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We investigate the viability of a new type of compact star whose main constituent is a Bose-Einstein
condensate of charged pions. Several different setups are considered, where a gas of charged leptons and
neutrinos is also present. The pionic equation of state is obtained from lattice QCD simulations in the
presence of an isospin chemical potential and requires no modeling of the nuclear force. The gravitationally
bound configurations of these systems are found by solving the Tolman-Oppenheimer-Volkoff equations.
We discuss weak decays within the pion condensed phase and elaborate on the generation mechanism
of such objects.
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I. INTRODUCTION

Compact stellar objects offer deep insight into the
physics of elementary particles in dense environments
through the imprint of merger events on the electromag-
netic and gravitational wave spectra [1]. The theoretical
description of compact star interiors requires full knowl-
edge of the equation of state (EOS) of nuclear matter and
involves the nonperturbative solution of quantum chromo-
dynamics (QCD), the theory of strongly interacting quarks
and gluons. However, first-principle methods (most nota-
bly, lattice QCD simulations) are not available for high
baryon densities—consequently, the EOS of neutron stars
necessarily relies on a modeling of the nuclear force. Here
we propose a different scenario, where the neutron density
vanishes and a Bose-Einstein condensate of charged pions
(the lightest excitations in QCD) plays the central role
instead. This setting can be approached by first-principle
methods and leads to a new class of compact objects that
we name pion stars. As we demonstrate, under certain
circumstances pion star matter can indeed exhibit gravita-
tionally bound configurations.
The most prominent representatives of compact stellar

objects are neutron stars. The prediction of their existence
[2] and their association to the relics of core-collapse
supernovae [3] anticipated their serendipitous discovery

by more than three decades [4]. Today, more than 2600
pulsars, rotation-powered neutron stars, are known and
listed in the ATNF pulsar database. However, the known
pulsars are only the tip of the iceberg, as approximately 109

neutron stars are likely to exist within our galaxy. Together
with other compact objects, they can be exposed by
signatures from their companion stars or by gravitational
wave emission, revealing information on their structure and
composition. While neutron star matter consists mostly
of neutrons and protons (baryons) and thus features high
baryon density, the proposed pion stars are substantially
different. Their strongly interacting component is charac-
terized by zero baryon density and high isospin charge.
Unlike neutron star matter, this system is amenable to
lattice QCD simulations using standard Monte Carlo algo-
rithms [5], giving direct access to the EOS—i.e., the
relation between the pressure p and the energy density ϵ.
Pion stars can be placed in the larger class of boson stars.

Throughout their long history [6–8], boson stars were
assumed, e.g., to contain hypothetical elementary particles
that would be either free [7] or weakly interacting [9]
scalars. Boson stars were also associated with Q-balls or
Q-clouds—nontopological solutions in scalar field theories
[10,11]. Typically, being much heavier and more extended
than other compact objects, it was expected that boson stars
might mimic black holes or serve as candidates for dark
matter within galaxies [12]. Unlike boson stars considered
previously, pion stars have no need for any beyond
Standard Model constituents. We also note that the pres-
ently discussed pion stars differ from neutron stars with a
pion condensate core—a setting which has been explored
in great detail in the past—see, e.g., Refs. [13–15].
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The Bose-Einstein condensation of charged pions
involves the accumulation of isospin charge at zero baryon
density and zero strangeness. In QCD, isospin is conserved
such that pion condensation can be triggered by an isospin
chemical potential μI=2 ¼ μu ¼ −μd that couples to the
third component of isospin and thus oppositely to the up
and down quark flavors, and induces opposite quark densities
nI ¼ nu ¼ −nd. Such a difference in the light quark chemical
potentials can arise in the early Universe if a lepton asym-
metry is present. Indeed, in an electrically neutral system,
an asymmetry between neutrino and antineutrino densities
requires μI ≠ 0 [16]. A sufficiently high lepton asymmetry
can drive the system into the pion condensed phase [17] as the
temperature T drops. Whether pion condensation takes place
in the early Universe depends on the initial conditions—
constrained by observations of the lepton asymmetry [18]—
and the subsequent evolution of the system in the QCD phase
diagram in theT-μI plane. The structure of this phase diagram
has been determined recently using lattice simulations [19].

II. QCD SECTOR

As mentioned above, to describe pion condensation we
can consider QCD with μI ≠ 0, but zero baryon and
strangeness chemical potentials. The low-energy effective
theory of this system is chiral perturbation theory (χPT),
which operates with pionic degrees of freedom. According
to χPT [5], at zero temperature pions condense if μI ≥ mπ ,
where mπ is the pion mass in the vacuum.1 Beyond this
threshold, the Uð1Þτ3 part of the chiral symmetry of the
light quark action is broken spontaneously by the pion
condensed ground state. The corresponding phase transi-
tion is of second order and manifests itself in a pronounced
rise of the isospin density nI beyond the critical point [5].
The condensed phase exhibits nonzero energy density ϵπ
and, due to repulsive pionic interactions, nonzero pressure
pπ . Besides isospin, the ground state also carries a non-
vanishing electric charge density nQ ¼ nu · qu=eþ nd·
qd=e ¼ nI , where the fractional electric charges of the
quarks qu ¼ −2qd ¼ 2e=3 enter, with e > 0 being the
elementary charge.2 Without loss of generality we can
assume μI > 0 so that the electric charge density is positive.
The isospin density nI and the pion condensate σπ ¼

hūγ5d − d̄γ5ui are obtained as expectation values involving
the Euclidean path integral over the gluon and quark fields

discretized on a space-time lattice. The positivity of the
measure in the path integral [22] ensures that standard
importance sampling methods are applicable. Since the
spontaneous symmetry breaking associated with pion
condensation does not occur in a finite volume, the
simulations are performed by introducing a pionic source
parameter λ that breaks the Uð1Þτ3 symmetry explicitly
[22]. Physical results are obtained by extrapolating this
auxiliary parameter to zero. To facilitate a controlled
extrapolation, we improve our observables using the
approach discussed in Ref. [19]. The details of our lattice
setup are described in Appendix A.
The results of the λ → 0 extrapolation of the isospin

density are shown in Fig. 1 as a function of the isospin
chemical potential. The data clearly reflect the phase
transition to the pion condensed phase at μI ¼ mπ . Due
to effects from the finite volume and the small but nonzero
temperature employed in our simulations, the density just
below μI ¼ mπ is not exactly zero. To approach the
thermodynamic and T ¼ 0 limits consistently, we employ
χPT. In particular, we set the density to zero below mπ and
fit the lattice data to the form predicted by χPT around the
critical chemical potential, see Appendix B. This involves
fitting the pion decay constant, for which we obtain
fπ ¼ 133ð4Þ MeV, in excellent agreement with its physical
value. Matching the fit to a spline interpolation of the lattice
results at higher isospin chemical potentials gives the
continuous curve shown in Fig. 1. Using standard thermo-
dynamic relations (for details, see Appendix B), the
resulting nIðμIÞ curve is used to calculate the EOS, shown
in Fig. 2 below.

III. ELECTROWEAK SECTOR

We consider the scenario where the pion condensate is
neutralized by a gas of charged leptons with mass ml.
In the present approach we assume leptons to be free
relativistic particles. A systematic improvement over this

FIG. 1. Phase transition between the vacuum and the pion
condensed phase, as exhibited by the isospin density. The lattice
data (blue points) are fitted using χPT (yellow curve) and
matched to a spline interpolation (blue curve).

1We note that here we follow a different convention compared
to Refs. [19–21], where the threshold chemical potential
equals mπ=2.

2To relate the charge density to the isospin density, we assume
that the only charged states that contribute to the pressure have
zero baryon number and zero strangeness. This is indeed the case
in the T → 0 limit if the isospin chemical potential is sufficiently
small so that heavier charged hadrons are not excited. The
strongest constraint is given by μI < mK ≈ 3.6mπ, where mK
is the kaon mass, and is fulfilled in the following calculations.
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assumption is possible by taking into account Oðe2Þ
electromagnetic effects perturbatively, both in the electro-
weak sector and in lattice QCD simulations.3 The lepton
density nl is controlled by a lepton chemical potential μl,
from which the leptonic contribution to the pressure pl and
to the energy density ϵl can be obtained, similarly to the
QCD sector. We require local charge neutrality to hold,
nI þ nl ¼ 0, which uniquely determines the lepton chemi-
cal potential in terms of μI . The corresponding EOS for
electrons (l ¼ e) and for muons (l ¼ μ) is also included in
Fig. 2. We mention that this setup was also investigated in
Ref. [23], and a similar construction, assuming a first-order
phase transition for pions, was discussed in Ref. [24].
In the vacuum phase, charged pions decay weakly into

leptons, with a characteristic lifetime of τvac ≈ 10−8 s. In
the condensed phase, the analogous weak process is quite
different. Since the spontaneously broken symmetry group
corresponds to the local gauge group of electromagnetism,
the pion condensed phase is a superconductor, where the
Goldstone mode is a linear combination of the electric
charge eigenstates πþ and π− [5]. In the presence of
dynamical photons (in the unitary gauge), this mode
disappears from the spectrum via the Higgs mechanism
[15], at the cost of a nonzero photon mass mγ ∝ ejσπj.
In addition, the other linear combination of πþ and π−

develops a mass above μI [5] and is not excited if the
temperature is sufficiently low. Thus, there is no light,
electrically charged excitation that would decay weakly.
However, besides condensation in the pseudoscalar chan-
nel, the ground state also exhibits an axial vector con-
densate σA ¼ hūγ0γ5dþ d̄γ0γ5ui=2 that couples directly to
the charged weak current, as we discuss in Appendix C.

In Fig. 3 we show our first lattice results for σA. The
measurements at different values of the auxiliary pion
source parameter are extrapolated to λ → 0 using an
approach similar to that of Ref. [19], employing a gener-
alized Banks-Casher relation that we derive in Appendix A.
Figure 3 also includes the χPT prediction [25], for which
we use fπ as obtained above for the fit of nI . The results
clearly show σA > 0 in the condensed phase and a nice
agreement between the two approaches. The coupling of σA
to the weak current results in the depletion of the con-
densate and the production of charged antileptons and
neutrinos. The characteristic lifetime τ of this process is
calculated perturbatively in Appendix C. Normalized
by the vacuum value τvac, we find that the lifetime takes
the form

μI > mπ∶
τ

τvac
¼ μ3I

m3
π

�
1 −m2

l=m
2
π

1 −m2
l=μ

2
I

�
2

; ð1Þ

where the χPT prediction for σA is used.
Although suppressed deep in the condensed phase (as

μ−3I ), weak decays therefore reduce the isospin charge of the
system and create neutrinos νl. For a high enough density of
charged leptons and pions, the scattering cross section might
be enhanced sufficiently to trap these neutrinos. Specifically,
the conversion process νl → l becomes possible where the
neutrino couples to the condensate and transfers momentum
to it. In addition, one also expects the cross section for νll
scattering to increase.
Thus, when the weak interactions are included, a con-

sistent description of pion stars requires the inclusion of
neutrinos. Therefore, we consider the scenario where a gas
of neutrinos—described by a density nνl and a correspond-
ing chemical potential μνl—is also present in the system.
At weak equilibrium, μνl ¼ μI þ μl, this setup can main-
tain a pion condensate for high neutrino density, as was
already shown in Ref. [17]. In this case, neutrinos also
contribute to the pressure and to the energy density by the

FIG. 2. Equation of state in the pion condensed phase in the
QCD sector and for the electrically neutral systems also including
leptons (either muons or electrons) and neutrinos. The widths of
the curves incorporate statistical uncertainties, as well as the
uncertainty in the lattice pion mass for the pion-lepton systems.

FIG. 3. Lattice data for the axial vector condensate, extrapo-
lated to a vanishing pion source, λ ¼ 0, using our improvement
program (blue points). The results are compared to the χPT
prediction (yellow curve) [25].

3For charged leptons, this involves two-loop diagrams with an
internal photon propagator, while in QCD a vacuum polarization
diagram with two external photon legs is required.
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amounts pνl and ϵνl , respectively. Since there are two
leptonic pion decay channels, we consider both electrons
and muons, as well as their respective neutrinos in our
calculations. Chemical equilibrium among the two fami-
lies, resulting from neutrino oscillations, corresponds to
μνμ ¼ μνe or, equivalently, μμ ¼ μe. The EOS for this setup
is also indicated in Fig. 2.

IV. GRAVITY SECTOR

Using the resulting different equations of state, the mass
M and radius R of pion stars can be computed by solving
the Tolman-Oppenheimer-Volkoff (TOV) equations [26,27],
which describe hydrostatic equilibrium in general relativity,
assuming spherical symmetry. Our implementation is
detailed in Appendix B. Further stability analyses are
performed by requiring the star to be robust against density
perturbations [28] and radial oscillations. The latter involves
checking whether unstable modes exist by solving the
corresponding Sturm-Liouville equation [29]. For more
details on this analysis, see Appendix B. Figure 4 shows
the resulting mass-radius relations for pion stars of different
compositions. The electrically charged pure pion stars4 have
masses comparable to ordinary neutron stars, but an order of
magnitude larger radii. The inclusion of leptons (either
electrons or muons) increases both the masses and the radii
considerably. Typically, the pion-electron configurations can
be as heavy as intermediate-mass black holes [30], whereas
their radii are comparable to those of regular stars [31].
In addition, we also considered a mixture of electrons

and muons in chemical equilibrium by setting their
respective chemical potentials equal. We observed that
the gravitationally stable configurations for the latter setup
cannot maintain a muonic component and are thus identical
to those for the pion-electron system. Finally, the pion-
lepton-neutrino scenario (with two lepton families in
chemical equilibrium) again results in moderate masses
and radii. We note that in this last case the star radius is
defined by the point where the pressure of pions and of
charged leptons vanishes, while pνl is still nonzero. These
configurations may therefore be viewed as a pion-lepton
star in a neutrino cloud.
Such a cloud, in the form of a background of degenerate

neutrinos, could be present for a high leptochemical
potential in the early Universe, a possible cosmological
scenario for temperatures below the QCD transition, as
discussed in Ref. [18]. Astrophysical neutrino clouds (with
massive neutrinos) in the form of a Fermi star would be
stable on galactic scales; see, e.g., Ref. [32]. On the other
hand, an unstable expanding neutrino cloud would lead to
pion star configurations which are subject to evaporation
near the border of the pion condensate. Consequently, the

escaping neutrinos will continuously be replaced by the
ones resulting from the decay of the condensate in the outer
layers. The details of such an evaporation process will
predominantly depend on the (density-dependent) pion
lifetime, the neutrino mean free path, and the radius of
the star. This calculation is outside the scope of the
present paper.
We point out that Fig. 4 reflects the R ∼ const behavior

for pure pion stars (with masses below 7 M⊙)—a telltale
sign for an interaction-dominated EOS. The slope changes
by the addition of leptons, scaling as MR3 ∼ const,
similarly to stars made of fermions. Having a nonvanishing
pressure at the boundary from neutrinos leads to a

FIG. 4. Mass-radius relations of various scenarios for pion
stars. Shown is a pure pion star (π), a pion-electron system (πe),
and a pion-muon system (πμ), together with a system containing
both lepton families in chemical equilibrium (πlνl). The filled
(open) segments mark the gravitationally stable (unstable) sol-
utions (for details, see the text). The dark blue area marks the
region excluded by causality, and the background color repre-
sents the compactness β ∝ M=R of the objects (darker colors
indicate more compact stars). The widths of the curves indicate
statistical errors and the uncertainty in the lattice pion mass.

FIG. 5. Integrated mass (dashed) and total pressure (solid)
within the π (blue), πe (red), πμ (green), and πlνl (orange) stars
at their respective maximum masses, cf. Fig. 4. The mass
accumulates to its maximum value, whereas the pressure drops
towards the boundary of the star. In the presence of neutrinos, a
finite pressure remains at the boundary of the condensate region.

4Our preliminary results for this case were presented in
Ref. [21].
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MR−3 ∼ const behavior for the πlνl configuration, rem-
iniscent of a self-bound star with constant density. Finally,
we also considered the πlνl system, which minimizes the
neutrino pressure at the star surface (and with it, the
evaporation rate for the scenario of an expanding neutrino
cloud). This condition was found to be met if μμ ¼ −mμ

throughout the star. The corresponding results forMðRÞ lie
very close to the orange curve shown in Fig. 4 with
somewhat higher masses and radii. The profiles for the
pressure and for the integrated energy density of the
maximal mass configurations are plotted in Fig. 5.
Finally, an overview of the maximum masses and the
corresponding radii is provided in Table I, together with
the central values for the energy density ϵc, the pressure pc,
and the chemical potentials μI;c and μl;c.

V. CONCLUSIONS

Pion stars provide a potential new class of compact
objects, one that is made of a Bose-Einstein condensate of
charged pions and a gas of leptons, being significantly
different from neutron stars and white dwarfs both in their
structure and in their gross features. Pion condensation
might have occurred in the early Universe if large lepton
asymmetries were present [16–18], serving as a primordial
production mechanism for pion stars. These new compact
objects might be revealed by the characteristic neutrino and
photon spectra stemming from their evaporation or, if they
survive sufficiently long, by signatures from companion
stars via gravitational waves.
In the present paper we described the construction of

pion stars and identified the key issues that concern their
viability. There are open questions regarding the lifetime of
pion stars, related to the question of weak stability, the
possibility of neutrino trapping, and the evaporation proc-
esses at the surface. The present analysis can be improved
by addressing these issues in more detail and also by
generalizing the calculation to nonzero temperatures,
thereby making the contact to the potential primordial
production mechanism more direct. Keeping these issues
in mind, pion stars provide the first example in which
the mass and radius of a compact stellar object can be
determined from first principles. Furthermore, even if they
happen to be short lived, pion stars could constitute the first

known case of a boson star and, remarkably, one with no
need for any beyond Standard Model physics.
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APPENDIX A: LATTICE SETUP AND
IMPROVEMENT

In the presence of the isospin chemical potential μI
and the auxiliary pionic source parameter λ, the fermion
matrices for the light and strange quarks read

Mud ¼ DðμIÞ þmud1þ iλγ5τ2; Ms ¼ Dð0Þ þms;

ðA1Þ

where D is the Dirac operator,

DðμIÞ ¼ Dð0Þ1þ μI
2
γ0τ3; ðA2Þ

τa’s denote the Pauli matrices acting in flavor space, and
mud and ms are the light and strange quark masses,
respectively. We discretize D using the rooted staggered
formulation, so that the Euclidean path integral over the
gauge field Aμ becomes

Z ¼
Z

DAμ½detMud�1=4½detMs�1=4e−Sg ; ðA3Þ

where Sg is the gluonic part of the QCD action, for which
we use the tree-level-improved Symanzik discretization.

TABLE I. Relevant properties of possible pion star compositions at their respective maximum masses. The last row corresponds to the
scenario with minimal neutrino pressure. and μl;c=ml is the relative electron chemical potential in this case.

Composition Mmax½M⊙� Rmax½km� ϵmax
c ½MeV=fm3� pmax

c ½MeV=fm3� μmax
I;c =mπ − 1 μmax

l;c =ml − 1

π 10.5(5) 55(3) 57(5) 25(3) 1.068(4) � � �
πe 250(10) 3.3ð2Þ × 104 4.5ð4Þ × 10−5 3.5ð4Þ × 10−7 5.59ð2Þ × 10−7 7.4(2)
πμ 18.9(4) 267(8) 2.7(3) 0.22(3) 1.623ð5Þ × 10−2 0.58(3)
πlνljμμ¼μe

20.8(9) 137(6) 7.5(7) 2.3(2) 4.13ð2Þ × 10−3 160(4)
πlνljmin :pνl

28(2) 193(8) 3.7(4) 1.1(1) 3.77ð2Þ × 10−3 155(4)
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For the fermion matrices we employ stout smearing of the
gauge fields. The determinants of Mud and of Ms are
positive [5,22], allowing for a probabilistic interpretation
and standard Monte Carlo algorithms. The quark masses
are tuned to their physical values so that, in particular,
mπ ≈ 135 MeV in the vacuum. The error of the pion mass
used in the simulations originates primarily from the
uncertainty of the lattice scale and amounts to 2%.
Further details of our lattice action and our simulation
algorithm are given in Refs. [20,33,34].
Here we perform simulations on a 243 × 32 ensemble

with lattice spacing a ≈ 0.29 fm, a wide range of chemical
potentials 0 < μI=mπ ≤ 2, and three pionic source param-
eters 0.17 ≤ λ=mud ≤ 0.88. The systematic uncertainties
originating from lattice artifacts and from neglectingOðe2Þ
electromagnetic effects will be investigated in a future
publication. The volume of our system is around 7 fm3,
sufficiently large so that finite size effects are under control.
The temperature is significantly below the relevant QCD
scales so that it well approximates T ¼ 0.
The isospin density and the pion condensate are obtained

as derivatives of the partition function [19],

nI ¼
1

V4

∂ logZ
∂μI ¼ 1

2V4

�
Retr

½DðμIÞ þmud�†D0ðμIÞ
jDðμIÞ þmudj2 þ λ2

�
;

ðA4Þ

σπ ¼
1

V4

∂ logZ
∂λ ¼ λ

2V4

�
tr

1

jDðμIÞ þmudj2 þ λ2

�
; ðA5Þ

where the prime denotes differentiation with respect to μI .
Similarly, the axial vector condensate reads

σA ¼ λ

2V4

�
tr

U4

jDðμIÞ þmudj2 þ λ2

�
; ðA6Þ

where U4 is the staggered equivalent of the timelike
component of the continuum axial vector operator [35]
that has also been used in Ref. [36]. In Eqs. (A4)–(A6),
V4 ¼ V=T is the four-dimensional volume of the system
that includes the spatial volume V ¼ ðNsaÞ3 and the
temperature T ¼ ðNtaÞ−1 in terms of the lattice spacing
a and the lattice geometry N3

s × Nt. Having measured the
observables using different values of the pionic source
parameter λ, the physical results are obtained via an
extrapolation to λ ¼ 0. This is facilitated by using the
singular value representation introduced in Ref. [19] for
the pion condensate, which wework out here for σA as well.
Using the singular values ξn of the massive Dirac

operator,

jDðμIÞ þmudj2ψn ¼ ξ2nψn; ðA7Þ

the pion condensate is rewritten as

σπ ¼
λ

2V4

�X
n

ðξ2n þ λ2Þ−1
�

⟶
V→∞ λ

2

�Z
dξρðξÞðξ2 þ λ2Þ−1

�

⟶
λ→0 π

4
hρð0Þi; ðA8Þ

where we perform the thermodynamic limit, introducing
the spectral density ρðξÞ, followed by the λ → 0 limit. This
equation is the analogue of the Banks-Casher relation [37],
connecting the order parameter of pion condensation to the
density of singular values around the origin. The determi-
nation of ρð0Þ involves calculating the low singular values,
building a histogram, and fitting it to extract the spectral
density at zero. In addition, a leading-order reweighting of
the configurations to λ ¼ 0 is performed. For more details
on our fitting strategy, see Ref. [19].
A very similar Banks-Casher-type relation can be found

for σA as well. The same steps as in Eq. (A8) lead in this
case to

σA ¼ λ

2V4

�X
n

ðξ2n þ λ2Þ−1ψ†
nU4ψn

�

⟶
V→∞ λ

2

�Z
dξρðξÞðξ2 þ λ2Þ−1ψ†

nU4ψn

�

⟶
λ→0 π

4
hρð0Þψ†

0U4ψ0i: ðA9Þ

The matrix elements of U4 are measured together with the
singular values and extrapolated towards the low end of the
spectrum to find ψ†

0U4ψ0. The so-obtained results for σA
are shown in Fig. 3 of the body of the text.
We mention that the ratio of the axial vector condensate

and the pion condensate can also be found from the axial
Ward identity. For μI ≠ 0 but λ ¼ 0, this operator identity
reads

∂νψ̄γνγ5τaψ ¼ 2mudψ̄γ5τaψ þ iϵab3μIψ̄γ0γ5τbψ : ðA10Þ

Integrating in space and time, exploiting the periodic
boundary conditions for the composite field ψ̄ψ in all
directions, and taking the expectation value over quarks and
gluons, we get for the a ¼ 2 component

μIσA ¼ −mudσπ; ðA11Þ

which is found to be satisfied within our statistical errors.
(Notice that in our definitions σπ is related to iψ̄γ5τ2ψ , and
σA to ψ̄γ0γ5τ1ψ=2.)
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APPENDIX B: EQUATION OF STATE AND
THE TOV EQUATIONS

In χPT, the isospin density reads [5]

nI ¼
μIf2π
2

�
1 −

m4
π

μ4I

�
· ΘðμI −mπÞ; ðB1Þ

where fπ is the pion decay constant, which is the only
parameter that we allow to vary for the χPT fit depicted in
Fig. 1. For free relativistic leptons, the density is

nlðμlÞ ¼
1

3π2
ðμ2l −m2

lÞ3=2 · Θðμl −mlÞ: ðB2Þ

The neutrino density nνlðμνlÞ is analogous to Eq. (B2), just
replacing the lepton mass ml by zero and dividing by a
factor of 2 since only left-handed neutrinos are considered.
The pionic pressure and energy density are calculated from
nIðμIÞ at zero temperature via

p ¼ logZ
V4

¼
Z

μI

0

dμ0InIðμ0IÞ; ϵ ¼ −pþ μInI; ðB3Þ

and similarly for the charged leptons and the neutrinos,
using nlðμlÞ and nνlðμνlÞ, respectively.
After requiring local charge neutrality nl ¼ nI, the pion-

lepton system is unambiguously characterized by the lepton
chemical potential μl. The total pressure p and energy
density ϵ enter the TOV equations [26,27], which can be
rewritten in terms of the chemical potentials as

dμl
dr

¼ −Gμl
M þ 4πr3p
r2 − 2rGM

�
1þ μI

μl

��
1þ n0l

n0I

�
−1
; ðB4Þ

where G is Newton’s constant, the primes denote deriva-
tives with respect to the corresponding chemical potentials,
we have used natural units c ¼ ℏ ¼ 1, and

MðrÞ ¼ 4π

Z
r

0

dr0r02ϵðr0Þ ðB5Þ

is the integrated mass. Equations (B4) and (B5) remain
unchanged if neutrinos are included in the EOS; only p and
ϵ need to be complemented by the respective neutrino
contributions. The first TOV equation (B4) for two lepton
families (l ¼ e, μ) takes the form

dμe
dr

¼ −Gμe
M þ 4πr3p
r2 − 2rGM

·

�
1þ μI

μe
þ ρ

�
μμ
μe

− 1

��

·

�
1þ n0e

n0I
þ n0μ

n0I

dμμ
dμe

þ ρ

�
dμμ
dμe

− 1

��−1
; ðB6Þ

with asymmetry ρ ¼ ðnμ þ nνμÞ=ðne þ nνe þ nμ þ nνμÞ
between the lepton families. Note that for μμ ¼ μe or
ρ ¼ 0, the last terms in both square brackets vanish.
The TOV equations are integrated numerically up to the

star boundary r ¼ R, where pπ þ pl vanishes and the total
mass M ¼ MðRÞ is attained. Note that for pion-lepton-
neutrino configurations, the neutrino pressure is nonzero
at the so-defined boundary. The points of the mass-radius
curves in Fig. 4 correspond to different values of the central
energy density ϵc.
Thegravitational stability of the solutions is investigated by

looking at unstable radial modes. In particular, we integrate
the Sturm-Liouville equation with oscillation frequency
ω ¼ 0 and check whether the resulting oscillation amplitude
has node points within the star. If so, then there exists at
least one frequency ω2 < 0, driving the system unstable on
long timescales [29]. In the πlνl case, the integration of the
Sturm-Liouville equation was only performed up to the
boundary of the pion condensate. Nevertheless, this was
sufficient to observe whether there are unstable modes (node
pointwithin the pion condensate), or indications of it (no node
point, but a clear tendency for it within the surrounding
neutrino cloud). This approach ruled out some configurations
that seemed stable according to the necessary (but not
sufficient) condition [28], dMðRÞ=dϵc > 0.

APPENDIX C: WEAK DECAY IN THE
CONDENSED PHASE

As discussed in Sec. III, the condensed phase exhibits
massive photons and no light charged pionic degrees of
freedom. Thus, standard approaches involving the weak
decay of a momentum eigenstate pion do not apply.
Instead, we need to consider the production of a lepton pair
lðkÞνlðqÞ out of the condensed ground state Ω, where k
and q denote the momenta of the charged antilepton and
of the neutrino, respectively.5 As mentioned in Sec. III, if
neutrinos are trapped and the weak equilibrium condition
μνl ¼ μI þ μl is satisfied, the decay at zero temperature is
Pauli-blocked, since all final lepton states are filled.
For completeness, here we consider the situation where

neutrinos are absent and all final lepton states are available.
According to Fermi’s golden rule, the differential proba-
bility for the decay process is related to the S-matrix
element [38]

dP ¼
X
sl;sνl

jhΩlνljSjΩij2
hΩjΩi2hljlihνljνli

�
V

ð2πÞ3
�
2

d3kd3q; ðC1Þ

involving a sum over the spins sl and sνl of the outgoing
leptons. For regularization purposes, we need to assume

5Remember that we assumed the condensate to carry positive
electric charge, in which case a charged antilepton and a neutrino
are produced in this process.
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that the decay proceeds in a finite volume V and over a
finite time interval T .
The ground state has unit norm, hΩjΩi ¼ 1, while the

normalization of the lepton states takes the usual form,

hljli ¼ 2ElV; hνljνli ¼ 2EνlV; ðC2Þ

where the leptons are on shell:

El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
; Eνl ¼ jqj: ðC3Þ

The S-matrix element factorizes into leptonic and had-
ronic parts,

hΩlνljSjΩi ¼
GF cos ϑcffiffiffi

2
p · hlνljl̄γμð1 − γ5Þνlj0i

· hΩjūγμð1 − γ5ÞdjΩi; ðC4Þ

where GF is the Fermi constant and ϑc the Cabibbo angle.
The leptonic component can be treated as usual [39]. The
hadronic factor reflects the accumulation of weak vertices
in the pion condensate. While the expectation value of the
vector part vanishes, hΩjūγμdjΩi ¼ 0, the zeroth compo-
nent of the axial vector part is nonzero. In χPT it reads6 [25]

hΩjūγ0γ5djΩi ¼ σA ¼ −
m2

πf2π
2μI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m4
π

μ4I

s
· ΘðμI −mπÞ;

ðC5Þ

which is plotted in Fig. 3 together with the corresponding
lattice data.
Energy conservation implies μI ¼ El þ Eνl , since after

the decay the charge of the condensate is reduced by one
unit, releasing μI energy. To maintain the zero-momentum
state of Ω, we assume that the condensate picks up zero
momentum so that momentum conservation fixes k ¼ −q.
Performing the spin sums in the leptonic factor, the squared
matrix element for μI > mπ becomesX
sl;sνl

jhΩlνljSjΩij2 ¼ 4G2
Fcos

2ϑcσ
2
AðElEνl þ k · qÞ

· ð2πÞ4δðμI − El − EνlÞ
× δð3Þðkþ qÞVT ; ðC6Þ

where the regularization ð2πÞ4δð0Þδð3Þð0Þ ¼ VT is used.
Inserting this into Eq. (C1), performing the integrals over

the momenta and using the on-shell conditions (C3), the
decay rate Γ ¼ R

dP=T in the condensed phase μI > mπ

reads

Γ ¼ Γvac ·
m3

π

μ3I

�
1 −m2

l=μ
2
I

1 −m2
l=m

2
π

�
2

· nQV; ðC7Þ

where Γvac is the decay rate of a pion at rest in the
vacuum (see, e.g., Ref. [39]) and we have factored out the
density nQ ¼ nI using Eq. (B1). Thus, for high-isospin
chemical potentials, Γ is reduced as μ−3I . The result (C7) is
extensive in the volume, since the weak current can
couple to the condensate at any point in space. Keeping
the number of charges NQ ¼ nQV fixed, in the limit
μI → mπ the decay rate reproduces NQ times the vacuum
decay rate, satisfying the continuity of Γ at the pion
condensation onset. Altogether, the average lifetime of
the condensate thus reads τ ¼ ðΓ=NQÞ−1, giving Eq. (1) in
the body of the text.
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