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We calculate the nucleon resonance contributions to nucleon Compton scattering, including all states
with J* = 1/2* and J® = 3/2* where experimental data for their electromagnetic transition form factors
exist. To this end, we construct a tensor basis for the Compton scattering amplitude based on
electromagnetic gauge invariance, crossing symmetry and analyticity. The corresponding Compton form

factors provide a Lorentz-invariant description of the process in general kinematics, which reduces to the

static and generalized polarizabilities in the appropriate kinematic limits. We derive the general forms of the

offshell nucleon-to-resonance transition vertices that implement electromagnetic and spin-3/2 gauge

invariance, which automatically also defines onshell transition form factors that are free of kinematic
constraints. We provide simple fits for those form factors, which we use to analyze the resulting Compton
form factors and extract their contributions to the nucleon’s polarizabilities. Apart from the A(1232), the
resonance contributions to the scalar and spin polarizabilites are very small, although the N(1520) could

play a role for the proton’s magnetic polarizability.

DOI: 10.1103/PhysRevD.98.093007

I. INTRODUCTION

Compton scattering on the nucleon encodes a multitude
of interesting physical applications. It is the process
y*N — y*N, sketched in Fig. 1, where either of the photons
can be real or virtual. Compton scattering probes the
electromagnetic structure of the nucleon and therefore
the quarks inside. On the one hand, it encodes the nucleon’s
polarizabilities which test its response to an external
electromagnetic field. Ongoing efforts with chiral effective
field theory, dispersion relations and other approaches aim
to determine the proton’s and neutron’s scalar and spin
polarizabilities [1-5]. On the other hand, virtual Compton
scattering (VCS), where one photon is virtual and the
other is real, provides access to the nucleon’s generalized
polarizabilities [1,6-9]. Deeply virtual Compton scattering
(DVCS) is the primary tool to extract the nucleon’s
generalized parton distributions (GPDs) [10-13]; and the
forward limit, where the momentum transfer vanishes, is
experimentally accessible in deep inelastic scattering and
relates the Compton amplitude with the nucleon structure
functions and PDFs.
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Also the integrated Compton amplitude is of interest.
The diagram where the two photons couple to a lepton
encodes the two-photon exchange (TPE) corrections to
electromagnetic form factors. These are believed to be
responsible for the difference in the proton’s Gg/Gy,
measurements, because the Rosenbluth separation method
is sensitive to TPE effects whereas the polarization transfer
experiments are not [14—16]. However, at present it still
remains to be clarified which parts of the Compton
amplitude cause the difference. TPE contributions also
enter in the proton radius puzzle although so far the effect
appears to be too small by an order of magnitude to explain
the discrepancy [17-22].

At the hadronic level, the Compton amplitude can be split
into “elastic” Born terms and an “inelastic” structure part as
in Fig. 1. In principle the Born terms are determined by the
nucleon electromagnetic form factors, whereas the one-
particle irreducible (1PI) structure part encodes the structure
information such as polarizabilities. The latter probes the
spectrum of hadrons: in terms of its singularity structure, it
contains intermediate nucleon resonances in the s and u
channels such as the A(1232) resonance, meson exchanges
in the 7 channel, and vector-meson poles for timelike photon
virtualities. These are accompanied by multiparticle cuts in
the various channels, which come from Nz, Nzzx, zrx...
loops and are directly accessible in effective field theory
approaches. For example, it is well known that the A
resonance provides a large contribution to the magnetic
polarizability which is counteracted by pion loops, thus
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FIG. 1.

leading to the picture of a “paramagnetic quark core” that is
cancelled by its “diamagnetic pion cloud” [5,23-25].

On the other hand, handbag dominance in DVCS
attributes the dynamics in Compton scattering to an
interaction of the photons with the perturbative quarks
inside the nucleon. It is then understood that the hadronic
description should be applied at low energies whereas the
microscopic approach is appropriate when Q? is large. Still,
it is desirable to connect these two regimes by a common
underlying formulation. Such an approach in terms of
nonperturbative quark and gluon degrees of freedom
(d.o.f.) has been formulated [26-28] but it is not the topic
of the present work. Here we aim for a more modest goal,
namely to establish a connection in terms of common
amplitudes to describe the process in arbitrary kinematics.

In principle Compton scattering is completely specified
by 18 Lorentz-invariant functions [29], which are probed in
different kinematic limits by the experimental processes
mentioned above. The purpose of this paper is to make a
step towards connecting these limits by providing a tensor
basis based on electromagnetic gauge invariance, crossing
symmetry and analyticity. This leads to a set of 18 Compton
form factors (CFFs) which depend on four Lorentz-
invariant variables and which are free of kinematic con-
straints. In the limit where all variables vanish these are
related to the nucleon’s polarizabilities, in VCS they are
connected to the generalized polarizabilities and in the
forward limit to the nucleon’s structure functions. Each
CFF has certain characteristics: the nucleon Born terms
contribute to only a few of them, as well as the ¢-channel
meson poles; and only certain subsets of them survive in the
forward limit, in RCS or in VCS.

Following the approach by Bardeen, Tung and Tarrach
[29,30], similar tensor bases have been employed for
specific applications such as low-energy VCS [31,32] or
scalar Compton scattering [33,34]. Here we provide the
detailed basis construction for a spin-1/2 target in general
kinematics, using a procedure that differs from Refs. [29,30]
and allows one to better track the occurrence or absence
of kinematic singularities. It is still true that kinematic
singularities cannot be avoided in certain limits [35], but this
does not affect the 18 CFFs in general or the limits of RCS,
VCS and the forward limit where direct measurements are
possible.

As a practical application we work out the CFF contribu-
tions from intermediate s- and u-channel nucleon resonances,
which enter in the process through their electromagnetic

Separation of the nucleon Compton amplitude into Born terms and a 1PI structure part.

transition form factors. The A(1232) contribution to the
nucleon’s polarizabilities is known [9,36,37], but in view of a
precision determination of polarizabilities it is still desirable
to understand the impact of higher resonances, which can also
play a role in TPE [38-40]. In the last decade significant
progress has been made in measuring the electrocouplings of
nucleon resonances through meson electroproduction in a
wide Q7 range [41,42]. In addition to the A(1232) resonance,
the electromagnetic transitions are now relatively well known
also for the Roper resonance N (1440), the nucleon’s tentative
parity partner N(1535), and the N(1520) resonance. First
data for higher-lying resonances have been accumulated in
two-pion production [43—45] and more results are underway
with the Jefferson Lab 12 GeV program.

The fact that the resonances in Compton scattering are
offshell creates additional complications. Electromagnetic
gauge invariance and spin-3/2 gauge invariance for Rarita-
Schwinger particles [46,47], which ensures the absence of
the spin-1/2 background in matrix elements, induce further
constraints on the offshell transition vertices. Here we
derive the most general structure for the J = 1/2* and
JP = 3/2%* transition amplitudes that are compatible with
these constraints. As a result, their implementation in
Compton scattering automatically ensures the absence of
spurious contributions.

Moreover, these expressions also determine the most
general forms of the onshell nucleon-to-resonance electro-
magnetic transition currents which are free of kinematic
constraints. One obtains two form factors F; ,(Q?) in the
J = 1/2 case and three form factors F , 3(Q?) for J = 3/2
and higher spin, which are kinematically independent so
that all their singularities and momentum dependencies are
of dynamical origin. The experimental data are usually
discussed in terms of helicity amplitudes or multipole form
factors [41,48,49] which are neither free of kinematics nor
satisfy the offshell constraints. Here we provide simple fits
to the experimental data for all available resonances in
terms of the constraint-free form factors F;(Q?). Those
parametrizations we finally implement in the Compton
amplitude to calculate the CFFs in the entire kinematic
domain.

The paper is organized as follows. In Sec. II we establish
our notation, discuss the kinematic regions in terms of four
Lorentz-invariant variables, provide the tensor basis for the
Compton amplitude and investigate different kinematic
limits. In Sec. III we illustrate the situation for scalar
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Compton scattering. In Sec. IV we discuss the nucleon
Born terms, together with the offshell nucleon-photon
vertex that enters there, in some detail and work out the
corresponding CFFs. In Secs. V and VI we apply the same
procedure to derive the J = 1/2 and J = 3/2 resonance
contributions, respectively, and in Sec. VII we provide our
fits for their transition form factors. The resulting CFFs and
polarizabilities are discussed in Sec. VIII. We summarize
in Sec. IX.

Several Appendices serve the purpose of making our
calculations as transparent as possible for practitioners. We
use a Euclidean metric for practical convenience but with
the formulas in Appendix A the transcription between
Euclidean and Minkowski conventions should be straight-
forward. In Appendix B we explain the tensor basis
derivation for the Compton amplitude in detail; we provide
relations between our CFFs and the amplitude conventions
in some kinematic limits used in the literature; and we
investigate the consequences of breaking gauge invariance
for the nucleon Born term. Appendix C gives some details
on spin-3/2 Lagrangians, and in Appendix D we collect the
relations between the resonance transition form factors and
helicity amplitudes employed in the literature.

II. COMPTON AMPLITUDE

A. Kinematics

The onshell nucleon Compton amplitude with virtual
photons has the form

M (p, Q. Q) = —u(p) ™ (p. Q' Qu(p;).  (2.1)

3%

where e* = 4za,,,, m is the nucleon mass, Q and Q' are the
incoming and outgoing photon four-momenta, p; and py
are the initial and final on-shell nucleon momenta
(p; = p; =—m®), and p = (p; + py)/2 is the average
nucleon momentum (see Fig. 1). u(p;) and @(p;) are
nucleon spinors satisfying the Dirac equation; they are
eigenspinors of the positive-energy projectors

2m

_—ifitm

Coam) =5 @)

A+(Pf) =
with Ay (p;)u(p;) = u(p;) and @(ps)A(ps) = u(py). Itis

then more convenient to work with the Dirac matrix-valued
Compton amplitude

18

(.0, 0) = M) | ekt M) @2

i=1

where the spinors are replaced with the projectors. The
Compton amplitude is constructed from 18 dimensionless
Compton form factors (CFFs) ¢; which depend on four

kinematical invariants, together with 18 Lorentz-covariant
basis tensors X*“(p, Q’, Q).

We will alternatively use two sets of four-vectors,
{p,0,0'} and {p, X, A}, with the relations

1
p=5(pi+ps)
PO A=0-0Q =p;—p; (24)
L=5(0+0),
and
= 0-x15
pi="pr 7" = 7"
pr=p+- 0-x-° (2.5)
/ 2’ 2" '
With the constraints p; = p7 = —m?, the process is char-

acterized by four Lorentz invariants. We work with the
dimensionless variables'

:Q2+Ql2 :Q Q/ w:QQ_QIZ

* 2m? =" 2m*
p-Z p-0 p-Q

e T (2.6)

and vice versa

2 2
A

{g/z} :ZZ+TiZ-A:m2(r/+ia)),
2

A
Q.Q/:ZZ__:m2”—7

: (2.7)

so that the CFFs in Eq. (2.3) are dimensionless functions
ci(ny,n—,w, ). The variables 7, and n_ are even under
photon crossing and charge conjugation, whereas @ and A
switch signs [see Eq. (2.19) below]. Below we employ a
tensor basis that is invariant under both operations, so that
the CFFs can depend on @ and A only quadratically.

'Introducing new symbols for these variables provides a
compact notation but also has the following advantage: we use
Euclidean conventions throughout this work, but since Lorentz-
invariant scalar products differ from their Minkowski counter-
parts only by minus signs these variables are the same in
Minkowski space if one defines them as

¢ +q" _q-q
Ny =— 2m2 ’ n-=- m2 ’

¢ -4 L_Pa_p-d
== ok B R R

where p, ¢ and ¢’ are the Minkowski momenta corresponding to
p, O and Q'. In that way all relations between Lorentz-invariant
(but also Lorentz-covariant) quantities, such as the CFFs given in
Tables IV, VI and IX, are identical in Euclidean and Minkowski
conventions; see Appendix A for more details.
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FIG. 2. Compton scattering in the variables 7, , #_ and . The interior of the cone contributes to two-photon exchange (TPE). Real
Compton scattering (RCS) lives on the _ axis and virtual Compton scattering (VCS) on the plane 7, = . The boundary of the cone
contains the doubly-virtual forward limit (FWD) at t = O (7, = n_) and the VCS limit where the generalized polarizabilities are defined
(GP, 7, = @ and 5_ = 0). Inside the cone, nucleon resonances appear at 7_ = —6.

The variables 7, , 7_ and @ admit a simple geometrical
understanding of the phase space. Defining the momentum
transfer as

A? _ My -

[=—— =
4m? 2

(2.8)

(which differs by —4m? from the usual definition), then for
t > 0 the region that one must integrate over in order to
calculate two-photon exchange (TPE) contributions to
observables forms a cone around the 7, direction, which
is shown in the leftmost panel in Fig. 2. This is so because
2/ is the integration momentum and the integration region
is subject to the constraints

>0, -1<Z<1, -1<Y<1l (29)
where o, Z and Y are the hyperspherical variables from
Eq. (A8) with the Lorentz-invariant definition

c=—., Z=%-A, vY=p-T,. (210

Here, a hat denotes a normalized four-momentum (e.g.,

$ =3/v2?) and the subscript | stands for a transverse
projection with respect to the total momentum transfer A.
These variables are related to the ones in Eq. (2.6) via

JZM’ Z:L, (2.11)
2 2 —n?

Y 2
A==yJo*+n2 =iy |1+ . (212)
2 " ne =1
With ¢ > 0O the first two constraints in (2.9) entail
N <n-<ng, @ +ni <y (2.13)

which defines the cone in Fig. 2. Because of

1 (Q? n.£n_ o
77+:|:a):mz{Q/2}, 7+2 :{t} (2.14)

the opposite sides of the cone in the {w, 7, } plane define
the axes of Q% and Q'?, whereas in the {5_, 7.} plane the
cone is bounded by the axes for ¢ and t. Because Y €
(=1, 1) is real inside the cone, the crossing variable A must
become imaginary due to Eqgs. (2.12) and (2.13).

In Fig. 2 we show the various kinematic limits:

(i) Real Compton scattering (RCS): Q%> = Q” =

O=n =w0=0.
(i) Virtual Compton scattering (VCS): Q? =0 =

11+ = w.

(iii) Generalized polarizabilities: Q" =0 = n,. = o,
n.=41=0.

(iv) Doubly-virtual forward limit: A* =0 =5, =1_,
w = 0.

(v) Static polarizabilities: n, =n_=w =1=0.

In the 3D plots the static polarizabilities are defined at the
origin of the coordinate system; the forward amplitudes and
generalized polarizabilities live on the boundary of the cone
where t+ =0 or Q"> =0, respectively; the RCS limit is
defined along the #_ axis outside of the cone; and the VCS
limit defines the plane Q"> = 0.

The nucleon resonance poles at s = m% and u = m3,
where s and u are the Mandelstam variables and my, is the
mass of the resonance, are more difficult to visualize
because they also depend on the crossing variable A:

=tz w052 =m 19

u

with A = (s —u)/(4m?). Taking also into account the
resonance width, m% — m% — imgl'g, and defining

2 2
5:mR—m y:mRFR
m*> 2m?

(2.16)

the condition for a pole becomes
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FIG. 3. Kinematics in forward Compton scattering in the
variables 7_ and A.

n_ =121 -6+ 2iy. (2.17)

Figure 3 illustrates the situation in the forward limit,
where the two remaining variables n_ = n, = Q?/m? and
A define the Mandelstam plane. The forward CS amplitude
is of special interest because the optical theorem relates its
imaginary part to the total photoabsorption cross section
y*N — X and thus to the nucleon’s structure functions. The
physical region of that process is where the Bjorken
variable x = 5_/(24) takes values 0 < x < 1. The nucleon
resonances appear at fixed s and u, starting with the
nucleon poles at s = m? and u = m? (corresponding to
n_ = £24). The resonance regions are indicated by the red
shaded areas in the plot, where at larger s and u the
resonances are eventually washed out. In addition, one has
branch cuts from multiparticle production: the right-hand
cut at s > (m + m,)?, which starts at the pion production
threshold and extends to infinity, the left-hand cut at
u> (m+m,)?, plus further cuts in the timelike region
where #_ is negative.

Except for the nucleon Born poles and branch cuts, the
CFFs are analytic functions in the physical sheet, given that
they are defined through an appropriate tensor basis which
does not introduce additional kinematic singularities. Since
their imaginary parts along the cuts are known from the
cross section data, one can exploit Cauchy’s formula to
determine the CFFs everywhere in the complex A plane via
(subtracted) dispersion relations. Except for the subtraction
functions, which can be determined in chiral effective field
theory (see e.g., the reviews [3,5]), the forward CS
amplitude is then in principle fully determined by exper-
imental data.

The TPE region is the interior of the cone where the
crossing variable A is imaginary. In the forward limit
Eq. (2.12) becomes 1 =iY,/n_, so that the remnant of
the cone is the domain Re(1) = 0 and [Im(4)| < /5_ along
the imaginary A axis, as indicated in Fig. 3. On the other

hand, for small values of A the CFFs can be expanded in
powers of 42. The Q*-dependent forward polarizabilities
are accordingly defined as the coefficients in a low-energy
expansion:
¢i(1-.2) = B (g 2) + PN 2= 0) +O(2),  (2.18)
where the Born contributions are singular for A = +#_/2
and the remaining pieces absorb all structure effects.
Because the nucleon resonance locations only depend on
n_ and 4, the Mandelstam plane has the same form as in
Fig. 3 also in general kinematics, such as e.g., in RCS and
VCS, although the respective physical regions are different.
The interior of the cone always corresponds to imaginary 4,
so that the condition (2.17) becomes #z_ = -4 and
Im(1) =F y. Thus, for negative values of 7_ the resonance
poles can appear in the TPE integration region and must be
properly taken care of. This is illustrated by the vertical
plane in the rightmost panel of Fig. 2 for an exemplary
resonance. The poles of the nucleon itself (6 =y =0)
intersect with the cone in the limit #_ = 4 = 0. In the case
of VCS (1, = w) this is just the limit where the generalized
polarizabilities are defined (second panel in Fig. 2), so that
an extraction of polarizabilities requires a sensible sub-
traction of the nucleon poles contained in the nucleon
Born terms.

B. Tensor basis

The extraction of CFFs requires a suitable tensor basis.
While in principle the tensor decomposition is arbitrary, the
choice of basis matters in practice. Compton scattering is
characterized by 18 CFFs c;(n,,1n_, w, 1), cf. Eq. (2.3), and
thus it is desirable to construct a basis where these functions
become as simple as possible:

(i) Gauge invariance must be properly implemented,
which reduces the number of CFFs from 32 to 18.
Below we write down a basis where transversality is
manifest.

(i) The Compton amplitude is invariant under photon
crossing and charge conjugation:

l"ﬂl/(p’ Q/7 Q);Fyﬂ(p’ _Q7 _Q/>7

%(p. Q. Q)=CT*(—p,—0.-Q)7CT,  (2.19)
where C = y*y? is the charge-conjugation matrix
and the superscript 7 denotes a matrix transpose.
Implementing these properties already at the level of
the basis elements simplifies the discussion because
the resulting CFFs can depend on the variables @
and A only quadratically: c;(n,,n_, @*, 1%).

(ii1)) To make the CFFs dimensionless we divide the basis
tensors by powers of the nucleon mass m.

(iv) The CFFs should be free of kinematic singularities;
analyticity then implies that their only singularities
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are physical poles and cuts. In Fig. 2 the dominant
poles are: the s- and u-channel nucleon and nucleon
resonance poles; the lowest vector-meson poles in
Q% and Q'%, which live on planes parallel to the VCS
plane (and their mirror planes with @ — —w); and
the lowest ¢-channel meson poles on planes parallel
to the forward plane outside of the cone. Being free
of kinematic effects has several practical advantages;
it can simplify the momentum dependence of the
CFFs, as their dependence on the four variables 7, ,
n_, A and w effectively often collapses into a one-
dimensional dependence on #,.. The absence of
kinematic dependencies in the CFFs is tied to using
a “minimal” basis, which is characterized by having
no kinematic singularities and featuring the lowest
possible powers in the photon momenta. Such bases
have been frequently used in the literature following
the works by Bardeen, Tung and Tarrach [29,30].
Without reference to the separation into Born and 1PI
terms in Fig. 1, one can generally decompose the on-shell
Compton amplitude into three contributions:
=Ty + 0 +17, (2.20)
which are distinguished by their transversality properties.
I"| is transverse with respect to both photon momenta,

oY =0, ' or = (2.21)
whereas I'" is subject to the weaker constraint
QI QY =0 (2.22)

and the remaining “gauge part” I§ is not transverse.

The physical Compton amplitude is gauge invariant, so it
must satisfy (2.21) and thus only I'}", survives. The full
amplitude depends on 32 independent Lorentz-Dirac ten-
sors, 18 of which belong to I''}"|, 12 to I} and two to I'f; .
In the main text we will only consider the physical,
transverse part I, which depends on 18 tensors.
However, to quantify a potential loss of gauge invariance
it is also useful to work out the remaining nontransverse
terms Iy and I'}", which is done in Appendix B 3.

The derivation of the 18 transverse tensors is straightfor-
ward and sketched in Appendix B. One starts from a set of
32 linearly independent elementary tensors, the K. in
Table XV, and applies the constraints (2.21) such that no
kinematic singularities are introduced. In practice this
means eliminating 14 CFFs without any division by
kinematic factors, i.e., without introducing denominators
that depend on 7, 57_, A%, @?, etc. Fortunately, in the case of
Compton scattering this is possible and thus the procedure
automatically generates a minimal basis.

The resulting 18 transverse basis elements X:* are
lengthy combinations of the K%* and given in Table XVI

TABLE 1. Transverse basis for the nucleon Compton ampli-
tude. F;; and G;,; are defined in Eq. (2.24) and the explicit
expressions for the first few tensors are given in Eq. (2.26).

n Basis element n Basis element

2 X, =Fs 3 Xio=Fio —1Fi34+2F 6
2 1FuL 3 X1 =Fes +1Fas

4 X;=F, 3 X =Fi3

4 Fas 5 Xi3=Fy33

4 Fio 5 X4 =Fip7+2F »

2 =1Gy, 3 Xis =+ Fo3s

3 =21Gj 5 X6 = ,1]—2 Fio33

5 =2G 23 4 X7 =Fin3

5 2G ps 6 Xig=Fi24

in the Appendix, but they can be written in a compact way
using the definitions

B = §PAT— 5P, T = e Al (2.03)

These are the lowest-dimensional Lorentz tensors that are
linear in the momenta and transverse without introducing

kinematic singularities. /4”” is transverse to the momentum
AF, whereas &) “ is transverse in all Lorentz indices:

AP =0, A = 0, etc. With their help we define
Compton basis tensors of the form

1
R =5ty ARV SN A

G/w _ (t/m/) uﬂ(r

ggf/) y[)’o'){K(l/i K/)o’} (224)

which are dimensionless and manifestly transverse with
respect to Q" and Q. They define our transverse basis in
Table I, with the K given in Table XV.

To arrive at more explicit expressions, we further define

e = 1B = A - B&" — B'AY,

Y = VB — gl AagP (2.25)

where A#, B* stand for the four-vectors p#, Q¥ and Q.
These expressions are quadratic in the momenta and also
manifestly transverse: #,, = ¢, is transverse to A# and B
whereas €5 = €5, is transverse to A and B in both Lorentz
indices. With their help the Compton tensors in Table I take

the form
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X=X =i,

X5 = % loolde X4 = % 6o P"P g0

X = ), X = e,

X = (et — e 1),

Xp = U ety + el 50 (2.26)

etc. For X4 and X%” we have extended the definition (2.25)
to also include y-matrices [see Eq. (A15) for the definition
of the triple commutator]:

1

, 1
e = rse Py Al = [t AL = Al L AL

Note that the denominators of X%’ o |5 ;¢ in Table I do not
lead to kinematic singularities because they are matched
by corresponding factors from the K% which enter in
Eq. (2.24).

By construction, all basis elements X** and K’” are even
under photon crossing and charge conjugation, i.e., they
satisfy the requirements of Eq. (2.19):

X" (p, 0, Q)=X"*(p,-0,-0Q"),

Xi“(p, Q' Q)=CX(=p, -0, -Q)TCT.  (2.27)
The systematic (anti) symmetrization and use of commu-
tators ensure that all tensors are either even or odd under
these operations, and with appropriate prefactors 4, @ and
Aw they become symmetric. Because these are also the
symmetries of the Compton amplitude, the resulting CFFs
are even in A and @ so that they can depend on these
variables only quadratically. Bose symmetry and charge
conjugation amount to a permutation-group symmetry
S, x S, and therefore the CFFs corresponding to Table I
are permutation-group singlets.

For a given tensor X% in Table I, the number 7 counts the
powers in the photon momenta. It can be read off from the
definitions (2.24) and the K?" in Table XV: each four-
momentum Q#, Q¥ as well as the Lorentz invariant A
contribute n = 1, whereas w, 1, and #_ contribute n = 2.
In principle this is useful for the construction of minimal
bases characterized by the lowest overall photon momen-
tum powers [50]: collect all linearly independent tensors
with n = 2, then proceed to n = 3, etc.

For example, for Compton scattering on a scalar particle,
which only involves the tensors X/” 5, the minimality is
tied to the alignment n = {2,2,4,4,4}. On the one hand, it
is not possible to find more than two tensors with n = 2
unless one divides by kinematic variables, which leads to
kinematic singularities in the basis elements. On the other

hand, replacing tensors in the set by others with higher n
introduces kinematic singularities in the CFFs, because
those higher momentum powers must be matched by
respective denominators in the CFFs. For example, in
Tarrach’s original basis [29] the following tensor with
n = 6 appears:

Aw
Fi'o = I (tyotyo = o y150)- (2.28)

Noting that the resulting basis is not minimal, it was
subsequently exchanged with X} = F4 which is still
linearly independent but only has n =4. (In Tarrach’s
notation X4 « 74y and the bracket above is identical to
—7£", cf. Table XVII in Appendix B 1.) Thus, only those
transverse bases that are free of kinematic singularities and
satisfy n = {2,2,4,4,4} are minimal and guarantee the
absence of kinematic dependencies in the CFFs. [As a
caveat, see the discussion below Eq. (2.44).]

Unfortunately, for the X} |, the counting is obscured by
the contraction with the on-shell projectors in (2.3). The
resulting Gordon identities can raise the photon momentum
powers so that the definition of 7 is no longer meaningful.
Scalar Compton scattering is an exception because the first
five tensors do not involve y-matrices and can be pulled out
from Ay (py)...Ap(p:)-

In any case, the X; basis in Table I is minimal because no
division is necessary in its derivation (see Appendix B).
This is signalled by the fact that all CFFs in Tables 1V, VI
and IX below are free of kinematic singularities and no
kinematic factors appear in their denominators. Any basis
transformation whose determinant is a constant preserves
this property, i.e.,

X =U,X;

i X det U = const.,

(2.29)

because otherwise the transformation would become sin-
gular at specific kinematic points. The standard example of
a minimal basis is Tarrach’s (modified) basis [29] which is
given in Table XVIIL
We constructed the X; in Table I to facilitate the physical
interpretation:
(1) X and X, are the Compton tensors that survive for a
pointlike scalar particle (cf. Sec. III);
(i) X, and X, are the tensors for a pointlike fermion,
such as the electron in tree-level QED (see Table IV
and Sec. IV O);
(iii) X, and X3 are the tensors for a scalar 7-channel
exchange, i.e., the CFFs ¢, and c3 have scalar poles
(cf. Sec. II in Ref. [50]);
(iv) Xg is the tensor for pseudoscalar 7-channel exchange
and therefore cg contains the pion pole.
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C. Kinematic limits

We conclude this section with a discussion of the various
kinematic limits. As is well known [1,29,30], the 18 CFFs
in general kinematics collapse into four CFFs in the
forward limit, six CFFs in RCS and 12 CFFs in VCS.
With the notation in Table I and Eq. (2.26) these properties
are comparatively easy to derive.

In the RCS limit both photons are real (7, = o = 0).
In that case all instances of t’é‘fQ, and t‘é"Q, which up to

factors Q> and Q7 are the transverse projectors, vanish
after contraction with the transverse polarization vectors:

g*ll(Q/)tléa,'Q/ — Ql2€*a<Ql)Qi:>00,

@ 61(0) = 0%(0)%=0. (2.30)

For example, one can see from Eq. (2.26) that the tensors
X3, X4, X5, X7 and Xg vanish in RCS. In total only six
tensors are non-zero, namely X, X5, X¢, X9, X;; and X,
and thus the RCS amplitude is described by the corre-
sponding six CFFs which depend on #_ and A?. Their
relations with the RCS amplitudes A; defined in
Refs. [51,52] can be found in Table XVIII in
Appendix B. In the limit n_ — 0 and A — O they are
related with the nucleon’s static polarizabilities: the electric
and magnetic polarizabilities @ and S,

a—+ c
p m- ¢
and the four spin polarizabilities
YEIEL ce +4cy —4cp
YMIMI | Qem | —C6 — 2C10 +4C12 (2.32)
YEIM2 2m* cg+2¢ci0
YM1E2 —Co

The forward polarizability y, and so-called pion polar-
izability y, are their linear combinations

2 c
[70} - “Zm[ I . (2.33)
Yr m* | cg+ ¢+ i —2cq2

The magnitudes of the CFFs in this limit can be
reconstructed from the experimental results for the polar-
izabilities as well as from ChPT and dispersion relations
(see e.g., Table 8 in Ref. [1] and Table 4.2 in [5] for
compilations). For example, the O(p?) heavy-baryon
ChPT calculations for the polarizabilities yield [53,54]

_Cl :| Tmgpa |: 11 :|
= —C s

cH 4m, 1

B C6 12 - gA

c 2

S i L (2.34)
C11 my —94a
LC12 0

where the first term in cg is due to the 7-channel pion pole.
Here, m, and f, are the pion mass and decay constant, g, is
the nucleon’s axial charge and we abbreviated

cdafm)
3 \dnf,

Note that the CFFs diverge with powers of 1/m, in the
chiral limit.

In the VCS limit (7, = w) one has Q"> = 0 and thus only
the outgoing photon is real. Only instances of Z”Q‘fQ, vanish

(2.35)

upon contracting with polarization vectors, such as X3 and
X, in Eq. (2.26), whereas others such as X, and Xg become
linearly dependent. One arrives at six relations

Xy = -1 X7,
X;=X4=X1;3=0, X16 =11 Xs, (2.36)
Xig = —n:X17
which leaves 12 independent CFFs in VCS:
€1, Co €10, Ci4s
€, €7=1n4C8, 11, Cistnpce (2.37)
Cs, Co, Ci2, €17 =14 Cig-

They are functions of 57, _ and 4. In the limit7_ — 0 and
A — 0 they are related to the nucleon’s generalized polar-
izabilities [1,6-9], which can be reconstructed with the help
of Table XIX in the Appendix.

In the doubly-virtual forward limit, which is defined by
n. =n_ = Q*/m? and @ = 0, both photons are virtual but
because of Q¥ = Q'# many basis tensors vanish or become
linearly dependent. In the simpler cases this can be read off
directly from Eq. (2.26), e.g.,

1 0
T a o v "
X3 = 1l00Go = 3loo =M X7,
v 1 v

etc. Note also that

1 2n
Hvo W% 2 MU + . v
X5 _im—3<Q &o—0 E’éy)—ﬁlé‘”
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so we can drop the factor n, and thereby define a new
tensor with a lower power n = 1. In total only four
independent tensors survive in the forward limit:

w1 pa w1 gw

X =5 toptho Xy = atop: (2.39)
v v __ A a ’
XI74 _%w;éy’ X72_W[féy’t%]’

whereas X6 = X8 = Xg = X14 = X16 = X18 =0 and the
remaining ones can be related to them:

X3 =n.X,, Xy =222X; + %’1+X12
Xy = Xy =Xy, Xi3 =n.Xp,

X5 = =22°X,, Xis = =21, X7 = X,
X0 = —’7+)~(7, X7 = 22%X,.

The forward Compton amplitude—more precisely, the
bracket in Eq. (2.3)—then becomes

[] = E']Xl + 52X2 + 5'35(7 + E4X12, (240)
where the four CFFs depend on 7, = 7_ and 4*:
Cp =1 +nicy,
¢y = ¢y 03— A(cq + 2¢5 = 2¢19),
&3 =n4(2c7 — 19 — 2¢15) 4+ 24%¢yy,
_ 1
Cy =C1p—Cy5 +’7+<C13 +ZC“>' (2.41)

Their relations to the forward amplitudes 7', and S,
defined as in [5], whose imaginary parts are proportional to
the nucleon structure functions, are given by

Tl 1251 + 77+Z'2
Tl 0 | 8 4
S, 222,

From their expansion around ny =1 = ® =0 one can
extract several further relations such as the one for the
longitudinal-transverse polarizability o r:

20em
orr = T (c11 —cip+cys).

(2.43)

Another example is the doubly-virtual but off-forward
VVCS limit, where Q* = Q"> and therefore w =0 but
n, #n_. Also here the tensor basis becomes redundant,
however in a way where kinematic singularities cannot be
avoided. The characteristics already appear in scalar
Compton scattering defined by the tensors X; s,
cf. Refs. [18,29,33,34]. In terms of the K; from Table XV

one can see that Ks = Kg = K79 = 0 for @ = 0. At first
sight this does not seem to affect the X; because Table XVI
still implies

Xl = /IZKI + 7’]_K6 + K7,

Xy =n_-K, - Kj,

X3 =Ky +n_Ky =1, Ky,

X5 = —2*(2n, K| — K4) —n. K7 +n_Ko. (2.44)
However, the combination®
niXy + X3 —n_X4 +1,Xs =0 (2.45)

vanishes, as one can verify, and thus one has a nontrivial
relation between the X; which cannot be solved without
introducing kinematic singularities. In the limit @ = 0 one
then needs a redundant basis to avoid them. In general
kinematics there is no problem: the 18 CFFs and corre-
sponding tensors are regular in the limit @ — 0; only when
they collapse into fewer independent functions those func-
tions can acquire kinematic singularities.

II1. SCALAR COMPTON AMPLITUDE

To illustrate the procedure of working out the resonance
contributions, we start with the tree-level Compton ampli-
tude for a pointlike scalar particle as a template; see also
Refs. [33,34,55]. With the momentum definitions in
Eq. (2.7) the Born terms in Fig. | read

Iy (p.0.0") =*(pf, Q")D(p + 2)I¥(p}. Q)
+I*(py,—Q)D(p = E)I*(p; . —0Q").

The scalar propagators depend on the s- and u-channel
momenta p £ X; at tree level they are given by

1 1 1

Dp+%) = =
(p£2) (pxX)?+m> m*n_F22

(3.1)

The arguments of the scalar-photon vertices are the photon
momenta Q, Q' and the average momenta of the scalar
particle:

(3.2)

H,

|

Q
LS

The tree-level vertex is IT'#(k, Q) = 2k* and its charge
conjugate is defined as T*(k, Q) = I*(—k, —Q) = —2k*.

This is the tensor Awts/ m* in Tarrach’s basis, cf. Table XVII,
which vanishes for @ = 0.
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The Born contribution thus becomes

[ _ _i piﬂtp}ru pi—ﬂp;u
B m? |\n_ =21 n_+2A

8 K N o
=ian [’7—(73”(’5 > K } (3:3)

where the K%* are the tensors from Table XV:

orQr p'pY
K% = e K = s
)
K7 = 2 (p'Q" + Q"p"). (3.4)

Note that the s and u-channel poles at 7_ = £2/ enter the
denominator in combination and thereby ensure crossing
symmetry.

Comparing this with Table X VI, we can recast the result
in terms of the transverse tensors X%* from Table I,

Iy = 2 ar (@ X + e,X5) = 2K, (3.5)
and read off the resulting CFF residues:
6‘1 = —8, 52 = 27’]_ (36)

The Born term is not gauge invariant due to the
remainder proportional to K% = &%, but this is only so
because the scalar theory has a pointlike seagull interaction
similar to the rightmost diagram in Fig. 1:

Mia(p. 0.0') = 25" (37)
Adding it cancels the gauge part and ensures that the full
Compton amplitude Iy + I}, is transverse. As a result, it
is completely specified by ¢, and ¢,.

One could generalize the discussion by calculating
corrections to the propagator, the vertex, and the 1PI
structure part, e.g., in an effective field theory. As long
as the theory respects electromagnetic gauge invariance, the
resulting Compton amplitude is fully transverse. The most
general form of the offshell vertex allowed by gauge
invariance, which is free of kinematic singularities, is

TH(k, Q) = 2 k¥ + fotb k. (3.8)
tiyp is defined in (2.25) and f,, f, are functions of k?,

w = k- Q and Q?. The form factor f, is determined by the
Ward-Takahashi identity (WTI)

Q'T*(k.Q) = D(k;)~™' = D(k_)™!
-1 _ D(k_ -1

D(k.) )

=>f1: ’
Py

(3.9)

with k, = k4 Q/2 and thus k2 — k% =2k- Q, so that
only f, carries dynamical information.

The recipe for deriving Eq. (3.8) is the same as for the
more complicated cases in the following sections, such as
the nucleon-photon vertex in Sec. IV, the nucleon-to-
resonance transition vertices in Secs. V and VI, and finally
the Compton amplitude in Appendix B. We start with the
general decomposition

I'(k, Q) = ajk* + a,wQ*, (3.10)
where w = k- Q ensures the correct charge-conjugation
parity: T*(k, Q) = —I"*(k, —Q). As a consequence, a; and
a, are even in w and only depend on w?. Next, we derive
the transverse part of the vertex by solving

O'T*(k, Q) = w(a; + a,0%) = 0. (3.11)
This must be done without introducing kinematic singu-
larities, i.e., we must solve for a; (and not a,) which leads
to the transverse part o« f,k”. Relaxing again the trans-
versality constraint, we then add the term « k* that we
eliminated (and not Q*), which constitutes the gauge part
and leads to the result (3.8). Finally, solving the WTI in
Eq. (3.9) determines the coefficient f7.

The same procedure is carried out in Appendix B to
derive the tensor basis for the Compton amplitude itself,
although in that case the gauge parts must vanish because
the amplitude is transverse. In general neither the Born
terms nor the structure part alone are gauge invariant, but
one can project them onto a complete basis where the sum
of the gauge parts must cancel in the end like in the simple
case (3.5)—(3.7).

In the following we are interested in the nucleon Born
terms and nucleon resonance contributions to Compton
scattering. In those cases one can enforce gauge invariance
from the beginning by imposing appropriate constraints on
the vertices (which is also possible because there is no
seagull term for fermions).

IV. NUCLEON BORN TERM

Returning to nucleon Compton scattering, the Born term
for the nucleon has the form

Ty = A (py)[T*(pf, Q)S(p + 2)™(p}, Q)
+T¥(p7, =0)S(p = )T (p; . —Q)]A (Pi)-

Here, I*(k,Q) is the dressed offshell nucleon-photon
vertex that depends on the average nucleon momentum

(4.1)
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k and the total photon momentum Q. pjf and pi were
defined in (3.2). The charge-conjugate vertex is

[*(k, Q) = CT#(—k,-Q)"CT, (4.2)

where C = y*y? is the charge-conjugation matrix that
satisfies CT = C~! = —C. The charge-conjugation sym-
metry of the nucleon-photon vertex amounts to

D (k. Q) = ~I"(k. ~Q). (4.3)

The Born term (4.1) shares the symmetries of the full
Compton amplitude, namely Bose (photon-crossing) and
charge-conjugation invariance as in Eq. (2.19).

The nucleon propagator and its inverse are given by

1 i+ M(K
S0 =% A(K?) K>+ M(k*)*”
(k)™ = A(R) (i + M (k) (44)

where M(k*) and A(k?) are momentum-dependent func-
tions. In practice we treat the nucleon as a constituent-like
particle and set M (k*) = m and A(k*) = 1, which holds on
the mass shell k> = —m?, but to keep the discussion general
we will retain the momentum dependence in the following
two subsections.

A. Offshell nucleon-photon vertex

First we derive the general form of the offshell nucleon-
photon vertex. The discussion is based on the quark-photon
vertex [27,56,57] but it can be equally applied to nucleon
resonances. The kinematics are sketched in Fig. 4; k. =
k + Q/2 are the incoming and outgoing nucleon momenta.
Electromagnetic gauge invariance leads to a Ward-
Takahashi identity (WTI) for the vertex,

Q'Y (k. Q) = Z[S(ky)™' = S(k_)7'].  (4.5)

with Z = 1 (£ = 0) for the proton (neutron). It can thus be
written as the sum of a “gauge part” and a transverse part,
where the former is constrained by the WTI:

I (k, Q) =T§(k, Q) + T (k, Q). (4.6)

In the case of a nucleon resonance the r.h.s. of Eq. (4.5) is
zero and the vertex is purely transverse.

To derive both contributions, we start from the general
offshell fermion-photon vertex for a spin-1/2 particle:

Zh w, QVith(k, Q). (4.7)

The h; are Lorentz-invariant functions, with w = k- Q, and
the 7/ are the 12 possible tensors permitted by Lorentz

1
covariance and parity invariance:

Ity (k, Q)

N(R) N

FIG. 4. Kinematics in the nucleon-photon and N — 1* tran-
sition vertex.

4 ikt iwQ"

iwly! K] kK wo" K
iiy".Q]  wk'p QP

. K0 kK. Q] iwQ"[K. O]

(4.8)

We took commutators and attached factors of w to ensure
that they all share the charge-conjugation symmetry (4.3) of
the full vertex, so that the &; are even in w and only depend
on w?. We label the tensors column-wise: 7{ ,, 75 ¢ and
7y 1, are the elements in the first, second and third column,
respectively.

To derive the transverse part of the vertex we work out
the condition Q#T* = 0. The contraction produces four
independent tensors ~1, 0, ¥, [¥, ] and thus four relations
between the dressing functions, which must be solved so
that no kinematic singularities are introduced in the
process. The result

hy = —w?h; — Q*hyy,  hs = —Q%hy,

(4.9)
hy = hg + Q%hyy, he = —Q%hyg

is almost unique: without dividing by factors of Q2 or w?,

our only freedom is to solve for either /4, or hg. Substitution
into (4.7) yields the transverse vertex

8

Dk Q)= fu(kRw.QY)iTh(k.Q),  (4.10)

n=1

where the f, are the remaining independent functions and
T% the transverse tensors in Table II. This defines a minimal
basis where transversality and analyticity are manifest: the
T', are transverse and regular for Q# — 0 and the f, are free
of kinematic singularities at Q> — 0 and kinematically
independent.

The remaining gauge part in (4.6) can only depend on the
tensors for iy, h,, hs, and hg that we eliminated under the
assumption that the vertex was transverse; these are the G}
in Table II. Putting them back into the WTI (4.5) together
with the nucleon propagator (4.4) determines their coef-
ficients and leads to the Ball-Chiu vertex [58]:

IG5k, Q) = iZ[ZAGY + 2m* A, G — 2mARGY).
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TABLE II. Top: Eight tensors 7% constituting the transverse
part | (k, Q) of the offshell nucleon-photon vertex without
introducing kinematic singularities. ;5 and the triple commutator
are defined in Egs. (2.25) and (A15). Bottom: Four tensors G% of
the gauge part I'; (k, Q). We attached powers of the nucleon mass
m to make all tensors dimensionless.

m*TY = t5or" m3Ts = t”Qlk
STM QQW [7/ m 4Tﬂ kbk

e T =

weTs = L 4, ) WA = 3

Gl =y mGhy = ikt

m>Gh = k'} m3Gy = wiy* K

It is fully specified by the nucleon propagator and depends
on sums and difference quotients of the propagator dressing
functions A(k?) and M (k?):
F(k%L)+F(k2) A F(k%)—F(k?)
K-k
+ —_—

T = (4.11)

2 TR

where F € {A, B} and B(k*) = A(k*)M (k?*). Note that G/,
drops out as a consequence of electromagnetic gauge
invariance. For a tree-level nucleon propagator the gauge
part reduces to I';(k, Q) = Ziy*.

We should emphasize that the gauge part is not longi-
tudinal. One could equally split the vertex into longitudinal
and transverse parts, where the longitudinal tensors are
proportional to Q" and defined by the rightmost column in
(4.8). In that case the WTI would still only affect the
longitudinal part, but because the transverse projector has a
kinematic singularity at Q> = 0 the longitudinal and trans-
verse dressing functions would become kinematically
related at the origin and/or show kinematic zeros. Thus,
in analogy to Eq. (3.8) for the scalar vertex, only the
separation into I'; and IY| ensures that the resulting
dressing functions are truly kinematically independent.

B. On-shell nucleon-photon current

The onshell current follows from sandwiching the vertex
between nucleon spinors (or positive-energy projectors)
and taking the nucleon momenta onshell:

Ji(k, Q) = Ay (k

The limit k2 = k2 = —m? entails k* = —m? — Q*/4 and
w = 0, so the only remaining independent variable is Q.
The 12 offshell tensors collapse into two, G4 and T%, by
means of the Gordon identities in Table III. The current
takes the standard Dirac form:

I (k, QA (k (4.12)

- ) | onshell

Pk Q) = iA (k) [Fip? + 52 0 [ A (k). (413)

TABLE III. Combinations of tensors that vanish in the on-shell
projection (4.12). We abbreviated 7 = Q?/(4m?).

T, —41G, T,

T, Ty —27(G, —4T3)
T, +21G, +Ts Gy + G —1T;
Ts+4t(G, —1T3) G3+ G —1T;
Ts+47(Gy —1T3) en

where F|(Q?) and F,(Q?) are the onshell Dirac and Pauli
form factors.

Even though the offshell current has a gauge part,
it becomes “accidentally” transverse in the on-shell pro-
jection (4.12):

QA (k. )r A (k- (4.14)

) |0nshell = O’

and the same is true for the remaining tensors G},

because w = k- Q = 0 on the mass shell. It follows from

Table III that the gauge part contributes to F; and F5:
Fi(Q%) = Z[Z4 + 2m(Ap —
Fy(Q%) = —2mZ(Ap —

Ay +

mAL) + -, (4.15)

where the dots refer to the transverse pieces. On the mass
shell, however, the nucleon propagator is that of a free
particle and therefore £, =1 and Ay = Az =0. As a
result, the Dirac and Pauli form factors are related with the
off-shell dressing functions via

2
2 [fl L <f5+f6—fgﬂ

2
Fa(0%) =2(fs - 1) + 2 <fs fe —@>

Fl(Qz) =
(4.16)

with the f, evaluated at the onshell point.

C. Compton form factors

With the off-shell nucleon-photon vertex at hand, we
proceed to work out the Compton form factors for the
nucleon Born term (4.1). Although the Born term does not
contribute to nucleon polarizabilities, it is still relevant for
two-photon exchange effects to form factors.

We restrict ourselves to the tree-level propagator

—if+m

Sk) =————,
(k) k* + m?

(4.17)

and instead of the full vertex in Eq. (4.6) we employ the
“Dirac form” for the off-shell nucleon-photon vertex:

M
Di(k, Q) = i<F1G’1‘ L %) (4.18)
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With the definition of charge conjugation in Eq. (4.2), the
charge-conjugate vertex I*(k, Q) differs from the above
only by a minus sign in front of the F| term.

While the Dirac and Pauli form factors F;(k?, w, Q%) in
these expressions are offshell, we will identify them with
their on-shell expressions F;(Q?) since this is the only
information we can gather from experiments. Employing the
Dirac form is also the minimal requirement for keeping the
Born term gauge invariant [59]. We would lose trans-
versality if we

(i) equipped F,,(Q?) with a k* or w dependence,

(ii) added other tensors G 5, from Table II,

(iii) but also other tensors T% (except for T%) because
they lead to interference terms with G4 from the
second vertex,

(iv) or if we implemented momentum-dependent dress-
ing functions in the nucleon propagator with ram-
ifications for the gauge part of the vertex.

This is all due to the gauge part in the vertex and does not
happen for the nucleon resonances which we consider later.
It is also not a serious conceptual problem because the two-
photon WTI allows one to construct a gauge-invariant
completion of the Born term for a general offshell
nucleon-photon vertex and nucleon propagator, which can
be found in Ref. [27]. A simpler alternative is to project the
(nongauge-invariant) Born term onto a full basis and after-
wards retain only the transverse part, since all non-transverse
pieces must cancel when they are calculated from some
consistent underlying theory. We will not further pursue this
here and instead provide examples in Appendix B 4.

Inserting the above expressions into Eq. (4.1) yields four
mixed terms F;(Q”)F;(Q*) = FjF;. We take their sym-
metric combinations

HIZF/IFl’ HZZF/ZFZ’

_ FF, + FyF, _ F\F, - F,F,
- 2 ’ B 2w ’
with @ defined in (2.6). Note that H,(w — 0) is regular.
The nucleon Born term then takes the form

H, H, (4.19)

1 18

Ty = oYe 121: &AL (p)XT AL (pi)].  (4.20)
where the resulting CFF residues ¢; are collected in
Table IV. For a pointlike fermion (F; =1 and F, = 0)
only ¢; = —4 and ¢,y = 2 survive, i.e., X} and X defined
in Table I are the Compton tensors of a structureless
fermion such as the electron in tree-level QED.

Because Q2 and Q'? are linear combinations of 7, and o,
the H; can only depend on 7, and »*. In addition, the CFF
residues in Table IV depend on the variable A at most
quadratically (which is also true for the resonance terms in
Tables VI and IX below). It is then customary to rearrange
a—42*b = (n2 —42*)b + (a — n*b) and split the CFFs
into nonresonant and resonant terms:

TABLE IV. Compton form factor residues for the nucleon Born
term. The H; are defined in Eq. (4.19). The remaining ¢; are zero.

¢y =—(4H, +n_H,)

¢y = —n_(Hy +2H5) + 2*H,

Co =n-(Hs —in Hy)

o =2(Hy + H3) =3 (n. —n-)H,
¢y =—-H,

¢rn=—(Hy+Hs) — 5 (ne —n-)H,
¢y =1H,+H,

&5 =—1n_H,
Ci © etV
ci:m:ci +m, (421)
where cg()) and cgl) no longer depend on A°.

In Fig. 5 we plot the ¢&; from Table IV inside the TPE
cone shown in Fig. 2, using simple multipole parametriza-
tions for the proton’s Dirac and Pauli form factors [60]. The
bands show the variation with 7_, @ and A, which turns out
to be almost negligible. Therefore, the dependence on the
four variables effectively collapses into a one-dimensional
dependence on 7, . This is the typical behavior also for the
resonance Born terms in the following sections, which
happens in different systems as well [50,61,62]: when
implementing Lorentz invariance, permutation-group sym-
metries and minimal tensor bases, the potentially compli-
cated momentum dependencies of three- and four-point
amplitudes often collapse into a simple one-dimensional
dependence on the symmetric variable, which in our case
is 5.

In passing we can also verify the low-energy theorem by
Low [63], Gell-Mann and Goldberger [64]. In the forward
limit where 7, = n_ = Q*/m?* = Q'?/m?, the contribution
from the nucleon Born term to the forward amplitudes
A; ={T,,T,,28,,-S,/A} in Eq. (2.42) is

sp T s 1 sF 1 s R
OK 0 0 0
0 05 1

5 5t ) 1 -5t ) 5 )
0. 000 05 1000 05 1000 05 1.0
5 { s} ' 1 s 1 5
C11 C12 C14 C15
0 /,,7 0 0 0
_5- | . /%/'j j | |l | |
00 05 1000 05 1000 05 1000 05 10
N+ N+ N+ N+
FIG. 5. Compton form factor residues from the nucleon Born

term inside the TPE cone and plotted over the variable 7 .
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(1
470ty (0) A:
A =—— | -A; -t 4.22
! m < it 0 - 4/12> ’ (4.22)
where
Fi -Gy
0 _(4F* _F?
ASO) ~ 17 Agn _|n (4F7 +n_F3) (4.23)
F3 dn_F Gy
0 2F,Gy

and Gy, = F| + F, is the proton’s magnetic Sachs form
factor. In the static limit (y_ = 1 = 0) the amplitude T,
vanishes according to Eq. (2.42), except when the CFFs are
singular. The only singularities in that limit come from the
nucleon Born terms, as illustrated in Fig. 3, which produces
the Thomson term in 7T';:

470y,

Tl - TTOIEL,]_:l:O - - Zz. (4.24)

V. SPIN-1/2 RESONANCES

We proceed with the discussion of J = 1/2% resonances.
In Sec. VIIA we will explicitly consider the Roper
resonance N(1440), the N(1710), the nucleon’s parity
partner N(1535) and its first excitation N(1650), and the
A(1620). However, the following considerations are valid
for all J = 1/2% states. In these cases the resonance ‘Born
terms’ conceptually enter in the structure part of Fig. 1. It
has the same form as in (4.1),

Y = A () [Tk Q)Sk(p + 2Tk (P} Q)
+ Th(p7, —0)Sr(p = D)Tk(Pr, —Q)AL (1),
(5.1)

except that Sg(k) is the propagator of the resonance and
[k (k, Q) the nucleon-to-resonance transition vertex.
Equations (3.2) and (4.2) remain valid, but the transition
vertex is no longer charge-conjugation invariant because
the fermion legs correspond to different particles.

In view of a compact notation we abbreviate

p="Fk_ V149,
m
5 _mpEtm _ r+l1
T 2m 2
+ 2 2
jo = meEMTO L n (5.2)
4m

with § = 45, 5_ from Eq. (2.16) and v = Q?/(4m?).

A.N —> %i transition current

The off-shell transition vertex requires no separate
derivation because we only need to drop the gauge part

from Eq. (4.6). The WTI simplifies to the transversality
condition
0Tk (k, Q) =0, (5.3)

so the vertex is purely transverse and can be expressed
through the eight tensors 7% in Table II:

Tr(k.Q) = [ ]ZfR W, QN)iTh(k. Q). (5.4)

where the upper (lower) entry holds for resonances with
positive (negative) parity.
The on-shell transition current is analogous to (4.12),

Ja(k. Q) = Ak )Th(k. QA (k_ (5.5)

) | onshell»

except that “on-shell” now refers to the kinematic limit
k2 = —m?, k% = —m%. Therefore,

5 m?
2=—-m*(1 = =—— .
k m( +T+2), w 25 (5.6)
and the positive-energy projectors are
—if + mp —if_+m
A (k) =—F, A (k) =—F—— (57
Hlk) == 0 ) == ()

Also in this case the eight tensors collapse into two
structures on the mass shell; the corresponding identities
are given in Table V and slightly differ from before. In
combination with (5.5) we can write the on-shell current as

I (k. Q) = IU } <F1T’]‘ +F2T7§). (5.8)
5

To avoid clutter we use the same notation for the form
factors as before (F; and F,) but they should not be
confused with those of the nucleon.

The notable difference here is the appearance of 77
instead of G/ because the latter no longer appears in the off-
shell current. It is usually written as

TABLE V. Combinations of tensors (defined in Table II)
for the off-shell nucleon-to-resonance transition vertex that
vanish in the on-shell projection (5.5) in the positive-parity case.
For negative parity, replace §, <> —6_. The variables 6, .. and 7
are defined in (5.2).

Ty)+%66_T,
Ty+3T,+6,T;s
TS + 5+T1 bl 2TT3

T6 + 5+(5+T1 - 2’1'T3)
T, —186_Ts
Ty —%(6,T, —2tT5) + 62T

093007-14



NUCLEON RESONANCES IN COMPTON SCATTERING

PHYS. REV. D 98, 093007 (2018)

2
F\T" = Fiy" ~r=Z2p
141 17 L 1 m2 15

(5.9)
where 7/, = y* — QQ*/Q? is the transverse projection of
the y-matrix. This quantity has a kinematic singularity at
Q% — 0, which must be compensated by a kinematic zero
in F;. Therefore, F;(Q* — 0) =0 is a consequence of
transversality and analyticity and holds for all J = %
resonance transition form factors alike. This (trivially)
exemplifies the advantage of using constraint-free tensor
bases: if the current is written in terms of 7%, the form factor
F, approaches a constant and non-zero value for Q% — 0.

B. J* =%i resonance Born terms

The offshell transition vertex does not have a gauge part,
so there is also no restriction in the sense of Eq. (4.18)
because all eight tensors result in a transverse Born term
and there are no gauge parts to interfere with. However,
experiment only provides information about on-shell form
factors, and therefore we restrict ourselves again to tree-
level propagators

. —ik—l—mR

Sp(k) =———~ (5.10)
k? +m%e

and form factors F;(Q?) and F,(Q?) only:
1 T
% (k, Q) = l|: ] <F1Tlf +F273>,
s
(5.11)

_ "\ [ 1
h(k, Q) =i —F\T| + F, = ,
2 Vs

where upper (lower) entries correspond to J* = %Jr (%‘).
In analogy to (4.19) we employ the symmetric combi-
nations

! A ! !
 FiF+FIF,  FiF,—FF, 5.12)
v 2 ’ v 2w '
but we redefine the H; as
Hy = (1} — @*)Zy, Hy =ZXp,
Hy =n.Zp— Ay, Hy =185 — Zpp. (5.13)

If we replaced (Q?/m?)F; — F; they would coincide with
our earlier definition (4.19) for the nucleon.

The Born term for an intermediate nucleon resonance
then becomes

1,
Fpln;z = BZ Ci[A+(Pf)X¢”JA+(Pi)]’

i=1

(5.14)

where the resonance pole is given by (cf. Eq. (2.15)

TABLE VI. Compton form factor residues for a JP :%+

resonance. The H; are defined in Eq. (5.13) and 6, 6. in (5.2).

¢y =—4H, — (n_ + 6)H,
& = —(n_+8)(6,H, +2H;) + 2°H,
Gy =40_(n- +06)%y

Z‘4 = —45211

ES — 0

Go=—6H, +6_(n- +8)Hy +n_(Hs —1n H,)
&7 = =26_(n_ + &)1 = 28(n, Tyy + T1a) + 16H,

Cg = —26_(n- +6)A1, —26(Z; +App)
Eg :0

10 =2(H, +H3) —3(n, —n_—6)H,
= _H2

= —(6.H, + H3) _%(’H —-n_)H,
—462%,,

:H4+%H2

—8(n 211 + Zn) —3n-H,

8(Z +Ap)
—45_%,,

—45_Aj,.

o =

—
w2

O
I

>
[

17

AL OOl O O O O o1 o
B~

18

(s — mp) (u — my)

m*

D =

=(n_+08)2—422.  (5.15)

The CFF residues &; for J* = 1/27 are given in Table VI.
For mz = m and with the replacement (Q*/m?)F, — F,
they coincide with Table IV as they should.

The case of negative-parity resonances requires no
separate discussion: the vertices only differ by y5 factors,
so that in the Born term (5.1) we must replace

S(pxX) = ysS(ptT)ys =S(-(p£Z)). (5.16)

With Eq. (5.10) this only amounts to a global sign switch
together with an exchange mp — —myp, because we defined
the transition currents so that no mjy factors explicitly
appear therein. The CFFs for negative-parity resonances are
then obtained from Table VI simply by switching all signs
¢; = —¢; and exchanging 6, <> —0_.

It is easy to work out the various kinematic limits
discussed in Sec. 11 C:

(i) ) InRCS (n =w=0)H =H; =0 and

Hy =F,(0%,  Hy=—F(0)F5(0). (5.17)

Only the CFFs ¢y, ¢;, ¢g, 19, €17 and ¢y, survive
because the remaining tensors drop out; in the static
limit where #_ =1 =0 they are related to the
polarizabilities through Egs. (2.31)—(2.33).
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(i) In VCS (n, = w) one has

H, =0, H, = F,(Q*)F,(0),

H3 = —11+H4 :ﬂ+F1(Q2)F2(0) (518)
The twelve CFFs in Eq. (2.37) survive and contrib-
ute to the generalized polarizabilities.

(iii) In the doubly-virtual forward limit (p, =#_ and
@ = 0) the CFFs collapse into the four amplitudes ¢;
from Eq. (2.41). Splitting them into nonresonant and
resonant terms as in (4.21), where only the latter
contribute to the imaginary part, one obtains the
resonance contributions to the nucleon’s structure
functions.

VI. SPIN-3/2 RESONANCES

We now turn to J© = 3/2% resonances. Although the
generalization to this case seems straightforward, one
encounters several pathologies related to off-shell ambi-
guities coming from the unphysical lower-spin components
in the Lorentz representations of the fields; see [47,65-69]
and references therein. Such problems can be resolved by
imposing spin-3/2 gauge symmetry on the effective
Lagrangian [47], which leads to additional constraints
for the offshell transition vertex. Here we will derive the
most general off-shell spin-1/2 to spin-3/2 transition
vertex that is compatible with these constraints.

The tree-level Compton amplitude with intermediate
spin-3/2 resonances has the form

Y, = AL ()[R (p+ @)ST (P I)TR (P4 Q)
+ T8 (-, —Q)ST (P TR (P~ AL (i),

(6.1)

where photon indices are denoted by u, v and vector-spinor
indices by a, . Sﬁﬁ (k) is the tree-level propagator for a
spin-3/2 particle and I'f(k, Q) the offshell nucleon-to-
resonance transition vertex. From now on the argument & in
'Y (k, Q) denotes the momentum of the spin-3/2 particle
and not the relative momentum, cf. Fig. 6. We abbreviated
the resonance momenta by p, = p =X The charge-
conjugated quantities are given by

% (k. Q)

S (k)

= Cr‘%ﬂ(_kv _Q)TCTv

= S (—k)TCT (6.2)
and it is straightforward to verify the Bose- and charge-
conjugation invariance (2.19) of the resonance Born
terms above.

The tree-level propagator for a spin-3/2 particle is the
Rarita-Schwinger propagator

Q \~
ek, Q)
k k-Q

a

R N
FIG. 6. Kinematics in the N — 3% transition vertex.

affry —

A%, (6.3)

where mp is the mass of the spin-3/2 particle and the

Rarita-Schwinger tensor is defined as

v&P 2kkP
3 3my

kyP — y kP

AW — 5 _
3imR

(6.4)

It is well known that in the construction of vector-spinors
from the Lorentz-group representations

(%%) ® K%o) ® (...)] - Gl) ® Go> (..

the spin-3/2 part is contaminated by spin-1/2 contributions
from the (3, 1) and (},0) subspaces. The standard way to
isolate them is to define the projectors [70]

. 3 1 a a 1 a. P
°sp1n—21n(2,1>: P372—Pﬂ—§yl;/, (6.5)
*s in-lin ! 1 "ﬁ— o (6.6)

P M2 37T '

1 (1 Y

. spm—zm <§,0) : Pzg = 2 (6.7)

where P = 5% — k*k’ /K2 and y? = P{y/ denote the
transverse projector with respect to the momentum k and
the transverse projection of the y-matrix (with yyq = 3),
respectively. The spin-3/2 projector satisfies

PY kF =0,

P35, Pg/zyﬁ =0. (6.8)

The Rarita-Schwinger field can then be decomposed into
we = (Pz/z + P 1+ P )V/ (6.9)

If we further define (note that y§ anticommutes with )
a1 h 2 p

Y1 ¥ af _ 4 Lk
V3K Ak

the Rarita-Schwinger propagator (6.3) takes the equivalent
form

Py = - (6.10)
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2(—if + mg)

Saﬂ(k) . _lk + mR [p{lﬂ 5
3my,

_ Ipa/i
R k2 + m%i 3/2 22

1
+—=—(Pp + Pyy)*.

N (6.11)

The pole part of the propagator is proportional to P3/,
and corresponds to the spin-3/2 subspace. The regular
terms provide the off-shell spin-1/2 background which
should not contribute to matrix elements such as the
Compton scattering amplitude. In addition, P3/, has a
kinematic singularity at k> = 0 which cannot survive in
observables either.

Both problems can be resolved at the level of the off-
shell vertices that connect the Rarita-Schwinger propaga-
tors in matrix elements. In the case of Compton scattering
this is the transition vertex I'’(k, Q). Demanding spin-3/2
gauge symmetry for effective Lagrangians is equivalent to
imposing the transversality condition kT (k, Q) = 0: if
both ends of the propagator (6.11) are contracted with a
vertex that is transverse in k%, only the pole term ~P3/,
survives because the projectors Py,, P, and [P,; all contain
instances of k% or k’. Hence, a vertex that satisfies
kTR (k, Q) = 0 automatically ensures the absence of
the spin-1/2 background in observables.

On the other hand, the expressions (6.3) and (6.11) do
not yet represent the most general form of a spin-3/2
propagator. They follow from the kinetic term of the free
Rarita-Schwinger Lagrangian £ = y*A%y?, where y* is
the spin-3/2 field and A? the inverse tree-level propagator.
In momentum space it takes the form

i
o =—=[y*.yP].

5 (6.12)

I

This is a special case of a family of Lagrangians which are
related to each other by point transformations [47,65,68];
see Appendix C for details. The Rarita-Schwinger form
corresponds to £ =1, where £ is the respective gauge
parameter. For & # 1, the general propagator is given in
Egs. (C11)—(C12): the pole part remains unchanged, but the
spin-1/2 contributions depend on & and also on the
remaining projectors P;; and (P, — P,;). The latter still
vanishes in matrix elements if the transition vertex is
transverse in k%, but in order to eliminate [P;; one must
additionally impose y*I'y'(k, Q) = 0, which at the same
time ensures the invariance of the Lagrangian under point
transformations. The transversality in both k* and y“ is
therefore necessary to decouple the spin-1/2 background
for £ # 1.
In summary, the resulting three constraints on the off-
shell vertex I'y'(k, Q) are given by
O'TH =0, kTR =0,

yT% =0,  (6.13)

The first incorporates electromagnetic gauge invariance; it
ensures transversality with respect to Q* and therefore also
on-shell current conservation. The second and third rela-
tions are automatically satisfied for the on-shell transition
current due to the properties (6.8) of the projector P53/, (or
the Rarita-Schwinger spinors); however, for offshell gen-
eralizations of the vertex they yield additional constraints
that must be worked out separately. In the ‘Rarita-
Schwinger gauge’ &£=1 the first two conditions are
sufficient whereas the third is only relevant for & # 1.

Finally, these conditions should be solved so that no
kinematic singularities at k* = 0 or Q* = 0 are introduced,
which entails that I (k, Q) must be at least linear in k* and
Q*. The combination of two vertices and a propagator then
also cancels the kinematic 1/k singularity in P4 /2 stem-
ming from the transverse projectors, so that all matrix
elements are free of kinematic singularities. Given such a
vertex, it is sufficient to employ either

a _lk + mpg _ap
S (k) = WP3§2 (6.14)

or the Rarita-Schwinger propagator (6.3) because both of
them produce identical matrix elements.

A. Off-shell N — 3* transition vertex

To construct the general off-shell form of I'Y (k, Q), we
write down the analogue of Eq. (4.8) and collect all possible
40 tensor structures that it can contain according to Lorentz
covariance and parity invariance:

VAl o

OH ka},ﬂ Q(XQ’,{

yayﬂ 7/aVQM kaQ” S {ﬂ’k’ Q? kQ}’ (615)
oyt Q%k!

with an extra factor ys attached for positive-parity reso-
nances. In analogy to the spin-1/2 case we take commu-
tators whenever more than one y-matrix appears in a tensor
element. For example, with the definition (2.25) and the
three- and four-commutators defined in Egs. (A15)-(A16)
we have

YRR = [y K Q) = =246, (6.16)
which already satisfies the first two transversality con-
straints in Eq. (6.13).

In analogy to the derivation of Table II, the solution of
0T =0 and k°TY = 0, where no kinematic singular-
ities are introduced in the process, leads to the resulting 20
tensors in Table VII. Their transversality in k% and Q* is
manifest because they contain instances of e(,f’é 14, or t::j’é
defined in (2.25), or commutators with ¥ or ¢ that vanish
upon contraction with k% or Q¥. When inserted in the
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TABLE VIL
constraints QFT'Y
YT =0 is imposed as well, cf. Eq. (6.17).

ap

20 tensors for the 1/2+ — 3/2% transition vertex I'y' (k, Q), Eq. (6.19), which implement the two
=0 and kT’ = 0 without introducing kinematic singularities. Eight of them are redundant if

2Ta/4 ap m3 T;’” _ ltaﬁ t/f;l

) k0
m*T3" = 1 m T = Lo " 0. 7]
mTY = ityigy  miTS =il I
mT{ = 1150 mTY =Ll )1
m’ TS = itk m* T :%tkaﬂ[Q #]
m’Tg' = ity 0 m’ T = lthkﬂ}/ h

m2 Tt =3[ 1) m’ T = ¢[r" vl
m T = Ll 0. 7] m T =Ll kv,
m* T =3y, ki, m* Tl = 3601 iy
m T = ity K14y miT3 =312 lr’ . 1 1igo

Compton amplitude, these tensors eliminate the projectors
P,, and (P, + P, ) in the propagator so that only the spin-
3/2 pole part survives.

In principle one should also work out the remaining
condition y*T'y' =0 in (6.13), which would leave 12
independent tensors. However, this is not necessary in
the Rarita-Schwinger gauge £ = 1 because the projector
P53/, automatically annihilates the redundant tensors: the
combinations

Ty zw+T1T,-T,, T;-Ts,

Ty—T5, Ts—Ts,
14— 17 18 32 i (6.17)
Ts, Tyo + (k*/m*)T,,
T16’ T20 + T4
vanish upon contraction with P3/,, e.g.,
P, (k)(THs + T3 = T1) = 0. (6.18)

Therefore, the first twelve elements in Table VII are sufficient
when implemented in the Compton amplitude: 75 is
equivalent to T, — T, etc. These relations hold for J¥ =
3/2* alike because y5 commutes with the projector. The off-
shell N — 3/2% transition vertex can then be written as

(k. 0) = H ZfR (k- 0.0)T(k.0). (6.19)

*We note that T,, T, and T5 in Table VII coincide with the
electromagnetic couplings of the effective N — Ay Lagrangian in
Refs [36,47]:

g (D) F¥yr = gyip“ysellp Aty
g (0

and similarly for gc. Here, w“, y and A* are the A, nucleon and
photon fields and F* is the electromagnetic field-strength tensor,
with F* its dual. For comparison, the couplings g; and g,
employed in Ref. [71] correspond to T3 ~T; —T, and T,,
respectively.

JrsFy = gpip®ystip Ay,

where the upper (lower) entry holds for resonances with
positive (negative) parity.

B. On-shell N — %i transition current

The on-shell transition current follows from sandwiching
the vertex I'y (k, Q) between the respective projectors and
taking both momenta on-shell:
JR=A (k)P3/2(k)Fﬁ”(k Q)A

(k - Q) |onshell' (620)

Again, k is here the outgoing momentum of the spin-3/2
resonance and Q is the incoming photon momentum; the
incoming nucleon momentum is k — Q. “On shell” refers to

the kinematic limit (k — Q)?> = —m? and k* = —m%, which
entails
N 1)
k-Q=2m =) (6.21)
The positive-energy projectors are
—i}H—mR —l(k—Q)+m
A (k)=——— A (k—Q)=—"———. (622
=" A=) =T T (622)

For k* = —m3% the two forms (6.3) and (6.11) of the
propagator become equivalent:

ALOPTL(K) = AL (AP().  (623)

so that on shell it does not matter whether we use the
projector 5 /2<k) or the Rarita-Schwinger tensor A% (k).

On the mass shell, the 12 structures in Table VII collapse
into three tensors via the identities in Table VIII: for
example, T4+ T vanishes in the contraction of Eq. (6.20).
The on-shell current then takes the form

104 y 101 0 104
% (k,Q) = [ H (F\TS — F,TS — F3TS),  (6.24)

which defines three dimensionless and constraint-free form
factors F;(Q?). The isospin factors are implicit in the form
factors.
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TABLE VIII. Combinations of tensors that vanish in the on-
shell projection of Eq. (6.20) with I (k, Q) = ysT™, i.e., for

P
resonances with J© = 3/2". For negative-parity resonances with
JP =3/27, replace r - —r and 6, — —6. The variables r, 6
and 6, are defined in (5.2). Whereas the combinations
in Eq. (6.17) automatically also vanish on the mass shell,
the expressions above do not vanish off-shell when contracted
with P3 /2

T, + 1T, To—2(z—%8)T, —2r5. T,
Ts—rT, Ty—41T| —26,T;
T¢—25,T, Ty —r(26_T, =28,T, + T5)
T7—r(T) +T,) 12=2r(2e(T) + T) +6,T3)
Ty —25.T, — T,

With the help of Eq. (6.17) and Table VIII one can
construct equivalent forms: for example, since either 7'; or
T, can be traded for T3 one could replace

FlTl —F2T2—>F1T13+(F1—F2)T2, (625)

which is the combination used in Ref. [71]. The F; have
simple relations with the form factors gz, g, and go of

Ref. [36]:
F
i \/E 2, Fl
9E 35, 21>

9c rF3

(6.26)

but due to the factor A, [defined in (5.2)] gg, gy and g¢
have a slower falloff with Q? and kinematic zeros at 1, =
0 Q= —(mg+m)

Moreover, several equivalent forms for the on-shell
current exist in the literature which are constructed from
tensors different from those in Table VII. While they
respect current conservation, they do not satisfy the second
and third constraints in Eq. (6.13); in the diction of
Ref. [47] they correspond to “inconsistent couplings” in
the effective Lagrangian. An example is the J© =3/2F
current defined by the Jones-Scadron form factors G%, Gy,
and G [48]:

36
l—«ay_\/7 +
R 22m 4/1,1

{ 2 (Gy - Gyl

— Gpelers — Ye Q“kﬁt’g‘g} : (6.27)
The tensor for G7; is related to Table VII via
Q, L k Q Q) Q)
P kg‘e/l?Q = Tzﬂ T4”, (6.28)

but the one for G- has no counterpart because it violates the
second condition in (6.13) and thus cannot be used off
shell. On the mass shell the projector P3/, enforces these
constraints automatically; however, sensible off-shell gen-
eralizations must also satisfy k°T'g' =0 and therefore
acceptable tensors must be of the form given in Table VIIL.
The on-shell relations between the F; and the various
conventions for N — 3/2% transition form factors employed
in the literature are collected in Appendix D 2.

C. J? =3* resonance Born terms

We proceed by working out the resonance Born terms
and resulting CFFs for J = 3/2* resonances according to
Eq. (6.1). For the off-shell vertex (6.19) we employ again
the on-shell form (6.24), which depends on the three form
factors F;(Q?) that can be extracted from experiment.
Concerning the propagator of the resonance we can employ
either the Rarita-Schwinger form (6.3) or Eq. (6.14); both
of them produce the same results because the tensors 77"
satisfy the required off-shell constraints.

The resulting contribution to the Compton amplitude has
the form

18

v 1 ~ v
F/;/g 3chi[A+(pf)X¢ Ay(p)].  (6.29)
=1
where the pole is given by
2N (1 — 2
p_U mR)(4” Me) _ (n +68)2 =422 (6.30)
m

The ¢; are the residues of the CFFs and collected in
Table IX for the JP =3/2% case. Unfortunately the
expressions become very lengthy so we only show the
result for F; = 0. This form factor drops out in RCS and
does not contribute to the static polarizabilities. In our
numerical calculations we retain all three form factors.

In analogy to Eq. (4.21) one could rearrange the terms
proportional to 4> such that the CFFs split into pole and
non-pole pieces:

~ 2 (1)
_G&G_ .0 ¢
‘T3S Ty

ror—ap (3

In that way cl(-o) and cgl) depend on 7, n_ and w? but no

longer on A%. In Sec. VIII we will see that they effectively
become functions of 7, only.

The various kinematic limits can be analyzed in the same
way as for the J = 1/2 case. The contribution from the
A(1232) resonance was recently also worked out in the
VCS limit [9] and the forward limit [72].

As before, the J¥ = 3/2~ case requires no separate
discussion. Deleting the ys factor in the off-shell vertex
(6.19) only changes the sign of the argument in the
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TABLE IX. CFF residues for a J* = 3/2* resonance. We only
display the result for F3 = 0. The necessary definitions and
abbreviations are collected at the bottom. &, 6. and r are defined
in Eq. (5.2).

¢y = 4[9(Z, = 3X7) +p(Ws)p +2rAp) — 2/12Yf1]

&y = —9[88, %y +4n. X[, +2ra* Ay —n_(3X7,)5
+8_ Y, +4X])] +42%(Z, - 6_Y, — 5X+3/5)

&3 = —9(3X5 +6_Y1,) — 12424,
= —319W2 + 45(W5/2 + 2?‘A12)
Cs :_12(X +nrAp)

= 9126, Ty = 45y, + 31, Y5 —n_(6, Y], — 2X] )]
+2/12[311+Y+ (r +2)Y+10 + (1 435)Yy — 183,
n-(n 2y + 50%rAyy) +5p(8Y] —31_Y5)

= 19[( n-)(Zpn + Zzz) +7r(Z1p — Zy)]
—’7+5Y + 2'Y—Zo +222(3%); + Ty +4%p)

ﬁl

Ty = =3B Wy — (- +26_)A1y] +26Ws ), — 222A ,
E' = %19[W2 =+ 2(7’] + 26 )A]z] - 6}.2A12
¢l = =2(9Zy + i Zy 4 pWs o + 5% rA, = 22°Y1)

= =39Y; +4(Xy + Y| ),)
C12 = —19(Z2 +Eﬂ+Y; + 31"2211 —%19Yt1)
—11+(Z1 Y, - rYy —36Y])
—0’rA, + (25 + 5r)2r211 +66, (Y] +rY7)

513 = (19 21’]_*_)Y7L + 452 Y5/2 + 3)"X£
Cia :3‘;(19 20 )Wy =y rhn = Z

&5 = (X5 =30 YS) +n,6Y, —n 7,

Ci6 = %19W2 —6Ws),

C17 =30 —n)YS — 126, rZ, +45_X5

Cl8 = —3W2 +46_VA12

FIF+FF,

— ji —

z,; = oo S=n_+5
F'F;—F'F

Aij: ! /2a1/ - /):;/I%F—(l)z

Xy =06,% £6_Zp + 12y
Y =32 £2p +nZp,

W :Y+—2I’H"A12

Zo=(G+O)Y +3(1+8)Y,
:%(’9—2’7+)Y2 -7y

7, =X3 —%n_Yg

propagator as in Eq. (5.16), which amounts to replacing
mp — —my together with a global sign change. The CFFs
for negative-parity resonances are then obtained from
Table IX by replacing r - —r, 6, <> —6_ and flipping
the global sign.

The remaining task is to convert the available exper-
imental data for the resonance electrocouplings into para-
metrizations for the transition form factors F,(Q?) and
F1,3(0Q?) that enter in the various transition vertices, so

that they can be implemented in Compton scattering. This
is what we turn to next.

VII. TRANSITION FORM FACTORS

To work out the resonance contributions to the CFFs
according to the formulas in Tables VI and IX, we need to
construct parametrizations for their electromagnetic transition
form factors. The currently known J” = 1/2% and J* =
3/2* nucleon resonances listed in the PDG are collected in
Table X. Experimental data for their Q*-dependent electro-
couplings are available for the four-star resonances [with the
exception of the A(1910)] and the three-star resonance
N(1710). The data are mainly from JLab and extend up to
Q? =5...7 GeV? depending on the experiment [44,73-75].
The MAID analysis [42,76,77] also includes data from
different experiments where not all multipoles are measured;
the resulting parametrizations typically show some deviations
from the JLab/CLAS analyses.

The experimental data are commonly presented in terms
of helicity amplitudes, which are closely connected with
the electroproduction amplitudes from where they are
extracted [41]. To implement them in Compton scattering,
however, it is mandatory to translate them into the con-
straint-free form factors F;(Q?) defined by the currents
(5.8) and (6.24). As explained in the previous sections,
electromagnetic and spin-3/2 gauge invariance preclude
using tensors others than the 7% in Table Il and T% in
Table VII for the transition currents. For example, using the
Jones-Scadron basis in Eq. (6.27) or the helicity basis in
Eq. (D14) can lead to spurious singularities in the CFFs.

Furthermore, the helicity amplitudes are subject to
timelike kinematic constraints, which typically also lead
to complicated momentum dependencies in the spacelike
region Q? > 0. By contrast, the F;(Q?) are kinematically
independent and thus simpler: without kinematic effects,
their momentum dependence is governed by physical

TABLE X. Two- to four-star nucleon and A resonances below
2 GeV for JP =1* and 3* [78]. The four-star resonances are
shown in bold font. In a spectroscopic notation they are labeled
by the incoming partial wave L,; , in elastic 7N scattering; from
left to right: Py, P53, Sy;, D3 for the nucleon resonances with
I = % and Psy, P33, S31, D33 for the A resonances with 1 = %

’-g 2 r r

N(940) N(1720) N(1535) N(1520)

N(1440) N(1900) N(1650) N(1700)

N(1710) N(1895) N(1875)

N(1880)

A(1910) A(1232) A(1620) A(1700)
A(1600) A(1900) A(1940)
A(1920)

093007-20



NUCLEON RESONANCES IN COMPTON SCATTERING

PHYS. REV. D 98, 093007 (2018)

singularities, namely the pion production cuts at timelike

values Q% < —4m2 and vector-meson poles in the complex
plane. Up to logarithmic corrections, the form factors follow
a multipole behavior at large Q? [79-82]. For decreasing Q>
itis then reasonable to expect a monotonous increase towards
the nearest p-meson pole, which is the closest non-analyticity
relevant for the spacelike region. In the absence of resonance
dynamics, the vector-meson poles would appear on the
timelike real Q? axis (cf. Sec. 4.2 in Ref. [28] for a discussion
of the explicit mechanism). The cuts signal the onset of pion-
cloud effects, which push the poles onto higher Riemann
sheets and induce deviations from monotonicity at low
Q? > 0. This is our guiding assumption for ground states,
whereas for excited states some form factors will naturally
have zero crossings for Q0 > 0.

A simple parametrization that is flexible enough to
accommodate these features is

5o 1 1
F(Q)_1+x(1+y)”']

(H(x) £E(). (7.1

where x = 0?/m2, y = Q*/m% and

ay + a\x + arbyx?
H(X) - 1 + bzxz

E(x) = egy/1 + e x°.

E(x) defines the error estimate. F(Q?) depends on two
scales, the p-meson mass and the resonance mass mp. While
all form factors should have vector-meson poles, the addi-
tional poles in mp effectively implement the proper multi-
pole falloff at large Q?, with n = 3 or n = 4 depending on
the form factor. For ground states the remainders H(x)
should then become roughly constant; they approach the
constant values a, for Q> = 0 and a, for Q> — oo. In most
cases it is sufficient to set a; = 0. We assume that a; and a,
have the same sign, except for form factors with zero
crossings, and we demand b, > 0 to avoid extra singular-
ities. Although this form has no particle production cuts and
only one p pole on the real axis (which can be easily
remedied by introducing a width), it does capture the
spacelike properties reasonably well, in particular in the
low- and intermediate Q? region where experimental
data exist.

In practice we convert the experimental data for the
helicity amplitudes to the form factors F;(Q?), using the
relations in Appendix D, and divide out the poles in
Eq. (7.1) so that the data and their error bars are given
in terms of H, £ AH,. Those we subsequently fit by the
function H(x) given above. To arrive at the uncertainty
bands shown in the plots, we fit

)

(7.2)

VH, — Hx)P + (AH,)? (7.3)

by the rather conservative ansatz E(x): in that way, the error
bands grow linearly at large Q® (unless e; =0) so that the
form factors can change their multipole falloff by one power
of Q7 within the uncertainty. We prefer this form because in
several cases the asymptotic powers at large Q° are under
dispute and logarithmic corrections can modify them as well.

At the Q% = 0 point we use the PDG 2016 estimates for
the helicity amplitudes from photoproduction experiments
[78]. For the electroproduction data at Q> > 0 we only
included data sets which measure the complete set of helicity
amplitudes, because otherwise one cannot extract all form
factors. Whereas for the lowest-lying resonances—A (1232),
N(1440), N(1520) and N(1535)—sufficient data are avail-
able, the data sets for the higher-lying resonances are scarce
so that in those cases the fits are only qualitative. In addition,
with the exception of the A(1232) all cases suffer from the
lack of data below Q% <0.3 GeV2 This is unfortunate
because the most important CFF contributions come from
the region at low momenta, which in some cases are difficult
to parametrize. This clearly motivates the need for future
measurements at low Q2.

Our resulting fits for the form factors and helicity
amplitudes are shown in Figs. 7-15, where they are
represented by solid lines with bands. The dashed
(blue) lines are the MAID parametrizations [42,76,77]
which are included for comparison. The fit parameters
are collected in Tables XI and XII. For the parameters
mpg entering in the fits we simply used the names in Table X,
e.g., mg = 1.535 GeV for the N(1535) resonance, and we
employed m, = 0.77 GeV. In the following we discuss the
resonance transition form factors one by one.

A. States with J*=1/2*

In these cases there are two transition form factors, the
Dirac-like F;(Q?) and Pauli-like F,(Q?) form factor. As
discussed in connection with Eq. (5.9), our F; differs from
the standard convention F% by a factor Q?/m? which
removes its kinematic zero at Q> = 0. From the figures one

TABLE XI. Fit parameters for the J© = 1/2% resonance
transition form factors.

noa a a by € e e

N(1440) F; 3 0.28 0.71 0.25 0.06 0.14 0.55
F, 3 -045 1.92 022 0.05 836 1.16

N(1710) F; 3 -0.04 0.06 0.02 0.80
F, 3 035 0.12 0.12 1.34
N(1535) F; 3 056 0.85 046 0.03 042 029
F, 3 —0.69 -0.07 047 0.06 2.18 1.32
N(1650) F; 3 033 0.09 047 257
F, 3 -0.30 0.04 7.86 5.8

A(1620) F, 3 0.25 0.13 0.00 4.32
F, 3 —0.06 0.37 0.02 18.0
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TABLE XII. Fit parameters for the J” = 3/2% resonance
transition form factors.

n do ap as by €o € )(2

A(1232) F; 3 153 0.87 0.04 0.06 0.02 1.89
F, 3 -0.59 —-0.25 0.11 0.08 0.00 0.83

Fy 4 029 1.22 0.01 0.21 0.00 0.37
A(1700) F; 3 -0.31 0.30 0.00 7.14
F, 3 =027 0.21 0.00 4.55

F; 4 -0.19 0.09 0.00 11.0

N(1520) F, 3 142 1.09 0.03 0.16 0.03 1.43
F, 3 =020 1.03 -0.23 0.94 0.03 0.80 0.68

F; 4 -035 021 0.61 050 0.08 0.16 1.11

N(1720) F, 3 -0.05 0.17 030 9.78
F, 3 013 0.39 0.00 1.85

Fy 4 114 0.53 0.00 8.26

can see that in most cases F is indeed compatible with a
monotonous rise towards Q% — 0.

The relations between the form factors and helicity
amplitudes A/, and §;/, are given in Egs. (D9)—(D10).
They imply in particular that at the pseudothreshold (the
Siegert limit [90]) where

k| =0s 0* = —(mg —m)?, (7.4)

with |k | denoting the virtual photon three-momentum in the
resonance rest frame and defined in Eq. (D4), the helicity
amplitudes behave as [91-93]
JP = 1/2+: A1/2 X |k
JP = 1/2_: Sl/2 X |k|

2
’

, Sip x|k

(7.5)

For larger timelike momenta they become imaginary.
Without knowledge of the constraint-free form factors
these features would not be evident, whereas they are
automatic if one starts directly from the F;. As a conse-
quence, even simple monotonous ansdtze for the F;
typically lead to complicated shapes for the helicity
amplitudes, as can be seen in the figures below.

N(1440): The Roper resonance is the first excitation in
the (1)JP=(1/2)1/2" channel. As such, F, has a zero
crossing at intermediate Q%, which is visible in Fig. 7 and
also found in theoretical calculations [94—-100]. By con-
trast, the data for F; agree with a monotonous rise. The
MAID parametrizations implement a vanishing F7(0) = 0,
however with a negative derivative; this implies a small
negative value for F;(0) which produces the turnover at
low Q? in the leftmost panel of Fig. 7. In the helicity
amplitudes the difference is visible in S, ;,, where MAID is
compatible with the recent A1/MAMI measurement for
Si, at very low Q? [83] but does not reproduce the
behavior (7.5) at the pseudothreshold. These relations
follow automatically when we parametrize the form factors
directly, as can be seen in the plots.

N(1710): Since this is the second excited state in the
(1)J* = (1/2)1/2" channel, one might expect two zero
crossings in F,. The five points in Fig. 8 are recent data from
JLab; they may indicate a slight trend in that direction but are
too sparse to draw conclusions. F'; is very small. In this case
we simply fit the H, in Eq. (7.1) to constants by setting
a, = by, = 0. Also here the resulting helicity amplitudes have
sharp turnovers at the respective pseudothreshold Q2 =
—(mg — m)?, which lies outside of the displayed region.

N(1535): The parity partner of the nucleon is the ground
state in the (1)J¥ = (1/2)1/2~ channel and so we expect a
monotonous behavior for both form factors, which is
indeed visible in Fig. 9. As noted in Refs. [101-103],
the magnitude of F, quickly falls off with Q and is
compatible with zero above Q2 ~ 1.5 GeV?. In Table XI
this amounts to the coefficient a,, which dominates at large
Q?, being small compared to a,. Model calculations
typically yield values of F, with a different sign compared
to the data [101,104] but they also do not include the p pole;
this may suggest cancellation effects between the vector-
meson pole contributions and the remainder, or also large
meson-cloud contributions at low Q2 [103]. The oscillatory
behavior of §;,, near the pseudothreshold is again a
consequence of Eq. (7.5).

0.4 0.2 100 60
0.3f 0.0 50 F 40+ 51/2
0.2} 0.2 0 20 §
o1f |/ 04b 50 L | e
0.0 : x e S X -100 20
0 1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 5
Q? [GeV?] Q?[GeV?] Q? [GeV?] Q?[GeV?]

FIG. 7. Parametrization of the y*N — N(1440) form factors and helicity amplitudes (solid lines with bands). The data points at
0? = 0 are from the PDG [78] and those for Q% > 0 from CLAS/JLab [44,73,74]. For S, 2 we also include the A1/MAMI point at
0% ~0.1 GeV? [83]. The MAID parametrization (dashed, blue) is from Refs. [42,76,77]. The form factors are dimensionless and the

helicity amplitudes carry units of 10~ GeV~!/2.
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FIG. 8. Same as Fig. 7 but for y*N — N(1710). The data are from PDG [78] and CLAS/JLab [84].
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FIG. 9. Same as Fig. 7 but for y*N — N(1535). The data are from PDG [78] and CLAS/JLab [73].
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20+

-40 l
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FIG. 10. Same as Fig. 7 but for y*N — N(1650). The data are from PDG [78] and CLAS/JLab [85].

N(1650): The first excited state in the (I)J° = A(1620): Also for the (1)J” = (3/2)1/2~ ground state
(1/2)1/2 channel is shown in Fig. 10. So far there are  the data are sparse. In addition, Fig. 11 displays some
only three data points from JLab. F, may be compatible  tension between the two data sets for F,(Q?): the three
with a zero crossing but in the absence of data we fit both JLab points rise towards a negative value at 0’=0

H, to constants. whereas the PDG estimate is positive. Studies of
0.3 prr——————————— 0.5 —_— 100 —_— 50
. 8o} A 2
0.2 Fl —F2 [~ 1/2 O Tty
! 60l |\ : —5
! . | . $
01f 1 oo} Tem——— sy N 1 50
\ et - S1/2
R $ 20t - |
0.0 e E\E\ ——— -100f
OF / e
f
-0.1 " " " " -0.5 I " " " " 20 LL " " " " -150 L L L L
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
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FIG. 11. Same as Fig. 7 but for y*N — A(1620). The data are from PDG [78] and CLAS/JLab [85].
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negative-parity states suggest a falloff F,(Q?) o 1/Q8 at
large Q? due to the suppression of valence-quark contri-
butions, which corresponds to Aj,;(0Q%) « 1/Q° [105].
Due to the lack of data we take a neutral point of view
and fit the H, again by constants, so that the resulting
parametrizations implement the usual o< 1/Q° falloff.

B. States with J¥ =3/2*

The J” = 3/2* resonances are determined by three
transition form factors F,;(Q?) or, equivalently, the
helicity amplitudes A;»(Q?), A;2(Q%) and S ,,(0%).
Their relations with the form factors are given in
Egs. (D15)—(D16). It is also common to express them
in terms of the Jones-Scadron form factors [48,49]:
magnetic dipole Gj,, electric quadrupole G}, and
Coulomb quadrupole G¥§; see Eq. (D20) for their
relations with the F;. Their electromagnetic ratios are
defined as

Gg
Rpy = — =L
EM GX,[

Roy = ——~-7C (7.6)

At the pseudothreshold |k| = 0, the helicity amplitudes
satisfy the constraints [91,92,106]

JP = 3/2+: A3/2,A1/2 X |k|,
JP=3/27: 8, « |K|

S 12 & |k|2,

(7.7)
which are a direct consequence of Eqs. (D13) and (D16).
Likewise, the kinematic relations between the Jones-

Scadron form factors at the pseudothreshold follow from
the definition (7.6) and Eq. (D20):

JP=3/2%: 2mGy — (mg —
JP=3/27: Gj « |k,
Rpv o< 1/[K[*, Rgy o [K|.

2, RSMO( |k
mGy + (mg —m)G¢ o< [K|%,

(7.8)

m)Gg |k

’

We emphasize again that the F;(Q?) are free of kinematic
constraints.

At asymptotically large Q?, the structure of the transition
currents implies the relation G}; ~ —G7,, which amounts to
Rem — 1 [82]. From Eq. (D20) one obtains

LI =3/2¢

0*—co [ —F2/(2F, + F»)
REM P _
LI =32

—(Fy +2F,)/F,

and thus F; ~ —F, in both cases. In terms of the helicity
amplitudes this entails a dominance of A/, over A3/,
[48,49,74,81]. We chose not to enforce this property in
our fits (i.e., by constraining the respective coefficients
a,) because it is effectively absorbed in our error bands

which grow with Q?. The onset of such behavior may
very well happen only at very large Q? and logarithmic
corrections may spoil it; and with the exception of the
A(1232) the available data are in certain conflict with the
constraint.

A(1232): The A resonance with (I)J¥ = (3/2)3/27" is
the lowest-lying and best known nucleon resonance,
both in terms of precision and Q2 range. A significant
amount of data for its helicity amplitudes have been
collected in several experiments [73,86—89,107]. For our
fits we used the comprehensive database of Ref. [75] but
replaced the older data for Q% < 0.2 GeV? by the most
recent analysis from Ref. [89]. At 0% =0 we use the
PDG estimate [78].

Figure 12 shows that F; and F, are well described by
simple monotonous multipole functions. For F; the
situation is less clear due to the low-Q? data, but
since they come with large error bars our fit still
returns a positive value for a; and thus a monotonous
function. The resulting helicity amplitudes are plotted
in the second row and they all vanish at the
pseudothreshold.

The y*N — A(1232) transition is usually discussed in
terms of the Jones-Scadron form factors displayed in the
third row of Fig. 12. At Q% = 0, Eq. (D20) entails that

2
Gy = \/;(25+F1 —6_F,),

R P F
{ EM} =2 [ 2 ] (7.9)
Rem) 8O2F| —0F, | Fy+ 2 F,

where 0, 64 and r are defined in Eq. (5.2). With 6, > &_,
the dominance of the magnetic dipole form factor G}, then
translates into the dominance of F;, whereas F, and Fj
enter in the small ratios. Note that Rgy; must vanish at the
pseudothreshold due to Eq. (7.8).

Quark models can explain the dominance of G}, but
typically underestimate its magnitude by about 30-40%
at low Q2 [108-113]. In dynamical coupled-channel
models that gap is usually attributed to meson-cloud
effects [110-112]. Model calculations and large-N,. esti-
mates also suggest a small valence-quark contribution to
Rpyv and Rgy, indicating that these ratios may be
dominated by pion-cloud effects [113—-117]. By contrast,
in Dyson-Schwinger calculations the valence-quark com-
ponents are significant due to relativistic effects [28,118-
120]. Equation (7.9) shows that in the absence of F, and
F5 also Rpy(0) and Rgy(0) must vanish at Q> = 0, and if
Rgy were mainly a pion-cloud effect the same would be
true for F,. Concerning F;, large-N,. estimates predict
F3(0) ~0 and thus Rgy(0) =~ Rgy(0) [89,115,117]. In
large-N . based meson cloud models [115-117,121] F5 is
small and negative below Q% = 0.
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FIG. 12. y*N — A(1232) transition form factors and helicity amplitudes. The data are from Refs. [73,78,86-89]. The form factors are
dimensionless and the helicity amplitudes carry units of 1073 GeV~/2.
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FIG. 13. Same as Fig. 12 but for y*N — A(1700). The data are from PDG [78] and CLAS/JLab [85].
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FIG. 14. Same as Fig. 12 but for y*N — N(1520). The data are from PDG [78] and CLAS/JLab [44,73,74].

Finally, given the asymptotic constraint Rgy — 1 this
ratio must cross zero at some value Q> 0. From
Eq. (D20) the location of the zero in Ry is

Q2<1 —|—2mRF3> = m%e — m2.

7.10
m F, (7.10)

In the absence of F3 the zero crossing would happen early
on, but because F, is negative the presence of F3 pushes it
to larger Q. The existing data do not show a clear trend in
any direction but stay essentially constant. Note that the
ratios in Fig. 12 are plotted in percent, so the constraint
entails Rgyy — +100%. The central value of our fit crosses
zero at Q? ~ 20 GeV? but within the uncertainty band any
other value above Q?~7 GeV? is equally possible.
Similarly, the large-Q® behavior for the ratio Rgy also
depends on Fj:

Q2—>oo

R — -1
SMF1—>—F2

Q* F;
2mmRF1 ’

(7.11)

A(1700): The ground state in the (1)J* = (3/2)3/2~
channel is again an example where data are scarce. In this
case the data points are compatible with all form factors
being monotonous and negative, although this does not
reproduce the large-Q? constraint F'; ~ —F,. In accordance
with our previous strategy we fit the H, form factor data by
constants.

N(1520): The transition form factors of the (I)J¥ =
(1/2)3/2~ ground state in Fig. 14 display rather peculiar
features. F'; is clearly monotonous but F, and F5 are not.
F5 crosses zero at low Q7 although the situation is

somewhat reminiscent of the A(1232). F,, on the other
hand, appears to have rwo zero crossings: one at very low
0? between the PDG value and the CLAS data, and another
one around Q2 ~3 GeV? (although within the error bars
the data are still compatible with zero). A negative value at
large O would indeed be consistent with the constraint
F, ~ —F,. Still, this hints towards an interesting structure in
the timelike region: F, is small compared to F';, so potential
meson-cloud effects induced by the cut structure could be
magnified. Given the amount and precision of the data for
this resonance, it is also the only example among all states
considered where such features are clearly visible in a form
factor. For these reasons we also include the parameter a; in
our fit to achieve good parametrizations for F, and Fj.
Significant meson-cloud contributions for the transverse
amplitude A3 ,, which is generally underestimated by quark
models [104,122-125], have also been suggested by
dynamical coupled-channel calculations [44,110].

N(1720): The ground state in the (I)J* = (1/2)3/2"
channel is presently the highest-lying resonance where
electroproduction data exist. In Fig. 15 one can see that here
it is not even possible to pin down the sign for any form
factor: all three F; contain data with both positive and
negative signs, even among the three CLAS points. This
clearly calls for more measurements in the future. One
should also note that another N(1720) state with the same
quantum numbers was recently proposed to explain the
y*N — zzN data [43,45]. We follow our previous strategy
and fit the H, form factor data by constants; the resulting
uncertainty bands provide at least a rough estimate for the
magnitude of each form factor.
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FIG. 15.

C. Discussion

We constructed parametrizations for the y*N — R
transition form factors based on analytic properties.
Instead of fitting the data for the helicity amplitudes we
directly fitted the constraint-free form factors. In the
majority of cases these show a monotonous behavior
which is well described by simple parametrizations. For
the cases where data coverage is still poor we did not
attempt to achieve a pointwise description but rather
employed qualitative fits. In any case, the resulting helicity
amplitudes automatically satisfy the kinematic constraints
e.g., at the pseudothreshold, which can lead to significant
deviations from the MAID parametrizations especially
near the photon point.

The fits can be improved when more data become
available. The Q”-dependence of several transition form
factors is still poorly known, especially at low Q?: even
the best known resonances such as the N(1440),
N(1520) and N(1535) do not have any data below
Q? <£0.3 GeV?2. This is particularly relevant for the form
factors F;(Q?) for J =1/2 states and F3(Q?) for J =
3/2 states, which cannot be extracted at the photon
point because S;/,(0) cannot be measured directly. It is
then mandatory to expand the databases in this region to
pin down the trend of the transition form factors near
Q? = 0, which is also the relevant region for Compton
scattering.

VIII. COMPTON FORM FACTORS

We now have everything in place to work out the nucleon
resonance contributions to the CFFs. In practice we set up

Q? [GeV?|

-150

Q2 [GeV?|

Same as Fig. 12 but for y*N — N(1720). The data are from PDG [78] and CLAS/JLab [85].

the resonance terms in Eqgs. (5.1) and (6.1) in a specific
Lorentz frame, Egs. (A8)—(A9), and extract the CFFs by
matrix inversion. For the J¥ = 1/2* resonances we employ
the off-shell transition vertex (5.11) and for the J* = 3/2*
cases we use Eq. (6.24), together with our parametrizations
for the transition form factors.

Fig. 16 shows the resulting CFFs inside the TPE
cone. The bands include the dependence on all four
variables #,, n_, @ and A as well as the uncertainty
bands from our form factor parametrizations. In particular,
we plot the residues ¢; at the s and u-channel poles
defined by

¢y n-, ., 2)

wrop-ar O

ci(npn-, w,2) = &

so that the poles do not appear in the plots but the static
values at n, =#n_ =4 = o =0 can be read off directly.

One can see that the ¢; typically fall into relatively thin
bands. In the few cases where the bands are broader this is
mainly due to the uncertainties from the form factors.
Obviously this would not have been possible with a non-
minimal basis: if some of the CFFs had kinematic singu-
larities inside the cone or on its boundary, the spread of the
bands would become infinite. Instead, the bands are narrow
so that the dependence on four variables effectively reduces
to a one-dimensional dependence on #,. This is very
helpful because instead of facing the need for studying
many different kinematic slices the essential information is
already encoded in a single variable.

Concerning the individual resonances, the A(1232)
clearly provides the largest contribution to most CFFs.

093007-27



GERNOT EICHMANN and G. RAMALHO PHYS. REV. D 98, 093007 (2018)

10 1~ 10 N
—36 —Ce
5 365 1 ]
\ 0 A(1232)
of— of-
=3 N(1520)
-5} { st { s} -5} {5 { s}
00 05 1.0 00 05 10 00 05 10 00 _ 05 10 00 05 10 00 05 1.0
10f R R T o) o 10f L R ] 1 N(1535)
st Cr | o €8 | &l Cg st C10 | 4 C11 | 4 Ci2 |
feV———— Of—o—-— 0 0 0f— of 3
5 5} 5
00 05 10 00 05 10 00 05 10 00 _ 05 10 00 05 10 00 05 1.0
10} ] o) ] 1f o 10} R R le ]
—C —C C C C —=C
o 13 ] 4] 15 | 16 |, 17 | 5E8 ]
ob— P — 0 0 o/,¥ — o
5 5 -5} 5 5
00 05 10 00 05 10 00 05 10 00 05 _ 10 00 _ 05 10 00 05 1.0
n, n. n. n. n, N,

FIG. 16. Residues of the Compton form factors inside the TPE cone, plotted as functions of 7, . The bands contain the variation inside
the cone as well as the uncertainties from the form factor parametrizations. The contributions from states other than the A(1232) and
N(1520) are only shown for &34 37,13 Where they are visibly different from zero.

The higher-lying states usually only have little impact. The [ c; ] [ F6 ]

biggest subleading contributions come from the N(1520) _55

and N(1720), which all carry spin 3/2 as well, whereas the = *

J = 1/2 resonances such as the Roper resonance or the Co | 5% 00 (8.2)

N(1535) are almost negligible. 1o 5 +1s ’ '
Table XIII collects the CFFs ¢y, ¢,, ¢g, €19, €11 and ¢, in B |

the static limit where all kinematic variables vanish. From i T

the results in Tables VI and IX one extracts the following L C12 | | =0+ |

relations for J* = 1/2% states in that limit:

TABLE XIII. Resonance contributions to the nucleon’s scalar and spin polarizabilities. The experimental values of a and f are from
the PDG [78] and those for the spin polarizabilities from Refs. [126—128]. For the resonance masses that enter in Eqgs. (8.2)—(8.3) we use
the PDG 2016 estimates for the real parts of the pole positions [78]. The CFFs are dimensionless, a and 8 carry units of 10~ fm?>,
and the spin polarizabilities are given in 10~ fm*. We do not display the numbers if both their absolute values and uncertainties are
smaller than 0.05 in the respective units.

Exp. N(1440)  N(1710) N(1535) N(1650)  A(1620) A(1232)  A(1700) N(1520)  N(1720)

—c 20.2(4) 0.2(0) 0.1(0)  —0.3(1) 10.6(8) —0.1(2) 0.9(2) 0.0(1)
—c, 3.7(6) 0.2(0) 0.1(1) 0.1(0) 10.88)  0.0(1) 1.02)

—cq 27.8(4.1) —04(1)  —0.1(0) 639  0.0(1) 0.3(1) 0.0(1)
1o 9.08.6)  0.1(0) —0.1(0) 0.1(4)  0.1(1) —0.6(1)

e 33(6.7) —0.2(0) 0.2(0) 11.1(8) —0.4(1)

i 8.6(5.1) —0.2(0) —0.1(0) 11.08)  0.1(1)  —0.2(0)

a 11.2(4) -0.3(0) —0.100) —0.1(1)  —0.1(0)

B 2.5(4) 0.1(0) 0.1(0) 0.1(0) 73(6)  0.0(1) 0.7(2)

yee —3.5(1.2) 0.1(0) —0.4(0) —0.1(0)

yu 32(09)  —0.1(0) 3.6(3) 0.1(0)

vewn  —0.7(1.2) —0.4(0) -0.1(0)

e 2.003) 0.4(1)

Yo —0.9(0.1) —0.1(0) -32(2) 0.1(0)

Vs 8.0(1.8) —0.1(0) —0.2(0) 4.9(4) 0.3(0)
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whereas for J¥ = 3/2* resonances one obtains

c —46G,

) I

€% | _ 2 26F,(36.F — 6-F,) (8.3)
cro| 36 —8(G, £3F | F>) '
1 +2(G| — 0F | F»)

12 | 20.(Gy + (r F 2)0:F 1 F>) |

We abbreviated G, = 62 F} + 62F} and G, =68.F}-
5-F3, and the F; = F;(Q* = 0) denote the static values
of the transition form factors. With our parametrizations
they are fully specified by the parameters a, + ¢,. For a
spin-1/2 resonance only the form factor F,(0) contributes
and for a spin-3/2 state only F;(0) and F,(0) survive.
These CFFs are related to the scalar and spin polar-
izabilities through Egs. (2.31)-(2.33); for example the
scalar polarizabilities @ and  become

2 [ =6
F ¥
5[5 g
p m’ 8 —05F3 P _ 3+
% ...J —E.
5. F?

Those CFFs in Fig. 16 that are more sensitive to the
higher-lying resonances do not contribute to the polar-
izabilities, so that also here mainly the A(1232) is relevant.
The largest subleading effects come from the N(1520) and
N(1535) but they are very small. That the A plays an
important role is of course well known, and chiral effective
field theory and dispersive approaches provide a more
quantitative description than the simple tree-level expres-
sions that we collect here [1-5]. For example, pion loops
reduce the large A contribution to the magnetic polar-
izability f and, as a result of this cancellation, f is small
compared to the electric polarizability a. The sum a + f is
proportional to ¢; and constrained by the Baldin sum rule
[129]. Indeed, Table XIII shows that none of the resonances
contributes anything substantial to @. What is noteworthy is
the N(1520) contribution to 3, which is about a quarter of
the size of its PDG value.

For the spin polarizabilities the situation is less well
established. Fig. 17 contrasts experimental results from
A2/MAMI [126] with predictions from dispersion theory
and chiral perturbation theory. Instead of the spin polar-
izabilities, we plot the CFFs directly because their leading
ChPT values from Eq. (2.34) are simple: ¢, vanishes and
after removing the pion pole in cg the remaining ones are
identical up to signs. The various chiral approaches display
sizeable uncertainties. The difficulty arises from the A
resonance, which has a large effect and should be incorpo-
rated in the description. In Fig. 17 one can see that even by

& & S S DS SO
A & ¢ PSS DS DS S
LKL o >0 Ut 9!
R S QL P Q'
40
20 0 0 —%
L “="g-=
o —
20
= - — - C10
10-% 0 g
0 -
20 -
C -
o[ 7= il DD_ 11
20 L =
20
— C12
10—'Zl D_ D -
% i
0

FIG. 17. Resonance contributions to the spin polarizabilities
encoded in the static values of c¢, 19, 11 and ¢q,. We compare to
experiment [126], dispersion theory [1,130,131], leading-order
ChPT [54], and higher-order chiral approaches [132-137]; see
Refs. [1,5] for compilations. For ¢4 the pion pole contribution
from Eq. (2.34) has been excluded.

simply adding together the A and leading-order ChPT
results one obtains values that are roughly compatible with
experiment and dispersion theory. On the other hand, it is
reassuring that it is practically only the A resonance that has
an impact on spin polarizabilities because all other reso-
nances are negligible.

Returning to the CFFs in general kinematics, the
practical result is that the same 18 CFFs describe the
Compton scattering process in general. If one had complete
knowledge of the Compton amplitude that information
could be condensed in the 18 panels of Fig. 16 as well. For
Compton scattering on a pointlike scalar particle only ¢
and ¢, survive; for a nonpointlike scalar the first five ¢;
contribute; the scalar 7-channel poles can only appear in ¢,
and cj3; pseudoscalar poles can only appear in cg4; the
nucleon Born term contributes to eight CFFs in Fig. 5; in
RCS the six CFFs discussed above remain; in VCS the
twelve CFFs from Eq. (2.37) and in the forward limit the
four combinations in Eq. (2.41) survive.

The question is then whether the observation from
Fig. 16 also holds in other kinematic limits, i.e., whether
the momentum dependencies in the variables #_, @ and A
are generally weak. In general the answer depends on the
singularity structure: viewed as analytic functions, the
CFFs are determined by their physical singularities. Our
present situation is of course rather special because we
merely add up tree-level resonances. The formulas for the
resonance terms contain s and u-channel nucleon reso-
nance poles together with timelike poles in Q° and Q'
from the transition form factors.

Consider e.g., the situation in VCS, which is illustrated
in Fig. 18. At fixed 7, , the TPE cone becomes a circle and
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FIG. 18. Left: Singularity structure of the Compton scattering amplitude at fixed 7, in the {@,7n_} and {4,7_} planes; see text for a

discussion. Right: Compton form factor residues for the A(1232) resonance inside the TPE and VCS regions.

the VCS and forward planes become the lines with @ = 7,
and n_ =n,, respectively. In the limit 5, — 0, the
circle shrinks to a point and VCS collapses into RCS.
The vector-meson poles in the transition form factors
appear at timelike photon virtualities, which correspond to
w = +(n, + m}/m?) as indicated by the vertical (orange)
bands. They are symmetric in @ and the CFFs depend on @
only quadratically, so it is clear that a multipole falloff in
the form factors cannot induce an overly strong @ depend-
ence in the interior |w| <7, but mainly affects the
momentum dependence in 7.

Including also the remaining variable A (again at fixed
n. ) yields the Mandelstam plane in 4 and #_. This is where
the resonance poles at #_ = +21 become visible, which are
illustrated by the diagonal (red) bands in Fig. 18. The
physical VCS region is the shaded (blue) area with
|cos @] < 1, where 0 is the CM scattering angle. In RCS
it would be the domain enclosed between #7_ = 0 and

n_ = 1 — /1 + 422; for increasing 77, the line # = 0 moves
upwards and “drags” the physical region with it. DVCS is
the domain of large A and moderate t.

Clearly, the dependence in A cannot be weak because this
is where the resonance bumps appear. Recalling the
discussion around Eq. (4.21), the 4 dependence of the
resonance terms is trivial and can be removed by splitting
the CFFs into non-resonant and resonant parts,

&l (.-, @)

(0)
( (- +06)2 — 422"

ci(ny.n-,w.2) =c;” (ny.n-. @) +

where c,(»o) and cgl) no longer depend on A. At fixed 7, and

with the @ dependence being weak, the remaining question
is how strong their variation in #_ is.

The right panels in Fig. 18 compare some of the c,m
inside the TPE cone and in VCS. In the VCS case we limit

the range of n_ to —n, < n_ < 5, with the same extent as

the cone, whereas inside the cone the functions vary
over the full #_ and @ range. The bands do not change
substantially, which generally also holds for the remaining
CFFs and means that the VCS region is still sufficiently
close to the cone. Thus, in principle one could predict the
functional dependence of the CFFs in VCS from their
knowledge, e.g., near the symmetric limit where all
variables except #, vanish.

While these observations are particular to the case of
resonances, they can be useful in more general situations.
From the viewpoint of analyticity, the fact that the CFFs (and
therefore structure functions) depend on 4 at all is tied to the
s- and u-channel resonance structure, which points to the
idea of quark-hadron duality [138—140]. On the other hand,
in the microscopic decomposition of Compton scattering the
nucleon resonance structure is produced by different quark-
gluon topologies than the handbag and 7-channel diagrams
[27]. Without an underlying mechanism to generate singu-
larities in A, the momentum dependence in that variable
would disappear; unless it creates unphysical singularities,
but those must ultimately cancel with other parts of the
amplitude. Such calculations are typically easier to perform
inside the TPE cone (the “Euclidean region”) where one can
avoid timelike singularities in the underlying correlation
functions like the quark propagator; cf. Refs. [141,142] for
studies of the pion transition form factor. Thus it may be
possible to analytically continue results inside the cone,
where 4 is imaginary, also to the domain of large and real A
which is accessible in DVCS.

Finally, the discussion in terms of Lorentz-invariant and
constraint-free CFFs can be useful for amplitude analyses
of Compton scattering [143]. For illustration we plot in
Fig. 19 the reconstructed Compton amplitude in RCS, in
particular the imaginary parts of the six associated CFFs,
inside the physical RCS region and between —2 < 5_ < 0.
We equipped the resonances with widths according to
Eq. (2.16), where my and —I"/2 are taken to be the real and
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FIG. 19. Imaginary parts of the six Compton form factors in
RCS, plotted in the physical s-channel region for different values
of n_ between —2 < n_ < 0.

imaginary parts of the respective pole positions from the
PDG [78]. Analogous plots can be drawn in the forward
limit, where the imaginary parts are proportional to the
nucleon’s structure functions, or in VCS. The A(1232)
clearly dominates, whereas other resonances such as the
N(1520) are enhanced in particular CFFs; and with
Tables VI and IX one can form CFF combinations where
resonances with specific J* drop out.

IX. SUMMARY AND OUTLOOK

In this work we have detailed the tensor basis con-
struction for Compton scattering on the nucleon, which
implements the constraints of electromagnetic gauge invari-
ance, crossing symmetry, and the absence of kinematic
singularities. The resulting 18 Lorentz-invariant Compton
form factors are free of kinematic constraints and describe
the process in general kinematics.

As a practical application we worked out the Compton
form factor contributions coming from intermediate J© =
1/2* and 3/2* nucleon resonances. We derived the general
forms for their off-shell nucleon-to-resonance transition
vertices according to electromagnetic and spin-3/2 gauge
invariance. This automatically defines constraint-free on-
shell transition form factors, for which we constructed fits
using the available experimental data. We find that apart from
the A(1232) the resonance contributions to the scalar and

spin polarizabilites are very small, although the N(1520)
could play a role for the proton’s magnetic polarizability.

Our study can be extended to calculate resonance
contributions to two-photon exchange processes or baryons
with higher spin. Moreover, since the tensor basis con-
struction follows a general recipe it provides a template for
other systems, such as the hadronic light-by-light scattering
amplitude which enters in the standard model prediction for
the muon anomalous magnetic moment.
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APPENDIX A: CONVENTIONS AND FORMULAS

1. Euclidean vs Minkowski conventions

We use Euclidean conventions throughout this paper, but
we took care in constructing the notation such that many
identities are the same in Euclidean and Minkowski
conventions. In the following we summarize the tran-
scription rules from a Minkowski metric with signature
(+,—,—,—) to a Euclidean metric (+,+,+,+); more
relations can be found in Appendix A of Ref. [28].

The replacement rules for vectors a* and tensors 7+ are
given by

a T T
d = . TV = , . (Al
E {iao} E [iYﬂl —700] (AD)

where ‘E’ stands for Euclidean and no subscript refers to
the Minkowski quantity. As a consequence, the Lorentz-
invariant scalar product of any two four-vectors differs by a
minus sign from its Minkowski counterpart:

4
ag -bg = E akbt. = —a-b.
k=1

(A2)

Therefore, a vector is spacelike if a> > 0 and timelike if
a’ < 0. Because the metric is positive, the distinction
between upper and lower indices disappears. To preserve
the meaning of the slash ¢ = a%" —a -y we must also
redefine the y-matrices:

. 0%
W’é_{' } rE=r. (A3)

so that
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TABLE XIV. Replacement rules for some typical quantities.
For expressions with Lorentz indices, the right column defines
their Euclidean version in the sense of Egs. (A1) and (A3). Each
additional Minkowski summation over Lorentz indices leads to a
minus sign in Euclidean conventions.

Minkowski Euclidean
a-b —a-b

at at

i iyt

Vs s

d —igd

gyz/ —5

atb? atb?
.7 =]

7", d] (7", d]

[, v d] il v, dl
4. §] —[¢. ¥]
egva, [ehvra g
e Pa,by igtvab g2 pP
e’mﬁyaabﬁc, ielbr q@ pP c¥
gﬂ”aﬂaa}//j _gﬂyaﬁaayﬂ

de=ag-ye = id, {rg.ret =20".  (Ad)
Our sign convention for the Euclidean p-matrices
changes all signs in the Clifford algebra relation (A4) to
be positive, and since this implies (y%)? =1 fori = 1...4
we can choose them to be Hermitian: y%4 = (y4)". For
example, in the standard representation they read

0 —ir 10 01
k_ 4 _ 5_
T [irk 0 } TE [0 —ﬂ}’ ! L} 0]’

where the 7, are the usual Pauli matrices. Also the
generators of the Clifford algebra are then Hermitian:

i

: (43)

o =S y) = o =~ Ik 4]
with (o4)" = o .

The resulting replacement rules for some typical
quantities are collected in Table XIV. For expressions
involving the e-tensor the situation is slightly more
complicated but follows from the same principles: the
spatial parts of Lorentz tensors are identical in Minkowski
and Euclidean conventions, so this must also hold for

e”””/’a,,bﬂ. In Euclidean space the e-tensor is defined by
€1234 = €23 = 1, whereas in Minkowski conventions one
has g3 = —€%23 =1, i.e., the spatial components
switch sign when lowering or raising indices. Denoting

spatial indices by i, j, k and summing over k, one has

gijaﬂaa b/} — gijkO(
— _€ijk0(akb0 _ a()bk)
— ieijk4(akb4 _ a4bk)E

= (ie"a’b’),

ayby — agby)

(A6)

1234 1230

because ! = 1 = ¢'?% and a° = —ia}. Repeating this
for rank-1 and rank-3 tensors results in the analogous
identities in Table XIV [which would also follow from
Eq. (A16) below)].

With these rules it is straightforward to transform
Euclidean tensors, such as e.g., those in Table XV, to
Minkowski space. To further facilitate the transcription, we
have introduced the variables 7, #_, A and @ in the main
text, Eq. (2.6), because they allow for a common definition
in Euclidean and Minkowski space. For example, with

qp = O":

_Q2+Ql2__q2+q/2
T ooam?r 2m?

(A7)

and so on for the remaining variables. Once the momentum
variables and Lorentz tensors are given appropriate names,
all Lorentz-covariant and Lorentz-invariant relations
between them are the same in Euclidean and Minkowski
conventions.

The advantage of the Euclidean metric is that one
can perform numerical calculations directly in a given
frame, with explicit y matrices and without the need for
inserting the metric tensor in each summation. A practical
Lorentz frame for the momenta p, £ and A defined in
Eq. (2.7) is [27]

0 0
A 0 I 0
=21 ==
1 z
0

(A8)
0

where ¢, 6, Z and Y are defined in Egs. (2.8)—(2.10). Inside
the TPE cone, the angular variables Z and Y fill the interval
[—1, 1] whereas in its exterior they can become complex. In
the VCS limit it is more convenient to use the frame where
p* =imy/1+1[0,0,0,1] and

0 0
Q'+ 0 o* Vit - p?
= =aqa , == . (A9)
m 1 m a+p

i ia
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TABLE XV. Elementary tensors for the nucleon Compton scattering amplitude. We suppressed the Lorentz indices for K%* and %" to
avoid clutter. The K; are dimensionless and invariant under photon crossing and charge conjugation. The 7'; are the same as in Eq. (8) of
Ref. [29]. n counts the powers of photon momenta; A contributes one power and @ two.

n Basis element n Basis element

0 K| =T, — " 2 imK,, = —idT,, = A"

2 m*Ky, =T, = Q"Q" 4 im*K, = iATy, = 20" Q"%

2 m’Ky =Ty = Q*Q" 4 im*Kyy = iAT 3 = 20" Q"X

2 m*Ky =T, = Q'Q" + Q" Q" 4 im’ Ky = ATy = A(Q"Q" + Q" Q")
4 m*Ks = oTs = o(Q"Q* — 0" Q") 6 im’K s = idwTs = Aw(Q* Q" — Q" Q)X
0 m?’Kg = Tg = p*'p® 2 im’K g = iAT g = Ap"p*E

2 m>K; = AT, = A(p" Q" + Q" p") 2 im*K; = iTy; = (p"Q" + Q*p")E

4 m*Kg = —ioTg = dw(p" Q" — Q¥ p") 4 im’Kg = —iwTg = w(p* Q" — Q" p*)E
2 m*Kg = ATy = A(p" Q¥ + Q" p*) 2 im*Kyg = iT\g = (p'Q + Q¥ p*) X

4 m*K g = —2aT o = do(p* Q" — Q" p*) 4 im*Kyy = —iwTsy = w(p'Q* — Q" p*) X
3 m’Ky = 0Ty = o[p"y" +y'p*, 2] 0 imKy = —iTy = p'y" +y*p*

1 m*Kyg = —Tag = [p'y* = " p*. Z] 2 imKy, = ioTy = o(p'y” -y p¥)

5 m* Ky = AoTr = o[Q"y" + y* Q. X] 2 imKyy = —idTy = A(Q"y" +v* Q")

3 m*Kyy = —ATso = A[Q"y" = y*Q". Z] 4 imK,y = idoToy = o(Q"y" — yQ¥)

5 m*Ky; = AoTs = Jo[Q'y" + Q" X] 2 imK,s = —iAT»s = A(Q'y" +y* Q")

3 m*Ky, = —ATxy, = A[Q"y" — y* Q™. Z] 4 imKys = idwT = Ao(Q"y” — y* Q")

1 K33 = AT33 = A[y*, v"] 1 imKs, = iT34 = {[y", "], £}

with @ = 1/+/1 + 1t and f = n_/a. In any case, this does
not affect the CFFs because they are frame-independent.

2. Formulas

Dropping the index “E,” we collect some useful
Euclidean formulas. The y5 matrix is defined by

1
75 — _}’1727374 — _ﬁg;wpoyyyuypyo' (AIO)
with £!?%* = 1. It is convenient to define the fully antisym-

metric combinations of Dirac matrices via the commutators

[A,B] = AB — BA, (Al1)
[A.B.C] = [A,B|C+ [B.C]JA + [C.A]B,  (Al12)
[A.B.C.D] = [A.B.C|D - [B.C.D]A

+[C.D.AB-[D,A.B]IC.  (Al3)

Inserting y-matrices, this yields the antisymmetric
combinations
[, v*] = rsePyeyP, (A14)
LI ! Kooy — Py bt
gl =y =y
1
= rlry (A15)

=~y

1
_ [Yﬂ, yv’ ya’ },[)’] — _},58/41/(1/)" (A16)

24

The various contractions of e-tensors are given by

A DIl = A (FIT — FTFP) 4 3P (57 8 — 58T
+ 8 (P — 5P,

lgyuﬂagaﬂ/la — SHaguP — sHP s
2 9
1 M A

_8M 6‘[8& oT — 5/1(1’

o glarw 8/161(0 =1

% (A17)

and the e-tensor satisfies

alkedbrdt =, (A18)

where a# is an arbitrary four-vector and {...} denotes a
symmetrization of indices.

Four-momenta are conveniently expressed through
hyperspherical coordinates:
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V1—=z2/1—y>sing
= /p2 V1—=22y/1=y*cos ¢

. (A19)
V1=22y
z
and a four-momentum integration reads:
d*p 1 1 [ 1
— _ d 2 2/ d V1-— 2
/(2@4 (27;)424 pp ) Ve
1 2n
x/ dy/ de. (A20)
-1 0

The positive- and negative-energy on-shell spinors for
spin-1/2 particles satisty the Dirac equations

u(p)(ip +m),
)(ipf —m),

(ip +mu(p) =
(ip —m)v(p)
where the conjugate spinor is i(p) = u(p)’y*. Since the

on-shell spinors only depend on p they are the same as in
Minkowski space; e.g., in the standard representation:

0
0

I
(]}
<

(A21)

u,(p) = E”;?; - (% : ) (A22)
with
Q) () ne
We have normalized them to unity,
it;(p)uy (p) = —05(p)vy (p) = Sy,
ity(p)vy(p) = V5(p)uy (p) = 0, (A23)

and their completeness relations define the positive- and
negative-energy projectors:

S u )ity (p) = — £

A
m +(P),

o (A24)

> o.p)oslp) = T _A(p).

Therefore, A, (p)u(p) = u(p) and A_(p)u(p) = 0.

APPENDIX B: TENSOR BASIS

In the following we derive the tensor basis of the nucleon
Compton amplitude given in Table I and Eq. (2.26). To
begin with, we follow the construction by Tarrach [29] and
define the 34 auxiliary tensors K" in Table XV. The 7%* are
the Euclidean versions of Tarrach’s Eq. (2.8) according to
the replacement rules in Appendix A. We construct the K;*
by attaching prefactors of 4, ® or Aw, which makes them
even under Bose symmetry and charge conjugation,

cf. Eq. (2.19), and powers of the nucleon mass m to make
them dimensionless. Thus, the initial nucleon Compton
scattering amplitude has the form

34
r(p, 0, Q) = AL {Z giK’,»‘”} Al (B1)
i=1

Here we abbreviated the positive-energy projectors from

Eq. (2.2) by Af;’ and the dressing functions g; depend on
the variables 7., n_, @ and A defined in Eq. (2.6).

That the K; are fully symmetric will be important in what
follows, because it implies that the g; are even in both w and
A. The analysis in terms of the 7; would complicate the
discussion of kinematic singularities; take e.g., the con-
tribution from K;j:

933K33 = 2933733 = ¢33 T33. (B2)
Clearly, g33 = ¢43/4 does not have a kinematic singularity
at A =0 because ¢4, is odd under photon crossing and
therefore must be proportional to A.

There are two non-trivial linear dependencies between
the K%, namely [29]

K7 — K9+ Ky — Ky3 + Kys + Kog — K33

—n2\ K
+<1+'7+ "‘)34:0

2 2
and

Kg+ Ko Ky + Kys | Kog — K3
2 2 4

K
—/12<K2—K3+K28~|—234>

+Kpp—Ki3—

Ny +1-
2
Ny —1-

+

(K7 = Ko = Kp3 + K»s)

+ (K30 + K32)

2 .2 2
+<12+W)K33:0,

: (B4)

These relations hold inside the positive-energy projectors
of Eq. (Bl). Therefore, only 32 tensors are linearly
independent. This is analogous to the discussion of the
light-by-light scattering amplitude in Ref. [50]: an n-point
function depends on n — 1 momenta, but with increasing n
one can only construct a limited number of orthogonal
momenta due to the fixed dimension of spacetime. In
practice this leads to relations between the basis elements
and thus to a smaller number of independent tensors than
what can be naively written down.

One must therefore eliminate two tensors in such a way
that the resulting 32 coefficients g; do not pick up kinematic
singularities. To do so, it is sufficient to eliminate one tensor
from the first row in Eq. (B3) and another from the first two
rows in Eq. (B4). Within this constraint, any choice is
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equivalent and we choose to eliminate K,, from the first
equation and K3; from the second one. After crossing off
these two tensors from Eq. (B1) the sum goes over 32
linearly independent tensors.

1. Transverse part

To derive the transverse part I'}", in Eq. (2.20), we work
out the transversality conditions

QT (p, Q', 0)=0,
0T (p, Q' Q)=0.

Either one of these is sufficient as long as we respect
photon-crossing and charge-conjugation invariance. For
example, the contraction of (B1) with Q'#,

34 8
S a@vt =Y a0
j=1

i1
\{22,31}

(B5)

(B6)

produces eight linearly independent tensors K:

pyv le/’ Qy’
0'Z. s ", Z].

P'E, ovE,

This leads to eight conditions A; = 0 for their Lorentz-
invariant coefficients and thus eight relations between the
dressing functions g;. Whereas the A; are either even or odd
in A, they are superpositions of even and odd pieces in w:

1 2) !
A; =AY + wAP=0. (B7)

2)

Thus we arrive at 16 conditions A(l) =0 and A( =0,

where it turns out that only 14 are iJndependent. '

The resulting relations are rather complicated but they
can be solved without divisions: similarly to (B3)-(B4) one
can eliminate 14 dressing functions g; (e.g., those for
j=1,2,4,6,9, 11, 12, 14, 19, 21, 23, 27, 28, 33)
without dividing by terms depending on the kinematic
variables 7, 7_, ®®> and A%. If we relabel the independent
functions by c¢; with i = 1...18, the relations take the form
g; = g;(c1. ...c1g) and reinserting them into (B1) yields the

transverse Compton amplitude

18
Y {Z c,.xf;v] AL

i=1

(B8)

The transverse tensors X; are given in Table XVI and
identical to those in Table I in the main text.

We did check other choices of eliminating two tensors
from (B3)-(B4) within the aforementioned constraints.
They all produced equivalent bases in the sense that the
determinants of the transformation matrices between the

TABLE XVI. Basis of Table I expressed through the elemen-
tary tensors K; of Table XV. The equalities hold inside the
nucleon spinors since we exploited the relations (B3)—(B4). For
X5 and X5 we abbreviated K = Xq + 4K¢ + 2K,; + K33.

X, =K, +3_K¢+ K5
X, =n-K;—-K3
X3 = (1} — 0*)Ky +n_Ky =1, K4 + Ks
X4 =K+ (7 — w*)Ke +1.Kog — Ky
Xs = 2 (=20, K| + Ky) =1 K7 — Kg +1_Ko
X¢ = —Kog + K33 —1 K3y
X7 =2(-K9+ Ky — K3 + 11, K34)
Xg = 2(Kyg — 11 K2y — Koy — 1 0*K3y)
Xog = 4(K13 —1n-Kr — Kp) + X3
X1 = —2K 1y +n_Ky + 2Kys — {n_K34 + 2X,
X1 =4K 6+ 22%(Ky 4+ 5 K3y) + 22X + 1 X5
Xip = —4PK| = 2K7 + 4K — 2Kps + K3, +11_K33
X3 = —42K, + 2K g + 4K 5 — 2Ky + Kxg

=21 (Ko + Ky3 =3 K39) + (13 — @*)K33
X14 = 2(=Kg + Ky5) +1-(2K2 + K37) + K3
X5 = 2(—Kg + Ky9) + Ko7 — K3o — 1. K — X4
Xi6 = 2(=K1o + K) + 1. K27 + Kz — 0*K + X
X7 = =Ky + 1 (2K — Kys) +1-Kp3 + Ko
X5 = Kis — 0? (2K 1y — Kos) 4+ 1_Koy — 1. Kog

bases are constant and not momentum-dependent (so they
can never vanish or diverge).

The procedure by Bardeen and Tung [30] and Tarrach [29]
for deriving the transverse basis is slightly different from
ours. In that case one enforces transversality by acting with
projectors on the initial amplitude:

a v

tjélQ I-*a/} ZZ/Q ;l—wu’

-0
which gives 18 tensors with single and double poles in the
variable Q - Q. By forming appropriate linear combinations
one then eliminates as many poles as possible, multiplies the
remaining double-pole structures with Q - Q’, repeats, and
finally multiplies the single-pole tensors by Q- Q’. In
contrast to Egs. (B5)—(B7), however, this does not auto-
matically lead to a minimal basis. Tarrach derives the tensors
7118, given in Table X VII, but notes that the resulting basis
is not minimal due to 75, 715 and 7,4, which are subsequently
exchanged with new tensors 7,9, 75q and 7,; to form a
minimal basis. Written in terms of the X, the problem with
these tensors is evident as one can see in the table: e.g., all
coefficients of the X; in the equation for 75 are momentum-
dependent and thus the determinant of the basis trans-
formation from 7z; ;3 to X; ;3 would depend on the
kinematics. Phrased differently, the crossing- and charge-
conjugation symmetric combination Awzs has a higher
photon momentum power (namely n = 6) than its replace-
ment 719 ~ X, with n = 4; cf. the discussion in Sec. II B.

(B9)
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TABLE XVII. Tarrach’s basis for the Compton amplitude [29]. The z; are the transverse tensors in Eqs. (12—13) therein; with
appropriate prefactors A, @ or Aw they become symmetric under photon crossing and charge conjugation. The X; are our Compton

tensors from Table XVI.

7, /m* =X,

o /m* = -X,
y/m* = =X,
Ary/m* = =X;
T19/m® = 2X,

Arg/m* = —j—‘XB

Aty /m’ = =222 X¢ +2X1; —3X13
tg/m? = —-1X;

CU’I,'g/Wl3 = —%Xg

Ti0/m* = 4X10 42X

an/m3 = % (Xx - X9)

Itip/m* = Xs —In Xin + Xy5

dotis/m* = (h — o)X, + 22Xy —n_X4 + 1, Xs — S0’ X5 — X5
wtyg/m* =Xy

oty /m* = —(0* X — 2Xg + X16)

oy /m* = —(n. X6 + 2X7 + X5)

/1‘1'17/’"2 =-Xp

115/m> = 4Xg —2X;

Awzs/m* = (. — @)X, + 2X3 —n_X4 +n,Xs
dotys/m* = w?(n_Xe + 2X 10 + X12) —1-(2X5 — X16) =14 X 14
Itie/m* =, (n_Xe +2X 19+ X1n) +1-(2X7 + X;5) — X14

For these reasons we prefer the more direct method of
Egs. (B5)—(B7) for deriving the basis, because it is failsafe
and also provides a safety check: if it were not possible to
solve (B7) without divisions, this would point to a problem
with minimality. Fortunately, in the case of Compton
scattering there is no such problem. Our main reasons
for working with the X; instead of Tarrach’s (modified)
basis are a cleaner physical interpretation (see the remarks
at the end of Sec. B), a simpler form of Table I, and simpler
expressions for Tables IV, VI and IX.

As discussed in connection with Eq. (2.44), it is still
possible to identify kinematic limits where kinematic sin-
gularities cannot be avoided. In that case the 18 tensors X;
collapse into a set of fewer tensors whose coefficients are
linear combinations of the ¢; but with singular denominators.
However, this does not change the fact that the c¢; themselves
are still finite in those limits. Take e.g., our results in Fig. 16:
the ¢; obtained from the intermediate nucleon resonances are
nonsingular everywhere inside the TPE cone, although the
cone contains the VVCS limit @ = 0. This means we can go
arbitrarily close to that limit and extract the ¢;, which also
remain finite in the limit. On the other hand, had we
calculated directly in the VVCS limit, the ¢; would have
collapsed into fewer functions with kinematic singularities.

In any case, this situation does not affect the kinematic
limits of RCS, VCS and the forward limit where direct
measurements are possible. This is evident from the
discussion below Eq. (2.30), Egs. (2.36)—(2.37), and
Eq. (2.41), as well as the following subsection B 2: in
all those cases the X; collapse into fewer tensors but the
respective coefficients do not pick up kinematic singular-
ities. Hence, in principle the CFFs (or their combinations)
can be measured directly in these limits.

2. Kinematic limits

In the following we collect the relations between the K;
in Table XV in the various kinematic limits, which leads to

the reduced transverse bases discussed in Sec. IIC. We
further relate the CFFs in those limits to some common
amplitude choices employed in the literature.

RCS: Here the condition @ = 0 eliminates the tensors

KS KIS K22 K27
KS K18 K24 K29 (BIO)
KIO KZO K26 K31

from the basis. In addition, applying polarization vectors
for the on-shell photon momenta has the same effect as
crossing off tensors which contain instances of either Q'# or
0%, so that also

K, K Ko
K, Kz Ky
Ky Ky

vanish in RCS. From Table X VI one then infers that only
the transverse tensors X, X,, X, X109, X17 and X, survive
in RCS. The relations between our CFFs and the RCS
amplitudes A;(_, 1) defined by L'vov er al. [51,52] are
given in Table XVIIIL.

VCS: The same strategy applied to VCS amounts to
dropping instances of Q'# only. With 7, = @ this implies

TABLE XVIII. Relations between the RCS amplitudes A; of
Refs. [51,52] and our CFFs in RCS (7, = @ = 0).

A, %(’7——2)0+02+%7I—C10+22C11
A, —(c6 + c10)
Az :_6_2 - %C1+010—C11
Ag m’ 11
ﬁs %(’7— —12)6‘11 +2cpp
6 I cio+5 (- =2)eyy
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K, =0, Ky, =0,

Ks =1, Ky, Kis =n. Ky,
Ko =n,Kg, Kyy=-n K,
Ky =n,Ky, Ky =-n.Kjz

which induce the linear relations (2.36) between the X ;. The
resulting CFFs are those in Eq. (2.37).

The relations between the Compton tensors 7'; employed
by Drechsel et al., defined in Appendix A of Ref. [31], with
Tarrach’s z; are given by:

T, =-1, T6..18 = T6..18

T, = —4z3,

T5 =1, Ty9 =21, (B11)
Ty=72z4, Ty =1,

Ts=-2t5, Ty =13.

These are subsequently used to define the VCS tensors p;
and corresponding dressing functions f;, cf. Eq. (A10) in
[31]. Their relations with our CFFs are given in Table XIX.
The nucleon’s generalized polarizabilities can then be
reconstructed using Egs. (3)—(8) in Ref. [7] or in a
manifestly covariant form via Eq. (A1) in Ref. [9]. Note
that in the conventions of Drechsel et al. the average
nucleon and photon momenta differ by a factor 2 and one
has to interchange the Lorentz indices y <> v.

FWD: In the doubly-virtual forward limit the condition
o = 0 disposes again of the tensors in Eq. (B10). In
addition one has Q' = Q*, but without any polarization
vectors because the photons are still virtual. Because the
incoming and outgoing nucleon momenta are the same, one
exploits the identities

TABLE XIX. Relations between the f; defined in Ref. [31] and
our CFFs in VCS (7, = w). The relations between the nucleon’s
generalized polarizabilities and the f; can be found in Refs. [7,9];
the f; in [7,31] are identical to the A; in Ref. [9]. We abbreviated

C7 =C7—14¢g Ci5 = C15+1¢16 and &7 = ¢17 =17 Cg.

m3f1 =0

mf, = 41‘;6‘1

m’fy =—3(cs — ¢17)
mtfy = %26’11

mifs = —(ce 4 287 — 2n,.co + A2y — (4 +4)C15)
mee = 7116‘10

mtf; = —4nico

m’fy = Aty

m’fo =n,ciy

m3fio =%4(c1o = 2¢1, = 11817)

mfi =4+ Acyy —ni8ys)

mfi, = —¢ys

A (P)rAL(p) =2

- (B12)

Ay (P )
and

AL (p)p"y = v p". r"IAL(P)
= Ay (p) (? e vl = I, 7”]17”) A (p) (B13)

to obtain further relations between the K;:

1
K; ==K, =K,
3= 584 2

K9 = K17 = K19 = _K23 = _K25 = K7’

1
Ky = 2K, K12:K13:§K14212K2’

K16 - /12K6, K21 - _2K6’

1
Ko = K33 =5 Kaa. K3 = K3
In total only seven tensors K, K,, K¢, K7, K39, K33 and
K3, remain independent. The resulting four transverse
tensors in the forward limit are given in Eq. (2.39) and
the corresponding CFFs in Eq. (2.41).

3. Nontransverse part

Next, we work out the remaining nontransverse tensors
of the basis, i.e., the I"" and I'§ from Eq. (2.20). For the
physical amplitude they are irrelevant because their coef-
ficients vanish due to gauge invariance, but projecting onto
the full 32-dimensional basis including all terms serves as a
useful test of gauge invariance.

The “partially transverse” piece I is subject to the
weaker constraint

Q"1™ (p, @', Q) Q0.

To derive it, we lift the requirement of gauge invariance and
add the 14 tensors belonging to the g; [given above
Eq. (B8)] that we previously eliminated:

18
= AL [Zgjl(’;” +y cixﬁ‘”} Al
j i=1

Since the transverse tensors X; already satisfy Eq. (B14) the
condition only affects the first sum. Its contraction with Q'
and QY generates two independent structures proportional
to 1 and X,

(B14)

S g QMK QY = A+ AYiaE=0,  (BIS)
J

with two resulting conditions A} = A} = 0. This leaves 12
independent functions; if we relabel them by c¢; with
i = 19...30, the result is
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TABLE XX. Nontransverse basis tensors for the Compton
amplitude. Taken together with those in Table XVI, they form
a complete basis.

X9 =n_K, = (7} — 0?)K, Xy =Kp
Xp0 = n_K¢ — 2K, Xog = Ky
Xo1 =20, K, — Ky Xp9 = Kpy

X22:21’]+K6—K9 X30:K34
Xp3 = 2K — Kos

Xo4 = 2K 15 + (% — @*)Ky X351 =K,
Xos = K9 — Koz — 21 Ky X3 = Ky
Xo = Ko + K33 + 4K + 8K
30
™ = AL {Z cixg‘”] Al (B16)
i=19

where the tensors X9 3o are collected in Table XX.

Unfortunately, here it is no longer possible to solve the
system (B15) without divisions, which means that some of
the resulting tensors acquire kinematic singularities. Those
are the ones proportional to X9 and X,,, whose original
form as a result of the equations is X,9/7_ and X,/7_.
Therefore, they must be multiplied by #_ which removes
the kinematic singularities at #_ = 0 and in the process
raises their photon momentum powers.

That the X9 3 satisfy Eq. (B14) is a simple check; for
example, Table XV entails

Q"K5 0" =—(p-Q'Q—0'p- Q) = imlwi,

)
im
which vanishes in the contraction with the positive-energy
projectors. In analogy to Eq. (2.26), it is possible to recast
the X9 30 in a form where the (partial) transversality is
manifest. For example, using the definition (2.25):

1
ng; = W (IJS;Q’ + th)’

Hvo 2 v v
X3 = E(fﬂgy +10):
idw
Xig =22 ). (B17)
Finally, the remaining nontransverse part
T = Abea X574 cp X AL (B18)

depends on the two tensors X3; = K; and X3, = Ky
corresponding to the coefficients that we eliminated in
the solution of Eq. (B15). In total, the sum of Eqgs. (B8),
(B16) and (B18) constitutes a complete 32-dimensional
tensor basis according to Eq. (2.20).

4. Effects of breaking gauge invariance

Finally we return to the question posed in Sec. IV C:
what are the consequences of breaking gauge invariance on
purpose? To investigate this, we consider the nucleon Born
term from Eq. (4.1) but implement a nucleon-photon vertex
that differs from the Dirac form (4.18). For example:

M

T
(k,Q) = i FlG’{+F273+aTQ (B19)

with the usual Dirac and Pauli form factors F,(Q?), but
including the tensor 77 from Table II with a constant
coefficient a. For simplicity, let us set F; = 1 and F, = 0.
Then for @ = 0 one obtains the CFFs for a pointlike Dirac
particle: ¢, = —4 and ¢,( = 2.

After switching on @, the Compton amplitude is no
longer gauge invariant. However, by projecting it onto its
full 32-dimensional tensor basis,

=Ty + I +177, (B20)
with the transverse part I, from Eq. (B8) and the
remainders I} and I'f; from Egs. (B16) and (B18), we
can isolate the terms that violate gauge invariance and work
out the effects on the transverse CFFs.

The result for the simple example above is given in
Table XXI. The transverse CFFs pick up extra terms which
depend on «a, but in addition we have also generated a
gauge part x X3o. As in Eq. (4.21) we quote the residues ¢;
for the transverse parts but the CFF cj5 itself for the gauge
part: only the transverse terms contain the nucleon poles
whereas they drop out in the gauge part.

Note also that no additional kinematic singularity has
been generated in any CFF. Had we simply performed a
transverse projection of the full amplitude, both gauge and
transverse parts would have collapsed into 18 transverse
functions; however, because the gauge part has a lower
photon momentum power it will produce kinematic sin-
gularities in those functions.

This principle can be taken further to test off-shell effects
in the nucleon Born term within a hadronic description

TABLE XXI. Compton form factors for a pointlike nucleon but
with an extra term o 7% that violates gauge invariance, see
Eq. (B19).

51:—4+A—B+D 5]]:—4(}(2
52:A+n_(4a—C) 5]2:20—61

6‘6 =-A —2(111_ EIS = —azﬂ_
610:2—40—%(A—B+D) C30:—%(l

A= a* (2 —42?) C=a*(2n, —n_+4)

B=a(n} - o) D =da(n, —on_)

093007-38



NUCLEON RESONANCES IN COMPTON SCATTERING

PHYS. REV. D 98, 093007 (2018)

5 ' ] sl ] s
+Ty + T5
ot oF of ]
/K f Elo
5 1 5 5 1 -~
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
c
5 5 5 ~11
+Tg + T +T3 == (12
0 of — o —
| ) ) K
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

N+ N+ N+

FIG. 20. Compton form factor residues of the nucleon Born
term from an off-shell nucleon-photon vertex that violates
electromagnetic gauge invariance. The upper left panel shows
the original result from Fig. 5 where gauge invariance is
preserved. In the remaining panels we switch on 7% ¢ as in
Eq. (B21), with @ = 1 in all cases.

[144]. To do so, we restore the proton’s Dirac and Pauli
form factors in Eq. (B19) but add other tensors with a
simple momentum dependence of the form

#Tﬂ
(1+Q*/m*) "

with i # 1 and i # 3. After the projection we drop the
unphysical gauge parts and consider the transverse CFFs
only. In Fig. 20 we show a few selected results for the
leading transverse CFFs obtained with @ = 1. Without the
additional tensors (upper left panel) they are identical to
those in Fig. 5. As one can see, breaking gauge invariance
has rather modest effects on the transverse part of the
Compton amplitude because the CFFs do not change their
form dramatically. Thus, even if off-shell effects played a
role (as far as that can be judged within an effective
hadronic theory) their correct implementation leads back to
results which resemble the on-shell forms.

This observation is useful also in a different context,
namely in microscopic calculations of Compton scattering.
In that case the complete expression for the Compton
amplitude in terms of quark and gluon d.o.f. has been
derived based on electromagnetic gauge invariance
[26,27]. As usual only the sum of all diagrams is gauge
invariant but not the individual terms. Unfortunately, some of
those diagrams are numerically hard to calculate. Keeping
only parts of the results, even if they provide the dominant
contributions, would indeed be useless if one cannot quantify
the effects of breaking gauge invariance. For example,
with a naive transverse projection the resulting CFFs would
be contaminated by unphysical kinematic singularities.
The separation (B20) resolves the problem: one can project
the dominant diagrams onto the complete basis, which
ensures both transversality and the absence of kinematic

al” — (B21)

singularities, and subsequently retain the transverse CFFs.
This leads to well-defined expressions, which can be
systematically improved upon, where the subleading dia-
grams would mainly serve to cancel the gauge parts because
the sum of all diagrams is known to be gauge invariant.

APPENDIX C: SPIN-3/2 LAGRANGIANS AND
POINT TRANSFORMATIONS

In this Appendix we collect some further properties of
spin-3/2 Lagrangians. We drop the label “R” that was used
in the main text and denote the mass of the spin-3/2 particle
by m, its tree-level propagator by S%, and the nucleon-to-
resonance transition vertex by ['®.

The free spin-3/2 Lagrangian

L= goAPyb, AP = _é{gaﬂ,iwrm} (C1)
with i = @ is a special case of more general possible forms
that are related to each other by point transformations

[47,65,68]. Let us define the transverse and longitudinal
projectors onto y-matrices,

pY =50 -y, B = ()
with the properties
PPy =0, [p‘H‘/}y/f - P‘f[@ﬂﬁ =0. (C3)
The so-called point transformation tensors
0v(2) = PY + Py’ (C4)
form a group:
O (1)OP()) = 0% (),
O (1O (171) = 5%, (C5)

where the group parameter A is the coefficient of the
longitudinal part in ®(1). The general form of the inverse
propagator A% can then be written as [47]

AP (&) = @ (l> AP (E=1)0% (1> (Co6)
¢ ¢

It depends on a gauge parameter £, where £ = 1 corre-

sponds to the “Rarita-Schwinger gauge” and A% (£ = 1) is

the expression in Eq. (Cl).4 From Egs. (C5)—(C6) one has

the general relation

AP(E) = 0% <E/) A (E)0% @/) SN (S

*To compare with the notation in the literature, e.g., [47,145],
use E =—1/(1+2A) and 1 = 1 +4a.
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which entails that the Lagrangian £ = y*A% &)y’ is
invariant under the point transformation

/

§>wﬂ. (C8)

é N 5/’ I//(l - l///(l — @a[)’(

Defining Q = i} + m, one can further show that Eq. (C6) is
identical to

S prop!

ap _ pwop’’ _ =
A (6)_PLQPL 52 I I

1
o PP + PTQPY).

TP (€9)

The spin-3/2 propagator is the inverse of A®(£) in
momentum space and therefore it satisfies

SP(E) = O (8)S° (& = 1)0%(8). (C10)

where S (£ =1) is the Rarita-Schwinger propagator in
Eq. (6.3). The explicit form of the general tree-level

propagator is

—i _ g2
lk+mAaﬂ+(1 )

Saﬂ — a P

O =i 2aimz Ik
- _é(k“yﬂJrr“kﬁ) + _527“7”’ (C11)

6im? 12m

where only the first term survives for £ = 1. Using the spin-
3/2 and spin-1/2 projectors defined in Egs. (6.5)—(6.7) and
(6.10), the propagator can also be written as [146]

$0(6) = e+ E [+ 4 (-0 o et
g -G ron] P
+ iff—:f; (P + Py
+ % if(Py — Pyy)?, (C12)

which reduces to Eq. (6.11) if £ = 1.

The invariance of matrix elements under point trans-
formations can be discussed along the same lines. A
generic interaction term for the electromagnetic coupling
of the nucleon to a spin-3/2 resonance has the form

Lya, = wTHAky, (C13)
where y denotes the nucleon and A* the photon field. I'* is
the tree-level interaction vertex that satisfies Q*I"* = (0 and
k“T™* =0 in momentum space, with Q" the photon
momentum and “ the spin-3/2 momentum. The first

condition follows from electromagnetic gauge invariance
and the second from spin-3/2 gauge symmetry.

Following Ref. [146], one can interpret the tree-level
vertex as the special case (£ = 1), so that its general
form becomes

1

re o0 (e,

and the invariance of the Lagrangian under the point
transformation (C8) follows from

/

T (g) = ©P (E) I (g). (C15)

In combination with Eq. (C10), under a change & — &
these transformation matrices will trivially cancel each
other in any Lagrangian
L=y NP ( Sy + §TH () Ay (Clo)
as well as any matrix element with internal spin-3/2 legs.
Since this always leads back to & =1, it is sufficient to
restrict the discussion to the Rarita-Schwinger gauge.
For the correct counting of d.o.f., the invariance under
point transformations is also satisfied if either the propa-
gator or the vertex is transverse to y*. Imposing this
condition on the propagator by setting £=0 in
Eq. (C10) has the undesired consequence that it is no
longer invertible. On the other hand, it is legitimate to set
£ — o0 in Eq. (C14) because we never need to invert
vertices; this is equivalent to imposing y*I'®* = 0. In that
case the interaction term is already invariant by itself and
any point transformation leads to the same result:
QW ()P =T, (C17)
Matrix elements where the internal spin-3/2 propagator is
connected with two vertices are also invariant, because the
relation

s =0 (§)swer ()
entails THeS¥(EI = [HasP (TP,  The resulting

dressed vertex admits 12 independent tensor structures,
which translates to at most 12 possible independent
electrocouplings in an effective Lagrangian. As discussed
below Eq. (6.12), any vertex that is transverse in k% and y*
will also remove the spin-1/2 contributions from the
propagators that appear in such matrix elements. In the
Rarita-Schwinger gauge the condition k“I'* = 0 is suffi-
cient for this purpose because the projector I]:"Tf decouples
from the propagator.
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APPENDIX D: FORM FACTOR RELATIONS

Here we give the relations between the constraint-free
form factors F;(Q?), which we use to parametrize the
nucleon-to-resonance transition currents (with i = 1, 2 for
JP =1/2% resonances and i =1, 2, 3 for J’ =3/2*
resonances), and the experimental helicity amplitudes.
We also compare with the standard form factor conventions
in the literature [48,49]; see also the reviews [41,113].

We first collect the necessary definitions to arrive at
compact expressions. These are the relations between the
nucleon and resonance masses,

;=R
m 9
2 _ 2
5="R 2m =r -1,
m
mr+tm r=+1
0y = = , D1
= 5 (D1)
abbreviations for the photon momentum transfer,
0 4
Teg.  T=Tog, (D2)
and
mg £ m)* + Q?
li_<R 4)2 Q:T+52’
m
224
Ry =e\/—,
= mo
N ALA
K= , D3
N (D3)

where e? = 4za,, is the electric charge. Note also that
A A_ =1’z + 7% In the CMS frame of the pion electro-
production process y*N — zN, the Lorentz-invariant
quantity

2
2V2mk = 22 AL = |k

. (D4)
becomes the three-momentum of the virtual photon
evaluated at the resonance position. Likewise, the three-
momentum of the pion at the resonance position and for a
vanishing pion mass is the so-called photon-equivalent
energy: |k'|,, _o = md/(2r).

1. J? =1* transition form factors

We express the on-shell N — 1/2% transition matrix
element in terms of Eq. (5.5),

Jﬁ(k’ Q) = A+(k+)rlllz(k, Q)A+(k—>7 (DS)

with the onshell kinematics as in Sec. VA: k* is the
nucleon momentum, M the resonance momentum, Q* the
incoming photon momentum, and k¥ = (k. + k*)/2
the average momentum of the nucleon and the resonance.
On the mass shell: k2 = —m?, k3 = —m% and therefore k?
and w = k - Q are given by Eq. (5.6). The transition form
factors F(Q?) and F,(Q?) are defined in (5.8),

1 T
(%)
75 2

where the T/ are given in Table Il and the upper (lower)
entry corresponds to positive (negative) parity.

The definition in Ref. [49] is analogous but expressed in
terms of two dimensionful transition form factors G, (Q?)
and G,(Q?):

M (k, Q) = z[ (D6)

1 2
R (k, Q) = im? [y } <G1T§‘ + GzrfvT’;). (D7)
5

With 7% being proportional to 7% on the mass shell,
cf. Table V, one can read off the on-shell relations between
the form factors:

Fy F,
G, =—, G, = ,
T2 2 :':2171253F

(D8)

where upper (lower) signs correspond to resonances with
positive (negative) parity.

The helicity amplitudes A;,,(Q?) and S;/,(Q?) are
related with the form factors through [41]

A1/2 = R:F(4TF1 + 5:|:F2),

S1/2 = KR:F(Zl:45iF1 - F2), (D9)
with the inverse relations
1 Oy )
Fir=— (A, ,x—S8 ,
1 AR ( 12 =701
Fy——(45.4,,-15 (D10)
2 _Rﬂli A2 =012 )

Note that because of the factors R. and « the helicity
amplitudes vanish either at 4, = 0, the pseudothreshold
A_ =0, or both.

2. J° =%i transition form factors

The onshell N — 3/2* transition matrix element is given
by Eq. (6.20),

T = AL ()P, (T (k. Q)AL (k= Q). (DI1)
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TABLE XXII. Additional tensors appearing in the J* =3*

currents (D14), (D17) and (D18). For positive parity, the right
column gives their onshell relations which relate them to 7'y, T,
and T; defined in Table VII. For negative parity the same
relations hold if one exchanges r — —r and 1_ — 4,.

drap __ af _pu
miTy = ng“fij

T21 - 2T,T2 - rT3

m4Tg’24 = Qakﬁfgdg rT22 -+ 4rTT2 - 2T,T3
mT;’; = —lt;llé rT23 - Tl - T2
szgz = taQMQ rT24 - T3

mi T = oy el Tos +22_T) + 20T, + 1T

where k is the outgoing momentum of the resonance and
Q is the incoming photon momentum. On the mass shell:
(k—Q)*=—m? and k> =—m>%, which entails k - Q = 2m>7’.
The constraint-free transition form factors F;(Q?) are
defined via (6.24),

a, 75 a a 7
MY 0) = || (R - mar - ). 012

where the upper (lower) entry corresponds to positive
(negative) parity. The T?* are defined in Table VII.

To write down the various different versions of the
onshell currents used in the literature, we define the tensors
T5,...T»5 in Table XXII in addition to those in Table VIIL
On the mass shell and inside the positive-energy and Rarita-
Schwinger projectors (D11) they are linearly related with
T, T, and T, but with the exception of T5; they do not
satisfy the off-shell constraint k*T% = 0.

Following [41], the experimentally extracted helicity
amplitudes Az, (0?), A;/2(0?) and S, ,(Q?) are related to
the helicity form factors /;(Q?) via

34 I"Sl/z A’;/z
hy,hy,h3} = /== +—=,A D1

where upper (lower) signs denote positive (negative) parity.
The corresponding form of the current is [49]

) 1 75 oyl o
Y= { 1] }(—thﬁ +2h, T

+ (hy + h3)T55), (D14)

which is neither free of kinematics nor satisfies the off-shell
constraints. Using the on-shell relations in Table XXII, the
helicity form factors (and thus helicity amplitudes) are
related to the F; via

p_ _th
84,
F2 = _8,1+—,{_ [2’1’1’11 + T/(hz - h3)],
N N W (h,—hy)|  (D15)
— T _— -
BT 8| 2
and vice versa
hl = —4(}"2F2 F ZI”T/F3),
hz = _4(/’{iFl + TIF2 + 2I’TF3),
h3 = _4(/1iF1 - T/F2 F 2rTF3). (D16)

Also here the helicity amplitudes in Eq. (D13) vanish either
at A, = 0 or A_ = 0 due to the factors R.

Another form of the current expressed in terms of three
form factors G,;(Q?) is [41,49]:

re = [ﬂ (G\T% + G,T% + GsT%).  (D17)
Here we defined the G; to be dimensionless (in the standard
definition they carry dimensions: replace G; - mG; and
Gys — m2G2,3.) They are free of kinematics but again the
current does not satisfy the off-shell constraints. Their
relation with the F; is

Glzj:rFl, GQZ—(F1+F2), G3 =F rF3.

Finally, the Jones-Scadron form of the current in terms of
7 Gy and G is given by [48,49]

3 6 s Gy —Gg
Iy = ﬂ:\/: = AxTY
R 22&+/1_[1]K[ 2G;, |

H[ 20 | E = 0 1E)
Gl -Gy 2 2

(D18)

As before, upper (lower) components and signs denote
positive (negative) parity. The Jones-Scadron form factors
are related to the helicity form factors via

Gyl \ﬁh3i3h2
G| V2 128, °
GE _\/§h3:Fh2
Gy, | V2 125, °
. B A
GC_\/zéai'

This coincides with the conventions in [41,48] whereas in
Ref. [49] G}, Gf and G are defined without the factor

\/3/2 on the rh.s. The relations between the Jones-
Scadron form factors and the F; are given by

(D19)
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- \P 1 [24,F, +7'F, + 2rtF,
M= V35, —A_F, '

G \/51 [ F, + 2rtF; }
E 351 —/I_Fl —27/F2+4TTF3

G*\Fl(
¢ V35,

and vice versa

I”ZFZ + ZVT/F3) (DZO)

\/§ _(G}, - Gy)
Fl = N
2200 | -21.G%,
35y 7Gy —1G¢
F2: |:1 * *:|’
2i+/1 ET G _GE) TG

(Si ZG* —I—TG*
22rd A [ -1 (Gy - Gy) —

W

T/sz:| '
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