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We construct a general QCD light front formalism to compute many-body color charge correlators in the
proton. These form factors can be extracted from deeply inelastic scattering measurements of exclusive
final states in analogy to electromagnetic form factors extracted in elastic electron scattering experiments.
Particularly noteworthy is the potential to extract a novel odderon form factor, either indirectly from
exclusive J=Ψ measurements or directly from exclusive measurements of the ηc or tensor mesons at large
Bjorken x. Besides the intrinsic information conveyed by these color charge correlators on the
spatiotemporal tomography at the subfemtoscopic scale at large x, the corresponding cumulants extend
the domain of validity of McLerran-Venugopalan type weight functionals from small x and large nuclei to
nucleons and light nuclei at large x, as well as to nonzero momentum transfer. This may significantly
reduce nonperturbative systematic uncertainties in the initial conditions for QCD evolution equations at
small x and could be of strong relevance for the phenomenology of present and future collider experiments.
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I. INTRODUCTION

The increasing availability of high energies and high
luminosities at fixed target and collider experiments [1,2]
allows for unprecedented access to the internal transverse
spatial and momentum distributions of color charge dis-
tributions inside nucleons and in nuclei. The standard
framework [3] is that of Wigner distributions [4] that allow
simultaneous knowledge of both spatial and momentum
aspects of the nucleon wave function. Knowledge of the
Wigner distributions allows the construction of generalized
parton distributions (GPDs) [5–11] and transverse momen-
tum distributions (TMDs) [12–17] that are generalizations
of the usual collinear parton distributions. The GPDs

provide information on the spatial tomography of the
nucleon and TMDs allow for its momentum tomography.
These various distributions are very valuable. Our aim

here is to introduce a complementary approach employing
the Hamiltonian light front formalism in light-cone gauge
that allows essential insight into the dynamics of color
charges in nucleons and nuclei. In this framework, color
charge densities, and higher cumulants of these, can be
defined and expressed as matrix elements of nonperturba-
tive boost-invariant light front Fock-space wave functions
of the QCD Hamiltonian. The corresponding form factors
can be related to physical observables; these are the
exclusive final states measured in deeply inelastic scatter-
ing (DIS) experiments. The information on color charge
distributions extracted from such exclusive DIS measure-
ments will be closely analogous to the information gathered
on electric charge and magnetization distributions from
form factors measured in elastic scattering of electrons by
nucleons and nuclei [18–21].
However because the QCD coupling αS is much stronger

than the QED fine structure constant, exclusive DIS
experiments provide more information on color charge
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distributions, and higher cumulants of these, than elastic
scattering experiments. Though it is true that GPDs and
TMDs can be expressed in terms of light front wave
functions [22–24], our treatment in terms of color charge
densities is novel.
The suite of feasible exclusive DIS final states is a rich

source of information on many-body parton correlations
with variations in xBj andQ2 and can be expected to lead to
an understanding of the internal spatial color charge
structure of nucleons. The possible modification of this
structure in nuclei could be important for understanding the
EMC effect in DIS and nucleon-nucleon short range
correlations in nuclei [25,26]. Also very intriguing is the
possibility of comparing the color charge form factors to be
discussed here with those that are now beginning to be
extracted from lattice QCD computations [27].
An attractive feature of the Hamiltonian light front

framework is that the color charge form factors extracted
in DIS can be employed to compute cross sections
in hadron-hadron and hadron-nucleus scattering. The
usefulness of such color charge form factors is known
for QCD in the Regge limit of high energy scatter-
ing, with momentum resolution scales Q2 ≫ Λ2

QCD and
xBj ∼Q2=s → 0, with s representing the squared center
of mass energy in the experiment, as understood in the
color glass condensate (CGC) [28–31]. This is an
effective field theory of the Regge limit of QCD that
is formulated on the light front, with all the nontrivial
information regarding multigluon correlations contained
in a gauge invariant weight functional W½ρ� that plays the
role of a density matrix. Here, ρ represents the color
charge density of large x partons coupled to small x
gluon fields.
This weight functional was first derived byMcLerran and

Venugopalan (MV) [32–34], who also outlined the elements
of theCGC effective field theory using light front arguments.
They argued that for a large nucleus A, a probe of transverse
size∼1=Q couples coherently (for x ≪ A−1=3) along its path
length to partons confined to nucleons in the nucleus. While
on average, the probe sees no net color charge, the physics of
random walks indicates that it will see large fluctuations of
the color charge and therefore, by the central limit theorem,
W½ρ� will be Gaussian. These statements can be formulated
with mathematical rigor [35,36].
The variance of the Gaussian is the color charge squared

per unit area μ2MV ∝ A1=3. In the large A limit μ2MV ≫ Λ2
QCD,

so that the CGC is a weakly coupled EFT that allows for
systematic computation of multigluon correlation func-
tions that capture the physics underlying the phenomenon
of gluon saturation [37,38] in the high energy limit.
The building block of gluon radiation, the Weizsäcker-
Williams distribution, is screened at the scale Q2

S ∝ μ2MV
[35,39,40], and one recovers the phenomenologically
successful Glauber-Mueller dipole model [41,42] of gluon
saturation [43–45].

The MV model does not describe the small x evolution
of the color source densities that arise from the αS lnðxÞ ∼
Oð1Þ enhanced bremsstrahlung of gluons. This is given by
the Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov,
Kovner (JIMWLK) equation that describes the functional
renormalization group evolution of W½ρ� with decreasing x
[46–49]. This functional equation gives the Balitsky-
JIMWLK hierarchy [50,51]. The equivalent functional
Langevin equation was solved numerically [52,53]. In the
limit of large Nc, and large A, the lowest equation in this
hierarchy, describing the x evolution of “dipole” two-
point correlators of lightlike Wilson lines, has a closed
form expression, the Balitsky-Kovchegov (BK) equation
[44,50], which reduces to the Balitsky, Fadeev, Kuraev,
Lipatov (BFKL) equation [54,55] if the density of sources
is sufficiently low.
Remarkably, as first conjectured in [56], numerical

simulations of the functional Langevin equation demon-
strate that the hierarchy of correlators is to good approxi-
mation solved by a Gaussian W½ρ� [57], with μ2MV →
μ2JIMWLKðx; k⊥Þ, where μ2JIMWLKðx; k⊥Þ is given by the
solution of the BK equation. This Gaussian effective theory
provides a quantitative phenomenology of electron-proton
collisions at HERA [58–60]. Further, the formulation of the
CGC EFT in the language of color source densities allows a
first-principles formulation of multiparticle production in
QCD at small x [61–67].
The initial conditions for BK/JIMWLK evolution are

given by the MV model which, as noted, is formulated for
large nuclei. Herewe are concerned with the nucleon at large
x. In this case, the central limit theorem is not applicable and
the color charge form factors of the proton can reasonably be
expected to be very different than in the MV model.
Therefore a first-principles computation of these form factors
is in order. Such a computation is of intrinsic interest and can
help constrain the systematic uncertainties in the QCD
evolution of color charge distributions in the proton arising
from the initial conditions. The spatial distributions of color
charge density in the proton are also of great topical interest
because of the unexpected long range azimuthally collimated
“ridge” multiparticle correlations measured at RHIC and
LHC [68]; the latter may depend sensitively on the former
[69–75]. Several models have been constructed to incorpo-
rate spatial nucleon color charge distributions in describing
these data. However, they are constrained in varying degrees
by systematic uncertainties in the initial conditions [76–78].
Herewe develop a light front Hamiltonian framework that

can be used to compute color charge form factors in nucleons
and nuclei. The light front formalism we will employ is
standard; see for instance [79]. We focus on the simple
problem of constructing quadratic and cubic combinants of
a three quark Fock state at large x. The color charge
combinants can alternatively be expressed in terms of color
charge form factors. We will discuss how information on
these form factors can be cleanly extracted in exclusive
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DISmeasurements of vector and tensormesons at large x. An
interesting possibility is the extraction of a novel odderon
color charge form factor in such measurements [80]. As
we will discuss, large x DIS exclusive measurements should
be particularly sensitive to the odderon. This is of topical
interest in light of recent claims that the TOTEM experiment
may have found evidence of odderon exchange in proton-
proton elastic scattering at the highest LHC energies [81].
This paper is organized as follows. In Sec. II, we begin

by displaying the light front wave function for the proton,
focusing immediately on the three valence quark compo-
nent of the wave function. The extension to higher Fock
states would be straightforward, but more involved. We
also establish the notations and conventions to be employed
in the rest of the paper. We then develop in Sec. III, in
successive subsections, the general framework to compute
light front color charge densities for the valence states, and
the computation of the expectation values of quadratic and
cubic color charge operators. In the last of these subsec-
tions, we compare our results to the MV model and
demonstrate the relation between the gluon distribution
in the proton and a quadratic correlator of color charge
densities. The relation of the corresponding color charge
form factors to exclusive heavy quark pair production in
DIS is discussed in Sec. IV. In particular, we show that J=Ψ
production is sensitive to both a quadratic “Pomeron” color
charge form factor and the cubic odderon color charge form
factor. In contrast, ηc or tensor meson production depends
only on the odderon form factor. In the concluding section,
we will further discuss the prospects of odderon discovery

in DIS experiments in light of prior searches. We will also
discuss more generally the prospects for quantitative
constraints on the quadratic and cubic color charge form
factors from DIS data at large xBj. We shall also outline the
next steps both on further theoretical development of this
framework and in quantitative comparison and predictions
for measurements at extant and future experiments. The
paper contains two Appendices. In Appendix A, we discuss
the color charge density operator in the limit of large
longitudinal momenta. In Appendix B, we provide some
details of the computation of the odderon form factor.

II. THE LIGHT FRONT PROTON WAVE
FUNCTION: NOTATION AND CONVENTIONS

In this section, we shall introduce our notation and
conventions for the proton wave function on the light front.
These closely follow Refs. [82,83]. The light front wave
function of an unpolarized on-shell proton with four-
momentum Pμ ¼ ðPþ; P−; P⃗⊥Þ can be expressed as

jPi ¼
Z

dPSn
X
n

ψnjni; ð1Þ

where jni are the Fock space basis vectors of the light front
Hamiltonian, ψn ¼ hnjPi is the amplitude for a particular
Fock state jni in the proton and dPS denotes the n-body
phase space for jni. If the proton light front wave function
is dominated by its valence quark state, as is the case at
large values of Bjorken x, it is given explicitly as

jPi ¼ 1ffiffiffi
6

p
Z

dx1dx2dx3ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p δð1 − x1 − x2 − x3Þ
Z

d2k1d2k2d2k3
ð16π3Þ3 16π3δðk⃗1 þ k⃗2 þ k⃗3Þ

×
X

λ1;λ2;λ3

ψ3ðp1; λ1; p2; λ2; p3; λ3Þ
X
i1;i2;i3

ϵi1i2i3 jp1; i1; λ1;p2; i2; λ2;p3; i3; λ3i: ð2Þ

The three on-shell quark momenta are specified by their
light-cone momenta pþ

i ¼ xiPþ and their transverse mo-
menta1 p⃗i ¼ xiP⃗⊥ þ k⃗i. Hence the k⃗i can be interpreted as
the transverse momenta of the valence quarks relative to the
proton. In addition to color, denoted by ii, the quark Fock
state also carries flavor and helicity quantum numbers
which are collectively denoted as λi. The valence Fock state
wave function in color space belongs to the product space
obtained from the direct product of three triplet color
spaces: ji1; i2; i3i ¼ ji1i ⊗ ji2i ⊗ ji3i. The Levi-Cività
tensor in Eq. (2) projects the product of three fundamental
representations onto the totally antisymmetric SU(3) sin-
glet; a SU(3) transformation U of ϵi1i2i3 ji1iji2ii3i gives

ϵi1i2i3Uj1i1Uj2i2Uj3i3 jj1ijj2ijj3i ¼ ϵj1j2j3ðdetUÞjj1ijj2ijj3i;
ð3Þ

where det U ¼ 1 for U ∈ SUð3Þ.
The amplitude ψ3 in Eq. (2) is symmetric under

exchange of any two of its arguments and is normalized
according toZ

dx1dx2dx3δð1−x1−x2−x3Þ

×
Z

d2k1d2k2d2k3
ð16π3Þ3 ð16π3Þδðk⃗1þ k⃗2þ k⃗3Þ

X
λ1;λ2;λ3

jψ3j2 ¼ 1:

ð4Þ
Note that ψ3 vanishes when the set fλ1; λ2; λ3g does not
match the corresponding quantum numbers of the proton.

1For a lighter notation we often suppress the ⊥ subscript on
quark transverse momenta.
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The normalization of ψ3 corresponds to the proton wave
function normalization,

hKjPi ¼ 16π3PþδðPþ − KþÞδðP⃗⊥ − K⃗⊥Þ ð5Þ
¼ 16π3δðΔxÞδðP⃗⊥ − K⃗⊥Þ: ð6Þ

For simplicity, throughout the manuscript we take the
fractional plus momentum transfer Δx ¼ ðKþ − PþÞ=Pþ
to be very small or zero.
The one-particle quark states introduced above are

created by the action of the quark creation operator b†p;i;λ
on the one-particle vacuum j0i:

jp; i; λi ¼ b†p;i;λj0i: ð7Þ
Its Hermitian conjugate transforms an occupied one-par-
ticle state to the light front vacuum state,

bk;j;σjp; i; λi ¼ δjiδσλkþδðkþ − pþÞ16π3δðk⃗ − p⃗Þj0i
≡ δji;σλk;p j0i; ð8Þ

bk;j;σj0i ¼ 0: ð9Þ

In Eq. (8), we introduced a shorthand notation δji;σλk;p , which
we will frequently use throughout the rest of the paper. We
shall further also use the shorthand notation,

δijk;p ≡ δjiδk;p ð10Þ

δk;p ≡ kþδðkþ − pþÞ16π3δðk⃗ − p⃗Þ: ð11Þ
The quark creation and destruction operators satisfy the

anticommutation relation,

fbk;j;σ; b†p;i;λg ¼ δji;σλk;p : ð12Þ

These relations, along with the convention that h0j0i ¼ 1,
determine the normalization of one-particle states as

hk; j; σjp; i; λi ¼ h0jbk;j;σb†p;i;λj0i
¼ h0jfbk;j;σ; b†p;i;λgj0i ¼ δji;σλk;p : ð13Þ

Furthermore,

hk; j; σjb†q;m;σ0br;n;λ0 jp; i; λi ¼ δjm;σσ0
k;q δni;λλ

0
r;p ; ð14Þ

and

hk; j; σjbq;m;σ0b
†
r;n;λ0 jp; i; λi ¼ δmn;σ0λ0

q;r δji;σλk;p − δjn;σλ
0

k;r δmi;σ0λ
q;p :

ð15Þ

With these relations in hand, one can derive matrix
elements of density operators and powers thereof.
Before we discuss color charge densities, let us first

consider the following operator:

½ρ̃mn
q �

1
¼

XZ
l;λ

b†l−q;m;λbl;n;λ: ð16Þ

We have written the integration measure here compactly as

XZ
l;λ

≡
Z

∞

0

dlþ

lþ

Z
d2l
16π3

X
λ

;
XZ
l;λ

δij;σλq;l ¼ δij: ð17Þ

Setting P⃗⊥ ¼ 0 in the incoming proton for simplicity, and
employing Eqs. (14) and (12), we obtain the expectation
value of the operator defined in Eq. (16) as

hKj½ρ̃mn
q �

1
jPi¼ 1

16π3
δmn

Z
dx1dx2dx3ffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2x3
p δð1−x1−x2−x3Þ

Z
d2p1d2p2d2p3δðp⃗1þ p⃗2þ p⃗3Þ

Z
dy1dy2dy3ffiffiffiffiffiffiffiffiffiffiffiffiffi

y1y2y3
p δð1−y1−y2−y3Þ

×
Z

d2k1d2k2d2k3δðk⃗1þ k⃗2þ k⃗3Þ
X

λ1;λ2;λ3

ψ�
3ðk1;k2;k3Þψ3ðp1;p2;p3Þδk1;p1−qδk2;p2

δk3;p3
: ð18Þ

It is implied that yi, k⃗i are the momentum fractions and transverse momenta, respectively, of the quarks in the outgoing
proton. However, there is a subtlety: the plus momenta of the quarks in the outgoing proton correspond to kþi ¼ yiKþ ¼
yið1þ ΔxÞPþ rather than to kþi ¼ yiPþ. Therefore, in the arguments of the delta functions originating from the Fock space

matrix elements (the last three in the expression above) we have to shift yi → yið1þ ΔxÞ; we also have to shift k⃗i →
k⃗i þ yiK⃗⊥ since there is a nonzero transfer of transverse momentum. To simplify the final expression we shall take Δx → 0
so that

hKj½ρ̃mn
q �

1
jPi ¼ 16π3δðq⃗þ K⃗⊥Þδðxq þ ΔxÞδmn

Z
dx1dx2dx3δð1 − x1 − x2 − x3Þ

Z
d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1 þ p⃗2 þ p⃗3Þ

×
X

λ1;λ2;λ3

ψ�
3ðk1; k2; k3Þψ3ðp1; p2; p3Þ: ð19Þ
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In the limit Δx → 0 the arguments of ψ�
3 are kþi ≃ xiPþ,

k⃗1 ≃ p⃗1 þ ð1 − x1ÞK⃗⊥, k⃗2 ≃ p⃗2 − x2K⃗⊥, k⃗3 ≃ p⃗3 − x3K⃗⊥.
(Note that the flavor and helicity of each quark remains
unchanged.)
The prefactor, 16π3δðq⃗þ K⃗⊥Þδðxq þ ΔxÞ, of Eq. (19) is

the overlap hKjPi. This factor enters into the matrix
elements that we compute, but according to the usual
Feynman rules does not appear in the final invariant
amplitudes. The remaining factors are δmn and a dimen-
sionless matter (M) form factor, FMðqÞ:

FMðqÞ≡
Z

dx1dx2dx3δð1 − x1 − x2 − x3Þ

×
Z

d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1 þ p⃗2 þ p⃗3Þ

×
X
λi

ψ�
3ðk1; k2; k3Þψ3ðp1; p2; p3Þ: ð20Þ

If the transverse momentum transfer K⃗⊥ is also much
smaller than the typical momenta of the quarks in the
proton, the remaining integral is proportional to the
normalization integral for ψ3 given in Eq. (4). In that case,

hKj½ρ̃mn
q �

1
jPi ≃ 16π3δmnδðq⃗þ K⃗⊥Þδðxq þ ΔxÞ: ð21Þ

Indeed, stripping off the color space identity matrix and
setting both xq and q⃗ to zero leads back to the normalization
condition in Eq. (6) for the proton wave function.

III. LIGHT FRONT EXPECTATION VALUES
OF COLOR CHARGE DENSITIES

AND FORM FACTORS

After the prior discussion of the essential preliminaries,
we have all the elements in place to construct the light front
color charge operator and expectation values of moments of
expectation values of this operator in the large x kinematic
region where valence quarks dominate. We will later
discuss the relation of these correlators to cross sections
for exclusive DIS final states.

A. The color charge density operator

The color charge current density associated with f ¼
1…Nf fermion fields ψf is jμa ¼ ψ̄ i;fγ

μψ j;fðtaÞij. Here, ta,
a ¼ 1…8 are the generators of the fundamental represen-
tation of color-SU(3) normalized as trtatb ¼ δab=2. They
are Hermitian and traceless, trta ¼ 0.
The quark creation and annihilation operators are

defined from the Fourier mode expansion of the free field
operator at light-cone time xþ ¼ tþ z ¼ 0. Since we are
focused here on valence quark color charge distributions,
we ignore antiquark contributions to write (see Appendix II
in [82])

ψ i;fðrÞ ¼
Z

dpþd2p
16π3pþ

X
s

bp;i;s;fusðpÞe−ip·r

¼
Z

dxpd2p

16π3xp

X
s

bp;i;s;fusðpÞe−ip·r; ð22Þ

where r≡ ðxþ ¼ 0; x−; x⃗⊥Þ is the coordinate vector. We
wrote out spin and flavor indices explicitly in Eq. (22) and
introduced the momentum fraction xp ¼ pþ=Pþ. The
integration over pþ or xp is restricted to positive values.

Using ūkγþup ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
kþpþp

we can then write the color
charge density operator ρa ≡ jþa as

ρaðrÞ ¼ 2PþX
λ;λ0

Z
dxqd2q

16π3
ffiffiffiffiffixqp b†q;i;λe

iq·r

×
Z

dxpd2p

16π3
ffiffiffiffiffixp

p bp;j;λ0e−ip·rðtaÞijδλλ0 : ð23Þ

Note that here b†b is diagonal in spin and flavor, collec-
tively denoted here by λ. Performing a three-dimensional
Fourier transform with respect to x− and x⃗, we obtain the
color charge density operator in momentum space,

ρ̃aðxk; k⃗Þ¼
X
λ

Z
dxqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xqðxqþxkÞ
p Z

d2q
16π3

b†q;i;λbkþq;j;λðtaÞij:

ð24Þ

In this expression, there is a shift of the argument of the
annihilation operator by ðkþ; k⃗Þ ¼ ðxkPþ; k⃗Þ relative to the
quark creation operator. The physical interpretation of xk is
that it is the longitudinal momentum shift of the quark
momentum following an interactionwith a colored probe. In
the high energy limit, where Pþ is large, the xk dependent
corrections are of order 1=Pþ and can be ignored. This is
explained in Appendix A, where we show that the density is
confined to a thin pancake in x−, with support 1=Pþ. Thus to
leading power in Pþ, we approximate [in the notation of
Eq. (17)] ρ̃aðxk → 0; k⃗Þ≡ ρ̃aðk⃗Þ so that

ρ̃aðk⃗Þ ¼
XZ
q;λ

b†xq;q⃗;i;λbxq;k⃗þq⃗;j;λðtaÞij

¼
XZ
q;λ

b†
xq;q⃗−k⃗;i;λ

bxq;q⃗;j;λðtaÞij: ð25Þ

The operator in Eq. (25) differs from that in Eq. (16) because
there is no shift in the longitudinal momentum. We use this
expression in the remainder of this paper. Note that the
variables ðxq; q⃗Þ are integrated over, so that the left-hand

side depends only on k⃗.
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The color charge density per unit transverse area, given
by the two-dimensional Fourier transform of this expres-
sion, is2

ρaðx⃗⊥Þ ¼
Z

d2k
ð2πÞ2 e

ik⃗·x⃗⊥
XZ
q;λ

b†
xq;q⃗−k⃗;i;λ

bxq;q⃗;j;λðtaÞij: ð26Þ

In the following subsections, and in the rest of the paper, we
will employ an expectation value defined as

hOiK⊥ ¼ hPþ; K⃗⊥jOjPþ; P⃗⊥ ¼ 0i
hKjPi ; ð27Þ

where O denotes a generic operator constituted of products
of ρaðx⃗⊥Þ defined above, or its two-dimensional Fourier
transform ρ̃aðk⃗Þ in Eq. (25). The overlap hKjPi in Eq. (6) is
the standard one given by

hKjPi ¼ 16π3PþδðKþ − PþÞδðK⃗⊥ − P⃗⊥Þ: ð28Þ
We shall be interested in the case when Kþ ¼ Pþ (see
Appendix A).

B. hρai in the proton

The proton matrix element of the color charge density
operator Eq. (25) is given by

hρ̃aðq⃗ÞiK⊥ ¼ trta
X
λi

Z
dx1dx2dx3δð1−x1−x2−x3Þ

Z
d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1þ p⃗2þ p⃗3Þψ�
3ðk1;k2;k3Þψ3ðp1;p2;p3Þ: ð29Þ

Recall that the arguments of ψ�
3 are given by k

þ
i ¼ pþ

i ≡ xiPþ, k⃗1 ¼ p⃗1 þ ð1 − x1ÞK⃗⊥, k⃗2 ¼ p⃗2 − x2K⃗⊥, k⃗3 ¼ p⃗3 − x3K⃗⊥.
Since trta ¼ 0, the above expression is of course zero, as it should be in QCD. Before we move on to consider higher

moments of the charge operator, which are nonzero, it is amusing to consider what charge conjugation does to the above
expression.Cρ̃aðkÞC−1 is given by an expression similar to Eq. (25) with the replacement ta → −ðtaÞT ¼ −ðtaÞ�. Therefore,

hCρ̃aðq⃗ÞC−1iK⊥ ¼ −ðtrtaÞ�
X
λi

Z
dx1dx2dx3δð1 − x1 − x2 − x3Þ

×
Z

d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1 þ p⃗2 þ p⃗3Þψ�
3ðk1; k2; k3Þψ3ðp1; p2; p3Þ: ð30Þ

C. hρaρbi in the proton

We shall now compute the first nontrivial color charge
correlator, the expectationvalue of ρ̃aðqÞρ̃bðkÞ in the proton.
The contributions to its expectation value can be classified,
as is common in many-body physics, into one-body and
two-body contributions—these are illustrated in Fig. 1.

We begin with the one-body contribution, where both
operators act on the same quark,

½ρ̃aðqÞρ̃bðkÞ�1¼ ρ̃aðqÞρ̃bðkÞ⊗ 1⊗ 1þpermutations:

ð31Þ
Then using the anticommutation relation Eq. (12), and
keeping only the one-body contribution leads to

b†
xl1 ;l⃗1−q⃗;i;λ

bxl1 ;l⃗1;j;λ
b†
xl2 ;l⃗2−k⃗;m;λ0

bxl2 ;l⃗2;n;λ0

→ δjm;λλ0
l1;l2−kb

†
xl1 ;l⃗1−q⃗;i;λ

bxl2 ;l⃗2;n;λ0
; ð32Þ

FIG. 1. Illustration of the terms we call one-body (left figure) and two-body (right figure) contribution to the hρaρbi correlator. i, j, n,
m ¼ 1, 2, 3 denote the colors of the quarks while a, b ¼ 1…8 are those of the gluons that couple to them.

2The color charge density is actually given by ρaðx⃗⊥Þ times the
coupling constant g. However, we prefer to exhibit all factors of g
explicitly and we therefore do not introduce a factor of g in the
definition of ρaðx⃗⊥Þ.
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and further, using the matrix element of b†b given previously in Eq. (14), we get

ϵi1i2i3ϵj1j2j3hp0
1; i1; λ

0
1;p

0
2; i2; λ

0
2;p

0
3; i3; λ

0
3j½ρ̃aðqÞρ̃bðkÞ�1jp1; j1; λ1;p2; j2; λ2;p3; j3; λ3i ¼ 3δabδ

λ1λ
0
1

p0
1
;p1−q−k

δ
λ2λ

0
2

p0
2
;p2
δ
λ3λ

0
3

p0
3
;p3
: ð33Þ

The symmetry of ψ3 under permutations has been used.
We will next compute the two-body contributions to the second moment of the color charge density, where one of the

color charge density operators acts on one quark and the other acts on another quark, as illustrated in Fig. 1. Note that the
third quark is a spectator in this process:

½ρ̃aðqÞ�1½ρ̃bðkÞ�2 ¼ ρ̃aðqÞ ⊗ ρ̃bðkÞ ⊗ 1þ permutations: ð34Þ

Its matrix element is evaluated to be

−3δabδλ1λ
0
1

p0
1
;p1−q

δ
λ2λ

0
2

p0
2
;p2−k

δ
λ3λ

0
3

p0
3
;p3
: ð35Þ

This includes a symmetry factor of 2 and another factor of 3 because there are three such identical terms.
Summing over both the one-body and two-body terms, the matrix element of ρ̃aρ̃b between Fock states is given by

ϵi1i2i3ϵj1j2j3hp0
1; i1; λ

0
1;p

0
2; i2; λ

0
2;p

0
3; i3; λ

0
3jρ̃aðqÞρ̃bðkÞjp1; j1; λ1;p2; j2; λ2;p3; j3; λ3i

¼ 3δabfδλ1λ01p0
1
;p1−q−k

δ
λ2λ

0
2

p0
2
;p2
δ
λ3λ

0
3

p0
3
;p3

− δ
λ1λ

0
1

p0
1
;p1−q

δ
λ2λ

0
2

p0
2
;p2−k

δ
λ3λ

0
3

p0
3
;p3
g: ð36Þ

As a final step, we need to integrate this expression over the phase-space distribution of the quarks in the proton:

hρ̃aðqÞρ̃bðkÞiK⊥ ¼ 1

2
δab

X
λi

Z
dx1dx2dx3δð1 − x1 − x2 − x3Þ

Z
d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1 þ p⃗2 þ p⃗3Þ½ψ�
3ðk1; k2; k3Þ

− ψ�
3ðk̄1; k̄2; k̄3Þ�ψ3ðp1; p2; p3Þ: ð37Þ

The arguments of ψ�
3 are k

þ
i ¼ k̄þi ¼xiPþ, k⃗1¼p⃗1þð1−x1ÞK⃗⊥, k⃗2¼p⃗2−x2K⃗⊥, k⃗3 ¼ ⃗̄k3¼ p⃗3−x3K⃗⊥, ⃗k̄1 ¼ p⃗1 − q⃗ − x1K⃗⊥,

⃗k̄2 ¼ p⃗2 − k⃗ − x2K⃗⊥, and all flavors and helicities with λ0i ¼ λi. Note that the rhs does depend on q⃗ and k⃗, even at fixed

momentum transfer K⃗⊥, because ⃗k̄1 and ⃗k̄2 depend on q⃗, k⃗. The prefactor results from the color algebra. The remaining term
is a color charge form factor, G, that contains intrinsically nonperturbative information on the color charge distributions in
the three valence quark state of the proton. Thus we rewrite Eq. (37) as

hρ̃aðqÞρ̃bðkÞiK⃗⊥ ¼ 1

2
δabGðk⃗; K⃗⊥Þ; ð38Þ

with

Gðk⃗; K⃗⊥Þ≡ G1ðK⃗⊥Þ − G2ðk⃗; K⃗⊥Þ ð39Þ

G1ðK⃗⊥Þ ¼
Z

dPS3ψ�
3ðp1 þ ð1 − x1ÞK⃗⊥; p2 − x2K⃗⊥; p3 − x3K⃗⊥Þψ3ðp1; p2; p3Þ ð40Þ

G2ðk⃗; K⃗⊥Þ ¼
Z

dPS3ψ�
3ðp1 þ k⃗þ ð1 − x1ÞK⃗⊥; p2 − k⃗ − x2K⃗⊥; p3 − x3K⃗⊥Þψ3ðp1; p2; p3Þ: ð41Þ

The hybrid notation p1 þ ð1 − x1ÞK⃗⊥ etc. means that the quantum numbers of p1 are unchanged, except that the transverse
momentum is increased by ð1 − x1ÞK⃗⊥. Note further that PS3 is a compact notation for the sum over helicities and
momentum phase-space integrals in Eq. (37).
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The form factor G enters in calculations of the two-gluon
exchange model of the Pomeron [84]. Those early authors
used simple models in their evaluations. The present
formulation is more general and allows for the inclusion
of a variety of models; see e.g., [85–91].
For forward scattering, K⃗⊥ ¼ 0,

Gðk⃗; 0Þ ¼ 1 − G2ðk⃗; 0Þ: ð42Þ

This quantity vanishes as jk⃗j approaches 0, because
G2ð0; 0Þ ¼ 1, according to the normalization condition
for ψ3. This vanishing of Gðk⃗; 0Þ, caused by the influence
of color neutrality, leads to the suppression of infrared
divergences.

D. Relation to the McLerran-Venugopalan (MV) model

It is worthwhile and interesting to compare our results
for the proton with those of the MV model [32–34]
approximation, valid for a large nucleus of radius R. In
the first MV paper [32], μ2 is defined by the relation

hρðx⃗⊥Þρðy⃗⊥ÞiK⊥¼0 ¼ μ2δðx⃗⊥ − y⃗⊥Þ; ð43Þ

where μ2 is the average square of the color charge per unit
area. In the original MV model, only the case of zero
momentum transfer K⊥ ¼ 0 between the initial and final
states of the nucleus was considered. Since ρ has dimen-
sions of inverse area, the state defined by the brackets must
have no dimensions.
Later work (see e.g., [92]) showed that μ2 is a function

that can depend on x⊥, y⊥ and the expression above can be
generalized to

Z
d2R⊥hρaðR⃗⊥ þ s⃗⊥=2ÞρbðR⃗⊥ − s⃗⊥=2ÞiK⊥¼0

¼ δabμ2MVðs⃗⊥Þ: ð44Þ

Our formulation is in terms of momentum, so here we
take the state j � � �i to be the momentum eigenstate jPi and
Fourier transform by operating with

R
d2s⊥e−ik⃗⊥·s⃗⊥ on both

sides of Eq. (44). The result is

δab
Z

d2s⊥e−ik⃗⊥·s⃗⊥μ2MVðs⃗⊥Þ

≡ eμ2MVðk⃗⊥Þ ¼ hρaðk⃗⊥Þρbð−k⃗⊥ÞiK⊥¼0: ð45Þ

As suggested previously [93,94], and as shown explicitly in
[92], imposing a color neutrality condition

R
d2x⊥ρaðx⊥Þ¼0

over a radial distance of 1=Λ, where Λ is a color neutrali-
zation scale, gives

eμ2MVðk⃗⊥Þ → 0 for k⊥ → 0; and

eμ2MVðk⃗⊥Þ ¼ constant for k⊥ > Λ: ð46Þ

In the approach employed here, the use of Eq. (39)
and the dimensionless momentum eigenstate leads to the
result

eμ2MVðk⃗⊥Þ ¼
ðN2

c − 1Þ
2

ð1 − G2ðk⃗⊥ÞÞ: ð47Þ

Just as in Eq. (46), based on the normalization constraint
on G2ðk⃗⊥Þ discussed after Eq. (42), eμ2MVðk⃗⊥Þ vanishes for
k⊥ → 0. The structure of G2ðk⃗⊥Þ in the K⊥ ¼ 0 limit of
Eq. (41) suggests on general grounds that it vanishes at
large values of k⊥. The latter limit corresponds to the MV
model [32–34] approximation, valid for a large nucleus:

1

2
Gðq⃗; 0Þ → μ̄2MVΘðq2 − Λ2Þ: ð48Þ

Relating Eq. (47) to Eq. (48) allows the identification of the
scale Λ with a momentum on the order of the inverse of the
radius of the proton.
We can apply the formalism computed thus far to

compute the gluon distribution of the proton [28,48,95].
The number of gluons in the hadron wave function, having
longitudinal momenta between xPþ and ðxþ dxÞPþ, and a
transverse size Δx⊥ ∼ 1=Q, is denoted as Gðx;Q2Þdx and
is given by

xGðx;Q2Þ ¼ 1

π

Z
d2k⊥
ð2πÞ2ΘðQ

2 − k2⊥Þ

× hFiþ
a ðk⃗⊥ÞFiþ

a ð−k⃗⊥ÞiK⊥¼0; ð49Þ
where Fiþ

a is the color-electric field.
Solving the Yang-Mills equations in the light-cone

gauge, to linear order in the color charge density, one
obtains [28]

Fþi
a ðk⃗⊥Þ ≃ ig

ki

k2⊥
ρaðk⃗⊥Þ; ð50Þ

and

hFiþ
a ðk⃗⊥ÞFiþ

a ð−k⃗⊥ÞiK⊥¼0 ≃
g2

k2⊥
hρaðk⃗⊥Þρað−k⃗⊥ÞiK⊥¼0:

ð51Þ

Inserting this expression into Eq. (49) and using Eq. (39)
one obtains the expression

xGðx;Q2Þ≃ g2

4π2
ðN2

c−1Þ
2

Z
Q2

0

dk2⊥
k2⊥

ð1−G2ðk⃗⊥;0ÞÞ: ð52Þ
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A comparison of Eq. (52) with the corresponding expres-
sion in [96] reaffirms the result in Eq. (47). Note that the
integral over k⊥ does not have an infrared divergence. As
discussed earlier, this is a consequence of the color
neutrality of the nucleon. If one breaks up the integral in
Eq. (52) into a piece from 0 < k⊥ < Λ and another from
Λ < k⊥ < Q, the former will integrate to a constant while
the latter will give a factor αSNc

π CF lnðQ2=Λ2Þ, where αS ¼
g2=4π and CF ¼ ðN2

c − 1Þ=2Nc is the Casimir of a quark in
the fundamental representation. Thus in the Bjorken limit
ofQ2 → ∞, one obtains the usual leading contribution [30]
to the gluon distribution

xGðx;Q2Þ ≈ αSNc

π
CF lnðQ2=Λ2Þ: ð53Þ

Interestingly, the effect of color neutralization as imposed
on the MV model is also obtained by QCD evolution of the
MVmodel to small x [96,97]. Gluons emitted by the quarks
screen each other at a saturation scale QSðxÞ [37,38]; for
small x, Q2

SðxÞ ≫ Λ2. More specifically, Q2
S ∝ μ2JIMWLK,

where μ2JIMWLK is the variance of the Gaussian weight
functional for W½ρ� that reproduces the Balitsky-
JIMWLK hierarchy [50,51] in the CGC EFT. However,
while numerical simulations suggest that there is a renorm-
alization group (RG) flow to thisGaussian fixedpoint [57], it
remains an open question atwhat values of x this is achieved.
This concern is in particular germane to the proton, where
the color charge densities are not a priori large.
Nevertheless, even if the Gaussian approximation of the

CGC EFT is not robust, one can still make considerable
progress by computing hρ̃ ρ̃i from first principles on the
light front. Even though our result for hρ̃ ρ̃i is for the three
valence quark state, it is straightforward, with some effort,
to extend it to include Fock states containing gluons. A
more important issue though is that higher combinants
hρ̃aðq1Þρ̃bðq2Þ � � � ρ̃kðqnÞi for n ≥ 3 cannot be expressed
in terms of hρ̃ ρ̃i, as they would be if W½ρ� had a
Gaussian form.
In our approach, these higher combinants can be

computed without invoking a W½ρ� functional at all.
These can be computed explicitly and expressed in terms
of the corresponding color charge form factors, as in
Eq. (39). The latter, as we shall illustrate in subsequent
sections, can be extracted from exclusive measurements in
DIS at large x. Besides our intrinsic interest in the shape
and momentum distribution of color charges at large x, an
important consequence, for the RG discussion above, is a
novel strategy whereby one can study systematically the
many-body RG flow of these color charge distributions to
the putative Gaussian fixed point. To illustrate this strategy,
we will compute hρaρbρci for the three quark valence state
and identify the corresponding color charge form factor.
This will also have interesting consequences in its own
right, which we shall discuss in Sec. IV.

E. hρ̃aρ̃bρ̃ci in the proton

To compute the expectation value of ρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þ
in the proton, in addition to the one-body and two-body
terms discussed previously, we will have an additional
three-body term, which is illustrated in Fig. 2.

1. One-body contribution

As previously for hρ̃ ρ̃i, we start with the one-body
contribution where all three charge operators act on the
same quark. Defining this term as

½ρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þ�1
¼ ρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þ ⊗ 1 ⊗ 1þ permutations; ð54Þ

we find

h½ρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þ�1iK⊥

¼ trtatbtc
Z

dx1dx2dx3δð1 − x1 − x2 − x3Þ

×
Z

d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1 þ p⃗2 þ p⃗3Þ

×
X
λi

ψ�
3ðk1; k2; k3Þψ3ðp1; p2; p3Þ: ð55Þ

The arguments of ψ�
3 are k

þ
i ¼xiPþ, k⃗1 ¼ p⃗1þð1−x1ÞK⃗⊥,

k⃗2 ¼ p⃗2 − x2K⃗⊥, k⃗3 ¼ p⃗3 − x3K⃗⊥, and all flavors and
helicities are unchanged (λ0i ¼ λi). The color factor is
given by

trtatbtc ¼ 1

4
dabc þ i

4
fabc: ð56Þ

Since the k⃗i do not explicitly involve the q⃗i, it follows that
at fixed K⃗⊥, the expectation value of the one-body term is a
constant times the delta function constraint on their
momentum arguments.

FIG. 2. Illustration of the three-body contribution to the
hρaρbρci correlator.
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2. Two-body contribution

The computation of the two-body contribution follows
analogously to previously. In this case, two of the charge
operators act on one quark, while the third ρ-operator acts
on a second quark. There are three separate terms,
corresponding to the three different possible spectator
quarks. The first term can be written as

½ρ̃aðq1Þρ̃bðq2Þ�1½ρ̃cðq3Þ�2
¼ ρ̃aðq1Þρ̃bðq2Þ ⊗ ρ̃cðq3Þ ⊗ 1þ permutations: ð57Þ

We then find

h½ρ̃aðq1Þρ̃bðq2Þ�1½ρ̃cðq3Þ�2iK⊥

¼ −trtatbtc
Z

dx1dx2dx3δð1 − x1 − x2 − x3Þ

×
Z

d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1 þ p⃗2 þ p⃗3Þ

×
X
λi

ψ�
3ðk1; k2; k3Þψ3ðp1; p2; p3Þ: ð58Þ

Here kþi ¼ xiPþ, k⃗1 ¼ p⃗1þ q⃗3þð1−x1ÞK⃗⊥, k⃗2 ¼ p⃗2− q⃗3−
x2K⃗⊥, k⃗3 ¼ p⃗3 − x3K⃗⊥. As usual, all flavors and helicities
are kept unchanged (λ0i ¼ λi). For the other two two-body

contributions, one needs to exchange q⃗3 in k⃗1 and k⃗2 by q⃗1
and q⃗2, respectively. Moreover, the color factor for the
expectation value of ½ρ̃aðq1Þρ̃cðq3Þ�1½ρ̃bðq2Þ�2 is trtatctb

instead of trtatbtc.
Unlike the one-body contributions, these contribu-

tions do depend on q⃗i, even at fixed t ¼ −K2⊥. Note that
if one writes q⃗ ¼ q⃗1 þ q⃗2 ¼ −q⃗3 − K⃗⊥ and k⃗ ¼ q⃗3, the
phase-space integral in Eq. (58) is identical to the
one which appeared in the two-body contribution to
hρ̃aðqÞρ̃bðkÞi in Eq. (37). This identity can be seen by
direct comparison and serves as a check on the
computation.

3. Three-body contribution

The three-body operator corresponds to each color
charge operator acting on separate valence quarks—see
Fig. 2. Defining this term as

½ρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þ�3
¼ ρ̃aðq1Þ ⊗ ρ̃bðq2Þ ⊗ ρ̃cðq3Þ þ permutations; ð59Þ

we find

h½ρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þ�3iK⊥

¼ 1

2
dabc

Z
dx1dx2dx3δð1 − x1 − x2 − x3Þ

×
Z

d2p1d2p2d2p3

ð16π3Þ2 δðp⃗1 þ p⃗2 þ p⃗3Þ

×
X
λi

ψ�
3ðk1; k2; k3Þψ3ðp1; p2; p3Þ: ð60Þ

Here, kþi ¼ xiPþ, k⃗1 ¼ p⃗1 − q⃗1 − x1K⃗⊥, k⃗2 ¼ p⃗2 − q⃗2−
x2K⃗⊥, k⃗3 ¼ p⃗3 − q⃗3 − x3K⃗⊥. As usual, all flavors and
helicities are unchanged (λ0i ¼ λi). As in the two-body
case, this three-body contribution depends on q⃗i, even at
fixed t ¼ −K2⊥.
Our net result for hρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þi is the sum of

Eqs. (55), (58) (plus the permutations of momenta indicated
below that equation), and Eq. (60). Both the symmetric and
antisymmetric structure factors, respectively dabc and fabc,
are proportional to color charge form factors. Specifically,
we can express the symmetric (S) piece as3

h½ρ̃aðq1Þρ̃bðq2Þρ̃cðq3Þ�SiK⊥ ≡ dabc

Nc
GOðq⃗1; q⃗2; q⃗3; K⃗⊥Þ;

ð61Þ

which involves the one-, two- and three-body terms.
Anticipating results to appear, we denote GO to be the
odderon form factor.
We note that similar form factors were discussed

previously in the context of high energy forward scattering
amplitudes [99,100]. Fukugita and Kwiecinski [99] sim-
ilarly identified one-body, two-body and three-body con-
tributions and noted that the two-body contribution can be
expressed in terms of the Pomeron form factor in Eq. (39).
However, though they suggest that the three-body contri-
bution in Eq. (60) can be expressed in terms of the two-
body contribution, our results show that this is not true in
general. Furthermore, unlike these works, we are able to
express our results explicitly in terms of the QCD valence
Fock state wave function.
We can however confirm the observation in [100] that in

the limit that any of the q⃗i → 0, the sum of all these
contributions should vanish. Specifically, taking q⃗3 → 0

(but q⃗1, q⃗2, K⃗⊥ arbitrary), one observes that the sum of the
a-, b-, and c-symmetric pieces of Eqs. (55), (58) and (60)
does indeed vanish. The underlying reason is a general
feature of QCD that must be satisfied by any model: a long
wavelength gluon cannot couple to a color singlet.

3We introduce an explicit factor of 1=Nc on the right-hand side
in order to match powers of Nc in the odderon amplitude to a
computation in perturbative QCD [98]; see below.
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IV. COLOR CHARGE FORM FACTORS
AND EXCLUSIVE HEAVY QUARK

PRODUCTION IN DIS

In the previous section, we derived explicit expressions
for the expectation values of quadratic and cubic combi-
nants of the color charge density and reexpressed the results
in terms of nonperturbative color charge form factors. We
show here that these nonperturbative quantities can be
determined from exclusive measurements of heavy quar-
konia in DIS at large x at Jefferson Laboratory [101–103]
and in the future at the Electron-Ion Collider [104]. We
derive the amplitude for exclusive quarkonium production
and express it in terms of our Pomeron and odderon color
charge form factors in the first subsection. Specifically, we
show that the exclusive J=Ψ cross section is proportional to
both the Pomeron and odderon form factors. In contrast, the
ηc amplitude depends only on the odderon form factor; the
latter can therefore be extracted directly from an exclusive
measurement of the production of ηc mesons. While this
possibility is well known in the literature, and even

discussed very recently [105], we will articulate how our
work brings a novel perspective to this discussion.

A. Amplitude for exclusive quarkonium
production at large xBj

In DIS at high energies, the amplitude for exclusive
quarkonium production be expressed as [106]

Aγ�p→QQ̄pðQ2; K⃗⊥Þ ∼ i
Z

d2r
Z

1

0

dz
4π

ðΨγ�Ψ�
QQ̄Þðr⃗; z; Q2Þe−ið1−2zÞ2

r⃗·K⃗⊥
Z

d2b⊥eib⃗⊥·K⃗⊥T ðr⃗; b⃗⊥; K⃗⊥Þ: ð62Þ

Here Ψγ� is the light-cone wave function of a virtual photon
to fluctuate into a charm-anticharm pair [107] of relative
size r⃗, z (1 − z) is the fraction of the photon momentum
taken by the quark (antiquark) and K⃗⊥ is the transverse
momentum transfer between the incoming and outgoing
proton. Further, ΨQQ̄ðr⃗; z; Q2Þ is the wave function corre-
sponding to the overlap hcc̄jQQ̄i of the cc̄ pair with any
QQ̄ quarkonium state [J=Ψ;Ψð2SÞ; ηc; χc;…].
Finally, T denotes the invariant amplitude for elastic

scattering of the cc̄ pair off color fields in the target proton4

and can be expressed as5 [23,108,109]

T ðr⃗; b⃗⊥;K⃗⊥Þ

¼ 2Nc

�
1−

1

Nc
tr

�
U

�
b⃗⊥þ r⃗

2

�
U†

�
b⃗⊥−

r⃗
2

��
K⃗⊥

�
: ð63Þ

Here U (and U†) are lightlike Wilson lines representing the
color rotation of a color dipole in the gauge field back-
ground of the proton. The brackets h� � �iK⊥ represent taking
the expectation value in the proton according to Eq. (27).
As in the discussion there, and discussed further in

Appendix A, we are making an eikonal approximation
that the proton target has a large Pþ momentum. In writing
Eq. (63), we identified the coordinates x⃗T and y⃗T of the
quark-antiquark pair shown in Fig. 3 with the impact
parameter of the quark-antiquark pair and their relative
separation respectively as [110]

⃗b̃⊥ ¼ zx⃗⊥ þ ð1 − zÞy⃗⊥;
r⃗ ¼ x⃗⊥ − y⃗⊥; ð64Þ

and then a further transformation [108]

b⃗⊥ ¼ ⃗b̃⊥ þ
�
1

2
− z

�
r⃗; ð65Þ

to express the result in the symmetric form shown in

Eq. (63). The phase factor e−i
ð1−2zÞ

2
r⃗·K⃗⊥ in Eq. (62) is a

consequence of these transformations.
In Lorenz gauge ∂μAμ ¼ 0, and in the above described

eikonal approximation, the gauge fields appearing in
the Wilson lines corresponding to multiple scattering of
a quark at spatial position ðx−; x⃗TÞ have only one compo-
nent Aþ, which satisfies the Poisson equation ∇2⊥Aþ ¼
gρðx−; x⃗⊥Þ (Aμ ≡ taAa

μ) and the lightlike Wilson lines are
path ordered in the x− direction [28,30]:

U†ðx⃗TÞ ¼ Peig
R

dx−Aþðx−;x⃗T Þ ð66Þ

FIG. 3. Illustration of the two-gluon contribution to the DIS
exclusive amplitude for cc̄ production.

4We use the shorthand
R
xT
≡ R

d2xT while
R
q ≡

R d2q
ð2πÞ2.

5In [106], the factor of Nc is absorbed in the definitions of Ψγ�

and ΨQQ̄ðr; z; Q2Þ; we feel it is more appropriate to not do so and
to keep it explicit in T . To avoid double counting, this should be
taken into account while using Eq. (62).

EXTRACTING MANY-BODY COLOR CHARGE CORRELATORS … PHYS. REV. D 98, 094004 (2018)

094004-11



¼ 1þ ig
Z

dx−Aþðx−; x⃗TÞ þ ðigÞ2
Z

dx−
Z

x−

dy−Aþðx−; x⃗TÞAþðy−; x⃗TÞ

þ ðigÞ3
Z

dx−
Z

x−

dy−
Z

y−

dz−Aþðx−; x⃗TÞAþðy−; x⃗TÞAþðz−; x⃗TÞ þ � � � ; ð67Þ

where the factors of gta contained in this expansion correspond to the vertices arising from the order by order expansion of
the coherent coupling of the gluon fields in the target to the c or c̄ quark.
Expanding Uðx⃗TÞU†ðy⃗TÞ − 1 to third order in gAþ gives

1 − Uðx⃗TÞU†ðy⃗TÞ ¼ ðigÞ2
Z

dx−
Z

dy−Aþðx−; x⃗TÞAþðy−; y⃗TÞ − ð−igÞ2
Z

dx−
Z
x−
dy−Aþðx−; x⃗TÞAþðy−; x⃗TÞ

− ðigÞ2
Z

dx−
Z

x−

dy−Aþðx−; y⃗TÞAþðy−; y⃗TÞ

− ð−igÞðigÞ2
Z

dx−
Z

dy−
Z

y−

dz−Aþðx−; x⃗TÞAþðy−; y⃗TÞAþðz−; y⃗TÞ

− ð−igÞ2ðigÞ
Z

dx−
Z
x−
dy−

Z
dz−Aþðx−; x⃗TÞAþðy−; x⃗TÞAþðz−; y⃗TÞ

− ð−igÞ3
Z

dx−
Z
x−
dy−

Z
y−
dz−Aþðx−; x⃗TÞAþðy−; x⃗TÞAþðz−; x⃗TÞ

− ðigÞ3
Z

dx−
Z

x−

dy−
Z

y−

dz−Aþðx−; y⃗TÞAþðy−; y⃗TÞAþðz−; y⃗TÞ þ � � � : ð68Þ

Let us first consider the expectation value of the previous expression up to order ðgAþÞ2. Using the fact that it is
symmetric under x− − y− → y− − x−, we can express the term appearing in Eq. (63) as

1 −
�
U

�
b⃗⊥ þ r⃗

2

�
U†

�
b⃗⊥ −

r⃗
2

��
K⊥

¼ −g2
Z

dx−
Z

dy−
�
Aþ

�
x−; b⃗⊥ þ r⃗

2

�
Aþ

�
y−; b⃗⊥ −

r⃗
2

��
K⊥

þ 1

2
g2

Z
dx−

Z
dy−

�
Aþ

�
x−; b⃗⊥ þ r⃗

2

�
Aþ

�
y−; b⃗⊥ þ r⃗

2

��
K⊥

þ 1

2
g2

Z
dx−

Z
dy−

�
Aþ

�
x−; b⃗⊥ −

r⃗
2

�
Aþ

�
y−; b⃗⊥ −

r⃗
2

��
K⊥
: ð69Þ

We can use the Poisson equation to relate Aþ to the charge density operator ρ and further, to write the latter in terms of its
two-dimensional Fourier representation. In doing so, note that the integral of ρ̃ðx−; q⃗Þ over x− corresponds to the operator
ρ̃ðqÞ in Eq. (25). We then obtain, to quadratic order in Aþ or ρ,

1 −
1

Nc
tr

�
U

�
b⃗⊥ þ r⃗

2

��
U†

�
b⃗⊥ −

r⃗
2

��
Oðρ2Þ

K⃗⊥
¼ −

g4

2Nc
δab

Z
q1

Z
q2

eib⃗⊥·ðq⃗1þq⃗2Þ

q21q
2
2

�
ei

r⃗
2
·ðq⃗1−q⃗2Þ −

1

2
eiðq1þq2Þ·r⃗2 −

1

2
e−iðq1þq2Þ·r⃗2

�
× hρ̃aðq⃗1Þρ̃bðq⃗2ÞiK⃗⊥ : ð70Þ

Multiplying both the lhs and rhs by 2Nc to obtain T Oðρ2Þ, we can then perform the integration over the impact parameter
in Eq. (62) to obtain

Z
d2b⊥eib⃗⊥·K⃗⊥T Oðρ2Þðr⃗; b⃗⊥;K⃗⊥Þ¼ 2Nc

�
−

g4

2Nc

Z
q1

1

q21ðq⃗1þ K⃗⊥Þ2
�
ei

r⃗
2
·ð2q⃗1þK⃗⊥Þ−cos

�
r⃗ · K⃗⊥
2

��
hρ̃aðq⃗1Þρ̃að−q⃗1− K⃗⊥ÞiK⊥

�
:

ð71Þ
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Defining the lhs of the above expression to be the Pomeron amplitude Pðr⃗; K⃗⊥Þ and replacing hρ̃ðq⃗1Þρ̃ð−q⃗1 − K⃗⊥ÞiK⃗T
on

the rhs by the Pomeron form factor in Eq. (38), we obtain6

Pðr⃗; K⃗⊥Þ ¼ 2Nc

�
−
g4CF

2

Z
q1

1

q21ðq⃗1 þ K⃗⊥Þ2
�
ei

r⃗
2
·ð2q⃗1þK⃗⊥Þ − cos

�
r⃗ · K⃗⊥
2

��
Gðq⃗1;−q⃗1 − K⃗⊥Þ

�
: ð73Þ

Here CF ¼ ðN2
c − 1Þ=2Nc is the quadratic Casimir in the fundamental representation.

The amplitude for exclusive quarkonium production in DIS can also receive a contribution from three-gluon exchange, as
illustrated in Fig. 4. This contribution is recovered in our approach by expanding Eq. (63) to Oðρ3Þ. We begin by formally
rewriting

T ðr⃗; b⃗⊥; K⃗⊥Þ ¼ 2Nc

�
1 −

1

2Nc
tr
��

U
�
b⃗⊥ þ r⃗

2

�
U†

�
b⃗⊥ −

r⃗
2

��
K⃗⊥

þ
�
U
�
b⃗⊥ −

r⃗
2

�
U†

�
b⃗⊥ þ r⃗

2

��
K⃗⊥

�

−
1

2Nc
tr

��
U

�
b⃗⊥ þ r⃗

2

�
U†

�
b⃗⊥ −

r⃗
2

��
K⃗⊥

−
�
U

�
b⃗⊥ −

r⃗
2

�
U†

�
b⃗⊥ þ r⃗

2

��
K⃗⊥

��
ð74Þ

as the sum of a piece that is symmetric under b⃗⊥ þ r⃗
2
↔ b⃗⊥ − r⃗

2
and a piece that is antisymmetric under this exchange.

Expanding out both the symmetric and antisymmetric terms to OððgAþÞ3Þ, or equivalently Oðρ3Þ, we find that the
symmetric piece is identically zero at this order. In other words, it is impossible to have color-singlet three-gluon exchange
that is even under parity. The contribution of the surviving term can be expressed as the odderon amplitude

iOðr⃗; K⃗⊥Þ ¼
Z

d2b⊥eib⃗⊥·K⃗⊥T Oðρ3Þðr⃗; b⃗⊥; K⃗⊥Þ; ð75Þ

where

T Oðρ3Þðr⃗; b⃗⊥; K⃗⊥Þ ¼
1

2Nc
tr

��
U

�
b⃗⊥ þ r⃗

2

�
U†

�
b⃗⊥ −

r⃗
2

��
K⊥

−
�
U

�
b⃗⊥ −

r⃗
2

�
U†

�
b⃗⊥ þ r⃗

2

��
K⃗⊥

�
ð76Þ

has the form of the expectation value of the odderon operator [111].
Working the rhs out to cubic order in gAþ (or equivalently ρ; see Appendix B for details) one obtains

T Oðρ3Þðr⃗; b⃗⊥; K⃗⊥Þ ¼ −
g6

8Nc
dabc

Z
q1

Z
q2

Z
q3

1

q21

1

q22

1

q23
hρ̃aðq⃗1Þρ̃bðq⃗2Þρ̃cðq⃗3ÞiK⊥e

ib⃗⊥·ðq⃗1þq⃗2þq⃗3Þ

×

�
2 sin

�
r⃗
2
· ðq⃗1 − q⃗2 − q⃗3Þ

�
þ 2

3
sin

�
r⃗
2
· ðq⃗1 þ q⃗2 þ q⃗3Þ

��
: ð77Þ

Note that only the terms proportional to ∼dabc from hρaðq⃗1Þρbðq⃗2Þρcðq⃗3ÞiK⊥ contribute. Further, employing our definition
of the odderon amplitude in Eq. (61), and using the identity

dabcdabe ¼ N2
c − 4

Nc
δce; ð78Þ

we obtain the odderon amplitude to be

iOðr⃗; K⃗⊥Þ ¼ −g6
ðN2

c − 4ÞðN2
c − 1Þ

8N3
c

Z
q1

Z
q2

1

q21

1

q22

1

ðq⃗1 þ q⃗2 þ K⃗⊥Þ2
GOðq⃗1; q⃗2;−K⃗⊥ − q⃗1 − q⃗2; K⃗⊥Þ

×

�
2 sin

�
r⃗
2
· ð2q⃗1 þ K⃗⊥Þ

�
−
2

3
sin

�
r⃗
2
· K⃗⊥

��
; ð79Þ

6In the forward scattering K⃗T → 0 limit, replacing 1
2
Gðq⃗; 0Þ → μ̄2MVΘðq2 − Λ2Þ, as discussed previously, reproduces the MV model

expression

h1 − Uðx⃗TÞU†ðy⃗TÞiK⊥¼0 ¼
g4CF

2

Z
q

1

q4
½eiq⃗·r⃗ − 1�μ̄2MVΘðq2 − Λ2Þ þ � � � ð72Þ

.
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where GOðq⃗1; q⃗2;−K⃗⊥ − q⃗1 − q⃗2; K⃗⊥Þ is the odderon form
factor from Eq. (61) and ðN2

c − 1ÞðN2
c − 4Þ=4N2

c ¼ C3F is
the cubic Casimir constant of SUðNcÞ in the fundamental
representation.
The odderon expectation value iOðx⃗T ; y⃗T ;KT ¼ 0Þ in

the forward limit has been computed previously in the MV
model, where the weight functional (appropriately normal-
ized) describing the distribution of color charges in a large
nucleus has the general form [36,112]7

W½ρ� ¼
Z

½dρ� exp
�
−
Z

d2x⊥
�
ρaðx⃗⊥Þρaðx⃗⊥Þ

2μ2

−
dabcρaðx⃗⊥Þρbðx⃗⊥Þρcðx⃗⊥Þ

κA

��
: ð80Þ

The cubic Casimir term here has the weight κA ¼
g3A2Nc=π2R4 and will of course give a nonzero value
for the odderon form factor. For a large nucleus, if the
typical magnitude of ρ ∼

ffiffiffiffiffiffiffiffiffi
μ2MV

p
∼ A1=6, this cubic odderon

term is subleading relative to the quadratic Pomeron term in
W½ρ� by A−1=6, which is a weak suppression factor even for
a large nucleus. The expectation value iOðxT; yTÞ of the
odderon operator computed in the MV model gives

iOðx⃗T ; y⃗TÞ ¼ α3S
ðN2

c − 4ÞðN2
c − 1Þ

4πr20N
3
c

A1=3

Z
d2uln3

jx − uj
jy − uj ;

ð81Þ

where r0 ¼ 1.12 fm. This expression is also recovered in a
perturbative QCD computation [98]. We can compare this
expression to Eq. (79), for A → 1 and in the forward limit
of K⃗T → 0. As discussed in [112], the logarithm above can
be expressed in terms of the Coulomb propagator in two
dimensions. Making use of this fact, we observe that
Eq. (81) can be reexpressed as Eq. (79) if the odderon
form factor GO is a constant everywhere except in the
infrared due to the previously discussed constraint from
color neutrality. Conversely, the structure of GO in Eq. (79),

and hence the odderon operator at large xBj, can be very
different from the expectation from the MV model.

B. Cross section for exclusive production
of J=Ψ and ηc mesons at large xBj

The general formalism for exclusive quarkonium produc-
tion that we outlined in the previous section can now be
adapted to compute the cross section for specific quarkonium
states. We will consider here the J=Ψ because it is the most
easily accessible quarkonium state, and the ηc because it is the
lightest state with unique features that promise novel insight
into nonperturbative QCD. Since we are interested in many-
body color charge correlators of valence Fock states in this
work, our discussion ismost relevant for exclusive production
of these quarkonium states at large xBj. As noted, this is a
regime that is already accessiblewith the high luminosityDIS
experiments at Jefferson Lab and at a future EIC.
The cross section for exclusive J=Ψ production can be

expressed as

dσγ
�p→J=Ψp
T;L

dt
¼ 1

16π
jAγ�p→J=Ψp

T;L j2; ð82Þ

where

Aγ�p→J=Ψp
T;L ðQ2; K⃗⊥Þ

∼ i
Z

d2r
Z

dz
4π

ðΨγ�Ψ�
J=ΨÞðr⃗; z; Q2Þ

× e−i
ð1−2zÞ

2
r⃗·K⃗⊥ ½Pðr⃗; K⃗⊥Þ þ iOðr⃗; K⃗⊥Þ�: ð83Þ

Here K2⊥ ¼ −t, and ΨJ=Ψ, Ψγ� denote the J=ψ and virtual
photon light-cone wave functions (for longitudinal or
transverse polarization); their product is summed over
the helicities of the c and c̄ quarks. Further, P is the
Pomeron contribution to the exclusive J=Ψ amplitude given
in Eq. (73) and iO is the respective odderon contribution
given by Eq. (79). The former is directly proportional to the
Pomeron color charge form factor and the latter to the
odderon color charge form factor. These two terms in
Aγ�p→J=Ψp

T;L contain the important QCD physics underlying
the Regge-theory-based descriptions of elastic/exclusive
cross sections in terms of imaginary and real terms
respectively [114]. There is an additional kinematic con-
tribution coming from the nonzero values of Δx discussed
in Sec. II; however, as we demonstrate in Appendix A,
these contributions are 1=Pþ suppressed.
Some remarks on the contribution due to the odderon are

in order. iO is odd under charge conjugation, which
corresponds to the simultaneous transformations r⃗ → −r⃗,
z → 1 − z. On the other hand, Ψγ�Ψ�

J=Ψ has even C parity.
Therefore, the integral over iO in Eq. (83) is nonzero only
if the final state is restricted to, e.g., pþ

c < pþ
c̄ (z < 1=2).

This prevents the cancellation of the amplitude with its C
conjugate. Likewise, the odderon contribution to the above

FIG. 4. Illustration of the three-gluon contribution to the DIS
exclusive amplitude for cc̄ production.

7A quartic term ∼ρaðx⃗⊥Þρaðx⃗⊥Þρbðx⃗⊥Þρbðx⃗⊥Þ=κ4 arises too
[113]; it ensures that the action for ρ is bounded from below.
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amplitude will not cancel against its parity transform if the
direction of the momentum transfer K⃗⊥ is fixed. The role of
such charge asymmetry and kinematic constraints in
Pomeron-odderon DIS amplitudes has been noted previ-
ously for other final states [115,116].
The two-gluon Pomeron and three-gluon odderon form

factors were discussed previously in [117] albeit this work
did not identify these form factors as such. More impor-
tantly, we have provided explicit first-principles expres-
sions for the Pomeron form factor in Eq. (39) and likewise
for the odderon form factor in Eq. (61) in terms of the QCD
light front wave function for valence Fock states. Therefore
exclusive measurements of the J=Ψ at large xBj offer the
opportunity to extract fundamental nonperturbative QCD
physics contained in these wave functions.
It is important to note that by large xBj, we have xBj ≈ 0.1

in mind. At larger values of xBj, our approximations
ignoring Δx are no longer tenable. At smaller values of
xBj < 0.1, higher gluon Fock states become important.
While these can be incorporated in our approach, and
matched eventually to the CGC EFT framework, their
treatment is outside the scope of the present discussion.
We observe that while the exclusive J=Ψ cross section is

dominated by the Pomeron contribution, it can in principle
be sensitive to the odderon form factor for particular
kinematics. In contrast to the J=ψ however, the ηc meson
with its P ¼ −1 and C ¼ þ1 quantum numbers is domi-
nantly produced in exclusive DIS by the three-gluon color-
singlet odderon exchange contribution. The exclusive ηc
production amplitude is simply

Aγ�p→ηcp
T;L ðQ2; K⃗⊥Þ

∼ i
Z

d2r
Z

dz
4π

ðΨγ�Ψ�
ηcÞðr⃗; z;Q2Þe−ið1−2zÞ2

r⃗·K⃗⊥iOðr⃗; K⃗⊥Þ;

ð84Þ
where Ψηc is the light-cone ηc wave function. Indeed,
exclusive ηc was proposed some time ago [118] as the
cleanest channel for discovery of the odderon8 where
the focus was on ηc production at small xBj at HERA. The
authors of Ref. [120] followed the approach of [99,100] to
estimate the HERA DIS ηc cross section to be 47 pb for
photoproduction and 11 pb forQ2 ¼ 5 GeV2. However the
authors of [99,100] expressed the odderon form factor in
terms of that of the Pomeron form factor. Our study shows
that this assumption is likely unjustified; we plan to
investigate its quantitative impact in a future publication.
Searches at HERA did not reveal any evidence for

exclusive ηc. From the theory perspective, this may be
because the odderon amplitude is suppressed at small x.
While not definitive, studies of the small x evolution of the
odderon suggest that its energy dependence is much

smaller than that of the Pomeron [121]; it may even
decrease with increasing energy [122,123]. Therefore,
searches at larger values of xBj may be more promising.
Further, since the cross section for such exclusive processes
is small, such searches will benefit from the much higher
luminosities at Jefferson Lab and in future at the EIC.

V. SUMMARY AND OUTLOOK

In this paper, we developed a novel formalism within the
framework of light front QCD to compute color charge
correlators and their associated color charge form factors.
For simplicity, we constructed the quadratic hρρi and cubic
hρρρi correlators of valence quark Fock states in the proton.
The extension of our computation to include gluon and sea
quark color charge densities is straightforward if more
involved. These quadratic and cubic color charge correlators
are precisely the color-singlet two-gluon Pomeron form
factor and the three-gluon odderon form factor respectively.
They capture important nonperturbative physics on the
spatiotemporal distribution of color charges in the proton,
and they offer a complementary description of this tomog-
raphy to that offered by TMDs and GPDs. Further, they
provide useful classical intuition at the level of the Yang-
Mills dynamics of QCD.As a striking example, note that the
Wong equations [124] satisfied by classical color charges in
backgroundgauge fields are embedded in the structure of the
QCD effective action [125]. Classical intuition at this level
can motivate experimental searches for novel QCD effects.
While expressing observables in terms of expectation

values of color charge correlators is uncommon at large x
(see however [126]), it is a key feature of the color glass con-
densate framework at small x, whereby dynamical many-
body information from nonperturbative initial conditions is
encoded in a gauge invariant density matrixW½ρ�. For a large
nucleus, this quantity is the Gaussian weight functional of
the McLerran-Venugopalan model. However, this formalism
breaks down for the proton at large x and the initial con-
ditions for the small x evolution of color charge correlations
in the proton have a significant source of uncertainty.
We showed that exclusive measurements of quarkonia at

large x allow for independent extraction of hρρi and hρρρi.
Expectationvalues of these, and the associated Pomeron and
odderon color charge form factors, can be extracted from
clean exclusive DIS measurements of quarkonium final
states at large x. These form factors, and in principle higher
moments of the color charge density, therefore provide a
bridge between small x and large x in QCD, one that is
constrained by high energy proton-proton and proton-
nucleus experiments on multiparticle correlations at
RHIC and LHC on the one hand, and DIS experiments at
Jefferson Lab on the other. We also applied the formalism
towards computing the gluon distribution of a proton and
obtained sensible results.We anticipate that the Electron-Ion
Collider, which will have an unparalleled combination of x
reach and high luminosities, will bring powerful new insight

8For a nice review of both the theoretical work on the odderon
and experimental searches, we refer the reader to [119].
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into the underlying dynamics of many-body color charge
correlations in QCD.
Another interesting avenue of research that presents itself

is the extraction of color charge correlations and form factors
in polarized deep inelastic scattering and polarized proton-
proton collisions. Odderon exchange can for instance be
probed in the single spin asymmetriesmeasured in polarized
proton-proton collisions [127]. Single spin asymmetries in
semi-inclusive open charge production in polarized DIS are
also sensitive to the odderon operator [128,129]. These
connections between color charge form factors in a wide
range of experiments are ripe for further exploration.
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APPENDIX A: P+ LIMIT OF THE DENSITY
OPERATOR, AND THE PARTON PANCAKE

Consider Eq. (23). This contains a term

Pþeiðxq−xpÞPþr− ; ðA1Þ

which oscillates like crazy if Pþ → ∞ unless r− and/or
ðxp − xqÞ vanishes. In those cases the term is infinite. This
is suggestive of delta functions and the pancake shape of
high energy projectiles.
To better understand the term in Eq. (A1) consider a test

function fðr−Þ which is continuous at the origin and
nonzero over a finite region of space. Such would arise
in taking the matrix element of the density operator in the
proton wave function. ThenZ

dr−fðr−Þ lim
Pþ→∞

Pþeiðxq−xpÞPþr−

¼ lim
Pþ→∞

Z
dueiðxq−xpÞufðu=PþÞ

¼ fð0Þ
Z

dueiðxq−xpÞu ¼ fð0Þ2πδðxq − xpÞ: ðA2Þ

Thus the term of Eq. (A1) and the density operator of
Eq. (23) act as a delta function in both xq − xp and r−.
Thus effectively

lim
Pþ→∞

Pþeiðxq−xpÞPþr− → 2πδðxp − xqÞδðr−Þ: ðA3Þ

We therefore see that the density ρaðrÞ contains δðr−Þ,
hence the pancake shape. Using Eq. (A3) in Eq. (23) and
integrating over r− leads immediately to Eq. (26).
The corrections of order 1=Pþ can be understood from

Eq. (A2), by using

fðu=PþÞ ≈ fð0Þ þ f0ð0Þ u
Pþ : ðA4Þ

Including the second term gives a correction term:

2πi
Pþ f0ð0Þ ∂

∂xq δðxq − xpÞ: ðA5Þ

APPENDIX B: THE ODDERON AMPLITUDE
IN TERMS OF THE ODDERON

FORM FACTOR

The odderon contribution to the amplitude in Eq. (75)
can be written out explicitly as

1

2Nc
trhUðx⃗TÞU†ðy⃗TÞ −Uðy⃗TÞU†ðx⃗TÞiK⊥ ¼ ðB1Þ

ig3

2Nc
tr

�Z
dx−

Z
dy−

Z
y−

dz−Aþðx−; x⃗TÞAþðy−; y⃗TÞAþðz−; y⃗TÞ ðB2Þ

−
Z

dx−
Z

dy−
Z

y−

dz−Aþðx−; y⃗TÞAþðy−; x⃗TÞAþðz−; x⃗TÞ ðB3Þ
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−
Z

dx−
Z
x−
dy−

Z
dz−Aþðx−; x⃗TÞAþðy−; x⃗TÞAþðz−; y⃗TÞ ðB4Þ

þ
Z

dx−
Z
x−
dy−

Z
dz−Aþðx−; y⃗TÞAþðy−; y⃗TÞAþðz−; x⃗TÞ ðB5Þ

þ
Z

dx−
Z
x−
dy−

Z
y−
dz−Aþðx−; x⃗TÞAþðy−; x⃗TÞAþðz−; x⃗TÞ ðB6Þ

−
Z

dx−
Z
x−
dy−

Z
y−
dz−Aþðx−; y⃗TÞAþðy−; y⃗TÞAþðz−; y⃗TÞ ðB7Þ

−
Z

dx−
Z

x−

dy−
Z

y−

dz−Aþðx−; y⃗TÞAþðy−; y⃗TÞAþðz−; y⃗TÞ ðB8Þ

þ
Z

dx−
Z

x−

dy−
Z

y−

dz−Aþðx−; x⃗TÞAþðy−; x⃗TÞAþðz−; x⃗TÞ >
K⊥

: ðB9Þ

With a little algebra one can combine Eqs. (B2) and (B5) to

trtatbtc
Z

dx−
Z

dy−
Z

dz−Aþaðz−; xTÞAþbðx−; yTÞAþcðy−; yTÞ

¼ 1

4
dabc

Z
dx−

Z
dy−

Z
dz−Aþaðz−; xTÞAþbðx−; yTÞAþcðy−; yTÞ: ðB10Þ

In the last step we have used that the factor multiplying trtatbtc is symmetric under b ↔ c. Since all fields are now
integrated over x− without limits they can be traded for ρaðqÞ from Eq. (25) so that the previous line becomes

g3

4
dabc

Z
q1

Z
q2

Z
q3

1

q21

1

q22

1

q23
eiðq1·xTþðq2þq3Þ·yTÞρaðq1Þρbðq2Þρcðq3Þ: ðB11Þ

Along the same lines, the sum of (B3) and (B4) can be rewritten as

−
1

4
dabc

Z
dx−

Z
dy−

Z
dz−Aþaðz−; yTÞAþbðx−; xTÞAþcðy−; xTÞ

¼ −
g3

4
dabc

Z
q1

Z
q2

Z
q3

1

q21

1

q22

1

q23
eiðq1·yTþðq2þq3Þ·xT Þρaðq1Þρbðq2Þρcðq3Þ: ðB12Þ

The remaining terms from Eqs. (B6)–(B9) involve integrals over Aþðx−; xTÞ at the same point xT , i.e., integrals of the same
(matrix valued) function Aþðx−Þ. One may thus use standard identities for “time” ordered exponentials of a matrix AðtÞ:

T
Z

dt1 � � �
Z

dtnAðt1Þ � � �AðtnÞ ¼ T
Z

dt1 � � �
Z

dtn
1

n!

X
perm

Aðti1Þ � � �AðtinÞ: ðB13Þ

The sum is over all permutations of Aðt1Þ, Aðt2Þ;…; AðtnÞ. We can now express (B6)+(B9) as

2
1

3!

1

4
dabc

Z
dx−

Z
dy−

Z
dz−Aþaðx−; x⃗TÞAþbðy−; x⃗TÞAþcðz−; x⃗TÞ

¼ g3

12
dabc

Z
q1

Z
q2

Z
q3

1

q21

1

q22

1

q23
eiðq1þq2þq3Þ·xTρaðq1Þρbðq2Þρcðq3Þ: ðB14Þ

Similarly, the sum of (B7) and (B8) is given by
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−
1

12
dabc

Z
dx−

Z
dy−

Z
dz−Aþaðx−; y⃗TÞAþbðy−; y⃗TÞAþcðz−; y⃗TÞ

¼ −
g3

12
dabc

Z
q1

Z
q2

Z
q3

1

q21

1

q22

1

q23
eiðq1þq2þq3Þ·yTρaðq1Þρbðq2Þρcðq3Þ: ðB15Þ
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