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Variational approach to N-body interactions in finite volume
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We explore a variational approach to the finite-volume N-body problem. The general formalism for N
nonrelativistic spinless particles interacting with periodic pairwise potentials yields N-body secular
equations. The solutions depend on the infinite-volume N-body wave functions. Given that the infinite-
volume N-body dynamics may be solved by the standard Faddeev approach, the variational N-body
formalism can provide a convenient numerical framework for finding discrete energy spectra in periodic

lattice structures.
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I. INTRODUCTION

Three-particle channels are important in spectroscopy of
excited mesons. For example, G parity forbids a two-pion
decay of the a; (1260) meson so that the width of this axial-
vector resonance is determined by its coupling to three
pions. The three-pion decay channel is allowed for the
exotic 7; meson with JP¢ = 1=F, while the exotic h, with
JPC =27~ could decay to b,|wz|zx and pz. Because of
their possible hybrid nature and relation to confinement [1],
these mesons are a subject of intense theoretical and
experimental investigations [2]. In the baryon sector, the
situation is even more complex because two- and three-
particle systems often mix. Phenomenologically, it is
observed that the zzN channels have significant influence
and cannot be neglected when determining resonance
parameters of nucleon excitations. The number of possible
quantum numbers (er(*>, zN*,oN,pN, ...) for a given spin
and parity J” is large so that one has to truncate. Yet,
phenomenology can be a guideline to select relevant
channels, e.g., by inspecting the involved centrifugal
barriers. For example, it is reasonable to assume that the
Roper resonance N(1440)1/2" is dominated by the oN
channel (all three particles in the relative S wave) and
maybe the 7A channel, while the pN channel could be less
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important at smaller energies where only pions from the
low-energy tail of the p can be on-shell.

Pioneering calculations in lattice QCD of the spectra of
light excited mesons [3] and baryons [4,5] have delivered a
semiquantitative picture in which pion masses are large and
finite-volume effects are usually neglected. Energy eigen-
values have been calculated for the a;(1260) [6] using ¢g
operators but also a pz meson-meson operator, though taken
at zero momentum, z(0)p(0). Recently, the Hadron
Spectrum Collaboration calculated isospin I = 2 zp scatter-
ing although the p meson is stable at the pertinent pion
mass [7].

Few-body systems above threshold represent the next
milestone for the ab initio understanding of the strong
interaction through lattice QCD calculations. Therefore,
the infinite-volume extrapolation of three-body systems
has attracted much interest recently [8-34], including an
extension to coupled two- to three-body channels [18] and a
study of the connection between low-temperature conden-
sation and scattering in lattice ¢* theory [34]. For the three-
particle system in finite volume, the energy eigenvalues are
expected to change not only quantitatively but also qualita-
tively above threshold compared to the two-body case. One
can easily understand this by considering the noninteracting
energies. For two particles of equal mass m in a cube of side
length L with periodic boundary conditions, they are given
by E = 2E,, where E,, = \/m? + p,° and p, = (2z/L)n,
n € Z°. In contrast, noninteracting three-body energies are
given by E = E, + Ey + Ey,, where n, n’ € Z3. This
pattern is entirely different from the two-body case which is
expected to be reflected in the interacting spectrum as well.
Apart from conceptual challenges, there is also the problem
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of underdetermination, i.e., there is a plethora of possible
channels in contrast to scarce data, and, for the selection of
relevant channels, similar considerations as in infinite
volume will have to be made.

Four-body systems above threshold have so many
possible combinations of quantum numbers that one can
only hope to address the simplest cases. A prime example is
the energy region above the four-pion threshold in zz
scattering. In analyses of experiments, usually the four-pion
channel below 1 GeV is neglected given that the exper-
imentally measured partial-wave amplitudes are almost
elastic in this energy region (see Refs. [35,36] for a
calculation of the inelasticity). Similarly, the existing lattice
studies of 7z partial waves exclude the data above the four-
pion intermediate states for the infinite-volume extrapola-
tion (see, e.g., Refs. [37-40]).

So far, in the three-body calculations only meson-meson
or meson-baryon operators have been used, as opposed to
those with three components (such as zzz or zzN). An
exception is the N-body threshold calculation of positively
charged pions by the NPLQCD Collaboration [41,42].
Energy eigenvalues for the Roper [43] resonance above
the zzN threshold have been calculated recently including
nonlocal zN and 6N operators. This calculation was per-
formed close to the physical pion mass such that the extracted
energy levels lie above the z/N but also above the zzN
threshold. An unusual pattern was observed that could
originate from the aforementioned three-body dynamics in
a coupled zN,oN, ... channel, where the ¢ has to be
understood as an interacting two-body subsystem and not
a stable particle.

In a rough and incomplete classification, there are three
major approaches to solving the three-body problem in
finite volume in the momentum-space representation: an
relativistic, all-orders perturbation theory pursued by
Bricefio, Hansen, and Sharpe [12-14,18,21], a nonrelativ-
istic dimer formalism by Hammer ez al. [10,15-17,20], and
a method based on three-body unitarity to identify on-shell
configurations and, therefore, power-law finite-volume
effects by Doring and Mai [8,19,22]. For the latter two
approaches, the partial diagonalization of the amplitude
according to cubic symmetry was discussed in Ref. [22].

All of these approaches aim at fully mapping out the few-
body dynamics, but there are also attempts to obtain
essential information from these systems without the need
to explicitly take all degrees of freedom into account
[28,29]. The first-ever prediction of excited three-body
energy eigenvalues of a physical system (z*z"z") from
two-body scattering information and lattice threshold
eigenvalues [41,42] was achieved recently [8].

A. Variational approach

Most of the approaches to the few-body problem,
including the examples discussed above, rely on the
momentum representation of the reaction amplitude or

correlation function in finite volume. There is, however, an
alternative approach based on Faddeev equations and two-
and three-body wave functions in configuration space
[30-33,44,45]. The finite-volume wave function is related
to the infinite-volume wave function by a linear super-
position over infinite sets of periodic cubic boxes: the
quantization conditions are subsequently obtained from
matching conditions [30-33,44,45]. One of the advantages
of this approach is that the connection between long-
distance correlations over boxes and short-distance inter-
actions within each cubic box is made explicit by con-
structing the finite-volume wave function.

In the present work, we set up and explore the founda-
tions of a potentially convenient numerical approach to the
N-body interaction in finite volume. The formalism pre-
sented in this work is based on the variational method
[46,47] combined with the Faddeev approach [48-51].
A brief summary of the variational principle and Faddeev
approach are presented in Appendices A and B as a short
reference for readers that are not familiar with the above-
mentioned methods.

Based on the traditional variational principle, the secular
equation may be obtained by considering 6A = 0 with
A = (®|E — H")|®), where both the N-body Hamiltonian
£ A (L
AD =T+ 3, V)
play periodicity in the cubic lattice, 7" is the kinetic energy

operator, and VEle)) stands for the periodic pairwise inter-

and the trial wave function @ dis-

action between the ith and jth particle. Instead of the
traditional approach, in this work we write the total wave
function as a sum of multiple terms [48-51]: ® =

?If <=1 @), Each component of the total wave function
@) is required to satisfy the equation (E — T)|®(/) =
VEIL]>)|(I)> Therefore, a single Schrodinger equation,

(E—H®")|®) =0, is turned into N(N —1)/2 coupled
equations. The advantage of the Faddeev approach is to
allow one to incorporate the dominant subsystem structures
in an adequate way and to use two-body scattering
amplitudes as input for the N-body dynamical equations.
By splitting the complete N-body wave function, ultimately
N(N —1)/2 secular equations may be obtained by con-
sidering

Sl(@|(E - D)|e@) — (@) |@)] =0. (1)
As will be shown in Sec. III, the secular equations obtained
from Eq. (1) resemble two-body secular equations.

In solid state and condensed matter physics, the linear
combination of atomic orbital (LCAO) method for the
calculations of the electronic structure of periodic systems
[52] provides an elegant way to construct a wave function
that satisfies periodic boundary conditions. The trial wave
function that describes electrons traveling in a periodic
crystal is constructed by linear superposition of all atomic
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orbital solutions of an isolated atom centered at each cell of
the crystal. In this way, the periodic boundary conditions of
the wave function are automatically guaranteed, and the
energy spectra are given by secular equations from the
variational principle. Similarly, as also suggested in
Refs. [30-32,45], the trial finite-volume N-body wave
function may be constructed from the N-body infinite-
volume wave function, @({x})=> 1, yez» P({x+n,L}),
where W is the solution of the corresponding infinite-volume
Schrodinger equation, (E — H)|¥) =0, and the set {x}
stands for the complete set of particle positions. Hence, the
trial finite-volume N-body wave function satisfies periodic
boundary conditions by construction. In principle, the
infinite-volume wave function may be solved by standard
methods, such as Faddeev’s approach [48-51].

The immediate gain of the variational approach for finite-
volume systems is evident. 1) The construction of the finite-
volume wave function from the infinite-volume wave
function presents a clear connection between short-range
N-body dynamics within each image of the cubic box and
long-range correlations in the entire periodic lattice structure.
The N-body dynamics within each cubic box is determined
by N-body Faddeev equations. The long-range correlation
effect accumulated from all cubic boxes is implemented by
the linear superposition of all wave functions centered at each
image of cubic boxes. 2) The quantization conditions
(secular equations) due to the periodic structure of the lattice
are imposed by a variational approach, and eventually yield
the discrete energy spectra of the system in finite volume.
3) The variational formalism is mathematically transparent
and may be suitable for the numerical evaluation of the N-
body finite-volume problem. However, it comes at the price
of sacrificing the explicit analytical expressions of quantiza-
tion conditions as present in the Liischer formula [53] for the
two-body problem and at the high cost of computation of the
N-body phase space integration.

As we present here the first attempt to calculate the
N-body interaction in finite volume with the proposed
methods, and also for the sake of simplification of the
discussion, in this work, we only consider a simple model
with N nonrelativistic spinless particles interacting through
pairwise short-range potentials. Given the infinite-volume
wave function, ¥, that may be solved by the Faddeev
approach and is used as input to the finite-volume problem,
the quantization conditions for the finite-volume N-body
interaction are obtained and presented in Sec. II. In
principle, three-body forces and coupled-channel effects
may be included in the formalism as well. However, such
type of effects are not considered in the present work.
In addition, bound states below threshold may be described
by the analytic continuation of scattering amplitudes. In the
present work, we focus on the N-body problem with
pairwise interactions. The discussion of the three-body
force, coupled-channel effect, and bound states below
threshold will be given in future publications.

An effective two-body formalism may be determined by
integrating out the rest of the degrees of freedoms of the N-
body system. The resemblance of the N-body quantization
condition to the two-body quantization condition will be
discussed in Sec. ITE. Finally, in Appendix C we also
present some main results for a pairwise short-range
o-function potential. The renormalization issue due to
the singular nature of the §-function interaction in three
dimensions is also discussed.

The paper is organized as follows. In Sec. II we present
the derivation and main results of the variational approach
to the N-body interaction in finite volume. The discussion
and summary are given in Sec. III.

II. VARIATIONAL N-BODY INTERACTION
FORMALISM IN FINITE VOLUME

A. Secular equations of N-body
interaction in finite volume

The dynamics of N nonrelativistic particles interacting
via pairwise interactions in finite volume with periodic
boundary conditions is determined by the Schrodinger
equation,

E+ =) Vi (x, - xj)](b({x}) =0, (2)

where we take all masses to be equal to m, x; denotes
particle position, and {x} = {x;, X,, ..., Xy }. The potential
between the ith and jth particles is described by VEILJ)) In

finite volume, VEf/)) displays periodicity when the distance

of the ith and jth particles is larger than the size of the cubic
box. VEIL})
potentials centered at each image of the periodic cubic box,

may be written as the superposition of all the

Vi () = > Vi (r+nL), (3)

nez?

where V ;) is the potential between the ith and the jth particle
in the same box, and L is the size of the three-dimensional
cube. Because of the periodicity of the finite-volume
potential, the finite-volume N-particle wave function
®({x}) must also satisfy periodic boundary conditions,

O({x +nyL}) = O({x}). (4)

where {n,} = {ny .n,.....n; } and n, € Z°.

Following the Faddeev approach [48-51] (which is
briefly summarized in Appendix B), the N-body finite-
volume wave function may be expressed as the sum of
N(N —1)/2 terms,
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N

> @W({x}). (5)

(i<j)=1

D({x}) =

where wave function ®("/) is required to satisfy the equation

(i L
(E =)o@ ({x}) = V() (x; = x,)®({x}),  (6)
R 2

where T = —Zszl %. Hence, the Schrodinger equa-

tion (2) is converted to N(N —1)/2 coupled equations.
The N-body finite-volume wave function is normally
expanded in terms of a set of periodic basis functions,

o({x}) = ZC[J]q)J] {x}), (7)

where [J] refers to a complete set of quantum numbers for
the N-particle basis wave functions, and c; stands for the
expansion coefficients that may be determined by the
variational principle. Similar to Eq. (5), the basis function
®(; is also given by the sum of N(N —1)/2 terms:

<I>[ 5N = Zé\fq.) (DE!]) We remark that the choice of basis

functions may be arbitrary, depending on the symmetry of
the specific physical system and the convenience of
numerical computation. However, the different choices
of basis functions should lead to consistent results. A
reasonable choice of basis functions should preserve the
symmetry of the physical system (such as periodic boun-
dary conditions in finite volume), and numerical results
should be stable and converge.

In the finite volume, to fulfill the periodic boundary
conditions, the basis functions @ are constructed from
infinite-volume solutions of the Schrodinger equation. The
complete details are given in Sec. II B. In the following we
use the two-body problem as a specific example to explain
our choice of basis functions @ in finite volume. We denote
the infinite-volume wave functions by '¥[;. In the case of two
particles in the center-of-mass frame, the solutions of the
Schrodinger equation in infinite volume may be determined
by the partial-wave expansion of the free incoming wave,

0 . . .
lI’EJ])(r) = (4n)i’Y ;) (r)j,(gr), where [J] = JM are partial-
wave quantum numbers, r stands for the relative position of
the two particles, and ¢ = v/mE is the relative momentum of
the particles. Thus, the asymptotic solution of two-body

scattering in infinite volume is given by

me (I‘) d

where 1,;(q) stands for the two-body scattering amplitude.
Hence, ¥|; can be used as basis functions in infinite volume
to construct the corresponding finite-volume basis functions
®@(;) in order to fulfill the requirement of periodic boundary
conditions,

(4m)i’Y ) (r) s (qr) + ity (q)hy (qr)l. (8)

r+nlL). 9)

= Wy

nez3

Such finite-volume basis functions reflect the periodic lattice
structure. It will be shown in Sec. II D that the two-body basis
functions @ will be related to Liischer’s zeta function [53].
As a general remark, the basis functions should be con-
structed respecting the cubic symmetry of the problem;
however, we do not explicitly address this topic here.
Such basis functions will be given by linear superpositions
of infinite-volume basis functions; see, e.g., Ref. [22] in
which basis functions for “shells” were derived as linear
combinations of cubic harmonics which by themselves are
superpositions of spherical harmonics.
With the finite-volume wave function expanded in terms
of the basis function (7), the variational principle
AU /9c}yy =0, with AU given by

Z c[,

L

L)
[(E- T)|(D[]] )= Vip|®upley),

(10)

yields a set of coupled secular equations,

S @l = Ty — (@ | V5 | @)ley = 0. (11)

V]

and summing the above N(N — 1)/2 equations leads to a
familiar form for the secular equation [see also Eq. (AS)],

> @yl = AP|@p)]ey) =0, (12)

V]

where A = T + Z (i<j)= . A nontrivial solution of
Eq. (11) exists, prov1ded all N (N —1)/2 determinant

conditions

det [(@yy1|E = T®[j]) = (@[ V()| ®)] =0 (13)

are satisfied simultaneously. To summarize, given a set of

basis functions GDE% ) that satisfy periodic boundary con-

ditions, the variational solution for the spectrum of the
N-body finite-volume problem is reduced to a solution
of the determinant conditions given by Eq. (13).

B. Construction of the finite-volume wave
function and reduction of the secular equations

To proceed, a proper choice of basis functions with
periodic symmetry CI>( has to be made. There are
numerous examples otJ periodic basis functions, e.g.,
devised for calculations of electronic structure in a periodic
lattice and other condensed matter or solid state systems.
Specifically, in the LCAO method [52], the periodic
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variational basis functions for describing electronic states
tunneling in a crystal are constructed as a linear super-
position of all atomic orbital solutions for an isolated atom
located at each unit cell of the crystal. When applied to
hadron scattering, instead of using bound-state solutions (as
done previously in Refs. [30-32,45]) the basis functions
may be constructed from the linear superposition of
infinite-volume scattering wave functions centered at each
image of the cubic box,

o ({x}) = ({x+n.L}),  (14)

qu

{nx}GZ2

0 -oBx h N ="z is a nor-

malization factor, and \IJE%)

where {ny} = {ny ,n
satisfies the Schrodinger
equation in infinite volume with potentials V/;;),

(E-T)w7)

) = Vapl¥im)- (15)

The total N-body wave function in infinite volume ¥, is
the scattering solution of the Schrodinger equation
(E-T- V)|\I’[J]> = 0 and may be expressed as

N
vy =0+ Y W (16)

where ‘I’E?f stands for the free incoming wave and satisfies

the free Schrodinger equation (E — T)|‘P[ j]> =0. For
example, the two-body partial-wave free incoming wave
(4n)i! Y(;(r)j;(gr), while the cor-
responding wave function in the three-body case was given
in Ref [30]. The periodic symmetry of the finite-volume
wave function @ is satisfied automatically by the con-
struction in Eq. (14). The infinite-volume N-body wave
function ¥ may be solved using the standard Faddeev
approach. Locally, at each image of the cubic box, assum-
ing the size of the box is large enough, the short distance N-
body dynamics is thus described by the solution of the
infinite-volume Schrodinger equation W. The long-distance
correlations at scales larger than the range of the potential
are taken into account through the linear superposition of
the infinite-volume wave functions centered at each image
of the periodic cubic box; see Eq. (14).

Using Egs. (14) and (15) and taking into account the
periodicity of the finite-volume potential, the secular
equations given by Eq. (11) reduce to

is given by LI’E?])(r) =

S (@ Vi [IXL)) = [@)]ey =0 (17)
/]

where

X[P({xh = > wyx+ndl}), (18)

{“x}(i.j)623

and {n,};; stands for the set {ny} excluding two
elements: ny and ny . Furthermore, the N(N -1)/2

determinant conditions given by Eq. (13) become

det [(@ [V (X[ = |@y))] =0, (19)
Given the scattering solution of the N-body problem in
infinite volume ¥ as input, the finite-volume wave func-
tions @ and X (/) can be constructed by using Eqgs. (14) and
(18), respectively. We remark that the energy dependence
of the infinite-volume wave function ¥[; has been sup-
pressed so far in our presentation. For the scattering
solutions, ¥[;; does indeed depend on the incoming
momenta of particles because the finite volume wave

functions, @, and XU ] > are constructed from ¥|;;, hence

J] >
momenta dependence remains in finite volume wave
functions as well. Therefore, using the infinite-volume
scattering solutions ¥, as inputs, the finite-volume quan-
tization conditions (19) yield discrete energy spectra as a
consequence of the periodic cubic lattice structure. In other
words, the discrete energy spectra in finite volume is the
result of the long-distance correlation effects of particles in
a periodic lattice structure. Meanwhile, the specific patterns
of discrete spectra rely on the short-distance interactions
that are described by scattering amplitudes or “amplitude-
carrier” wave functions ¥ in infinite volume. Ultimately,
the quantization conditions play the role of imposing
constraints on energy spectra due to periodic boundary
conditions. The scattering information in infinite volume
and with periodic boundary conditions is combined using
finite-volume wave functions @ and X E}f ),

The secular equations (17) and corresponding quantiza-
tion conditions (19) can be further reduced by removing the
center-of-mass motion. However, the choice of relative
coordinates for the N-body system can normally be made
quite arbitrary. In Sec. IIC, the specific choice [51] is
described by forming the succession of subsystems of N
particles in such a way that the subsystems are obtained by
successively joining particle 2, particle 3, - - -, particle N to
particle 1, i.e., (12),((12)3), (((12)3)4), ....

C. Removal of center-of-mass motion

Since in this work we are mainly interested in scattering
solutions, the set of incoming particle momenta is also
introduced to label the N-body wave functions {p} =
{P1.P2, ..., Py}, where p; stands for the momentum of the
ith incoming particle. The total energy of N particles is
givenby E = >"V | p?/2m. The center-of-mass motion and
internal motion of the N-body system can be separated
out by changing coordinates. One particular choice
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of the relative coordinates and momenta [51] is given,
respectively, by

2n (1
s (i),
n 1 n
o - 2
q12).0 Z(HH)(”;M pn+1>, (20)

where n < N. The quantities p(j), and (), may be
interpreted as the relative coordinates and momentum
between the (n 4 1)th particle and the center-of-mass
coordinate or momentum of the cluster of particles
(1,2,...,n), respectively. The index (12) is used to label
the special choice we made for the relative coordinates and
momenta, so that for n = 1 the relative coordinates and
momenta are defined between particle 1 and particle 2,

1

Pa2)1 = X1 — X, d(12),1 = E(pl -p2). (21

The complete sets of relative coordinates and momenta are
givenby {P(lz)}:{l’(lz),l WP (12)20++ P (12),N-1 }and {‘I(lz)}:
{4(12).1-9(12)2>--9(12)n—1 }» Tespectively. The center-of-
mass coordinate and momentum of the N-body system are

R:NZX,»,P:ZP,-. (22)

The total energy of the N-particle system is given by
E=YN 1q 1), /m+P /2mN, and the Kkinetic energy
operator of the N- body system is

R (23)

In terms of the set {p(5}, the infinite-volume
N-body wave function is given by W({x},{p}) =
ePRy({p(12)}. {q(12)}). where the center-of-mass motion
is represented by a plane wave e’*'R and the wave function
w describes the internal motions of the N-body system.
The same applies to the finite-volume wave function.
The N-body wave function representing the relative motion
in finite volume is thus given by

¢({pant{auz}) :% > N2y ({5 b 4y )

{n}ez’

(24)

where the nth element of the set {15} is

2n (1
— (;ank _nxn+|>l" (25)

k=1

Pa2yn =Pa2)n t

In order to remove one redundant element of the set {n, }, a
subset {n (|5} is introduced,

{n(lz)} = {n(lz),1,11(12),2’ ---511(12),1\/-1} ez’ (26)

where the kth element is given by n(y) =mn, —ny .
Having introduced the set {n ;) } in this particular way, all of
the elements of set {n(;y)} still belong in Z*. We also find

2 n
P12 n = L/ kn L, 27
P(12), P(12), n(n T 1) ; (12).k ( )

and
N —

Yo=Y

k=1

n() L + Nny, (28)

Hence, after removing the center-of-mass motion, the finite-
volume relative wave function ¢ is related to y by

Cb({/’(lz)}’{‘l(lz)})
S HED ) s ) 09

{ny}ez?
and ¢ satisfies periodic boundary conditions,

¢({ﬁ(12)}v {‘l(lz)})
_ S ) . 60

Clearly, the set {p(j,)} cannot be the only choice of
independent relative coordinates. By exchanging the labels
of each particle, such as 1 < i and 2 < j in set {p12)},
another independent coordinate set {p;;} may be
obtained. For example, by relabeling 2 <> 3 in {p(15)},
the elements of set {p(;3)} are given by

Pu2)a T \/§l’(12),2

P31 =X —X3 = 7 s
_ 2 (xitx5 o) - \/§,0(12),1 —P(12)2
P3)2 = /3 3 2| = 7 )
P(13).n = P(12).n> n>?2. (31)
The different sets {p(;;)} and {p(y)} are linked by a linear
transformation,
{pip} =T pn s (32)
for example,
V3
3 %0
(13).(12) = | 2 .
r § 10 (33)
0 0 I

094502-6



VARIATIONAL APPROACH TO N-BODY INTERACTIONS ...

PHYS. REV. D 98, 094502 (2018)

Because it is constructed in this way, the transfer matrix I"
between two different sets is an orthogonal matrix, I''T" = L.
Hence, both the sum > )~{ p?,  and the N-body volume

element f Hn 1 dpij),» are invariant under this transforma-
tion of sets. Slmllarly, both the total energy and kinetic
energy operator are also invariant under a transformation
between sets of relative coordinates and momenta.

With the introduction of these sets of relative coordi-
nates, the finite-volume N-body wave function ¢; may be
written as

N

S o et {aand). (34)

(i<j)=1

d{pant-{aun}) =

where (/’)E}f ) satisfies

(6> = T,)¢ Lo} {aan )
= mV{D) ()b (lean}t- {aan ). (35)

and we introduced rescaled total energy and kinetic energy
operators, 0> =mE—P?/2N and T,=-> N/ Vi

The construction of qﬁ% )i given by

g el%(zgz_ll l’ln(,-‘/-)_”)L
{n(,-j)}EZ3

Xwﬁ?“ﬁunk{qun}L (36)

where {n(,j)} = {n(ij>’l,n(,~j>$2, ...,n(ij%N_]}, and the set
{n(;;)} may be related to {n(;,)} by relabeling 1 <> i and
2 <> j. The set {f(;;)} is defined by

2 n
2 N L
n(n—i—l)kz:; i)k

¢E}{)({p(ij)}’ {61(12)}) =

Plijyn =P+ (njx €2%).

(37)
The wave functions I/IEJZ{) are the solutions of infinite-
volume Schrodinger equations,

(62 - )l//[]] ({p (ij) } {q 12) })
= mv(ij)(p(ij),l)W[J]({p(u)}’ {61(12)}), (38)

and the total inﬁnite volume N-body wave function is
) o 0
given by ;] = 1//[ ; ) ¢ Z Uei)=i 1//[(%), where 1//{]]) refers to
the incoming free wave.
After removing the center-of-mass motion, the determi-
nant conditions are now given by

det ({1 Viip (1)) = 1))l =0, (39)

where

)(E%)({P(lz)}v {4(12)}) =

<y (TG} aan)})-
(40)
The set {n )} refers to {n;;) >, 0(;j) 3, ..., N(;j) -1 } Which

is a subset of {nj} by excludlng element n(;; ;. The set
{P(ij)} is defined by

_ 2 -
Plijyn =Pijjn T n(nH)Zk“(ij),kL’ (nj)x €2°).

k=2
(41)

Noting the invariance of set {n;;}, we are able to write

¢y in a similar way as Eq. (40),
Z e QT M)l
{ll(ij>}€Z3

Xy (F(lz)’(ij){ﬁ(ij)}’ {‘I(lz)})’
(42)

¢[J]({P(12)}’ {61(12)}) =

which is equivalent to Eq. (24). Hence, the relation between

¢y and )([(% ) can be made more clear,

E eiv L

ng) €2

xxgp(rmaqupoﬁ}’{qua}%
(43)

¢[J]({p(12)}v {61(12)}) =

where the nth element of {f,; } is given by

Pijyn = Pijyn T M(ij)1 Ly

and {pj} = {pap} + {Pujpt-

(ngj1 €2°), (44)

D. Relation to the two-body Liischer formula

In the simplest case N = 2, there is only one relative
coordinate and relative momentum so that the particle index
can be dropped, and in what follows they are denoted by r
]
w
for the two-body system. Therefore, the determinant con-
dition in Eq. (39) is given by

and q, respectively. Notice that y; ;" is now reduced to y

det [{(@|V(ly) = o)) = 0. (45)

where [J] = JM stands for quantum numbers of a specific
partial wave, and
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) (r.q) =

} : eisnL

nez3

w(c+nL.q).  (46)

Assuming the potential has a finite range, V(r) =0 for
R <r <L, in the region outside of the potential the
infinite-volume wave function has the form

r>R_ (out)

W[J](rﬁ) =Y (r.q),
v (r.q) = (4n)i'Y () s (gr) + it (@) (). (47)

where ?; is the partial-wave two-body scattering amplitude,
and 7; is normalized by the unitarity relation, Im
[1/t;] = —1. Inside the potential region, the wave function
is given by the solution of the Schrodinger equation, and is

denoted by y/[ 7 ( q) from now on. The matrix element of

the determinant condition (45) is given by

| eV o) - gyl @9
r<
Using the fact that

r<R (in ou
Pt q) =yl () -y (r.q)

+ (4x)i'it;(q Zez"LY ](r+nL)

nez’

(gl +nL])
(49)

and the relation

ZeZ“LY }(r—knL) " (glr + nL|)
nez?
G .
= ZY[J] 03 5ins (qr) — MG (@)jsqr)]. (50)

[derived in Egs. (B1) and (B3) in Ref. [44]] for the
expansion coefficient function of the finite-volume two-

body Green’s function ijg])’m, we find

< J’ ‘A/(|II/[J> |¢J]>)

[ dry (. @)V (1)j;(ar) ¥ (v)

x (4m)i/ [817,05(1 + ity (@) — 1@ MG (@) (51)

Therefore, the determinant condition for the two-body
problem (45) yields Liischer’s formula,

1 . (
det |:5[JH/] <—IJ(£]) + l) - M[ .

g
Ny

p@] =0 62

)

Hence, the variational approach to the finite-volume few-
body system is consistent with the Liischer approach.

E. Effective two-body formalism

In this section we would like to show that the N-body
quantization conditions may be recast in a similar form as
the two-body quantization condition in Eq. (45).

Before proceeding to the N-body interaction, let us first
rewrite the two-body quantization condition of Eq. (45) by
using the periodicity of the finite-volume wave function.
We find
¢ (0. Q)b (r.q) = > ¢y (r+nL. gy (r+nL,q).

nez’

(53)

Therefore, the two-body quantization condition (45) may
be expressed as

det| [ drV(r)|Qy Q +nL,q)|| =0,
e[/r {[J,] g:zm r“‘IH

(54)
where Q[J]J]( q) = ¢[j’( q)y ](r,q).

Next, for the N-body problem we revisit the determinant
condition in the (ij) channel in a explicit format,

N-1
det {/ H dﬂ(ij),nfﬁfjf]({ﬂ(lz)}’ {Q(lz)})mv(ij)(ﬂ(ij),l)
n=1

< i pan - {aan ) = du ez} {aan 11| =0,

(55)

where )((ij) and ¢y are given by Egs. (40) and (43),

/]
respectively. Because of the relation between )(( and ¢y
given in Eq. (43), similarly to Eq. (54), itis advantageous to
introduce the quantity Q(/) (p; ;) again by integrating out
all of the relative coordinates except for p(;) 1

(i)
Q[J{],[J](ﬂ(m,lv{CI(lz)})
N-1 W
:/Hdl’(ij),nff)[*f]({I’(lz)}’{CI(lz)}))([% ({.0(12)}’{51(12)})-
n=2

(56)

Using the periodicity of the wave function ¢, the quantiza-
tion conditions (55) now have a form that resembles the
two-body quantization condition given in Eq. (54),

(ij)
det{/dp(ij),lv(ij) (p(ij),l) {Q[J{],[j](ﬂ(ij),l, {4(12)}>
- 2@

nez’

@1 0L, {qqs })} } =0. (57)
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When all of the interactions V/; ;) except the interaction
between the ith and jth particle are turned off, clearly the
quantization condition in the (ij) channel in Eq. (57) is thus
reduced to the two-body quantization condition given
in Eq. (54).

III. DISCUSSION AND CONCLUSION

A. Resemblance to the isobar model

In the past, isobar models [54-67] have been a useful
tool to describe few-body interactions, in which the few-
body interaction is treated by taking into account all
possible recombinations of two-body subsystems. The
two-body subsystems are considered as the dominant
contribution compared to the three-body force, and the
few-body interaction correction to the two-body subsystem
is generated by rescattering between all possible pairs.
In order to show the similarity of this approach to the isobar
formulation [54-67], we consider a special case, i.e., a
three-body system with two light spinless particles and one
infinitely heavy spinless particle stationed at the origin. The
heavy particle is labeled as the third particle. The system
may be described by

1 2 2
{EJer;V% 3 VO () + UD (r, — rz)]
X ¢(ry, 12541, q;) =0, (58)

where V() represents the interactions between the heavy
particle and one of the light particles, and U%) stands for
the interaction between the two light particles. Again, we
use the superscript (L) to identify the periodic potential in
finite volume. We also assume that U is a weak
interaction, so that the interaction between the two light
particles is treated as a perturbation, which serves the
purpose of this work. Therefore, the corresponding infinite-
volume wave function must have the form

w(rL g qp) = w(r;:q)y(r:qp) + dw(r.rn:q. qp).
(59)

where the first term is the solution of the system with zero
interaction between two lights particles. The second term,
oy, can be considered as a perturbative contribution when
the weak U potential is turned on. The two-body infinite-
volume wave function y(r;; q;) is given by the solution of

2 2
q; + Vi

— = V(r ri;q;) =0, 60
= v |wirisa) (60)
with E = ¢3/2m + ¢3/2m. Following the argument pro-
vided in previous sections, the finite-volume wave function
is constructed from the infinite-volume wave function.

The two ingredients ¢ and y{!/?) of the secular equations
thus also have the forms

#(r1, 12541, q2) = (15 q1)P(r25q2) + 5¢(r), 1245, Q)

(61)
and
X(U(rlarZ;ql’ Q2
=y (r;;q1)(ra;qa) + 5V (r). 145, q0).
)((2)(1'1’1'2;(11a q2)
= ¢(r1;q))w(r2;q2) + 8¢ (r1. 12545, q0). (62)

where ¢(r;;q;) = ), ez w(ri +1n;L;q;). The construc-
tion of 8¢ and 8y') can also be performed based on &y,
but the specific expressions are not crucial for our brief
discussion. The two secular equations may also be treated as
a perturbation; for example, for the channel (13) we obtain

Z [/ dr, </ ey (X1, 123 1. G2 ) i) (o3 612)) V(r)

V]

X [y (v ) = dp (s g)] + 5U[J’],[J]] ey =0,

(63)

where 6U stands for the perturbative contribution to the
secular equation from the weak U potential. The three-body
quantum number set [J] is constructed from two-body
quantum numbers [L;| by [J] =[L;] ® [L,]. In the limit
of 6U — 0, two secular equations yield two independent
two-body quantization conditions,

1 . (0) :
det |:5[L,-],[l,-] (m+ l> _M[L,-],[l,-](qi)] = 0, 1= 1,2,

(64)

and both ¢;’s are quantized independently according to the
corresponding Liischer formula. The three-body correction
with a weak U potential may be obtained by perturbation. In
the current approach, the physical picture is presented in a
way that is similar to the three-body rescattering effect
corrected isobar model [54-66]. That is to say that the
three-body system considered in this subsection can be
treated as two two-body isobar subsystems [(13) and
(23)], which yield two independent two-body quantization
conditions for g, ,. The three-body rescattering correction to
isobar subsystems produces an energy shift on quantized
two-body energies: ¢3/2m + q3/2m + SE.
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B. Summary

In this work, we proposed a variational approach to the
finite-volume N-body problem. In order to fulfill the periodic
boundary conditions, the trial wave functions were con-
structed by linear superposition of all of the solutions of the
infinite-volume wave functions centered at each image of the
periodic cubic boxes, given that the infinite-volume wave
functions may be obtained by standard methods. In this
approach, the short-range N-body dynamics is local to each
box and long-range correlations correspond to particles
traveling through the entire periodic structure of the lattice.
In other words, the short-range dynamics are determined by
infinite-volume wave functions, and finite-volume wave
functions control the long-range correlations that eventually
yield the discrete energy spectra because of the periodic
structure of the lattice. No explicit analytic expressions
between discrete lattice eigenvalues and the scattering
amplitude (such as those present in the two-body Liischer
formula) can be given by the variational approach for N > 2.
Instead, the discrete energy spectra and N-body scattering
amplitudes are linked in a rather complicated way.
Nevertheless, the method has potential advantages for
systems with N > 2. By combining the variational approach
with the Faddeev approach, the N(N — 1)/2 quantization
conditions were ultimately obtained. In the end, these
quantization conditions can be expressed in a way that
resembles rescattering in the isobar approach. The overall
rescattering corrections can also be written as a collective
effect by integrating out the of degrees of freedom other then
as selected two-body subsystem.
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APPENDIX A: VARIATIONAL PRINCIPLE

For a complex system, most calculations are based on
approximate methods: the variational principle is one of the
most commonly used approaches. In this section, we
briefly outline the main idea of the variational principle
as the approximate solution to a general quantum system
[46,47], which satisfies the Schrodinger equation,

HY) = E|V). (A1)

The trial wave function ¥ may be expanded in terms of a
set of basis functions that satisfy certain boundary con-
ditions or symmetries of the system,

) = culn).

(A2)

The solution of the Schrodinger equation is thus given by
the variational principle:

oA
Jac,

=0, (A3)
where

A=Y "ch(n|E—Hln')e,. (A4)

Thus, the variational principle yields secular equations,

Y [E(nln’) = (n|H|n)]e, =0, (AS)
and the nontrivial solutions exist only if
det [E(n|n’) — (n|H|n")] = 0. (A6)

APPENDIX B: N-BODY FADDEEV
EQUATIONS IN INFINITE VOLUME

In this Appendix, for completeness we give a brief
summary of the Faddeev equations for the general inter-
action of N particles. The nonrelativistic N-body dynamics
is described by the Schrodinger equation,

(E-T-V)|¥)=0. (B1)

Assuming only pairwise interactions among particles,

V= Zl(\z/ <j)t V(ij), the scattering solution of an N-body

wave function is normally written as the sum of multiple
terms [48-51],

(B2)

where W(©) stands for the free initial incoming wave of the

N-particle state, (E — T)|¥(?)) = 0, and ¥(/) satisfies the
equation

(E=T)2W) = V) |®). (B3)
In this way, the N-body Schrodinger equation is turned into
N(N —1)/2 coupled equations,
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N;

=

l’J’#u
W)y =GV [ ) + } (B4)

z’<j’):1

where the Green’s function operator G(i j) 18 given by

A A

G(, j) is related to the two-body scattering amplitude 1 ; by
Gy = Go(1 =1 Go). (B6)
where G<O) = (E—T + ie)™! stands for the free two-body

Green’s function. .
The total N-body scattering amplitude 7 is

WOy = M T

(i<j)=1

¥y = V). (B7)

whereT POy =— ‘7(,-]-)|‘P>.Usingtherelation V(ij)f}(ij>:
—t(ij)G(o) and Eq. (B4), we find that T(ij) satisfy the
coupled equations

R t’/’#t/
Pap =ty = (BS)
z’</):1
T(;j) and [¥(7)) are related by
(WD) = =G T3 [¥). (B9)

One of the advantages of the Faddeev approach is that it
demonstrates the general relations between the subsystem
amplitude and the N-body amplitude in a natural way [see
Eq. (B8)], and the two-body amplitude is used as input for the
N-body dynamics. In addition, the unitarity relation of the
N-body scattering amplitude is also automatically guaran-
teed by the Faddeev equations.

APPENDIX C: SOLUTIONS OF THE N-BODY
PROBLEM WITH 6-FUNCTION POTENTIALS

To give readers a concrete example of our proposed
approach to the N-body finite-volume problem, in this
Appendix we also include a specific example of short-range
interactions between two particles with a oJ-function
potential.

1. Two-body interaction with d-function potential

We consider two-particle scattering with a pairwise
o-function potential, assuming that all particles are spinless
and have equal mass. The bare strength of the 5-function
potential between the two particles is described by V,. With
the same convention as in Sec. II D, the infinite-volume

wave function is given by the Lippmann-Schwinger
equation,

(4n) iJjJ(qr) Y u(r)
+ [ G v mVosa (e ),

(C1)

wm(r.q) =

where G ) stands for the free two-body Green’s function,

dq/ el q'-(r-r')

G (r, 1
(0)(r r C]) /(271’)% 2 q/2+i€

= —Ling (glr - ).

(C2)

The two-body Lippmann-Schwinger equation (C1) has the
solution

v (r,q) = (42)i'Y 13y (0) [ (qr) + 85 ito (@)l

where only the S wave contributes to the two-body scattering
amplitude,

q
2zt ight (qr)]—o

to(q) = — (C4)

It has been known that singular potentials, such as the
o-function potential, require regularization and renormaliza-
tion two or higher dimensions [68]. Adopting the renorm-
alization scheme proposed in Ref. [68], a renormalized
strength of the o-function potential Vj is introduced to

absorb the divergent part of hé+)(q VNymo=1-— ;, and the
renormalized and bare strengths are related by

1 1 1
—_— = . (C5)
mVy mVg 4rr|,_,

In terms of the renormalized quantity, the S-wave two-body
scattering amplitude now reads

L
+lq

mVR

fo(q) = (Co)

and the unitarity relation of the two-body scattering ampli-
tude is guaranteed by Im[fj'] = —1.

In finite volume, based on the discussion given in Sec. I D,
we find that
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q) — dm(r

= (4n) JZJJ qr)Y jm

.]mj
X [0 (1 + 850it0(q))
— 610t0(@) Mg (@)

Ym\r (

(C7)

The nontrivial solutions of the é-function potential are given
only by the S wave, which are determined by

+i=ME (q)

C8
10(4) ol ¥

2. N-body interaction with a 6-function potential

a. The solution of the N-body interaction
in infinite volume

We again consider a simple model with a short-range o-
function interaction, V ;) (x; — X;) = V,(p(;;).1). The sol-
ution of the N-body interaction may be obtained using the
standard Faddeev approach [48—51]. For the scattering with
a free N-particle incoming wave, the wave function may be
expressed as the sum of 1 + N(N —1)/2 terms,

wean}-{aan ) = vl Gpan} - {aan)})

N

+ Z WEU {pl]} {q12})

(i<j)=1

(€9)

where 1//3)]) refers to the incoming free wave, and z//m ) is

given by the Lippmann-Schwinger equation,
Ddoant-{aan})
Vi \WPGj) 54 (12)
N-1
:/Hdl’iz, i {pin} Ao b 0)mVes(o;; 1)

X ‘// {Plz}{412}>

Ni(i'j'#ij)
+ v ol daa D) - (C10)
(i'<j)=1
The Green’s function G;; satisfies the equation
(62 =T, —mVos(pj.)|Gay({punt 1o ij)}:0)
-1
= Hé(p(ij).n p(lj) ) (Cll)

and the solution of Eq. (C11) has the form

Gij ({P (if) }’ {ﬂ/,-j };0)
e ldq (ij).n 1 1 4
- [ I

Xl//(p(tj)l’q,j )l// (pl] 1,‘1 (ij).1 )

o’ — n=1 q(ij),n +ie ’

k'(/)(ij).k_pz,-j)_k)

(C12)

where the two-body wave function w(pij) 1,9 (;j).1) is
given by

ll/(l’(ij),l ) q(ij),l)

= 'u1Pa 4 itO(Q(ij),l)h(()H (g@papijp1)-  (C13)

Using the expression for the two-body wave function in
Eq. (C13), we find

1/ {plj}{p”} )
/ dqun lZNI/ k(ﬂukp )

(27)3
2 N— l
el n=2 ,j)"‘pl/ 1 p(,j) ‘
X |— y) ;
zlp(ij).1 —Pj), /|

tO \/6 _ZnN%qI%] n)

471' \/62 _

: 2 N-1 12
eveT rx2qzij),n(p(i.f)<l+p/(ij)Al)‘|

n:2 q(ij),n

X

(C14)
P(ij) AP i)

With the renormalization relation given in Eq. (C5), we also
find

G (i)) ({p (ij) }’ {p/,'j };6>mV05@/(ij),1)
/ dql]n 1ZN1,‘(ﬂ:/kﬂ)>

n=2

(C15)

(i)
]

Therefore, we can rewrite vy, as
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v (pant{an}) T {al b {aan ) - T4 {al) - {aan )
471'11‘0(\/ D P qu/ )
2
\/ - n=2 q(ij),n

x i / Ntdq , TS (27)*8(a) ), = 9, 0)
e -y, e

N:i(i'j'#ijf)
N 1 T {q l/]/ } {q 12 }) (C19)
/ Hdp (ij). k 24 kp”)kﬁ(p, ) (I<j)=1
oy where
x {wm ({0} {0} N
(l’]l#l] —l]— i ({qlu }’ {q 12 })
+ l// {.0 (i'7) IRUAPIE (C16) 47;;0(\/ -3l q G, ) N-1
(i'<j)=0 > /Hdp(ij),né(p(ij).l)
\/ o =25 qw).n =l
Next, we introduce the scattering amplitudes T[ f ) x 7 ks Wi Wy ({.0 @it 1902 })- (C20)
The total N-body scattering amplitude is given by
W) (Tq ¥ Ty = Zieyt Ti1 -
T | ({q/,’j }v {C] 12 }) (i<p)= V]
/ H o ’Zf Y b. Construction of finite-volume N-body wave functions
P, Given the solutions of the infinite-volume wave function
(l ) . . . . (l ) . .
« mV05(P(,-j>_1)W[J]({P(ij)},{(](12)}), (C17) w'\"), the finite-volume wave function ¢') is obtained

using Eq. (36),

T P Qoink-Aaa})
where {q,(zj)} = {q/(lj)z, q/(l-j).:;, ceey ql(ij),N—l}' USlng N lk
Egs. (C16) and (C5), we find that the wave function = Z e Qi R /
ﬁ ) and T, J]) are related by {n, 1€z’

Xe'z /(pv \/n n+] Zk 1 ) l)
“’f’({p i }, {q 2}

/ l : q(,j)kp(l/)

X (C21)
x ih\")
Using the fact that
N-1 7 kn’ .
x V (C18) 2 Uijpr (%) L
N-1 /N-1 g
=3 (Z %) (k)L (C22)
The TE J]) amplitudes are given by the solutions of coupled =2 ek

integral equations, and the Poisson summation formula, we find
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N- / )
Doa)lawh= S [ H LTI LIS

{ }EZK n k=2

(P N-1 2 ! M
X E el(N+ =2 \/mq(iﬂ»n’)n”)"Lih(H

0

ng; €2°

S (T, Y {aa) ))- (C23)

The total finite-volume wave function is given by ¢, = Z’(\l’ <=1 (]SE% ),

Similarly, using Egs. (40) and (C18), we also find

N
ij 0).(ij (i'j
)(H)({P<1z>}v{‘1(lz)}) :)(EJ])(n({p(lZ)}’{q(lZ + > Xy - {aaa ) (C24)
(i'<j)=1
where
0).(ij im © Jp—
)(EJ])(j)({p(IZ)}’{q(IZ)}): Z eN Zk knj) i) lI/[Jf(F(lz)’('l){l’(ij)}a{‘1(12)})’ (C25)
{n()}ez’
(i).(ij) 2w
2" e Aaamd) = > — 7 M
{n(,-j)}ezz
X ih((f) (C26)
and
P N_ld ! N-1
(l #(U) q(l])l’l i q g 'p(["'),k
A4 o) a2 | ¢/ 205 Gy
[J n=2 (2”)3
< ¥ o o B D A (N i) e
{n(ij)}€Z3
) 0 2
X lho U - qu/(%/]/ |ﬂ )1 + ZF 7’1(” T 1) ;kn(ij)’klll
2 2
\/ ~ 22 Ui iy
X . Ty (a3 aaz b (C27)

c. N-body secular equations

Given all of the ingredients of the finite-volume wave functions from Eqgs. (C23)-(C27), the discrete energy spectra are
thus given by N(N — 1)/2 secular equations,

det {/ 1:[ dﬂ(ij).;z¢[*1r]({ﬂ(12)}v {9(12)})’”‘/05(19(1']').1)b(m)qﬂ(lz)}’ {Q(lz)}) - 47[1]({.0(12)}, {Q(lz)}>] =0. (CZS)
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Asp(ij.1 = 0, both )(E}]’ ) and (,b(ij ) appear to have the same ultraviolet-divergent behavior because of the spherical Hankel

function, h(<)+)(\/ or = >N q ()P i), 1) ; thus, the subtraction of two terms is completely free from ultraviolet

divergence. The ultraviolet dlvergence appears in ¢f ] as well. Since V|, is a bare parameter, in order to remove the
ultraviolet divergence a renormalization of the energy is required. Given the fact that

r— 471' mV,
mVoihH (gr) 2322 _ 1Yo C29
0tto ( ) q to(q) ( )

after the energy shift E — E + S6E the divergent contribution of the secular equation can be completely canceled out by the
counterterm OF. Thus the renormalized quantity ¢E‘J,]mV0 is given by

Pij1—0 N /( ) —l N1y P Nl kP Nl 2w
o paztAaayt)mVe — Z /H 73 =2 Ll P 25 ~ Zk n+1 i) ik

{n(,] }623 k=2

75" (i} a02)))- (C30)

3. Three-body interaction with a §-function potential

The three-body solutions can be derived from the N-body results given in Appendix C 2 by setting N = 3. Since the
number of particles in the three-body problem is still manageable, we use the shorthand notation

Yij) =Pt Te=Pu2 i) =dapt G =dupe.  FjFEL (C31)

The different sets are related by linear transformations, such as

T(2) + V3r; \/§I‘<12) - T3 qi2) + V34q; \/§Q<12> —q3
Ty =—— 5 h=—">5 o == 5 L=""> " (C32)
According to Eq. (C18), the infinite-volume wave function l,UE ﬂ ) s given by
ij dq iar 0'2 — q2 ii
wfj?(r(i/),rk;quz»fh) =/(2ﬂ) i >( 2—q2r<u’>>eq "TTfJf)(q;quz»qs), (C33)

where the solutions of the 7 amplitude are given by

. 2 2
4””0(V“ —4q >1/ dq’ T(ik>(\/7§q’;q<12),q3)+T(jk>(%§q’;q<1z>,q3)
(

T (q;q(12).93) = T (q:q(12).93) = , . (C34)
" 1 o’ —q’ 27)° o’ —34% - (3+549)* +ie
where
(i) 4ty ( Vo' - q2> .. (0)
T[Jf (@ 9(12).93) = pr /drke_’q'rkll’[]] (0,15 9(12)- 43)- (C35)
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In terms of the 7" amplitude, the finite-volume three-body wave function is taken from Eq. (C23),

ﬁ) 3 q=—2+%n

if 2 t E i
¢E11>(r(ij),1’k;(1(12)793) = I3 Z 4T Z ¢ GHpn (H( 02_q2|r(ij)+n(ij)L|)
nez3
-
X TW(QQ q(12),93))- (C36)

Similarly, from Egs. (C24), (C26), and (C27), we also find

N
){m)( 1'3,61(12),513) = Z )(E;]])’(U)(r(i'j’),l‘k’;CI(u),613), (C37)
(i<j)=
where
o (73)3 q:_}’ﬁ’\?zlfn 62 — q2 B
)(E%)-(tﬂ(l'(ij), Y q(12), 93) = i Z e:q.rkihéﬂ( 0% — qzr(iJ-)) TTW(‘F duaas).  (C38)
nez?
and
il ii 21" Zl—*(i/f/)-(i/)
D) v g as) J):(J)/ gy L, ihy’ ><V 0% = @Ky + = nL>
nez? \/§
Voi—q’
x =15 (a3 (1), 3). (C39)

4

For the three-body problem, three secular equations may be obtained according to Eq. (C28), but only two of them are
independent. For example, for the channel (12), the quantization condition is given by

det { / drs i) (0. 752 4(12)- 43)mVoAd(;” (0152 (1. q3)] =0. (C40)

where

V3 3q,__+\/_2n o
(2) Z \/m J] q, 9(12)> 93 [Ze ) anh( )(\/ q2|nL|)}eiq~r3

Ad’m (0 I3 q 12)793) ==

L3 3 ” 3
n;eZ’ nez’
4 (ﬁ).’a q___+\/_2n
q i(g—%)-nL 2 L
asge- oo g }
nez n,eZ nez
3 —
xih(()+)< [o? — %+ LD _,qziv"q Z T (43 (12 45)- (Cal)
The renormalized qbf‘ ,]mVo is given by
* . 2 —iqry p(12)5
¢[J](0,1'3,Q(12)7%>mvo - I3 Z e T[]’] (q’Q(IZ)"B)' (C42)

nez3

Normally, the infinite sum of Bessel functions in the above equation has poor convergence, and for numerical purposes a
better expression may be given by Eq. (50) in a partial-wave expanded form. It may also be convenient to use an alternative
form in Eq. (D7) without partial-wave expansion,
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(glr +nL|) = TQ(r, q) + iny(qr).

Z eiQ-nLh(()+)

nez?3

where the expression and derivation of J@(r,q) is
presented in Appendix D. In terms of a partial-wave
expanded form, J (Q) is related to Liischer’s form by

i7Q(r, q) (C43)

= Vary_ M), (@)ji(ar) ¥ ().
[/]

APPENDIX D: LATTICE SUM OF THE
TWO-BODY GREEN’S FUNCTION

An alternative fast algorithm for performing the lattice
sum of the two-body Green’s function in Egs. (C23) and
(C36) without partial-wave expansion is provided in this
Appendix. First of all, using the identity

2
P24
4

q .
@lhéﬂ(qr) = (DI1)

1
2z Jo

and splitting the integration by an arbitrary parameter #, we
can rewrite the lattice sum of the Green’s function in
Eq. (50) as

Ze’Q"Lh (g|r+nL|)
nez?
nez’ 0 n
For the first term in Eq. (D2), using the identity
1 22 dq _a*
—-rr _ W2 pld'r D3
27 28 ) (27)? ene (D3)
and also applying Poisson summation, we find
Z iQnL /” dte—|r+nL\2t2+§
neZ3 0
. q=¥n-Q P-q'?
4ri 19 e -
e D A )
q L° =, q—q°+ie

For the second term in Eq. (D2), except for n = 0, the
convergence of the integration is well defined for a finite
value of #; thus, we would like to isolate the n = 0 piece,
with the help of the identity

e rerf(— 4 Lt ) — eerf(—5k ~ m)
=iny(qr) +i ar
(Ds)
Therefore, we find
Z iQ-nL /°° dle—\r+nL|212+§
9 nez> g
e~ erf(— 5L+ ) — e’q’erf(—— —m)
=iny(qr) +i ar
n#0 >
Z iQ-nL /°° dre LIPS (D6)
9 ez g

Putting everything together, we thus obtain a fast-conver-
gent expression for the lattice sum of the Green’s function
without partial-wave expansion,

Ze’Q“Lh glr +nL|) = J79(r.q) + ing(qr). (D7)
nez?
where
r__ 2/( Q M
dri 197 e -
j(Q) (I‘, q) _ - elar
q L’ é g’ —q” +ie
.e_""rerf(—é—’f? +rm)— ei‘”erf(—;—‘f? —m)
T 2qr
el e —\r-s—nL\th-&-ﬁ
Z lQ~l‘lL/ dte 42, (DS)
neZ3 n
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