ≃ 1.27) [40].
The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from top to bottom.
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calibration. That is, the smallness of the quantum correction
in the BPS-Skyrme model limit comes from the fact that Λ
is bigger than in the point particle model limit. This fact, in
turn, can be traced directly to the fact that the Skyrmions
become larger when a sizable sextic term (BPS-Skyrme
term) is included and they become smaller when a strong
loosely bound potential is turned on.
We are now ready to present one of the main results of

the paper, namely, the relative binding energies in Fig. 7. In
this part of parameter space, the CRBE [Fig. 7(a)] is almost
independent of c6. That is, only cranking up the sextic term
does not reduce the CRBE, but in fact—in this calibration
scheme—it leads to a slight increase in the binding energy.

The effect is quite mild, though. The explanation is that the
sextic term just makes the Skyrmions larger and heavier;
however, after the calibration, this effect is almost swal-
lowed up. The loosely bound potential, on the other hand,
does its job very well. The CRBE is reduced to the 1% level
around m2 ∼ 2–2.6 depending on the value of c6, and it
reaches values slightly below 0.2% for m2 ∼ 6. Now, the
sextic term is crucial for what happens. If we solely include
the loosely bound potential, the model loses the platonic
symmetries of the Skyrmions, and the Skyrmions become
well-separated point particles. However, if we turn on the
BPS-Skyrme term, the 4-Skyrmion can retain its cubic
symmetry and possess a CRBE below the 1% level. The
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FIG. 7. (a) Classical and (b) quantum relative binding energy of the 4-Skyrmion. The thick red dashed line in (a) is the experimental
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upper black dashed line shows the symmetry order param-
eter for σOh ¼ 0.1, and the cubic symmetry can also be
observed in Figs. 11–13.
The problem of the binding energies has not quite been

solved yet, because we have to identify the quantum state of
the Skyrmion with the nuclear particle. This, in particular,
means that all binding energies are relatively increased by
the fact that the nucleon receives a quantum correction for
being a spin-1

2
particle in the ground state. This means that

if it is a consistent treatment not to include any other
quantum corrections (which is probably not the case) then
we must find a point in the parameter space where the
quantum mass correction to the 1-Skyrmion is at the 1%
level. In Fig. 7(b), we can see that the discussion of the
quantum correction ϵ̃1 carries directly over to the QRBE.
In particular, in the direction of the point particle model
limit (c6 ¼ 0, m2 → ∞), the QRBE we reach in the
parameter space is only as low as slightly below 6%,
whereas in the direction of the BPS-Skyrme model limit
(c6 ∝ m2 → ∞), the QRBE reaches values as low as 3.6%,
which for helium-4 should be compared to about 0.8%
(experimental value), i.e., about 2.8% overbinding. This is,
however, the level of overbinding also sometimes present
in nuclear models like the ab initio no-core shell model;
see, e.g., Ref. [41].
We will now turn to the electric charge radius of the

proton, which is shown in Fig. 8(a). In the Skyrme model,
it has half its contribution from the baryon charge density
and the other half from the vector charge corresponding to
the isospin; see Eq. (29). It is interesting to see that we can
obtain the best QRBE for large m2 and large c6 and hence
also the best nucleon mass, but the physically measured
value of the electric charge radius of the proton is reached
spot on in the direction of the point particle model limit,

that is, for c6 ¼ 0 and m2 ∼ 5–6. In all other parts of
parameter space, the 1-Skyrmion size is generally over-
estimated. This is due to the fact that B-Skyrmions tend to
be too small and the 4-Skyrmion is no exception. Because
of the calibration in which we fit the size of the
4-Skyrmion to that of helium-4, the 1-Skyrmion is thus
generally too large. It is interesting, nevertheless, to see
that the point particle model limit gets the proton size
right.
The baryon charge radius is not physically measurable,

but it is a component of the electric charge radius of the
proton. For large m2, we can see that their behaviors are
comparable; see Fig. 8(b).
The last but important observable we will study here

is our proposal for an order parameter for the symmetry
breaking of the cubic (octahedral) symmetry of the 4-
Skyrmion; see Eq. (39). By comparing the symmetries
observed in Figs. 11–13 with the values seen in Fig. 9(a),
we see that for σOh < 0.1 the 4-Skyrmion possesses cubic
symmetry, which is the upper black dashed line shown on
all figures. Let us mention that in the region of parameter
space to the top-left of the upper black dashed line σOh is
very close to zero everywhere, except close to the dashed
line, and the deviation here is merely numerical error. For
σOh ≳ 0.5, the loss of octahedral symmetry is visible to the
naked eye; see Figs. 11–13.
For completeness, we display the values of the inertia

tensors in the parameter space in Figs. 9(b) and 10.
Throughout the scanned part of the parameter space, we
have that Vij ¼ vδij is diagonal and Wij ¼ 0 vanishes,
whereas the two nonzero values of the isospin tensor of
inertia are U11 ¼ U22 and U33. We can see from Fig. 10
that U11 is in general different from U33 except in the
region of parameter space where c6 is small andm2 is large.
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FIG. 8. (a) (r̃1;E) Electric and (b) (r̃1;B) baryon charge radii of the proton. The thick red dashed line in (a) is the experimentally
measured charge radius of the proton (CODATA) (r̃exp1;E ≃ 0.875 fm) [40]. The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from top
to bottom.
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IV. DISCUSSION

In this paper, we have made an extensive parameter scan
of the generalized Skyrme model with the loosely bound
potential by performing full PDE calculations. The full
numerical calculations are necessary for detecting the
symmetries of the Skyrmions, in particular, whether the
4-Skyrmion possesses the sought-for cubic symmetry or it
loses it, becoming a tetrahedrally symmetric object of
“point” particles. In Ref. [27], we made an initial study
of the parameter space limited to m2 ≤ 1 using the rational
map ansatz for the cube, under the assumption that the
symmetries would stay unchanged in such a limited part
of parameter space. That assumption turned out to be true
indeed. In this paper, we have been able to go much further

into the direction of turning up the loosely bound potential
and hence reducing the binding energies significantly. As
expected from Ref. [19], the loosely bound potential itself
will quickly break the cubic symmetry of the 4-Skyrmion.
Fortunately, it turns out that turning on a finite sextic term
makes the 4-Skyrmion resistant to the impending symmetry
breaking a long way up in m2, the (square root of the)
coefficient of the loosely bound potential.
The philosophy that we have used as a guiding principle

is to keep as much symmetry as possible while reducing the
binding energies as much as possible; we try to cling to
the platonic symmetries possessed by the Skyrmions of
small B (B < 8) and, in particular, the cubic symmetry of
the 4-Skyrmion. Next, we note that the CRBE is almost
independent of the sextic term with coefficient c6 but
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FIG. 9. (a) Order parameter for octahedral symmetry σOh and (b) diagonal component v of the spin inertia tensor of the 4-Skyrmion,
Vij ¼ vδij, in Skyrme units. The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from top to bottom.
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FIG. 10. (a)U11 ¼ U22 and (b)U33 of the isospin inertia tensor of the 4-Skyrmion in Skyrme units. The dashed lines show contours of
σOh ¼ 0.1, 0.5, 1 from top to bottom.
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depends strongly on the loosely bound potential with
coefficient m2

2. Now, as a direct test for whether the
above-stated philosophy is justified experimentally, we
can compare two limits: the PPML (c6 ¼ 0 and
m2 → ∞) and the BSML (c6 ∝ m2 → ∞). Of course, we
have not taken any strict limit and just considered m2 large

(m2 ≃ 6), and the BSML case here will refer to c6 ¼ 1,
m2 ¼ 6. First of all, we find that, although the CRBE is
almost the same in the two cases, the QRBE receives a
larger quantum contribution in the PPML case than in the
BSML case. This fact is intimately related to the value of
the isospin inertia tensor being larger when the sextic term

FIG. 11. Baryon charge density isosurfaces of the 4-Skyrmion solutions over part of the scanned parameter space. The vertical axis
denotes the values of c6, while the horizontal axis is m2. The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from top to bottom. The
center of mass of the Skyrmion corresponds to its position in parameter space.

FIG. 12. Baryon charge density isosurfaces of the 4-Skyrmion solutions over part of the scanned parameter space. The vertical axis
denotes the values of c6, while the horizontal axis is m2. The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from top to bottom. The
center of mass of the Skyrmion corresponds to its position in parameter space.
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is turned on, which in turn is due to the sextic term
enlarging the Skyrmions. The nucleon mass correlates with
the binding energy in our calibration scheme and hence is
closer to the measured value in the BSML case (but still
overestimated) than in the PPML case. On the other hand,
the pion decay constant is larger (but still underestimated)
in the PPML case than in the BSML case, and the electric
charge radius is almost spot on the experimental value in
the PPML corner of our parameter space. Finally, there is
a tie between the two cases for the axial coupling of the
nucleon, for which it is overestimated in the BSML case
and underestimated in the PPML case. We present in
Table I four benchmark points compared to experimental
data, including the PPML and BSML cases.

For the observables considered in this paper, it is not clear
that preserving asmuch symmetry as possible is better in line
with phenomenology. Both the cases summarized above
have their merits. Nevertheless, once the full quantum
excitational spectrum is considered for the nuclei, it becomes
clear that having a large symmetry is not just aesthetics but a
necessity. This was pointed out recently in Ref. [30]; in this
particular case, the lack of a symmetry of rank 4 resulted in
parity doubling of the states—not observed in nature.
A completely different way of trying to solve the binding

energy problem of the Skyrmions is to disregard the
classical energies completely and believe that the true
quantum states have very large corrections to their classical
counterparts. This solution may well be the true description

TABLE I. Benchmark points compared to experimental data. The model points are A [standard Skyrme model
(SSM)], B [generalized Skyrme model (GSM)], C (PPML), and D (BSML).

Point A (SSM) Point B (GSM) Point C (PPML) Point D (BSML)

ðm2; c6Þ ¼ ð0; 0Þ ðm2; c6Þ ¼ ð0; 1Þ ðm2; c6Þ ¼ ð6; 0Þ ðm2; c6Þ ¼ ð6; 1Þ
f̃π −32.1% −51.0% −80.8% −86.5%
m̃N þ12.0% þ13.9% þ6.2% þ2.9%
m̃Δ −3.8% −2.6% þ1.6% −11.0%
m̃�

π þ14.7% þ39.9% −51.7% −46.2%
m̃0

π þ18.6% þ44.7% −50.1% −44.4%
g̃A þ17.4% þ30.3% −30.0% þ13.6%
δ4 þ970.3% þ1174.5% −67.7% −72.5%
δtot4 þ1331.4% þ1514.6% þ725.7% þ348.9%
r̃1;E þ27.8% þ25.3% −4.2% þ23.0%

FIG. 13. Baryon charge density isosurfaces of the 4-Skyrmion solutions over part of the scanned parameter space. The vertical axis
denotes the values of c6, while the horizontal axis is m2. The dashed lines show contours of σOh ¼ 0.1, 0.5, 1 from top to bottom. The
center of mass of the Skyrmion corresponds to its position in parameter space.
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of nuclear physics, although it runs against conventional
particle physics wisdom that prefers natural mechanisms as
explanations for physical effects. A known counterexample
for naturalness indeed in nuclear physics is the fact that the
binding energy of the triplet deuteron is about 2.2 MeV,
whereas the energy released in neutron beta decays is about
1.3 MeV. That 0.9 MeV difference is what kept all the
neutrons from decaying during the evolution of the
Universe and be missing in the formation of countless
elements. Of course, our Universe may just well be a giant
accident. As we discussed in the Introduction, the question
of whether semiclassical quantization with the perturbative
addition of a few light modes of the soliton is a good
approximation comes down to whether the fluctuation
spectrum is “weakly coupled.” It would be an important
next step to investigate this issue in depth.
The Δ resonance is at best problematic in the Skyrme

model. The reason for this is evident from our discussion
about trying to reduce the quantum isospin contribution to
the mass of the nucleon and is rooted in Eq. (28). That is, if
we make ϵ̃1 small, then so is 5ϵ̃1; see Ref. [42]. More
concretely, if we want the spin/isospin contribution to the
mass of the nucleon, ϵ̃1, to be less than the binding energy
of roughly 16 MeV, which is approximately the binding
energy of nuclear matter, then it is impossible for 5ϵ̃1 to be
as large as 366 MeV [42,43]. As further pointed out in
Ref. [42], the Δ resonance probably needs a fully relativ-
istic treatment and should be considered as a resonance
with a complex mass pole.
Considering larger coefficients of the sextic BPS-

Skyrme term is a natural continuation of this work, and
it may show qualitatively interesting new behavior of the
model. If the BPS-Skyrme term and the potential term
become too large, however, one enters the near-BPS regime
of the BPS-Skyrme model, which is known to be techni-
cally difficult. In the light of the discussions in this paper,
the more important question is whether it is necessary to
obtain solutions with very low classical binding energies—
like in this paper—or the true solution to the quantum
physics of nuclei lies in sizable corrections that perhaps via
beautiful symmetries somehow all balance in such a way as
to give small binding energies at the 1% level for all nuclei.
This will be left as work for the future.
We should remind the reader that we did not get the

physical pion mass right in the region of parameter space
with small binding energies. This can easily be fixed, but
the change for the rest of the physics is expected to be
insignificant, and as long as the pion decay constant is so
far from its measured value, it remains a question whether
the pion mass should be close to its experimental value or
not. Lattice-QCD simulations often get good results even
though their pion mass is typically much too large
compared with the experimental value.
There are lots of directions to consider for improving

the Skyrme model in order for it to become a full-fledged

high-precision model of nuclear physics. If the program
succeeds, it will become a few-parameter model, which
basically can cover all nuclei. The list of problems is,
however, not so short. The problem of the binding energy
that we have worked on in this paper is not solved yet, and
we are probably getting closer to a point at which we can
determine whether the Skyrme model is natural, and hence
the quantum corrections are somehow small as expected
in systems with semiclassical quantization, or there are
relatively large quantum corrections that just happen to
balance out almost perfectly over a large variety of nuclei—
many possessing different symmetries.
The small isospin breaking present in nature still remains

largely unincorporated in the Skyrme model. The recent
suggestion by Speight [44] is based on including the ω
meson and an explicit symmetry-breaking term. This
direction of improving the Skyrme model is also considered
for solving the binding energy problem, that is, including
vector mesons in the model; see, e.g., Refs. [14] in which ρ
mesons are considered.
A further improvement to be considered, which will

become more important for the studies of large nuclei, is to
include the effects of the Coulomb energy. Although how to
calculate the Coulomb force for multi-Skyrmions is known,
it should ideally be backreacted onto the Skyrmions. This
would require some partial gauging and further complicate
the model.
It would also be interesting to consider Skyrmions

other than the 4-Skyrmion, in order to check our claims
about the preservation of symmetries in the model.
A preliminary study suggests that for the 8-Skyrmion
the two cubes retain their separate octahedral symmetries
but become more weakly bound to each other with the
result that, in the low-binding energy regime, the chain and
twisted chain become almost degenerate in energies. There
are plenty of other Skyrmions that would be interesting
to study.
The following question, however, remains: how can we

resolve the quantum part of the binding-energy problem
for Skyrmions as nuclei? Hopefully, this question will be
answered in the future.
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