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We calculate the nucleon resonance contributions to nucleon Compton scattering, including all states
with JP ¼ 1=2� and JP ¼ 3=2� where experimental data for their electromagnetic transition form factors
exist. To this end, we construct a tensor basis for the Compton scattering amplitude based on
electromagnetic gauge invariance, crossing symmetry and analyticity. The corresponding Compton form
factors provide a Lorentz-invariant description of the process in general kinematics, which reduces to the
static and generalized polarizabilities in the appropriate kinematic limits. We derive the general forms of the
offshell nucleon-to-resonance transition vertices that implement electromagnetic and spin-3=2 gauge
invariance, which automatically also defines onshell transition form factors that are free of kinematic
constraints. We provide simple fits for those form factors, which we use to analyze the resulting Compton
form factors and extract their contributions to the nucleon’s polarizabilities. Apart from the Δð1232Þ, the
resonance contributions to the scalar and spin polarizabilites are very small, although the Nð1520Þ could
play a role for the proton’s magnetic polarizability.
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I. INTRODUCTION

Compton scattering on the nucleon encodes a multitude
of interesting physical applications. It is the process
γ�N → γ�N, sketched in Fig. 1, where either of the photons
can be real or virtual. Compton scattering probes the
electromagnetic structure of the nucleon and therefore
the quarks inside. On the one hand, it encodes the nucleon’s
polarizabilities which test its response to an external
electromagnetic field. Ongoing efforts with chiral effective
field theory, dispersion relations and other approaches aim
to determine the proton’s and neutron’s scalar and spin
polarizabilities [1–5]. On the other hand, virtual Compton
scattering (VCS), where one photon is virtual and the
other is real, provides access to the nucleon’s generalized
polarizabilities [1,6–9]. Deeply virtual Compton scattering
(DVCS) is the primary tool to extract the nucleon’s
generalized parton distributions (GPDs) [10–13]; and the
forward limit, where the momentum transfer vanishes, is
experimentally accessible in deep inelastic scattering and
relates the Compton amplitude with the nucleon structure
functions and PDFs.

Also the integrated Compton amplitude is of interest.
The diagram where the two photons couple to a lepton
encodes the two-photon exchange (TPE) corrections to
electromagnetic form factors. These are believed to be
responsible for the difference in the proton’s GE=GM
measurements, because the Rosenbluth separation method
is sensitive to TPE effects whereas the polarization transfer
experiments are not [14–16]. However, at present it still
remains to be clarified which parts of the Compton
amplitude cause the difference. TPE contributions also
enter in the proton radius puzzle although so far the effect
appears to be too small by an order of magnitude to explain
the discrepancy [17–22].
At the hadronic level, the Compton amplitude can be split

into “elastic” Born terms and an “inelastic” structure part as
in Fig. 1. In principle the Born terms are determined by the
nucleon electromagnetic form factors, whereas the one-
particle irreducible (1PI) structure part encodes the structure
information such as polarizabilities. The latter probes the
spectrum of hadrons: in terms of its singularity structure, it
contains intermediate nucleon resonances in the s and u
channels such as the Δð1232Þ resonance, meson exchanges
in the t channel, and vector-meson poles for timelike photon
virtualities. These are accompanied by multiparticle cuts in
the various channels, which come from Nπ; Nππ; ππ…
loops and are directly accessible in effective field theory
approaches. For example, it is well known that the Δ
resonance provides a large contribution to the magnetic
polarizability which is counteracted by pion loops, thus
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leading to the picture of a “paramagnetic quark core” that is
cancelled by its “diamagnetic pion cloud” [5,23–25].
On the other hand, handbag dominance in DVCS

attributes the dynamics in Compton scattering to an
interaction of the photons with the perturbative quarks
inside the nucleon. It is then understood that the hadronic
description should be applied at low energies whereas the
microscopic approach is appropriate whenQ2 is large. Still,
it is desirable to connect these two regimes by a common
underlying formulation. Such an approach in terms of
nonperturbative quark and gluon degrees of freedom
(d.o.f.) has been formulated [26–28] but it is not the topic
of the present work. Here we aim for a more modest goal,
namely to establish a connection in terms of common
amplitudes to describe the process in arbitrary kinematics.
In principle Compton scattering is completely specified

by 18 Lorentz-invariant functions [29], which are probed in
different kinematic limits by the experimental processes
mentioned above. The purpose of this paper is to make a
step towards connecting these limits by providing a tensor
basis based on electromagnetic gauge invariance, crossing
symmetry and analyticity. This leads to a set of 18 Compton
form factors (CFFs) which depend on four Lorentz-
invariant variables and which are free of kinematic con-
straints. In the limit where all variables vanish these are
related to the nucleon’s polarizabilities, in VCS they are
connected to the generalized polarizabilities and in the
forward limit to the nucleon’s structure functions. Each
CFF has certain characteristics: the nucleon Born terms
contribute to only a few of them, as well as the t-channel
meson poles; and only certain subsets of them survive in the
forward limit, in RCS or in VCS.
Following the approach by Bardeen, Tung and Tarrach

[29,30], similar tensor bases have been employed for
specific applications such as low-energy VCS [31,32] or
scalar Compton scattering [33,34]. Here we provide the
detailed basis construction for a spin-1=2 target in general
kinematics, using a procedure that differs fromRefs. [29,30]
and allows one to better track the occurrence or absence
of kinematic singularities. It is still true that kinematic
singularities cannot be avoided in certain limits [35], but this
does not affect the 18 CFFs in general or the limits of RCS,
VCS and the forward limit where direct measurements are
possible.
As a practical application we work out the CFF contribu-

tions from intermediate s- andu-channel nucleon resonances,
which enter in the process through their electromagnetic

transition form factors. The Δð1232Þ contribution to the
nucleon’s polarizabilities is known [9,36,37], but in view of a
precision determination of polarizabilities it is still desirable
to understand the impact of higher resonances,which can also
play a role in TPE [38–40]. In the last decade significant
progress has been made in measuring the electrocouplings of
nucleon resonances through meson electroproduction in a
wideQ2 range [41,42]. In addition to theΔð1232Þ resonance,
the electromagnetic transitions are now relativelywell known
also for theRoper resonanceNð1440Þ, the nucleon’s tentative
parity partner Nð1535Þ, and the Nð1520Þ resonance. First
data for higher-lying resonances have been accumulated in
two-pion production [43–45] and more results are underway
with the Jefferson Lab 12 GeV program.
The fact that the resonances in Compton scattering are

offshell creates additional complications. Electromagnetic
gauge invariance and spin-3=2 gauge invariance for Rarita-
Schwinger particles [46,47], which ensures the absence of
the spin-1=2 background in matrix elements, induce further
constraints on the offshell transition vertices. Here we
derive the most general structure for the JP ¼ 1=2� and
JP ¼ 3=2� transition amplitudes that are compatible with
these constraints. As a result, their implementation in
Compton scattering automatically ensures the absence of
spurious contributions.
Moreover, these expressions also determine the most

general forms of the onshell nucleon-to-resonance electro-
magnetic transition currents which are free of kinematic
constraints. One obtains two form factors F1;2ðQ2Þ in the
J ¼ 1=2 case and three form factors F1;2;3ðQ2Þ for J ¼ 3=2
and higher spin, which are kinematically independent so
that all their singularities and momentum dependencies are
of dynamical origin. The experimental data are usually
discussed in terms of helicity amplitudes or multipole form
factors [41,48,49] which are neither free of kinematics nor
satisfy the offshell constraints. Here we provide simple fits
to the experimental data for all available resonances in
terms of the constraint-free form factors FiðQ2Þ. Those
parametrizations we finally implement in the Compton
amplitude to calculate the CFFs in the entire kinematic
domain.
The paper is organized as follows. In Sec. II we establish

our notation, discuss the kinematic regions in terms of four
Lorentz-invariant variables, provide the tensor basis for the
Compton amplitude and investigate different kinematic
limits. In Sec. III we illustrate the situation for scalar

FIG. 1. Separation of the nucleon Compton amplitude into Born terms and a 1PI structure part.
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Compton scattering. In Sec. IV we discuss the nucleon
Born terms, together with the offshell nucleon-photon
vertex that enters there, in some detail and work out the
corresponding CFFs. In Secs. V and VI we apply the same
procedure to derive the J ¼ 1=2 and J ¼ 3=2 resonance
contributions, respectively, and in Sec. VII we provide our
fits for their transition form factors. The resulting CFFs and
polarizabilities are discussed in Sec. VIII. We summarize
in Sec. IX.
Several Appendices serve the purpose of making our

calculations as transparent as possible for practitioners. We
use a Euclidean metric for practical convenience but with
the formulas in Appendix A the transcription between
Euclidean and Minkowski conventions should be straight-
forward. In Appendix B we explain the tensor basis
derivation for the Compton amplitude in detail; we provide
relations between our CFFs and the amplitude conventions
in some kinematic limits used in the literature; and we
investigate the consequences of breaking gauge invariance
for the nucleon Born term. Appendix C gives some details
on spin-3=2 Lagrangians, and in Appendix D we collect the
relations between the resonance transition form factors and
helicity amplitudes employed in the literature.

II. COMPTON AMPLITUDE

A. Kinematics

The onshell nucleon Compton amplitude with virtual
photons has the form

Mμνðp;Q0; QÞ ¼ e2

m
ūðpfÞΓμνðp;Q0; QÞuðpiÞ; ð2:1Þ

where e2 ¼ 4παem,m is the nucleon mass,Q andQ0 are the
incoming and outgoing photon four-momenta, pi and pf

are the initial and final on-shell nucleon momenta
(p2

i ¼ p2
f ¼ −m2), and p ¼ ðpi þ pfÞ=2 is the average

nucleon momentum (see Fig. 1). uðpiÞ and ūðpfÞ are
nucleon spinors satisfying the Dirac equation; they are
eigenspinors of the positive-energy projectors

ΛþðpfÞ ¼
−i=pf þm

2m
; ΛþðpiÞ ¼

−i=pi þm
2m

ð2:2Þ

with ΛþðpiÞuðpiÞ ¼ uðpiÞ and ūðpfÞΛðpfÞ ¼ ūðpfÞ. It is
then more convenient to work with the Dirac matrix-valued
Compton amplitude

Γμνðp;Q0; QÞ ¼ ΛþðpfÞ
�X18
i¼1

ciX
μν
i

�
ΛþðpiÞ; ð2:3Þ

where the spinors are replaced with the projectors. The
Compton amplitude is constructed from 18 dimensionless
Compton form factors (CFFs) ci which depend on four

kinematical invariants, together with 18 Lorentz-covariant
basis tensors Xμν

i ðp;Q0; QÞ.
We will alternatively use two sets of four-vectors,

fp;Q;Q0g and fp;Σ;Δg, with the relations

p ¼ 1
2
ðpi þ pfÞ;

Σ ¼ 1
2
ðQþQ0Þ; Δ ¼ Q −Q0 ¼ pf − pi ð2:4Þ

and

pi ¼ p −
Δ
2
; Q ¼ Σþ Δ

2
;

pf ¼ pþ Δ
2
; Q0 ¼ Σ −

Δ
2
: ð2:5Þ

With the constraints p2
i ¼ p2

f ¼ −m2, the process is char-
acterized by four Lorentz invariants. We work with the
dimensionless variables1

ηþ ¼ Q2 þQ02

2m2
; η− ¼ Q ·Q0

m2
; ω ¼ Q2 −Q02

2m2
;

λ ¼ −
p · Σ
m2

¼ −
p ·Q
m2

¼ −
p ·Q0

m2
ð2:6Þ

and vice versa�
Q2

Q02

�
¼ Σ2 þ Δ2

4
� Σ · Δ ¼ m2ðηþ � ωÞ;

Q ·Q0 ¼ Σ2 −
Δ2

4
¼ m2η−; ð2:7Þ

so that the CFFs in Eq. (2.3) are dimensionless functions
ciðηþ; η−;ω; λÞ. The variables ηþ and η− are even under
photon crossing and charge conjugation, whereas ω and λ
switch signs [see Eq. (2.19) below]. Below we employ a
tensor basis that is invariant under both operations, so that
the CFFs can depend on ω and λ only quadratically.

1Introducing new symbols for these variables provides a
compact notation but also has the following advantage: we use
Euclidean conventions throughout this work, but since Lorentz-
invariant scalar products differ from their Minkowski counter-
parts only by minus signs these variables are the same in
Minkowski space if one defines them as

ηþ ¼ −
q2 þ q02

2m2
; η− ¼ −

q · q0

m2
;

ω ¼ −
q2 − q02

2m2
; λ ¼ p̃ · q

m2
¼ p̃ · q0

m2
;

where p̃, q and q0 are the Minkowski momenta corresponding to
p, Q and Q0. In that way all relations between Lorentz-invariant
(but also Lorentz-covariant) quantities, such as the CFFs given in
Tables IV, VI and IX, are identical in Euclidean and Minkowski
conventions; see Appendix A for more details.
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The variables ηþ, η− and ω admit a simple geometrical
understanding of the phase space. Defining the momentum
transfer as

t ¼ Δ2

4m2
¼ ηþ − η−

2
ð2:8Þ

(which differs by −4m2 from the usual definition), then for
t > 0 the region that one must integrate over in order to
calculate two-photon exchange (TPE) contributions to
observables forms a cone around the ηþ direction, which
is shown in the leftmost panel in Fig. 2. This is so because
Σμ is the integration momentum and the integration region
is subject to the constraints

σ > 0; −1 < Z < 1; −1 < Y < 1 ð2:9Þ

where σ, Z and Y are the hyperspherical variables from
Eq. (A8) with the Lorentz-invariant definition

σ ¼ Σ2

m2
; Z ¼ Σ̂ · Δ̂; Y ¼ p̂ · cΣ⊥: ð2:10Þ

Here, a hat denotes a normalized four-momentum (e.g.,
Σ̂ ¼ Σ=

ffiffiffiffiffi
Σ2

p
) and the subscript ⊥ stands for a transverse

projection with respect to the total momentum transfer Δ.
These variables are related to the ones in Eq. (2.6) via

σ ¼ ηþ þ η−
2

; Z ¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þ − η2−

p ; ð2:11Þ

λ ¼ Y
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ η2− − η2þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ηþ − η−

s
: ð2:12Þ

With t > 0 the first two constraints in (2.9) entail

−ηþ < η− < ηþ; ω2 þ η2− < η2þ ð2:13Þ

which defines the cone in Fig. 2. Because of

ηþ � ω ¼ 1

m2

�
Q2

Q02

�
;

ηþ � η−
2

¼
�
σ

t

�
ð2:14Þ

the opposite sides of the cone in the fω; ηþg plane define
the axes of Q2 and Q02, whereas in the fη−; ηþg plane the
cone is bounded by the axes for σ and t. Because Y ∈
ð−1; 1Þ is real inside the cone, the crossing variable λ must
become imaginary due to Eqs. (2.12) and (2.13).
In Fig. 2 we show the various kinematic limits:
(i) Real Compton scattering (RCS): Q2 ¼ Q02 ¼

0 ⇒ ηþ ¼ ω ¼ 0.
(ii) Virtual Compton scattering (VCS): Q02 ¼ 0 ⇒

ηþ ¼ ω.
(iii) Generalized polarizabilities: Q0μ ¼ 0 ⇒ ηþ ¼ ω,

η− ¼ λ ¼ 0.
(iv) Doubly-virtual forward limit: Δμ ¼ 0 ⇒ ηþ ¼ η−,

ω ¼ 0.
(v) Static polarizabilities: ηþ ¼ η− ¼ ω ¼ λ ¼ 0.

In the 3D plots the static polarizabilities are defined at the
origin of the coordinate system; the forward amplitudes and
generalized polarizabilities live on the boundary of the cone
where t ¼ 0 or Q02 ¼ 0, respectively; the RCS limit is
defined along the η− axis outside of the cone; and the VCS
limit defines the plane Q02 ¼ 0.
The nucleon resonance poles at s ¼ m2

R and u ¼ m2
R,

where s and u are the Mandelstam variables and mR is the
mass of the resonance, are more difficult to visualize
because they also depend on the crossing variable λ:�
s

u

�
¼ −ðp� ΣÞ2 ¼ m2½1 − ðη− ∓ 2λÞ� ¼ m2

R; ð2:15Þ

with λ ¼ ðs − uÞ=ð4m2Þ. Taking also into account the
resonance width, m2

R → m2
R − imRΓR, and defining

δ ¼ m2
R −m2

m2
; γ ¼ mRΓR

2m2
; ð2:16Þ

the condition for a pole becomes

TPE
VCS

GP

RCS

FW
D

N*

FIG. 2. Compton scattering in the variables ηþ, η− and ω. The interior of the cone contributes to two-photon exchange (TPE). Real
Compton scattering (RCS) lives on the η− axis and virtual Compton scattering (VCS) on the plane ηþ ¼ ω. The boundary of the cone
contains the doubly-virtual forward limit (FWD) at t ¼ 0 (ηþ ¼ η−) and the VCS limit where the generalized polarizabilities are defined
(GP, ηþ ¼ ω and η− ¼ 0). Inside the cone, nucleon resonances appear at η− ¼ −δ.
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η− ¼ �2λ − δþ 2iγ: ð2:17Þ

Figure 3 illustrates the situation in the forward limit,
where the two remaining variables η− ¼ ηþ ¼ Q2=m2 and
λ define the Mandelstam plane. The forward CS amplitude
is of special interest because the optical theorem relates its
imaginary part to the total photoabsorption cross section
γ�N → X and thus to the nucleon’s structure functions. The
physical region of that process is where the Bjorken
variable x ¼ η−=ð2λÞ takes values 0 ≤ x ≤ 1. The nucleon
resonances appear at fixed s and u, starting with the
nucleon poles at s ¼ m2 and u ¼ m2 (corresponding to
η− ¼ �2λ). The resonance regions are indicated by the red
shaded areas in the plot, where at larger s and u the
resonances are eventually washed out. In addition, one has
branch cuts from multiparticle production: the right-hand
cut at s ≥ ðmþmπÞ2, which starts at the pion production
threshold and extends to infinity, the left-hand cut at
u ≥ ðmþmπÞ2, plus further cuts in the timelike region
where η− is negative.
Except for the nucleon Born poles and branch cuts, the

CFFs are analytic functions in the physical sheet, given that
they are defined through an appropriate tensor basis which
does not introduce additional kinematic singularities. Since
their imaginary parts along the cuts are known from the
cross section data, one can exploit Cauchy’s formula to
determine the CFFs everywhere in the complex λ plane via
(subtracted) dispersion relations. Except for the subtraction
functions, which can be determined in chiral effective field
theory (see e.g., the reviews [3,5]), the forward CS
amplitude is then in principle fully determined by exper-
imental data.
The TPE region is the interior of the cone where the

crossing variable λ is imaginary. In the forward limit
Eq. (2.12) becomes λ ¼ iY

ffiffiffiffiffi
η−

p
, so that the remnant of

the cone is the domain ReðλÞ ¼ 0 and jImðλÞj ≤ ffiffiffiffiffi
η−

p
along

the imaginary λ axis, as indicated in Fig. 3. On the other

hand, for small values of λ the CFFs can be expanded in
powers of λ2. The Q2-dependent forward polarizabilities
are accordingly defined as the coefficients in a low-energy
expansion:

ciðη−;λÞ¼cBorni ðη−;λÞþcPoli ðη−;λ¼0ÞþOðλ2Þ; ð2:18Þ

where the Born contributions are singular for λ ¼ �η−=2
and the remaining pieces absorb all structure effects.
Because the nucleon resonance locations only depend on

η− and λ, the Mandelstam plane has the same form as in
Fig. 3 also in general kinematics, such as e.g., in RCS and
VCS, although the respective physical regions are different.
The interior of the cone always corresponds to imaginary λ,
so that the condition (2.17) becomes η− ¼ −δ and
ImðλÞ ¼∓ γ. Thus, for negative values of η− the resonance
poles can appear in the TPE integration region and must be
properly taken care of. This is illustrated by the vertical
plane in the rightmost panel of Fig. 2 for an exemplary
resonance. The poles of the nucleon itself (δ ¼ γ ¼ 0)
intersect with the cone in the limit η− ¼ λ ¼ 0. In the case
of VCS (ηþ ¼ ω) this is just the limit where the generalized
polarizabilities are defined (second panel in Fig. 2), so that
an extraction of polarizabilities requires a sensible sub-
traction of the nucleon poles contained in the nucleon
Born terms.

B. Tensor basis

The extraction of CFFs requires a suitable tensor basis.
While in principle the tensor decomposition is arbitrary, the
choice of basis matters in practice. Compton scattering is
characterized by 18 CFFs ciðηþ; η−;ω; λÞ, cf. Eq. (2.3), and
thus it is desirable to construct a basis where these functions
become as simple as possible:

(i) Gauge invariance must be properly implemented,
which reduces the number of CFFs from 32 to 18.
Below we write down a basis where transversality is
manifest.

(ii) The Compton amplitude is invariant under photon
crossing and charge conjugation:

Γμνðp;Q0; QÞ¼! Γνμðp;−Q;−Q0Þ;
Γμνðp;Q0; QÞ¼! CΓνμð−p;−Q;−Q0ÞTCT; ð2:19Þ

where C ¼ γ4γ2 is the charge-conjugation matrix
and the superscript T denotes a matrix transpose.
Implementing these properties already at the level of
the basis elements simplifies the discussion because
the resulting CFFs can depend on the variables ω
and λ only quadratically: ciðηþ; η−;ω2; λ2Þ.

(iii) To make the CFFs dimensionless we divide the basis
tensors by powers of the nucleon mass m.

(iv) The CFFs should be free of kinematic singularities;
analyticity then implies that their only singularities

TPE

R
es

on
an

ce
s 

in
 s

R
esonances in u

R
es

R
es

R
es

R
esona

ona
ona
onance

nce
nce
nces i

s
i

s
i

s
in u
n

u
n

u
n

u R
es

R
es

R
es

R
es

R
es

on
a

on
a

on
a

on
a

on
a

cenc
e

nc
e

nc
e

nc
es

i
s

i
s 

i
s 

i
s 

in
s

n
s

n 
s

n 
s

n 
s

* N  X

FIG. 3. Kinematics in forward Compton scattering in the
variables η− and λ.
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are physical poles and cuts. In Fig. 2 the dominant
poles are: the s- and u-channel nucleon and nucleon
resonance poles; the lowest vector-meson poles in
Q2 andQ02, which live on planes parallel to the VCS
plane (and their mirror planes with ω → −ω); and
the lowest t-channel meson poles on planes parallel
to the forward plane outside of the cone. Being free
of kinematic effects has several practical advantages;
it can simplify the momentum dependence of the
CFFs, as their dependence on the four variables ηþ,
η−, λ and ω effectively often collapses into a one-
dimensional dependence on ηþ. The absence of
kinematic dependencies in the CFFs is tied to using
a “minimal” basis, which is characterized by having
no kinematic singularities and featuring the lowest
possible powers in the photon momenta. Such bases
have been frequently used in the literature following
the works by Bardeen, Tung and Tarrach [29,30].

Without reference to the separation into Born and 1PI
terms in Fig. 1, one can generally decompose the on-shell
Compton amplitude into three contributions:

Γμν ¼ Γμν
G þ Γμν

⊥ þ Γμν
⊥⊥; ð2:20Þ

which are distinguished by their transversality properties.
Γμν
⊥⊥ is transverse with respect to both photon momenta,

Q0μΓμν
⊥⊥ ¼ 0; Γμν

⊥⊥Qν ¼ 0; ð2:21Þ

whereas Γμν
⊥ is subject to the weaker constraint

Q0μΓμν
⊥Qν ¼ 0 ð2:22Þ

and the remaining “gauge part” Γμν
G is not transverse.

The physical Compton amplitude is gauge invariant, so it
must satisfy (2.21) and thus only Γμν

⊥⊥ survives. The full
amplitude depends on 32 independent Lorentz-Dirac ten-
sors, 18 of which belong to Γμν

⊥⊥, 12 to Γμν
⊥ and two to Γμν

G .
In the main text we will only consider the physical,
transverse part Γμν

⊥⊥ which depends on 18 tensors.
However, to quantify a potential loss of gauge invariance
it is also useful to work out the remaining nontransverse
terms Γμν

G and Γμν
⊥ , which is done in Appendix B 3.

The derivation of the 18 transverse tensors is straightfor-
ward and sketched in Appendix B. One starts from a set of
32 linearly independent elementary tensors, the Kμν

i in
Table XV, and applies the constraints (2.21) such that no
kinematic singularities are introduced. In practice this
means eliminating 14 CFFs without any division by
kinematic factors, i.e., without introducing denominators
that depend on ηþ, η−, λ2, ω2, etc. Fortunately, in the case of
Compton scattering this is possible and thus the procedure
automatically generates a minimal basis.
The resulting 18 transverse basis elements Xμν

i are
lengthy combinations of the Kμν

i and given in Table XVI

in the Appendix, but they can be written in a compact way
using the definitions

tμαβA ¼ δμβAα − δμαAβ; εμαβA ¼ γ5ε
μαβλAλ: ð2:23Þ

These are the lowest-dimensional Lorentz tensors that are
linear in the momenta and transverse without introducing
kinematic singularities. tμαβA is transverse to the momentum
Aμ, whereas εμαβA is transverse in all Lorentz indices:
AμtμαβA ¼ 0, AμεμαβA ¼ 0, etc. With their help we define
Compton basis tensors of the form

Fμν
i;j ¼

1

2m2
tμαρQ0 t

νβσ
Q fKαβ

i ; Kρσ
j g;

Gμν
i;j ¼

1

2m2
ðtμαρQ0 ε

νβσ
Q þ εμαρQ0 t

νβσ
Q ÞfKαβ

i ; Kρσ
j g ð2:24Þ

which are dimensionless and manifestly transverse with
respect to Q0μ and Qν. They define our transverse basis in
Table I, with the Kμν

i given in Table XV.
To arrive at more explicit expressions, we further define

tμνAB ¼ tμανA Bα ¼ A · Bδμν − BμAν;

εμνAB ¼ εμανA Bα ¼ γ5ε
μναβAαBβ ð2:25Þ

where Aμ, Bμ stand for the four-vectors pμ, Qμ and Q0μ.
These expressions are quadratic in the momenta and also
manifestly transverse: tμνAB ¼ tνμBA is transverse to Aμ and Bν

whereas εμνAB ¼ ενμBA is transverse to A and B in both Lorentz
indices. With their help the Compton tensors in Table I take
the form

TABLE I. Transverse basis for the nucleon Compton ampli-
tude. Fi;j and Gi;j are defined in Eq. (2.24) and the explicit
expressions for the first few tensors are given in Eq. (2.26).

n Basis element n Basis element

2 X1 ¼ F1;6 3 X10 ¼ F1;21 − 1
4
F1;34 þ 2F1;6

2 X2 ¼ 1
2
F1;1 3 X11 ¼ F6;33 þ 1

4
F2;33

4 X3 ¼ F1;2 3 X12 ¼ F1;33

4 X4 ¼ F2;6 5 X13 ¼ F2;33

4 X5 ¼ F1;9 5 X14 ¼ F1;27 þ 2F1;22

2 X6 ¼ 1
4
G1;1 3 X15 ¼ 1

λ2
F9;33

3 X7 ¼ 1
λωG1;24 5 X16 ¼ 1

λ2
F10;33

5 X8 ¼ ω
λ G1;23 4 X17 ¼ F1;23

5 X9 ¼ ω
λ G1;25 6 X18 ¼ F1;24
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Xμν
1 ¼ 1

m4
tμαQ0pt

αν
pQ; Xμν

2 ¼ 1

m2
tμνQ0Q;

Xμν
3 ¼ 1

m4
tμαQ0Q0tανQQ; Xμν

4 ¼ 1

m6
tμαQ0Q0pαpβtβνQQ;

Xμν
5 ¼ λ

m4
ðtμαQ0Q0 tανpQ þ tμαQ0pt

αν
QQÞ; Xμν

6 ¼ 1

m2
εμνQ0Q;

Xμν
7 ¼ 1

im3
ðtμαQ0Q0εανγQ − εμαQ0γt

αν
QQÞ;

Xμν
8 ¼ ω

im3
ðtμαQ0Q0εανγQ þ εμαQ0γt

αν
QQÞ; ð2:26Þ

etc. For Xμν
7 and Xμν

8 we have extended the definition (2.25)
to also include γ-matrices [see Eq. (A15) for the definition
of the triple commutator]:

εμνγA ¼ γ5ε
μναβγαAβ ¼ 1

6
½γμ; γν; =A� ¼ 1

4
f½γμ; γν�; =Ag:

Note that the denominators of Xμν
7;8;9;15;16 in Table I do not

lead to kinematic singularities because they are matched
by corresponding factors from the Kμν

i which enter in
Eq. (2.24).
By construction, all basis elements Xμν

i and Kμν
i are even

under photon crossing and charge conjugation, i.e., they
satisfy the requirements of Eq. (2.19):

Xμν
i ðp;Q0; QÞ¼! Xνμ

i ðp;−Q;−Q0Þ;
Xμν
i ðp;Q0; QÞ¼! CXνμ

i ð−p;−Q;−Q0ÞTCT: ð2:27Þ

The systematic (anti) symmetrization and use of commu-
tators ensure that all tensors are either even or odd under
these operations, and with appropriate prefactors λ, ω and
λω they become symmetric. Because these are also the
symmetries of the Compton amplitude, the resulting CFFs
are even in λ and ω so that they can depend on these
variables only quadratically. Bose symmetry and charge
conjugation amount to a permutation-group symmetry
S2 × S2 and therefore the CFFs corresponding to Table I
are permutation-group singlets.
For a given tensor Xμν

i in Table I, the number n counts the
powers in the photon momenta. It can be read off from the
definitions (2.24) and the Kμν

i in Table XV: each four-
momentum Q0μ, Qμ as well as the Lorentz invariant λ
contribute n ¼ 1, whereas ω, ηþ and η− contribute n ¼ 2.
In principle this is useful for the construction of minimal
bases characterized by the lowest overall photon momen-
tum powers [50]: collect all linearly independent tensors
with n ¼ 2, then proceed to n ¼ 3, etc.
For example, for Compton scattering on a scalar particle,

which only involves the tensors Xμν
1…5, the minimality is

tied to the alignment n ¼ f2; 2; 4; 4; 4g. On the one hand, it
is not possible to find more than two tensors with n ¼ 2
unless one divides by kinematic variables, which leads to
kinematic singularities in the basis elements. On the other

hand, replacing tensors in the set by others with higher n
introduces kinematic singularities in the CFFs, because
those higher momentum powers must be matched by
respective denominators in the CFFs. For example, in
Tarrach’s original basis [29] the following tensor with
n ¼ 6 appears:

Fμν
1;10 ¼

λω

m4
ðtμαQ0Q0tανpQ − tμαQ0pt

αν
QQÞ: ð2:28Þ

Noting that the resulting basis is not minimal, it was
subsequently exchanged with Xμν

4 ¼ Fμν
2;6 which is still

linearly independent but only has n ¼ 4. (In Tarrach’s
notation Xμν

4 ∝ τμν19 and the bracket above is identical to
−τμν5 , cf. Table XVII in Appendix B 1.) Thus, only those
transverse bases that are free of kinematic singularities and
satisfy n ¼ f2; 2; 4; 4; 4g are minimal and guarantee the
absence of kinematic dependencies in the CFFs. [As a
caveat, see the discussion below Eq. (2.44).]
Unfortunately, for the Xμν

6…18 the counting is obscured by
the contraction with the on-shell projectors in (2.3). The
resulting Gordon identities can raise the photon momentum
powers so that the definition of n is no longer meaningful.
Scalar Compton scattering is an exception because the first
five tensors do not involve γ-matrices and can be pulled out
from ΛþðpfÞ…ΛþðpiÞ.
In any case, the Xi basis in Table I is minimal because no

division is necessary in its derivation (see Appendix B).
This is signalled by the fact that all CFFs in Tables IV, VI
and IX below are free of kinematic singularities and no
kinematic factors appear in their denominators. Any basis
transformation whose determinant is a constant preserves
this property, i.e.,

X0
i ¼ UijXj; detU ¼ const:; ð2:29Þ

because otherwise the transformation would become sin-
gular at specific kinematic points. The standard example of
a minimal basis is Tarrach’s (modified) basis [29] which is
given in Table XVII.
We constructed the Xi in Table I to facilitate the physical

interpretation:
(i) X1 and X2 are the Compton tensors that survive for a

pointlike scalar particle (cf. Sec. III);
(ii) X1 and X10 are the tensors for a pointlike fermion,

such as the electron in tree-level QED (see Table IV
and Sec. IV C);

(iii) X2 and X3 are the tensors for a scalar t-channel
exchange, i.e., the CFFs c2 and c3 have scalar poles
(cf. Sec. II in Ref. [50]);

(iv) X6 is the tensor for pseudoscalar t-channel exchange
and therefore c6 contains the pion pole.
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C. Kinematic limits

We conclude this section with a discussion of the various
kinematic limits. As is well known [1,29,30], the 18 CFFs
in general kinematics collapse into four CFFs in the
forward limit, six CFFs in RCS and 12 CFFs in VCS.
With the notation in Table I and Eq. (2.26) these properties
are comparatively easy to derive.
In the RCS limit both photons are real (ηþ ¼ ω ¼ 0).

In that case all instances of tμαQ0Q0 and tανQQ, which up to

factors Q02 and Q2 are the transverse projectors, vanish
after contraction with the transverse polarization vectors:

ε�μðQ0ÞtμαQ0Q0 ¼ Q02ε�αðQ0Þ !Q
02¼0

0;

tανQQε
νðQÞ ¼ Q2εαðQÞ !Q

2¼0
0: ð2:30Þ

For example, one can see from Eq. (2.26) that the tensors
X3, X4, X5, X7 and X8 vanish in RCS. In total only six
tensors are non-zero, namely X1, X2, X6, X10, X11 and X12,
and thus the RCS amplitude is described by the corre-
sponding six CFFs which depend on η− and λ2. Their
relations with the RCS amplitudes Ai defined in
Refs. [51,52] can be found in Table XVIII in
Appendix B. In the limit η− → 0 and λ → 0 they are
related with the nucleon’s static polarizabilities: the electric
and magnetic polarizabilities α and β,

�
αþ β

β

�
¼ −

αem
m3

�
c1
c2

�
; ð2:31Þ

and the four spin polarizabilities

26664
γE1E1

γM1M1

γE1M2

γM1E2

37775 ¼ αem
2m4

26664
c6 þ 4c11 − 4c12
−c6 − 2c10 þ 4c12

c6 þ 2c10
−c6

37775: ð2:32Þ

The forward polarizability γ0 and so-called pion polar-
izability γπ are their linear combinations

�
γ0

γπ

�
¼ −

2αem
m4

�
c11

c6 þ c10 þ c11 − 2c12

�
: ð2:33Þ

The magnitudes of the CFFs in this limit can be
reconstructed from the experimental results for the polar-
izabilities as well as from ChPT and dispersion relations
(see e.g., Table 8 in Ref. [1] and Table 4.2 in [5] for
compilations). For example, the Oðp3Þ heavy-baryon
ChPT calculations for the polarizabilities yield [53,54]

�
c1
c2

�
¼ −C

πmgA
4mπ

�
11

1

�
;26664

c6
c10
c11
c12

37775 ¼ C
m2

m2
π

26664
12 − gA

gA
−gA
0

37775; ð2:34Þ

where the first term in c6 is due to the t-channel pion pole.
Here,mπ and fπ are the pion mass and decay constant, gA is
the nucleon’s axial charge and we abbreviated

C ¼ gA
3

�
m

4πfπ

�
2

: ð2:35Þ

Note that the CFFs diverge with powers of 1=mπ in the
chiral limit.
In the VCS limit (ηþ ¼ ω) one hasQ02 ¼ 0 and thus only

the outgoing photon is real. Only instances of tμαQ0Q0 vanish
upon contracting with polarization vectors, such as X3 and
X4 in Eq. (2.26), whereas others such as X7 and X8 become
linearly dependent. One arrives at six relations

X3 ¼ X4 ¼ X13 ¼ 0;

X8 ¼ −ηþX7;

X16 ¼ ηþX15;

X18 ¼ −ηþX17

ð2:36Þ

which leaves 12 independent CFFs in VCS:

c1; c6; c10; c14;

c2; c7 − ηþc8; c11; c15 þ ηþc16;

c5; c9; c12; c17 − ηþc18:

ð2:37Þ

They are functions of ηþ, η− and λ2. In the limit η− → 0 and
λ → 0 they are related to the nucleon’s generalized polar-
izabilities [1,6–9], which can be reconstructed with the help
of Table XIX in the Appendix.
In the doubly-virtual forward limit, which is defined by

ηþ ¼ η− ¼ Q2=m2 and ω ¼ 0, both photons are virtual but
because of Qμ ¼ Q0μ many basis tensors vanish or become
linearly dependent. In the simpler cases this can be read off
directly from Eq. (2.26), e.g.,

Xμν
3 ¼ 1

m4
tμαQQt

αν
QQ ¼ Q2

m4
tμνQQ ¼ ηþX

μν
2 ;

Xμν
6 ¼ 1

m2
εμνQQ ¼ 0; ð2:38Þ

etc. Note also that

Xμν
7 ¼ 1

im3
ðQ2εμνγQ −Q2εμνQγÞ ¼

2ηþ
m

iεμνQγ;
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so we can drop the factor ηþ and thereby define a new
tensor with a lower power n ¼ 1. In total only four
independent tensors survive in the forward limit:

Xμν
1 ¼ 1

m4 t
μα
Qpt

αν
pQ; Xμν

2 ¼ 1
m2 t

μν
QQ;

X̃μν
7 ¼ 1

m iε
μν
Qγ; Xμν

12 ¼ λ
m2 ½tμαQγ; t

αν
γQ�;

ð2:39Þ

whereas X6 ¼ X8 ¼ X9 ¼ X14 ¼ X16 ¼ X18 ¼ 0 and the
remaining ones can be related to them:

X3 ¼ ηþX2; X11 ¼ 2λ2X̃7 þ 1
4
ηþX12

X4 ¼ ηþX1 − λ2X2; X13 ¼ ηþX12;

X5 ¼ −2λ2X2; X15 ¼ −2ηþX̃7 − X12;

X10 ¼ −ηþX̃7; X17 ¼ 2λ2X2:

The forward Compton amplitude—more precisely, the
bracket in Eq. (2.3)—then becomes

½…� ¼ c̄1X1 þ c̄2X2 þ c̄3X̃7 þ c̄4X12; ð2:40Þ

where the four CFFs depend on ηþ ¼ η− and λ2:

c̄1 ¼ c1 þ ηþc4;

c̄2 ¼ c2 þ ηþc3 − λ2ðc4 þ 2c5 − 2c17Þ;
c̄3 ¼ ηþð2c7 − c10 − 2c15Þ þ 2λ2c11;

c̄4 ¼ c12 − c15 þ ηþ

�
c13 þ

1

4
c11

�
: ð2:41Þ

Their relations to the forward amplitudes T1;2 and S1;2
defined as in [5], whose imaginary parts are proportional to
the nucleon structure functions, are given by26664

T1

T2

S1
S2

37775 ¼ −
4παem
m

26664
λ2c̄1 þ ηþc̄2

ηþc̄1
c̄3

−2λc̄4

37775: ð2:42Þ

From their expansion around η� ¼ λ ¼ ω ¼ 0 one can
extract several further relations such as the one for the
longitudinal-transverse polarizability δLT :

δLT ¼ −
2αem
m4

ðc11 − c12 þ c15Þ: ð2:43Þ

Another example is the doubly-virtual but off-forward
VVCS limit, where Q2 ¼ Q02 and therefore ω ¼ 0 but
ηþ ≠ η−. Also here the tensor basis becomes redundant,
however in a way where kinematic singularities cannot be
avoided. The characteristics already appear in scalar
Compton scattering defined by the tensors X1…5,
cf. Refs. [18,29,33,34]. In terms of the Ki from Table XV

one can see that K5 ¼ K8 ¼ K10 ¼ 0 for ω ¼ 0. At first
sight this does not seem to affect the Xi because Table XVI
still implies

X1 ¼ λ2K1 þ η−K6 þ K7;

X2 ¼ η−K1 − K3;

X3 ¼ η2þK1 þ η−K2 − ηþK4;

X4 ¼ λ2K2 þ η2þK6 þ ηþK9;

X5 ¼ −λ2ð2ηþK1 − K4Þ − ηþK7 þ η−K9: ð2:44Þ

However, the combination2

η2þX1 þ λ2X3 − η−X4 þ ηþX5 ¼ 0 ð2:45Þ

vanishes, as one can verify, and thus one has a nontrivial
relation between the Xi which cannot be solved without
introducing kinematic singularities. In the limit ω ¼ 0 one
then needs a redundant basis to avoid them. In general
kinematics there is no problem: the 18 CFFs and corre-
sponding tensors are regular in the limit ω → 0; only when
they collapse into fewer independent functions those func-
tions can acquire kinematic singularities.

III. SCALAR COMPTON AMPLITUDE

To illustrate the procedure of working out the resonance
contributions, we start with the tree-level Compton ampli-
tude for a pointlike scalar particle as a template; see also
Refs. [33,34,55]. With the momentum definitions in
Eq. (2.7) the Born terms in Fig. 1 read

Γμν
B ðp;Q;Q0Þ ¼ Γ̄μðpþ

i ; Q
0ÞDðpþ ΣÞΓνðpþ

f ; QÞ
þ Γ̄νðp−

f ;−QÞDðp − ΣÞΓμðp−
i ;−Q0Þ:

The scalar propagators depend on the s- and u-channel
momenta p� Σ; at tree level they are given by

Dðp� ΣÞ ¼ 1

ðp� ΣÞ2 þm2
¼ 1

m2

1

η− ∓ 2λ
: ð3:1Þ

The arguments of the scalar-photon vertices are the photon
momenta Q, Q0 and the average momenta of the scalar
particle:

p�
f ¼ p�Q0

2
; p�

i ¼ p�Q
2
: ð3:2Þ

The tree-level vertex is Γμðk;QÞ ¼ 2kμ and its charge
conjugate is defined as Γ̄μðk;QÞ ¼ Γμð−k;−QÞ ¼ −2kμ.

2This is the tensor λωτ5=m4 in Tarrach’s basis, cf. Table XVII,
which vanishes for ω ¼ 0.
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The Born contribution thus becomes

Γμν
B ¼ −

4

m2

�
pþμ
i pþν

f

η− − 2λ
þ p−μ

i p−ν
f

η− þ 2λ

�
¼ −

8

η2− − 4λ2

�
η−

�
Kμν

3

4
þ Kμν

6

�
þ Kμν

7

�
; ð3:3Þ

where the Kμν
i are the tensors from Table XV:

Kμν
3 ¼ QμQ0ν

m2
; Kμν

6 ¼ pμpν

m2
;

Kμν
7 ¼ λ

m2
ðpμQ0ν þQμpνÞ: ð3:4Þ

Note that the s and u-channel poles at η− ¼ �2λ enter the
denominator in combination and thereby ensure crossing
symmetry.
Comparing this with Table XVI, we can recast the result

in terms of the transverse tensors Xμν
i from Table I,

Γμν
B ¼ 1

η2− − 4λ2
ðc̃1Xμν

1 þ c̃2X
μν
2 Þ − 2Kμν

1 ; ð3:5Þ

and read off the resulting CFF residues:

c̃1 ¼ −8; c̃2 ¼ 2η−: ð3:6Þ

The Born term is not gauge invariant due to the
remainder proportional to Kμν

1 ¼ δμν, but this is only so
because the scalar theory has a pointlike seagull interaction
similar to the rightmost diagram in Fig. 1:

Γμν
1PIðp;Q;Q0Þ ¼ 2δμν: ð3:7Þ

Adding it cancels the gauge part and ensures that the full
Compton amplitude Γμν

B þ Γμν
1PI is transverse. As a result, it

is completely specified by c̃1 and c̃2.
One could generalize the discussion by calculating

corrections to the propagator, the vertex, and the 1PI
structure part, e.g., in an effective field theory. As long
as the theory respects electromagnetic gauge invariance, the
resulting Compton amplitude is fully transverse. The most
general form of the offshell vertex allowed by gauge
invariance, which is free of kinematic singularities, is

Γμðk;QÞ ¼ 2f1kμ þ f2t
μν
QQk

ν: ð3:8Þ

tμνQQ is defined in (2.25) and f1, f2 are functions of k2,
w ¼ k ·Q and Q2. The form factor f1 is determined by the
Ward-Takahashi identity (WTI)

QμΓμðk;QÞ ¼ DðkþÞ−1 −Dðk−Þ−1

⇒ f1 ¼
DðkþÞ−1 −Dðk−Þ−1

k2þ − k2−
; ð3:9Þ

with k� ¼ k�Q=2 and thus k2þ − k2− ¼ 2k ·Q, so that
only f2 carries dynamical information.
The recipe for deriving Eq. (3.8) is the same as for the

more complicated cases in the following sections, such as
the nucleon-photon vertex in Sec. IV, the nucleon-to-
resonance transition vertices in Secs. V and VI, and finally
the Compton amplitude in Appendix B. We start with the
general decomposition

Γμðk;QÞ ¼ a1kμ þ a2wQμ; ð3:10Þ

where w ¼ k ·Q ensures the correct charge-conjugation
parity: Γ̄μðk;QÞ ¼ −Γμðk;−QÞ. As a consequence, a1 and
a2 are even in w and only depend on w2. Next, we derive
the transverse part of the vertex by solving

QμΓμðk;QÞ ¼ wða1 þ a2Q2Þ ¼ 0: ð3:11Þ

This must be done without introducing kinematic singu-
larities, i.e., we must solve for a1 (and not a2) which leads
to the transverse part ∝ tμνQQk

ν. Relaxing again the trans-
versality constraint, we then add the term ∝ kμ that we
eliminated (and not Qμ), which constitutes the gauge part
and leads to the result (3.8). Finally, solving the WTI in
Eq. (3.9) determines the coefficient f1.
The same procedure is carried out in Appendix B to

derive the tensor basis for the Compton amplitude itself,
although in that case the gauge parts must vanish because
the amplitude is transverse. In general neither the Born
terms nor the structure part alone are gauge invariant, but
one can project them onto a complete basis where the sum
of the gauge parts must cancel in the end like in the simple
case (3.5)–(3.7).
In the following we are interested in the nucleon Born

terms and nucleon resonance contributions to Compton
scattering. In those cases one can enforce gauge invariance
from the beginning by imposing appropriate constraints on
the vertices (which is also possible because there is no
seagull term for fermions).

IV. NUCLEON BORN TERM

Returning to nucleon Compton scattering, the Born term
for the nucleon has the form

Γμν
B ¼ ΛþðpfÞ½Γ̄μðpþ

i ; Q
0ÞSðpþ ΣÞΓνðpþ

f ; QÞ
þ Γ̄νðp−

f ;−QÞSðp − ΣÞΓμðp−
i ;−Q0Þ�ΛþðpiÞ: ð4:1Þ

Here, Γμðk;QÞ is the dressed offshell nucleon-photon
vertex that depends on the average nucleon momentum
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k and the total photon momentum Q. p�
f and p�

i were
defined in (3.2). The charge-conjugate vertex is

Γ̄μðk;QÞ ¼ CΓμð−k;−QÞTCT; ð4:2Þ
where C ¼ γ4γ2 is the charge-conjugation matrix that
satisfies CT ¼ C−1 ¼ −C. The charge-conjugation sym-
metry of the nucleon-photon vertex amounts to

Γ̄μðk;QÞ ¼ −Γμðk;−QÞ: ð4:3Þ
The Born term (4.1) shares the symmetries of the full
Compton amplitude, namely Bose (photon-crossing) and
charge-conjugation invariance as in Eq. (2.19).
The nucleon propagator and its inverse are given by

SðkÞ ¼ 1

Aðk2Þ
−i=kþMðk2Þ
k2 þMðk2Þ2 ;

SðkÞ−1 ¼ Aðk2Þði=kþMðk2ÞÞ; ð4:4Þ
where Mðk2Þ and Aðk2Þ are momentum-dependent func-
tions. In practice we treat the nucleon as a constituent-like
particle and setMðk2Þ ¼ m and Aðk2Þ ¼ 1, which holds on
the mass shell k2 ¼ −m2, but to keep the discussion general
we will retain the momentum dependence in the following
two subsections.

A. Offshell nucleon-photon vertex

First we derive the general form of the offshell nucleon-
photon vertex. The discussion is based on the quark-photon
vertex [27,56,57] but it can be equally applied to nucleon
resonances. The kinematics are sketched in Fig. 4; k� ¼
k�Q=2 are the incoming and outgoing nucleon momenta.
Electromagnetic gauge invariance leads to a Ward-
Takahashi identity (WTI) for the vertex,

QμΓμðk;QÞ ¼ Z½SðkþÞ−1 − Sðk−Þ−1�; ð4:5Þ

with Z ¼ 1 (Z ¼ 0) for the proton (neutron). It can thus be
written as the sum of a “gauge part” and a transverse part,
where the former is constrained by the WTI:

Γμðk;QÞ ¼ Γμ
Gðk;QÞ þ Γμ

⊥ðk;QÞ: ð4:6Þ

In the case of a nucleon resonance the r.h.s. of Eq. (4.5) is
zero and the vertex is purely transverse.
To derive both contributions, we start from the general

offshell fermion-photon vertex for a spin-1=2 particle:

Γμðk;QÞ ¼
X12
n¼1

hnðk2; w;Q2Þiτμnðk;QÞ: ð4:7Þ

The hi are Lorentz-invariant functions, with w ¼ k ·Q, and
the τμi are the 12 possible tensors permitted by Lorentz
covariance and parity invariance:

γμ ikμ iwQu

iw½γμ; =k� kμ=k wQμ=k

i½γμ; =Q� wkμ=Q Qu=Q

½γμ; =k; =Q� ikμ½=k; =Q� iwQμ½=k; =Q�:

ð4:8Þ

We took commutators and attached factors of w to ensure
that they all share the charge-conjugation symmetry (4.3) of
the full vertex, so that the hi are even in w and only depend
on w2. We label the tensors column-wise: τμ1…4, τ

μ
5…8 and

τμ9…12 are the elements in the first, second and third column,
respectively.
To derive the transverse part of the vertex we work out

the condition QμΓμ ¼ 0. The contraction produces four
independent tensors ∼1, =Q, =k, ½=k; =Q� and thus four relations
between the dressing functions, which must be solved so
that no kinematic singularities are introduced in the
process. The result

h1 ¼ −w2h7 −Q2h11; h5 ¼ −Q2h9;

h2 ¼ h8 þQ2h12; h6 ¼ −Q2h10
ð4:9Þ

is almost unique: without dividing by factors of Q2 or w2,
our only freedom is to solve for either h2 or h8. Substitution
into (4.7) yields the transverse vertex

Γμ
⊥ðk;QÞ ¼

X8
n¼1

fnðk2; w;Q2ÞiTμ
nðk;QÞ; ð4:10Þ

where the fn are the remaining independent functions and
Tμ
n the transverse tensors in Table II. This defines a minimal

basis where transversality and analyticity are manifest: the
Tμ
n are transverse and regular forQμ → 0 and the fn are free

of kinematic singularities at Q2 → 0 and kinematically
independent.
The remaining gauge part in (4.6) can only depend on the

tensors for h1, h2, h5, and h6 that we eliminated under the
assumption that the vertex was transverse; these are the Gμ

i
in Table II. Putting them back into the WTI (4.5) together
with the nucleon propagator (4.4) determines their coef-
ficients and leads to the Ball-Chiu vertex [58]:

Γμ
Gðk;QÞ ¼ iZ½ΣAG

μ
1 þ 2m2ΔAG

μ
2 − 2mΔBG

μ
3�:

FIG. 4. Kinematics in the nucleon-photon and N → 1
2
� tran-

sition vertex.
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It is fully specified by the nucleon propagator and depends
on sums and difference quotients of the propagator dressing
functions Aðk2Þ and Mðk2Þ:

ΣF¼
Fðk2þÞþFðk2−Þ

2
; ΔF¼

Fðk2þÞ−Fðk2−Þ
k2þ−k2−

; ð4:11Þ

where F ∈ fA;Bg and Bðk2Þ ¼ Aðk2ÞMðk2Þ. Note that Gμ
4

drops out as a consequence of electromagnetic gauge
invariance. For a tree-level nucleon propagator the gauge
part reduces to Γμ

Gðk;QÞ ¼ Ziγμ.
We should emphasize that the gauge part is not longi-

tudinal. One could equally split the vertex into longitudinal
and transverse parts, where the longitudinal tensors are
proportional to Qμ and defined by the rightmost column in
(4.8). In that case the WTI would still only affect the
longitudinal part, but because the transverse projector has a
kinematic singularity at Q2 ¼ 0 the longitudinal and trans-
verse dressing functions would become kinematically
related at the origin and/or show kinematic zeros. Thus,
in analogy to Eq. (3.8) for the scalar vertex, only the
separation into Γμ

G and Γμ
⊥ ensures that the resulting

dressing functions are truly kinematically independent.

B. On-shell nucleon-photon current

The onshell current follows from sandwiching the vertex
between nucleon spinors (or positive-energy projectors)
and taking the nucleon momenta onshell:

Jμðk;QÞ ¼ ΛþðkþÞΓμðk;QÞΛþðk−Þjonshell: ð4:12Þ

The limit k2þ ¼ k2− ¼ −m2 entails k2 ¼ −m2 −Q2=4 and
w ¼ 0, so the only remaining independent variable is Q2.
The 12 offshell tensors collapse into two, Gμ

1 and Tμ
3, by

means of the Gordon identities in Table III. The current
takes the standard Dirac form:

Jμðk;QÞ ¼ iΛþðkþÞ
�
F1γ

μ þ iF2

4m
½γμ; =Q�

�
Λþðk−Þ; ð4:13Þ

where F1ðQ2Þ and F2ðQ2Þ are the onshell Dirac and Pauli
form factors.
Even though the offshell current has a gauge part,

it becomes “accidentally” transverse in the on-shell pro-
jection (4.12):

QμΛþðkþÞγμΛþðk−Þjonshell ¼ 0; ð4:14Þ

and the same is true for the remaining tensors Gμ
2;3;4

because w ¼ k ·Q ¼ 0 on the mass shell. It follows from
Table III that the gauge part contributes to F1 and F2:

F1ðQ2Þ ¼ Z½ΣA þ 2mðΔB −mΔAÞ� þ � � � ;
F2ðQ2Þ ¼ −2mZðΔB −mΔAÞ þ � � � ; ð4:15Þ

where the dots refer to the transverse pieces. On the mass
shell, however, the nucleon propagator is that of a free
particle and therefore ΣA ¼ 1 and ΔA ¼ ΔB ¼ 0. As a
result, the Dirac and Pauli form factors are related with the
off-shell dressing functions via

F1ðQ2Þ ¼ Z þQ2

m2

�
f1 −

f4
2
−
�
f5 þ f6 −

f8
2

��
;

F2ðQ2Þ ¼ 2ðf3 − f4Þ þ
Q2

m2

�
f5 þ f6 −

f8
2

�
; ð4:16Þ

with the fn evaluated at the onshell point.

C. Compton form factors

With the off-shell nucleon-photon vertex at hand, we
proceed to work out the Compton form factors for the
nucleon Born term (4.1). Although the Born term does not
contribute to nucleon polarizabilities, it is still relevant for
two-photon exchange effects to form factors.
We restrict ourselves to the tree-level propagator

SðkÞ ¼ −i=kþm
k2 þm2

; ð4:17Þ

and instead of the full vertex in Eq. (4.6) we employ the
“Dirac form” for the off-shell nucleon-photon vertex:

Γμðk;QÞ ¼ i

�
F1G

μ
1 þ F2

Tμ
3

2

�
: ð4:18Þ

TABLE II. Top: Eight tensors Tμ
i constituting the transverse

part Γμ
⊥ðk;QÞ of the offshell nucleon-photon vertex without

introducing kinematic singularities. tμνAB and the triple commutator
are defined in Eqs. (2.25) and (A15). Bottom: Four tensors Gμ

i of
the gauge part Γμ

Gðk;QÞ. We attached powers of the nucleon mass
m to make all tensors dimensionless.

m2Tμ
1 ¼ tμνQQγ

ν m3Tμ
5 ¼ tμνQQik

ν

m5Tμ
2 ¼ tμνQQw

i
2
½γν; =k� m4Tμ

6 ¼ tμνQQk
ν=k

mTμ
3 ¼ i

2
½γμ; =Q� m4Tμ

7 ¼ tμνQkwγ
ν

m2Tμ
4 ¼ 1

6
½γμ; =k; =Q� m3Tμ

8 ¼ tμνQk
i
2
½γν; =k�

Gμ
1 ¼ γμ mGμ

3 ¼ ikμ

m2Gμ
2 ¼ kμ=k m3Gμ

4 ¼ w i
2
½γμ; =k�

TABLE III. Combinations of tensors that vanish in the on-shell
projection (4.12). We abbreviated τ ¼ Q2=ð4m2Þ.
T1 − 4τG1 T7

T2 T8 − 2τðG1 − 1
2
T3Þ

T4 þ 2τG1 þ T3 G2 þ G1 − 1
2
T3

T5 þ 4τðG1 − 1
2
T3Þ G3 þ G1 − 1

2
T3

T6 þ 4τðG1 − 1
2
T3Þ G4
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With the definition of charge conjugation in Eq. (4.2), the
charge-conjugate vertex Γ̄μðk;QÞ differs from the above
only by a minus sign in front of the F1 term.
While the Dirac and Pauli form factors Fiðk2; w; Q2Þ in

these expressions are offshell, we will identify them with
their on-shell expressions FiðQ2Þ since this is the only
informationwe can gather fromexperiments. Employing the
Dirac form is also the minimal requirement for keeping the
Born term gauge invariant [59]. We would lose trans-
versality if we

(i) equipped F1;2ðQ2Þ with a k2 or w dependence,
(ii) added other tensors Gμ

2;3;4 from Table II,
(iii) but also other tensors Tμ

i (except for Tμ
1) because

they lead to interference terms with Gμ
1 from the

second vertex,
(iv) or if we implemented momentum-dependent dress-

ing functions in the nucleon propagator with ram-
ifications for the gauge part of the vertex.

This is all due to the gauge part in the vertex and does not
happen for the nucleon resonances which we consider later.
It is also not a serious conceptual problem because the two-
photon WTI allows one to construct a gauge-invariant
completion of the Born term for a general offshell
nucleon-photon vertex and nucleon propagator, which can
be found in Ref. [27]. A simpler alternative is to project the
(nongauge-invariant) Born term onto a full basis and after-
wards retain only the transverse part, since all non-transverse
pieces must cancel when they are calculated from some
consistent underlying theory. Wewill not further pursue this
here and instead provide examples in Appendix B 4.
Inserting the above expressions into Eq. (4.1) yields four

mixed terms FiðQ02ÞFjðQ2Þ≡ F0
iFj. We take their sym-

metric combinations

H1 ¼ F0
1F1; H2 ¼ F0

2F2;

H3 ¼
F0
1F2 þ F0

2F1

2
; H4 ¼

F0
1F2 − F0

2F1

2ω
; ð4:19Þ

with ω defined in (2.6). Note that H4ðω → 0Þ is regular.
The nucleon Born term then takes the form

Γμν
B ¼ 1

η2− − 4λ2
X18
i¼1

c̃i½ΛþðpfÞXμν
i ΛþðpiÞ�; ð4:20Þ

where the resulting CFF residues c̃i are collected in
Table IV. For a pointlike fermion (F1 ¼ 1 and F2 ¼ 0)
only c̃1 ¼ −4 and c̃10 ¼ 2 survive, i.e., Xμν

1 and Xμν
10 defined

in Table I are the Compton tensors of a structureless
fermion such as the electron in tree-level QED.
BecauseQ2 andQ02 are linear combinations of ηþ and ω,

the Hi can only depend on ηþ and ω2. In addition, the CFF
residues in Table IV depend on the variable λ at most
quadratically (which is also true for the resonance terms in
Tables VI and IX below). It is then customary to rearrange
a − 4λ2b ¼ ðη2− − 4λ2Þbþ ða − η2−bÞ and split the CFFs
into nonresonant and resonant terms:

ci ¼
c̃i

η2− − 4λ2
¼ cð0Þi þ cð1Þi

η2− − 4λ2
; ð4:21Þ

where cð0Þi and cð1Þi no longer depend on λ2.
In Fig. 5 we plot the c̃i from Table IV inside the TPE

cone shown in Fig. 2, using simple multipole parametriza-
tions for the proton’s Dirac and Pauli form factors [60]. The
bands show the variation with η−, ω and λ, which turns out
to be almost negligible. Therefore, the dependence on the
four variables effectively collapses into a one-dimensional
dependence on ηþ. This is the typical behavior also for the
resonance Born terms in the following sections, which
happens in different systems as well [50,61,62]: when
implementing Lorentz invariance, permutation-group sym-
metries and minimal tensor bases, the potentially compli-
cated momentum dependencies of three- and four-point
amplitudes often collapse into a simple one-dimensional
dependence on the symmetric variable, which in our case
is ηþ.
In passing we can also verify the low-energy theorem by

Low [63], Gell-Mann and Goldberger [64]. In the forward
limit where ηþ ¼ η− ¼ Q2=m2 ¼ Q02=m2, the contribution
from the nucleon Born term to the forward amplitudes
Ai ¼ fT1; T2; 2S1;−S2=λg in Eq. (2.42) is

TABLE IV. Compton form factor residues for the nucleon Born
term. TheHi are defined in Eq. (4.19). The remaining c̃i are zero.

c̃1 ¼ −ð4H1 þ η−H2Þ
c̃2 ¼ −η−ðH2 þ 2H3Þ þ λ2H2

c̃6 ¼ η−ðH3 − 1
4
ηþH2Þ

c̃10 ¼ 2ðH1 þH3Þ − 1
2
ðηþ − η−ÞH2

c̃11 ¼ −H2

c̃12 ¼ −ðH2 þH3Þ − 1
4
ðηþ − η−ÞH2

c̃14 ¼ 1
4
H2 þH4

c̃15 ¼ − 1
4
η−H2
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FIG. 5. Compton form factor residues from the nucleon Born
term inside the TPE cone and plotted over the variable ηþ.
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Ai ¼
4παem
m

�
−Að0Þ

i þ Að1Þ
i

η2− − 4λ2

�
; ð4:22Þ

where

Að0Þ
i ¼

26664
F2
1

0

F2
2

0

37775; Að1Þ
i ¼

26664
η2−G2

M

η−ð4F2
1 þ η−F2

2Þ
4η−F1GM

2F2GM

37775 ð4:23Þ

and GM ¼ F1 þ F2 is the proton’s magnetic Sachs form
factor. In the static limit (η− ¼ λ ¼ 0) the amplitude T1

vanishes according to Eq. (2.42), except when the CFFs are
singular. The only singularities in that limit come from the
nucleon Born terms, as illustrated in Fig. 3, which produces
the Thomson term in T1:

T1 − TPole
1 jη−¼λ¼0 ¼ −

4παem
m

Z2: ð4:24Þ

V. SPIN-1=2 RESONANCES

We proceed with the discussion of J ¼ 1=2� resonances.
In Sec. VII A we will explicitly consider the Roper
resonance Nð1440Þ, the Nð1710Þ, the nucleon’s parity
partner Nð1535Þ and its first excitation Nð1650Þ, and the
Δð1620Þ. However, the following considerations are valid
for all J ¼ 1=2� states. In these cases the resonance ‘Born
terms’ conceptually enter in the structure part of Fig. 1. It
has the same form as in (4.1),

Γμν
1=2 ¼ ΛþðpfÞ½Γ̄μ

Rðpþ
i ; Q

0ÞSRðpþ ΣÞΓν
Rðpþ

f ; QÞ
þ Γ̄ν

Rðp−
f ;−QÞSRðp − ΣÞΓμ

Rðp−
i ;−Q0Þ�ΛþðpiÞ;

ð5:1Þ
except that SRðkÞ is the propagator of the resonance and
Γμ
Rðk;QÞ the nucleon-to-resonance transition vertex.

Equations (3.2) and (4.2) remain valid, but the transition
vertex is no longer charge-conjugation invariant because
the fermion legs correspond to different particles.
In view of a compact notation we abbreviate

r ¼ mR

m
¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

;

δ� ¼ mR �m
2m

¼ r� 1

2
;

λ� ¼ ðmR �mÞ2 þQ2

4m2
¼ τ þ δ2�; ð5:2Þ

with δ ¼ 4δþδ− from Eq. (2.16) and τ ¼ Q2=ð4m2Þ.

A. N → 1
2
� transition current

The off-shell transition vertex requires no separate
derivation because we only need to drop the gauge part

from Eq. (4.6). The WTI simplifies to the transversality
condition

QμΓμ
Rðk;QÞ ¼ 0; ð5:3Þ

so the vertex is purely transverse and can be expressed
through the eight tensors Tμ

i in Table II:

Γμ
Rðk;QÞ ¼

�
1

γ5

�X8
n¼1

fRn ðk2; w;Q2ÞiTμ
nðk;QÞ; ð5:4Þ

where the upper (lower) entry holds for resonances with
positive (negative) parity.
The on-shell transition current is analogous to (4.12),

JμRðk;QÞ ¼ ΛþðkþÞΓμ
Rðk;QÞΛþðk−Þjonshell; ð5:5Þ

except that “on-shell” now refers to the kinematic limit
k2− ¼ −m2, k2þ ¼ −m2

R. Therefore,

k2 ¼ −m2

�
1þ τ þ δ

2

�
; w ¼ −

m2

2
δ ð5:6Þ

and the positive-energy projectors are

ΛþðkþÞ ¼
−i=kþ þmR

2mR
; Λþðk−Þ ¼

−i=k− þm
2m

: ð5:7Þ

Also in this case the eight tensors collapse into two
structures on the mass shell; the corresponding identities
are given in Table V and slightly differ from before. In
combination with (5.5) we can write the on-shell current as

Γμ
Rðk;QÞ ¼ i

�
1

γ5

��
F1T

μ
1 þ F2

Tμ
3

2

�
: ð5:8Þ

To avoid clutter we use the same notation for the form
factors as before (F1 and F2) but they should not be
confused with those of the nucleon.
The notable difference here is the appearance of Tμ

1

instead ofGμ
1 because the latter no longer appears in the off-

shell current. It is usually written as

TABLE V. Combinations of tensors (defined in Table II)
for the off-shell nucleon-to-resonance transition vertex that
vanish in the on-shell projection (5.5) in the positive-parity case.
For negative parity, replace δþ ↔ −δ−. The variables δ, δ� and τ
are defined in (5.2).

T2 þ 1
2
δδ−T1 T6 þ δþðδþT1 − 2τT3Þ

T4 þ 1
2
T1 þ δþT3 T7 − 1

2
δδ−T3

T5 þ δþT1 − 2τT3 T8 − 1
2
ðδþT1 − 2τT3Þ þ δ2−T3
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F1T
μ
1 ¼ F�

1γ
μ
⊥ ⇒ F�

1 ¼
Q2

m2
F1; ð5:9Þ

where γμ⊥ ¼ γμ − =QQμ=Q2 is the transverse projection of
the γ-matrix. This quantity has a kinematic singularity at
Q2 → 0, which must be compensated by a kinematic zero
in F�

1. Therefore, F
�
1ðQ2 → 0Þ ¼ 0 is a consequence of

transversality and analyticity and holds for all J ¼ 1
2

resonance transition form factors alike. This (trivially)
exemplifies the advantage of using constraint-free tensor
bases: if the current is written in terms of Tμ

1, the form factor
F1 approaches a constant and non-zero value for Q2 → 0.

B. JP = 1
2
� resonance Born terms

The offshell transition vertex does not have a gauge part,
so there is also no restriction in the sense of Eq. (4.18)
because all eight tensors result in a transverse Born term
and there are no gauge parts to interfere with. However,
experiment only provides information about on-shell form
factors, and therefore we restrict ourselves again to tree-
level propagators

SRðkÞ ¼
−i=kþmR

k2 þm2
R

ð5:10Þ

and form factors F1ðQ2Þ and F2ðQ2Þ only:

Γμ
Rðk;QÞ ¼ i

�
1

γ5

��
F1T

μ
1 þ F2

Tμ
3

2

�
;

Γ̄μ
Rðk;QÞ ¼ i

�
−F1T

μ
1 þ F2

Tμ
3

2

��
1

γ5

�
; ð5:11Þ

where upper (lower) entries correspond to JP ¼ 1
2
þ (1

2
−).

In analogy to (4.19) we employ the symmetric combi-
nations

Σij ¼
F0
iFj þ F0

jFi

2
; Δij ¼

F0
iFj − F0

jFi

2ω
ð5:12Þ

but we redefine the Hi as

H1 ¼ ðη2þ − ω2ÞΣ11; H2 ¼ Σ22;

H3 ¼ ηþΣ12 − ω2Δ12; H4 ¼ ηþΔ12 − Σ12: ð5:13Þ

If we replaced ðQ2=m2ÞF1 → F1 they would coincide with
our earlier definition (4.19) for the nucleon.
The Born term for an intermediate nucleon resonance

then becomes

Γμν
1=2 ¼

1

D

X18
i¼1

c̃i½ΛþðpfÞXμν
i ΛþðpiÞ�; ð5:14Þ

where the resonance pole is given by (cf. Eq. (2.15)

D ¼ ðs −m2
RÞðu −m2

RÞ
m4

¼ ðη− þ δÞ2 − 4λ2: ð5:15Þ

The CFF residues c̃i for JP ¼ 1=2þ are given in Table VI.
For mR ¼ m and with the replacement ðQ2=m2ÞF1 → F1

they coincide with Table IV as they should.
The case of negative-parity resonances requires no

separate discussion: the vertices only differ by γ5 factors,
so that in the Born term (5.1) we must replace

Sðp� ΣÞ → γ5Sðp� ΣÞγ5 ¼ Sð−ðp� ΣÞÞ: ð5:16Þ

With Eq. (5.10) this only amounts to a global sign switch
together with an exchangemR → −mR, because we defined
the transition currents so that no mR factors explicitly
appear therein. The CFFs for negative-parity resonances are
then obtained from Table VI simply by switching all signs
c̃i → −c̃i and exchanging δþ ↔ −δ−.
It is easy to work out the various kinematic limits

discussed in Sec. II C:
(i) (i) In RCS (ηþ ¼ ω ¼ 0) H1 ¼ H3 ¼ 0 and

H2 ¼ F2ð0Þ2; H4 ¼ −F1ð0ÞF2ð0Þ: ð5:17Þ

Only the CFFs c1, c2, c6, c10, c11 and c12 survive
because the remaining tensors drop out; in the static
limit where η− ¼ λ ¼ 0 they are related to the
polarizabilities through Eqs. (2.31)–(2.33).

TABLE VI. Compton form factor residues for a JP ¼ 1
2
þ

resonance. The Hi are defined in Eq. (5.13) and δ, δ� in (5.2).

c̃1 ¼ −4H1 − ðη− þ δÞH2

c̃2 ¼ −ðη− þ δÞðδþH2 þ 2H3Þ þ λ2H2

c̃3 ¼ 4δ−ðη− þ δÞΣ11

c̃4 ¼ −4δΣ11

c̃5 ¼ 0

c̃6 ¼ −δH1 þ δ−ðη− þ δÞH2 þ η−ðH3 − 1
4
ηþH2Þ

c̃7 ¼ −2δ−ðη− þ δÞΣ12 − 2δðηþΣ11 þ Σ12Þ þ 1
2
δH2

c̃8 ¼ −2δ−ðη− þ δÞΔ12 − 2δðΣ11 þ Δ12Þ
c̃9 ¼ 0

c̃10 ¼ 2ðH1 þH3Þ − 1
2
ðηþ − η− − δÞH2

c̃11 ¼ −H2

c̃12 ¼ −ðδþH2 þH3Þ − 1
4
ðηþ − η−ÞH2

c̃13 ¼ −4δ2−Σ11

c̃14 ¼ H4 þ 1
4
H2

c̃15 ¼ −δðηþΣ11 þ Σ12Þ − 1
4
η−H2

c̃16 ¼ δðΣ11 þ Δ12Þ
c̃17 ¼ −4δ−Σ12

c̃18 ¼ −4δ−Δ12:
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(ii) In VCS (ηþ ¼ ω) one has

H1 ¼ 0; H2 ¼ F2ðQ2ÞF2ð0Þ;
H3 ¼ −ηþH4 ¼ ηþF1ðQ2ÞF2ð0Þ: ð5:18Þ

The twelve CFFs in Eq. (2.37) survive and contrib-
ute to the generalized polarizabilities.

(iii) In the doubly-virtual forward limit (ηþ ¼ η− and
ω ¼ 0) the CFFs collapse into the four amplitudes c̄i
from Eq. (2.41). Splitting them into nonresonant and
resonant terms as in (4.21), where only the latter
contribute to the imaginary part, one obtains the
resonance contributions to the nucleon’s structure
functions.

VI. SPIN-3=2 RESONANCES

We now turn to JP ¼ 3=2� resonances. Although the
generalization to this case seems straightforward, one
encounters several pathologies related to off-shell ambi-
guities coming from the unphysical lower-spin components
in the Lorentz representations of the fields; see [47,65–69]
and references therein. Such problems can be resolved by
imposing spin-3=2 gauge symmetry on the effective
Lagrangian [47], which leads to additional constraints
for the offshell transition vertex. Here we will derive the
most general off-shell spin-1=2 to spin-3=2 transition
vertex that is compatible with these constraints.
The tree-level Compton amplitude with intermediate

spin-3=2 resonances has the form

Γμν
3=2 ¼ ΛþðpfÞ½Γ̄μα

R ðpþ; Q0ÞSαβR ðpþÞΓβν
R ðpþ; QÞ

þ Γ̄να
R ðp−;−QÞSαβR ðp−ÞΓβμ

R ðp−;−Q0Þ�ΛþðpiÞ;
ð6:1Þ

where photon indices are denoted by μ, ν and vector-spinor
indices by α, β. SαβR ðkÞ is the tree-level propagator for a
spin-3=2 particle and Γαμ

R ðk;QÞ the offshell nucleon-to-
resonance transition vertex. From now on the argument k in
Γαμ
R ðk;QÞ denotes the momentum of the spin-3=2 particle

and not the relative momentum, cf. Fig. 6. We abbreviated
the resonance momenta by p� ¼ p� Σ. The charge-
conjugated quantities are given by

Γ̄μα
R ðk;QÞ ¼ CΓαμ

R ð−k;−QÞTCT;

S̄αβR ðkÞ ¼ CSβαR ð−kÞTCT ð6:2Þ

and it is straightforward to verify the Bose- and charge-
conjugation invariance (2.19) of the resonance Born
terms above.
The tree-level propagator for a spin-3=2 particle is the

Rarita-Schwinger propagator

SαβR ðkÞ ¼ −i=kþmR

k2 þm2
R
Δαβ; ð6:3Þ

where mR is the mass of the spin-3=2 particle and the
Rarita-Schwinger tensor is defined as

Δαβ ¼ δαβ −
γαγβ

3
þ 2kαkβ

3m2
R
þ kαγβ − γαkβ

3imR
: ð6:4Þ

It is well known that in the construction of vector-spinors
from the Lorentz-group representations�
1

2
;
1

2

�
⊗

��
1

2
;0

�
⊕ ð…Þ

�
¼
�
1

2
;1

�
⊕

�
1

2
;0

�
⊕ ð…Þ

the spin-3=2 part is contaminated by spin-1=2 contributions
from the ð1

2
; 1Þ and ð1

2
; 0Þ subspaces. The standard way to

isolate them is to define the projectors [70]

• spin-
3

2
in

�
1

2
; 1

�
∶ Pαβ

3=2 ¼ Pαβ
k −

1

3
γα⊥γ

β
⊥; ð6:5Þ

• spin-
1

2
in

�
1

2
; 1

�
∶ Pαβ

11 ¼ 1

3
γα⊥γ

β
⊥; ð6:6Þ

• spin-
1

2
in
�
1

2
; 0
�
∶ Pαβ

22 ¼ kαkβ

k2
; ð6:7Þ

where Pαβ
k ¼ δαβ − kαkβ=k2 and γα⊥ ¼ Pαβ

k γβ denote the
transverse projector with respect to the momentum k and
the transverse projection of the γ-matrix (with γα⊥γα⊥ ¼ 3),
respectively. The spin-3=2 projector satisfies

Pαβ
3=2k

β ¼ 0; Pαβ
3=2γ

β ¼ 0: ð6:8Þ

The Rarita-Schwinger field can then be decomposed into

ψα ¼ ðPαβ
3=2 þ Pαβ

11 þ Pαβ
22Þψβ: ð6:9Þ

If we further define (note that γα⊥ anticommutes with =k)

Pαβ
12 ¼ −

γα⊥kβ=kffiffiffi
3

p
k2

; Pαβ
21 ¼ kαγβ⊥=kffiffiffi

3
p

k2
; ð6:10Þ

the Rarita-Schwinger propagator (6.3) takes the equivalent
form

FIG. 6. Kinematics in the N → 3
2
� transition vertex.

GERNOT EICHMANN and G. RAMALHO PHYS. REV. D 98, 093007 (2018)

093007-16



SαβR ðkÞ ¼ −i=kþmR

k2 þm2
R
Pαβ
3=2 þ

2ð−i=kþmRÞ
3m2

R
Pαβ
22

þ 1ffiffiffi
3

p
mR

ðP12 þ P21Þαβ: ð6:11Þ

The pole part of the propagator is proportional to P3=2

and corresponds to the spin-3=2 subspace. The regular
terms provide the off-shell spin-1=2 background which
should not contribute to matrix elements such as the
Compton scattering amplitude. In addition, P3=2 has a
kinematic singularity at k2 ¼ 0 which cannot survive in
observables either.
Both problems can be resolved at the level of the off-

shell vertices that connect the Rarita-Schwinger propaga-
tors in matrix elements. In the case of Compton scattering
this is the transition vertex Γαμ

R ðk;QÞ. Demanding spin-3=2
gauge symmetry for effective Lagrangians is equivalent to
imposing the transversality condition kαΓαμ

R ðk;QÞ ¼ 0: if
both ends of the propagator (6.11) are contracted with a
vertex that is transverse in kα, only the pole term ∼P3=2

survives because the projectors P22, P12 and P21 all contain
instances of kα or kβ. Hence, a vertex that satisfies
kαΓαμ

R ðk;QÞ ¼ 0 automatically ensures the absence of
the spin-1=2 background in observables.
On the other hand, the expressions (6.3) and (6.11) do

not yet represent the most general form of a spin-3=2
propagator. They follow from the kinetic term of the free
Rarita-Schwinger Lagrangian L ¼ ψ̄αΛαβψβ, where ψα is
the spin-3=2 field and Λαβ the inverse tree-level propagator.
In momentum space it takes the form

Λαβ ¼−
i
2
fσαβ; i=kþmRg; σαβ ¼−

i
2
½γα;γβ�: ð6:12Þ

This is a special case of a family of Lagrangians which are
related to each other by point transformations [47,65,68];
see Appendix C for details. The Rarita-Schwinger form
corresponds to ξ ¼ 1, where ξ is the respective gauge
parameter. For ξ ≠ 1, the general propagator is given in
Eqs. (C11)–(C12): the pole part remains unchanged, but the
spin-1=2 contributions depend on ξ and also on the
remaining projectors P11 and ðP12 − P21Þ. The latter still
vanishes in matrix elements if the transition vertex is
transverse in kα, but in order to eliminate P11 one must
additionally impose γαΓαμ

R ðk;QÞ ¼ 0, which at the same
time ensures the invariance of the Lagrangian under point
transformations. The transversality in both kα and γα is
therefore necessary to decouple the spin-1=2 background
for ξ ≠ 1.
In summary, the resulting three constraints on the off-

shell vertex Γαμ
R ðk;QÞ are given by

QμΓαμ
R ¼ 0; kαΓαμ

R ¼ 0; γαΓαμ
R ¼ 0: ð6:13Þ

The first incorporates electromagnetic gauge invariance; it
ensures transversality with respect to Qμ and therefore also
on-shell current conservation. The second and third rela-
tions are automatically satisfied for the on-shell transition
current due to the properties (6.8) of the projector P3=2 (or
the Rarita-Schwinger spinors); however, for offshell gen-
eralizations of the vertex they yield additional constraints
that must be worked out separately. In the ‘Rarita-
Schwinger gauge’ ξ ¼ 1 the first two conditions are
sufficient whereas the third is only relevant for ξ ≠ 1.
Finally, these conditions should be solved so that no

kinematic singularities at kα ¼ 0 or Qμ ¼ 0 are introduced,
which entails that Γαμ

R ðk;QÞmust be at least linear in kα and
Qμ. The combination of two vertices and a propagator then
also cancels the kinematic 1=k2 singularity in P3=2 stem-
ming from the transverse projectors, so that all matrix
elements are free of kinematic singularities. Given such a
vertex, it is sufficient to employ either

SαβR ðkÞ ≃ −i=kþmR

k2 þm2
R
Pαβ
3=2 ð6:14Þ

or the Rarita-Schwinger propagator (6.3) because both of
them produce identical matrix elements.

A. Off-shell N → 3
2
� transition vertex

To construct the general off-shell form of Γαμ
R ðk;QÞ, we

write down the analogue of Eq. (4.8) and collect all possible
40 tensor structures that it can contain according to Lorentz
covariance and parity invariance:8>>><>>>:

γαkμ kαkμ

δαμ kαγμ QαQμ

γαγμ γαQμ kαQμ

Qαγμ Qαkμ

9>>>=>>>; × f1; =k; =Q; =k=Qg; ð6:15Þ

with an extra factor γ5 attached for positive-parity reso-
nances. In analogy to the spin-1=2 case we take commu-
tators whenever more than one γ-matrix appears in a tensor
element. For example, with the definition (2.25) and the
three- and four-commutators defined in Eqs. (A15)–(A16)
we have

γαγμ=k=Q → ½γα; γμ; =k; =Q� ¼ −24εαμkQ ð6:16Þ

which already satisfies the first two transversality con-
straints in Eq. (6.13).
In analogy to the derivation of Table II, the solution of

QμΓαμ
R ¼ 0 and kαΓαμ

R ¼ 0, where no kinematic singular-
ities are introduced in the process, leads to the resulting 20
tensors in Table VII. Their transversality in kα and Qμ is
manifest because they contain instances of εαμkQ, t

α���
k��� , or t

���μ
���Q

defined in (2.25), or commutators with =k or =Q that vanish
upon contraction with kα or Qμ. When inserted in the

NUCLEON RESONANCES IN COMPTON SCATTERING PHYS. REV. D 98, 093007 (2018)

093007-17



Compton amplitude, these tensors eliminate the projectors
P22 and ðP12 þ P21Þ in the propagator so that only the spin-
3=2 pole part survives.3

In principle one should also work out the remaining
condition γαΓαμ

R ¼0 in (6.13), which would leave 12
independent tensors. However, this is not necessary in
the Rarita-Schwinger gauge ξ ¼ 1 because the projector
P3=2 automatically annihilates the redundant tensors: the
combinations

T13 þ T2 − T1; T17 − T5;

T14 − T7; T18 − T3;

T15; T19 þ ðk2=m2ÞT2;

T16; T20 þ T4

ð6:17Þ

vanish upon contraction with P3=2, e.g.,

Pαβ
3=2ðkÞðTβμ

13 þ Tβμ
2 − Tβμ

1 Þ ¼ 0: ð6:18Þ

Therefore, the first twelve elements inTableVII are sufficient
when implemented in the Compton amplitude: T13 is
equivalent to T1 − T2, etc. These relations hold for JP ¼
3=2� alike because γ5 commutes with the projector. The off-
shell N → 3=2� transition vertex can then be written as

Γαμ
R ðk;QÞ ¼

�
γ5

1

�X12
n¼1

fRn ðk2; k ·Q;Q2ÞTαμ
n ðk;QÞ; ð6:19Þ

where the upper (lower) entry holds for resonances with
positive (negative) parity.

B. On-shell N → 3
2
� transition current

The on-shell transition current follows from sandwiching
the vertex Γαμ

R ðk;QÞ between the respective projectors and
taking both momenta on-shell:

JαμR ¼ ΛþðkÞPαβ
3=2ðkÞΓβμ

R ðk;QÞΛþðk −QÞjonshell: ð6:20Þ
Again, k is here the outgoing momentum of the spin-3=2
resonance and Q is the incoming photon momentum; the
incoming nucleon momentum is k −Q. “On shell” refers to
the kinematic limit ðk −QÞ2 ¼ −m2 and k2 ¼ −m2

R, which
entails

k ·Q ¼ 2m2

�
τ −

δ

4

�
: ð6:21Þ

The positive-energy projectors are

ΛþðkÞ¼
−i=kþmR

2mR
; Λþðk−QÞ¼−ið=k−=QÞþm

2m
: ð6:22Þ

For k2 ¼ −m2
R the two forms (6.3) and (6.11) of the

propagator become equivalent:

ΛþðkÞPαβ
3=2ðkÞ ¼ ΛþðkÞΔαβðkÞ; ð6:23Þ

so that on shell it does not matter whether we use the
projector Pαβ

3=2ðkÞ or the Rarita-Schwinger tensor ΔαβðkÞ.
On the mass shell, the 12 structures in Table VII collapse

into three tensors via the identities in Table VIII: for
example, T4þrT3 vanishes in the contraction of Eq. (6.20).
The on-shell current then takes the form

Γαμ
R ðk;QÞ ¼

�
γ5

1

�
ðF1T

αμ
1 − F2T

αμ
2 − F3T

αμ
3 Þ; ð6:24Þ

which defines three dimensionless and constraint-free form
factors FiðQ2Þ. The isospin factors are implicit in the form
factors.

TABLE VII. 20 tensors for the 1=2þ → 3=2� transition vertex Γαμ
R ðk;QÞ, Eq. (6.19), which implement the two

constraints QμΓαμ
R ¼ 0 and kαΓαμ

R ¼ 0 without introducing kinematic singularities. Eight of them are redundant if
γαΓαμ

R ¼ 0 is imposed as well, cf. Eq. (6.17).

m2Tαμ
1 ¼ εαμkQ m3Tαμ

7 ¼ itαβkk t
βμ
γQ

m2Tαμ
2 ¼ tαμkQ m3Tαμ

8 ¼ i
6
tαβkQ½γβ; =Q; γμ� m2Tαμ

13 ¼ 1
2
½tαβkγ ; tβμγQ� m3Tαμ

17 ¼ i
6
½γα; =k; γβ�tβμkQ

m3Tαμ
3 ¼ itαβkγ t

βμ
QQ m4Tαμ

9 ¼ 1
2
tαβkQ½γβ; γν�tνμkQ m3Tαμ

14 ¼ i
6
tαβkk ½γβ; =Q; γμ� m3Tαμ

18 ¼ i
6
½γα; =k; γβ�tβμQQ

m4Tαμ
4 ¼ tαβkk t

βμ
QQ m4Tαμ

10 ¼ 1
2
tαβkQ½γβ; γν�tνμQQ m4Tαμ

15 ¼ 1
2
½γα; =k�kβtβμQQ m4Tαμ

19 ¼ 1
2
tαβkk ½γβ; γν�tνμkQ

m3Tαμ
5 ¼ itαμkQ=k m4Tαμ

11 ¼ 1
2
tαβkkQ

β½=Q; γμ� m5Tαμ
16 ¼ itαβkkγ

βkνtνμQQ m4Tαμ
20 ¼ 1

2
tαβkk ½γβ; γν�tνμQQ

m3Tαμ
6 ¼ itαμkQ=Q m5Tαμ

12 ¼ itαβkQk
βγνtνμQQ

3We note that T1, T2 and T3 in Table VII coincide with the
electromagnetic couplings of the effectiveN → Δγ Lagrangian in
Refs [36,47]:

gMð∂μψ̄αÞF̃αμψ ≃ gMψ̄αγ5ε
αμ
kQA

μψ ;

gEð∂μψ̄αÞγ5Fαμψ ≃ gEψ̄αγ5t
αμ
kQA

μψ ;

and similarly for gC. Here, ψα, ψ and Aμ are the Δ, nucleon and
photon fields and Fμν is the electromagnetic field-strength tensor,
with F̃μν its dual. For comparison, the couplings g1 and g2
employed in Ref. [71] correspond to T13 ≃ T1 − T2 and T2,
respectively.
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With the help of Eq. (6.17) and Table VIII one can
construct equivalent forms: for example, since either T1 or
T2 can be traded for T13 one could replace

F1T1 − F2T2 → F1T13 þ ðF1 − F2ÞT2; ð6:25Þ

which is the combination used in Ref. [71]. The Fi have
simple relations with the form factors gE, gM and gC of
Ref. [36]: 264 gM

gE
gC

375 ¼
ffiffiffi
2

3

r
2λþ
δþ

264 F1

F2

rF3

375; ð6:26Þ

but due to the factor λþ [defined in (5.2)] gE, gM and gC
have a slower falloff with Q2 and kinematic zeros at λþ ¼
0 ⇔ Q2 ¼ −ðmR þmÞ2.
Moreover, several equivalent forms for the on-shell

current exist in the literature which are constructed from
tensors different from those in Table VII. While they
respect current conservation, they do not satisfy the second
and third constraints in Eq. (6.13); in the diction of
Ref. [47] they correspond to “inconsistent couplings” in
the effective Lagrangian. An example is the JP ¼ 3=2þ
current defined by the Jones-Scadron form factors G�

E, G
�
M

and G�
C [48]:

Γαμ
R ¼

ffiffiffi
3

2

r
δþ

2m4λþλ−
γ5

�
m2λ−ðG�

M −G�
EÞεαμkQ

− G�
Eε

αβ
kQε

βμ
kQ −

G�
C

2
QαkβtβμQQ

�
: ð6:27Þ

The tensor for G�
E is related to Table VII via

1

m4
εαβkQε

βμ
kQ ¼ k ·Q

m2
Tαμ
2 − Tαμ

4 ; ð6:28Þ

but the one forG�
C has no counterpart because it violates the

second condition in (6.13) and thus cannot be used off
shell. On the mass shell the projector P3=2 enforces these
constraints automatically; however, sensible off-shell gen-
eralizations must also satisfy kαΓαμ

R ¼ 0 and therefore
acceptable tensors must be of the form given in Table VII.
The on-shell relations between the Fi and the various
conventions forN → 3=2� transition form factors employed
in the literature are collected in Appendix D 2.

C. JP = 3
2
� resonance Born terms

We proceed by working out the resonance Born terms
and resulting CFFs for J ¼ 3=2� resonances according to
Eq. (6.1). For the off-shell vertex (6.19) we employ again
the on-shell form (6.24), which depends on the three form
factors FiðQ2Þ that can be extracted from experiment.
Concerning the propagator of the resonance we can employ
either the Rarita-Schwinger form (6.3) or Eq. (6.14); both
of them produce the same results because the tensors Tαμ

i
satisfy the required off-shell constraints.
The resulting contribution to the Compton amplitude has

the form

Γμν
3=2 ¼

1

3D

X18
i¼1

c̃i½ΛþðpfÞXμν
i ΛþðpiÞ�; ð6:29Þ

where the pole is given by

D ¼ ðs −m2
RÞðu −m2

RÞ
m4

¼ ðη− þ δÞ2 − 4λ2: ð6:30Þ

The c̃i are the residues of the CFFs and collected in
Table IX for the JP ¼ 3=2þ case. Unfortunately the
expressions become very lengthy so we only show the
result for F3 ¼ 0. This form factor drops out in RCS and
does not contribute to the static polarizabilities. In our
numerical calculations we retain all three form factors.
In analogy to Eq. (4.21) one could rearrange the terms

proportional to λ2 such that the CFFs split into pole and
non-pole pieces:

ci ¼
c̃i
3D

¼ cð0Þi þ δ2cð1Þi

ðη− þ δÞ2 − 4λ2
: ð6:31Þ

In that way cð0Þi and cð1Þi depend on ηþ, η− and ω2 but no
longer on λ2. In Sec. VIII we will see that they effectively
become functions of ηþ only.
The various kinematic limits can be analyzed in the same

way as for the J ¼ 1=2 case. The contribution from the
Δð1232Þ resonance was recently also worked out in the
VCS limit [9] and the forward limit [72].
As before, the JP ¼ 3=2− case requires no separate

discussion. Deleting the γ5 factor in the off-shell vertex
(6.19) only changes the sign of the argument in the

TABLE VIII. Combinations of tensors that vanish in the on-
shell projection of Eq. (6.20) with Γβμ

R ðk;QÞ ¼ γ5T
βμ
i , i.e., for

resonances with JP ¼ 3=2þ. For negative-parity resonances with
JP ¼ 3=2−, replace r → −r and δ� → −δ∓. The variables r, δ
and δ� are defined in (5.2). Whereas the combinations
in Eq. (6.17) automatically also vanish on the mass shell,
the expressions above do not vanish off-shell when contracted
with P3=2.

T4 þ rT3 T9 − 2ðτ − 1
4
δÞT1 − 2rδþT2

T5 − rT2 T10 − 4τT1 − 2δþT3

T6 − 2δþT2 T11 − rð2δ−T1 − 2δþT2 þ T3Þ
T7 − rðT1 þ T2Þ T12 − 2rð2τðT1 þ T2Þ þ δþT3Þ
T8 − 2δ−T1 − T3
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propagator as in Eq. (5.16), which amounts to replacing
mR → −mR together with a global sign change. The CFFs
for negative-parity resonances are then obtained from
Table IX by replacing r → −r, δþ ↔ −δ− and flipping
the global sign.
The remaining task is to convert the available exper-

imental data for the resonance electrocouplings into para-
metrizations for the transition form factors F1;2ðQ2Þ and
F1;2;3ðQ2Þ that enter in the various transition vertices, so

that they can be implemented in Compton scattering. This
is what we turn to next.

VII. TRANSITION FORM FACTORS

To work out the resonance contributions to the CFFs
according to the formulas in Tables VI and IX, we need to
construct parametrizations for their electromagnetic transition
form factors. The currently known JP ¼ 1=2� and JP ¼
3=2� nucleon resonances listed in the PDG are collected in
Table X. Experimental data for their Q2-dependent electro-
couplings are available for the four-star resonances [with the
exception of the Δð1910Þ] and the three-star resonance
Nð1710Þ. The data are mainly from JLab and extend up to
Q2 ¼ 5…7 GeV2 depending on the experiment [44,73–75].
The MAID analysis [42,76,77] also includes data from
different experiments where not all multipoles are measured;
the resulting parametrizations typically show some deviations
from the JLab/CLAS analyses.
The experimental data are commonly presented in terms

of helicity amplitudes, which are closely connected with
the electroproduction amplitudes from where they are
extracted [41]. To implement them in Compton scattering,
however, it is mandatory to translate them into the con-
straint-free form factors FiðQ2Þ defined by the currents
(5.8) and (6.24). As explained in the previous sections,
electromagnetic and spin-3=2 gauge invariance preclude
using tensors others than the Tμ

i in Table II and Tαμ
i in

Table VII for the transition currents. For example, using the
Jones-Scadron basis in Eq. (6.27) or the helicity basis in
Eq. (D14) can lead to spurious singularities in the CFFs.
Furthermore, the helicity amplitudes are subject to

timelike kinematic constraints, which typically also lead
to complicated momentum dependencies in the spacelike
region Q2 > 0. By contrast, the FiðQ2Þ are kinematically
independent and thus simpler: without kinematic effects,
their momentum dependence is governed by physical

TABLE IX. CFF residues for a JP ¼ 3=2þ resonance. We only
display the result for F3 ¼ 0. The necessary definitions and
abbreviations are collected at the bottom. δ, δ� and r are defined
in Eq. (5.2).

c̃1 ¼ 4½ϑðZ2 − 3X−
1 Þ þ ρðW5=2 þ 2rΔ12Þ − 2λ2Yþ

−1�
c̃2 ¼ −ϑ½8δþΣ11 þ 4ηþX−

1=2 þ 2rω2Δ12 − η−ð3X−
−2=3þδ−Y

þ
−2 þ 4Xþ

0 Þ� þ 4λ2ðZ1 − δ−Y−
−2 − 5Xþ

−3=5Þ
c̃3 ¼ −ϑð3X−

0 þ δ−Y
þ
−2Þ − 12λ2rΔ12

c̃4 ¼ −3ϑW2 þ 4δðW5=2 þ 2rΔ12Þ
c̃5 ¼ −12ðX−

1 þ ηþrΔ12Þ
c̃6 ¼ ϑ½12δþΣ12 − 4δ−Σ22 þ 3ηþYþ

2 − η−ðδþYþ
10 − 2Xþ

1=2Þ�þ2λ2½3ηþYþ
2 − ðrþ 2ÞYþ

−10 þ ð1þ 3δÞY−
0 − 18Σ12�

−η−ðηþZ1 þ 5ω2rΔ12Þ þ 1
4
ρðδYþ

4 − 3η−Y
þ
2 Þ

c̃7 ¼ −ϑ½ð1 − η−ÞðΣ12 þ Σ22Þ þ rðΣ12 − Σ22Þ�
−ηþδYþ

1 þ 2η−Z0 þ 2λ2ð3Σ11 þ Σ22 þ 4Σ12Þ
c̃8 ¼ − 1

2
ϑ½9

2
W2 − ðη− þ 2δ−ÞΔ12� þ 2δW5=2 − 2λ2Δ12

c̃9 ¼ 3
4
ϑ½W2 þ 2ðη− þ 2δ−ÞΔ12� − 6λ2Δ12

c̃10 ¼ −2ðϑZ2 þ ηþZ1 þ ρW5=2 þ 5η2þrΔ12 − 2λ2Yþ
−1Þ

c̃11 ¼ −3ϑYþ
2 þ 4ðX−

0 þ δYþ
1=2Þ

c̃12 ¼ −ϑðZ2 þ 3
2
ηþYþ

2 þ 3r2Σ11 − 1
2
ϑYþ

−1Þ
−ηþðZ1 − Yþ

4 − rY−
0 − 3

2
δYþ

2 Þ
−ω2rΔ12 þ ð2δþ þ δrÞ2rΣ11 þ δδþðYþ

1 þ rY−
1 Þ

c̃13 ¼ − 3
4
ðϑ − 2ηþÞYþ

2 þ 4δ2−Y
þ
5=2 þ 3rX−

2

c̃14 ¼ 3
4
ðϑ − 2ηþÞW2 − ηþrΔ12 − Z0

c̃15 ¼ ϑðX−
2 − 3

4
ηþYþ

2 Þ þ ηþδYþ
5=2 − η−Z1

c̃16 ¼ 3
4
ϑW2 − δW5=2

c̃17 ¼ 3ðϑ − ηþÞYþ
2 − 12δþrΣ12 þ 4δ−X−

2

c̃18 ¼ −3W2 þ 4δ−rΔ12

Σij ¼ F0
iFjþF0

jFi

2
ϑ ¼ η− þ δ

Δij ¼ F0
iFj−F0

jFi

2ω ρ ¼ η2þ − ω2

X�
n ¼ δþΣ11 � δ−Σ22 þ nΣ12

Y�
n ¼ Σ11 � Σ22 þ nΣ12

Wn ¼ Yþ
n − 2nrΔ12

Z0 ¼ ð3
2
þ δÞYþ

1 þ 3
2
ð1þ δÞY−

−1=3

Z1 ¼ 3
4
ðϑ − 2ηþÞYþ

2 − Z0

Z2 ¼ X−
3 − 1

4
η−Y

þ
8

TABLE X. Two- to four-star nucleon and Δ resonances below
2 GeV for JP ¼ 1

2
� and 3

2
� [78]. The four-star resonances are

shown in bold font. In a spectroscopic notation they are labeled
by the incoming partial wave L2I;2J in elastic πN scattering; from
left to right: P11, P13, S11, D13 for the nucleon resonances with
I ¼ 1

2
and P31, P33, S31, D33 for the Δ resonances with I ¼ 3

2
.

JP ¼ 1
2
þ 3

2
þ 1

2
− 3

2
−

Nð940Þ Nð1720Þ Nð1535Þ Nð1520Þ
Nð1440Þ Nð1900Þ Nð1650Þ Nð1700Þ
Nð1710Þ Nð1895Þ Nð1875Þ
Nð1880Þ
Δð1910Þ Δð1232Þ Δð1620Þ Δð1700Þ

Δð1600Þ Δð1900Þ Δð1940Þ
Δð1920Þ
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singularities, namely the pion production cuts at timelike

values Q2 < −4m2
π and vector-meson poles in the complex

plane. Up to logarithmic corrections, the form factors follow
a multipole behavior at largeQ2 [79–82]. For decreasingQ2

it is then reasonable to expect amonotonous increase towards
the nearest ρ-meson pole,which is the closest non-analyticity
relevant for the spacelike region. In the absence of resonance
dynamics, the vector-meson poles would appear on the
timelike realQ2 axis (cf. Sec. 4.2 in Ref. [28] for a discussion
of the explicit mechanism). The cuts signal the onset of pion-
cloud effects, which push the poles onto higher Riemann
sheets and induce deviations from monotonicity at low
Q2 > 0. This is our guiding assumption for ground states,
whereas for excited states some form factors will naturally
have zero crossings for Q2 > 0.
A simple parametrization that is flexible enough to

accommodate these features is

FðQ2Þ ¼ 1

1þ x
1

ð1þ yÞn−1 ðHðxÞ � EðxÞÞ; ð7:1Þ

where x ¼ Q2=m2
ρ, y ¼ Q2=m2

R and

HðxÞ ¼ a0 þ a1xþ a2b2x2

1þ b2x2
;

EðxÞ ¼ e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e1x2

q
: ð7:2Þ

EðxÞ defines the error estimate. FðQ2Þ depends on two
scales, the ρ-mesonmass and the resonancemassmR.While
all form factors should have vector-meson poles, the addi-
tional poles in mR effectively implement the proper multi-
pole falloff at large Q2, with n ¼ 3 or n ¼ 4 depending on
the form factor. For ground states the remainders HðxÞ
should then become roughly constant; they approach the
constant values a0 for Q2 ¼ 0 and a2 for Q2 → ∞. In most
cases it is sufficient to set a1 ¼ 0. We assume that a0 and a2
have the same sign, except for form factors with zero
crossings, and we demand b2 > 0 to avoid extra singular-
ities. Although this form has no particle production cuts and
only one ρ pole on the real axis (which can be easily
remedied by introducing a width), it does capture the
spacelike properties reasonably well, in particular in the
low- and intermediate Q2 region where experimental
data exist.
In practice we convert the experimental data for the

helicity amplitudes to the form factors FiðQ2Þ, using the
relations in Appendix D, and divide out the poles in
Eq. (7.1) so that the data and their error bars are given
in terms of Hx � ΔHx. Those we subsequently fit by the
function HðxÞ given above. To arrive at the uncertainty
bands shown in the plots, we fitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðHx −HðxÞÞ2 þ ðΔHxÞ2
q

ð7:3Þ

by the rather conservative ansatz EðxÞ: in that way, the error
bands grow linearly at large Q2 (unless e1¼0) so that the
form factors can change their multipole falloff by one power
ofQ2 within the uncertainty. We prefer this form because in
several cases the asymptotic powers at large Q2 are under
dispute and logarithmic corrections canmodify them aswell.
At the Q2 ¼ 0 point we use the PDG 2016 estimates for

the helicity amplitudes from photoproduction experiments
[78]. For the electroproduction data at Q2 > 0 we only
included data sets whichmeasure the complete set of helicity
amplitudes, because otherwise one cannot extract all form
factors.Whereas for the lowest-lying resonances—Δð1232Þ,
Nð1440Þ, Nð1520Þ and Nð1535Þ—sufficient data are avail-
able, the data sets for the higher-lying resonances are scarce
so that in those cases the fits are only qualitative. In addition,
with the exception of the Δð1232Þ all cases suffer from the
lack of data below Q2 ≲ 0.3 GeV2. This is unfortunate
because the most important CFF contributions come from
the region at lowmomenta, which in some cases are difficult
to parametrize. This clearly motivates the need for future
measurements at low Q2.
Our resulting fits for the form factors and helicity

amplitudes are shown in Figs. 7–15, where they are
represented by solid lines with bands. The dashed
(blue) lines are the MAID parametrizations [42,76,77]
which are included for comparison. The fit parameters
are collected in Tables XI and XII. For the parameters
mR entering in the fits we simply used the names in Table X,
e.g., mR ¼ 1.535 GeV for the Nð1535Þ resonance, and we
employed mρ ¼ 0.77 GeV. In the following we discuss the
resonance transition form factors one by one.

A. States with JP = 1=2�

In these cases there are two transition form factors, the
Dirac-like F1ðQ2Þ and Pauli-like F2ðQ2Þ form factor. As
discussed in connection with Eq. (5.9), our F1 differs from
the standard convention F�

1 by a factor Q2=m2 which
removes its kinematic zero atQ2 ¼ 0. From the figures one

TABLE XI. Fit parameters for the JP ¼ 1=2� resonance
transition form factors.

n a0 a1 a2 b2 e0 e1 χ2

Nð1440Þ F1 3 0.28 0.71 0.25 0.06 0.14 0.55
F2 3 −0.45 1.92 0.22 0.05 8.36 1.16

Nð1710Þ F1 3 −0.04 0.06 0.02 0.80
F2 3 0.35 0.12 0.12 1.34

Nð1535Þ F1 3 0.56 0.85 0.46 0.03 0.42 0.29
F2 3 −0.69 −0.07 0.47 0.06 2.18 1.32

Nð1650Þ F1 3 0.33 0.09 0.47 25.7
F2 3 −0.30 0.04 7.86 5.8

Δð1620Þ F1 3 0.25 0.13 0.00 4.32
F2 3 −0.06 0.37 0.02 18.0
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can see that in most cases F1 is indeed compatible with a
monotonous rise towards Q2 → 0.
The relations between the form factors and helicity

amplitudes A1=2 and S1=2 are given in Eqs. (D9)–(D10).
They imply in particular that at the pseudothreshold (the
Siegert limit [90]) where

jkj ¼ 0 ⇔ Q2 ¼ −ðmR −mÞ2; ð7:4Þ
with jkj denoting the virtual photon three-momentum in the
resonance rest frame and defined in Eq. (D4), the helicity
amplitudes behave as [91–93]

JP ¼ 1=2þ∶ A1=2 ∝ jkj; S1=2 ∝ jkj2;
JP ¼ 1=2−∶ S1=2 ∝ jkj: ð7:5Þ

For larger timelike momenta they become imaginary.
Without knowledge of the constraint-free form factors
these features would not be evident, whereas they are
automatic if one starts directly from the Fi. As a conse-
quence, even simple monotonous ansätze for the Fi
typically lead to complicated shapes for the helicity
amplitudes, as can be seen in the figures below.

Nð1440Þ: The Roper resonance is the first excitation in
the ðIÞJP¼ð1=2Þ1=2þ channel. As such, F2 has a zero
crossing at intermediate Q2, which is visible in Fig. 7 and
also found in theoretical calculations [94–100]. By con-
trast, the data for F1 agree with a monotonous rise. The
MAID parametrizations implement a vanishing F�

1ð0Þ ¼ 0,
however with a negative derivative; this implies a small
negative value for F1ð0Þ which produces the turnover at
low Q2 in the leftmost panel of Fig. 7. In the helicity
amplitudes the difference is visible in S1=2, where MAID is
compatible with the recent A1/MAMI measurement for
S1=2 at very low Q2 [83] but does not reproduce the
behavior (7.5) at the pseudothreshold. These relations
follow automatically when we parametrize the form factors
directly, as can be seen in the plots.
Nð1710Þ: Since this is the second excited state in the

ðIÞJP ¼ ð1=2Þ1=2þ channel, one might expect two zero
crossings in F2. The five points in Fig. 8 are recent data from
JLab; they may indicate a slight trend in that direction but are
too sparse to draw conclusions. F1 is very small. In this case
we simply fit the Hx in Eq. (7.1) to constants by setting
a2 ¼ b2 ¼ 0. Alsohere the resulting helicity amplitudes have
sharp turnovers at the respective pseudothreshold Q2 ¼
−ðmR −mÞ2, which lies outside of the displayed region.
Nð1535Þ: The parity partner of the nucleon is the ground

state in the ðIÞJP ¼ ð1=2Þ1=2− channel and so we expect a
monotonous behavior for both form factors, which is
indeed visible in Fig. 9. As noted in Refs. [101–103],
the magnitude of F2 quickly falls off with Q2 and is
compatible with zero above Q2 ≈ 1.5 GeV2. In Table XI
this amounts to the coefficient a2, which dominates at large
Q2, being small compared to a0. Model calculations
typically yield values of F2 with a different sign compared
to the data [101,104] but they also do not include the ρ pole;
this may suggest cancellation effects between the vector-
meson pole contributions and the remainder, or also large
meson-cloud contributions at lowQ2 [103]. The oscillatory
behavior of S1=2 near the pseudothreshold is again a
consequence of Eq. (7.5).
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FIG. 7. Parametrization of the γ�N → Nð1440Þ form factors and helicity amplitudes (solid lines with bands). The data points at
Q2 ¼ 0 are from the PDG [78] and those for Q2 > 0 from CLAS/JLab [44,73,74]. For S1=2 we also include the A1/MAMI point at
Q2 ≃ 0.1 GeV2 [83]. The MAID parametrization (dashed, blue) is from Refs. [42,76,77]. The form factors are dimensionless and the
helicity amplitudes carry units of 10−3 GeV−1=2.

TABLE XII. Fit parameters for the JP ¼ 3=2� resonance
transition form factors.

n a0 a1 a2 b2 e0 e1 χ2

Δð1232Þ F1 3 1.53 0.87 0.04 0.06 0.02 1.89
F2 3 −0.59 −0.25 0.11 0.08 0.00 0.83
F3 4 0.29 1.22 0.01 0.21 0.00 0.37

Δð1700Þ F1 3 −0.31 0.30 0.00 7.14
F2 3 −0.27 0.21 0.00 4.55
F3 4 −0.19 0.09 0.00 11.0

Nð1520Þ F1 3 1.42 1.09 0.03 0.16 0.03 1.43
F2 3 −0.20 1.03 −0.23 0.94 0.03 0.80 0.68
F3 4 −0.35 0.21 0.61 0.50 0.08 0.16 1.11

Nð1720Þ F1 3 −0.05 0.17 0.30 9.78
F2 3 0.13 0.39 0.00 1.85
F3 4 1.14 0.53 0.00 8.26
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Nð1650Þ: The first excited state in the ðIÞJP ¼
ð1=2Þ1=2− channel is shown in Fig. 10. So far there are
only three data points from JLab. F2 may be compatible
with a zero crossing but in the absence of data we fit both
Hx to constants.

Δð1620Þ: Also for the ðIÞJP ¼ ð3=2Þ1=2− ground state
the data are sparse. In addition, Fig. 11 displays some
tension between the two data sets for F2ðQ2Þ: the three
JLab points rise towards a negative value at Q2 ¼ 0
whereas the PDG estimate is positive. Studies of

0 1 2 3 4 5
0.0

0.2

0.4

0.6

Q2 [GeV2]

0 1 2 3 4 5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Q2 [GeV2]

0 1 2 3 4 5
0

20

40

60

80

100

120

140

Q2 [GeV2]

0 1 2 3 4 5
-40

-30

-20

-10

0

10

20

Q2 [GeV2]

FIG. 9. Same as Fig. 7 but for γ�N → Nð1535Þ. The data are from PDG [78] and CLAS/JLab [73].

FIG. 10. Same as Fig. 7 but for γ�N → Nð1650Þ. The data are from PDG [78] and CLAS/JLab [85].

FIG. 11. Same as Fig. 7 but for γ�N → Δð1620Þ. The data are from PDG [78] and CLAS/JLab [85].
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FIG. 8. Same as Fig. 7 but for γ�N → Nð1710Þ. The data are from PDG [78] and CLAS/JLab [84].
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negative-parity states suggest a falloff F1ðQ2Þ ∝ 1=Q8 at
large Q2 due to the suppression of valence-quark contri-
butions, which corresponds to A1=2ðQ2Þ ∝ 1=Q5 [105].
Due to the lack of data we take a neutral point of view
and fit the Hx again by constants, so that the resulting
parametrizations implement the usual ∝ 1=Q6 falloff.

B. States with JP = 3=2�

The JP ¼ 3=2� resonances are determined by three
transition form factors FiðQ2Þ or, equivalently, the
helicity amplitudes A3=2ðQ2Þ, A1=2ðQ2Þ and S1=2ðQ2Þ.
Their relations with the form factors are given in
Eqs. (D15)–(D16). It is also common to express them
in terms of the Jones-Scadron form factors [48,49]:
magnetic dipole G�

M, electric quadrupole G�
E, and

Coulomb quadrupole G�
C; see Eq. (D20) for their

relations with the Fi. Their electromagnetic ratios are
defined as

REM ¼ −
G�

E

G�
M
; RSM ¼ −

jkj
2mR

G�
C

G�
M
: ð7:6Þ

At the pseudothreshold jkj ¼ 0, the helicity amplitudes
satisfy the constraints [91,92,106]

JP ¼ 3=2þ∶ A3=2; A1=2 ∝ jkj; S1=2 ∝ jkj2;
JP ¼ 3=2−∶ S1=2 ∝ jkj ð7:7Þ

which are a direct consequence of Eqs. (D13) and (D16).
Likewise, the kinematic relations between the Jones-
Scadron form factors at the pseudothreshold follow from
the definition (7.6) and Eq. (D20):

JP ¼ 3=2þ∶ 2mG�
E − ðmR −mÞG�

C ∝ jkj2; RSM ∝ jkj;
JP ¼ 3=2−∶ G�

M ∝ jkj2; mG�
E þ ðmR −mÞG�

C ∝ jkj2;
REM ∝ 1=jkj2; RSM ∝ jkj: ð7:8Þ

We emphasize again that the FiðQ2Þ are free of kinematic
constraints.
At asymptotically largeQ2, the structure of the transition

currents implies the relation G�
M ≃ −G�

E, which amounts to
REM → 1 [82]. From Eq. (D20) one obtains

REM !Q2→∞
�
−F2=ð2F1 þ F2Þ …JP ¼ 3=2þ

−ðF1 þ 2F2Þ=F1 …JP ¼ 3=2−

and thus F1 ≃ −F2 in both cases. In terms of the helicity
amplitudes this entails a dominance of A1=2 over A3=2

[48,49,74,81]. We chose not to enforce this property in
our fits (i.e., by constraining the respective coefficients
a2) because it is effectively absorbed in our error bands

which grow with Q2. The onset of such behavior may
very well happen only at very large Q2 and logarithmic
corrections may spoil it; and with the exception of the
Δð1232Þ the available data are in certain conflict with the
constraint.
Δð1232Þ: The Δ resonance with ðIÞJP ¼ ð3=2Þ3=2þ is

the lowest-lying and best known nucleon resonance,
both in terms of precision and Q2 range. A significant
amount of data for its helicity amplitudes have been
collected in several experiments [73,86–89,107]. For our
fits we used the comprehensive database of Ref. [75] but
replaced the older data for Q2 < 0.2 GeV2 by the most
recent analysis from Ref. [89]. At Q2 ¼ 0 we use the
PDG estimate [78].
Figure 12 shows that F1 and F2 are well described by

simple monotonous multipole functions. For F3 the
situation is less clear due to the low-Q2 data, but
since they come with large error bars our fit still
returns a positive value for a0 and thus a monotonous
function. The resulting helicity amplitudes are plotted
in the second row and they all vanish at the
pseudothreshold.
The γ�N → Δð1232Þ transition is usually discussed in

terms of the Jones-Scadron form factors displayed in the
third row of Fig. 12. At Q2 ¼ 0, Eq. (D20) entails that

G�
M ¼

ffiffiffi
2

3

r
ð2δþF1 − δ−F2Þ;�

REM

RSM

�
¼ δ

8δ2þF1 − δF2

�
F2

F2 þ δ
2r F3

�
; ð7:9Þ

where δ, δ� and r are defined in Eq. (5.2). With δþ ≫ δ−,
the dominance of the magnetic dipole form factor G�

M then
translates into the dominance of F1, whereas F2 and F3

enter in the small ratios. Note that RSM must vanish at the
pseudothreshold due to Eq. (7.8).
Quark models can explain the dominance of G�

M but
typically underestimate its magnitude by about 30–40%
at low Q2 [108–113]. In dynamical coupled-channel
models that gap is usually attributed to meson-cloud
effects [110–112]. Model calculations and large-Nc esti-
mates also suggest a small valence-quark contribution to
REM and RSM, indicating that these ratios may be
dominated by pion-cloud effects [113–117]. By contrast,
in Dyson-Schwinger calculations the valence-quark com-
ponents are significant due to relativistic effects [28,118–
120]. Equation (7.9) shows that in the absence of F2 and
F3 also REMð0Þ and RSMð0Þ must vanish at Q2 ¼ 0, and if
REM were mainly a pion-cloud effect the same would be
true for F2. Concerning F3, large-Nc estimates predict
F3ð0Þ ≃ 0 and thus RSMð0Þ ≃ REMð0Þ [89,115,117]. In
large-Nc based meson cloud models [115–117,121] F3 is
small and negative below Q2 ¼ 0.
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FIG. 13. Same as Fig. 12 but for γ�N → Δð1700Þ. The data are from PDG [78] and CLAS/JLab [85].

0 1 2 3 4 5
-0.5

0.0

0.5

1.0

1.5

2.0

Q2 [GeV2]

0 1 2 3 4 5
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Q2 [GeV2]

0 1 2 3 4 5
-0.6

-0.3

0.0

0.3

0.6

Q2 [GeV2]

0 1 2 3 4 5
-1

0

1

2

3

4

Q2 [GeV2]

0 1 2 3 4 5 6 7
-15

-10

-5

0

5

Q2 [GeV2]

0 1 2 3 4 5 6 7
-40

-30

-20

-10

0

Q2 [GeV2]

0 1 2 3 4 5 6 7
-400

-300

-200

-100

0

100

Q2 [GeV2]

0 1 2 3 4 5 6 7
-200

-150

-100

-50

0

50

Q2 [GeV2]

0 1 2 3 4 5 6 7
0

10

20

30

Q2 [GeV2]

FIG. 12. γ�N → Δð1232Þ transition form factors and helicity amplitudes. The data are from Refs. [73,78,86–89]. The form factors are
dimensionless and the helicity amplitudes carry units of 10−3 GeV−1=2.
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Finally, given the asymptotic constraint REM → 1 this
ratio must cross zero at some value Q2 > 0. From
Eq. (D20) the location of the zero in REM is

Q2

�
1þ 2mR

m
F3

F2

�
¼ m2

R −m2: ð7:10Þ

In the absence of F3 the zero crossing would happen early
on, but because F2 is negative the presence of F3 pushes it
to larger Q2. The existing data do not show a clear trend in
any direction but stay essentially constant. Note that the
ratios in Fig. 12 are plotted in percent, so the constraint
entails REM → þ100%. The central value of our fit crosses
zero at Q2 ∼ 20 GeV2 but within the uncertainty band any
other value above Q2 ∼ 7 GeV2 is equally possible.
Similarly, the large-Q2 behavior for the ratio RSM also
depends on F3:

RSM !Q2→∞

F1→−F2

−1þ Q2

2mmR

F3

F1

: ð7:11Þ

Δð1700Þ: The ground state in the ðIÞJP ¼ ð3=2Þ3=2−
channel is again an example where data are scarce. In this
case the data points are compatible with all form factors
being monotonous and negative, although this does not
reproduce the large-Q2 constraint F1 ≃ −F2. In accordance
with our previous strategy we fit theHx form factor data by
constants.
Nð1520Þ: The transition form factors of the ðIÞJP ¼

ð1=2Þ3=2− ground state in Fig. 14 display rather peculiar
features. F1 is clearly monotonous but F2 and F3 are not.
F3 crosses zero at low Q2, although the situation is

somewhat reminiscent of the Δð1232Þ. F2, on the other
hand, appears to have two zero crossings: one at very low
Q2 between the PDG value and the CLAS data, and another
one around Q2 ∼ 3 GeV2 (although within the error bars
the data are still compatible with zero). A negative value at
large Q2 would indeed be consistent with the constraint
F2 ≃ −F1. Still, this hints towards an interesting structure in
the timelike region:F2 is small compared toF1, so potential
meson-cloud effects induced by the cut structure could be
magnified. Given the amount and precision of the data for
this resonance, it is also the only example among all states
considered where such features are clearly visible in a form
factor. For these reasons we also include the parameter a1 in
our fit to achieve good parametrizations for F2 and F3.
Significant meson-cloud contributions for the transverse
amplitude A3=2, which is generally underestimated by quark
models [104,122–125], have also been suggested by
dynamical coupled-channel calculations [44,110].
Nð1720Þ: The ground state in the ðIÞJP ¼ ð1=2Þ3=2þ

channel is presently the highest-lying resonance where
electroproduction data exist. In Fig. 15 one can see that here
it is not even possible to pin down the sign for any form
factor: all three Fi contain data with both positive and
negative signs, even among the three CLAS points. This
clearly calls for more measurements in the future. One
should also note that another Nð1720Þ state with the same
quantum numbers was recently proposed to explain the
γ�N → ππN data [43,45]. We follow our previous strategy
and fit the Hx form factor data by constants; the resulting
uncertainty bands provide at least a rough estimate for the
magnitude of each form factor.
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FIG. 14. Same as Fig. 12 but for γ�N → Nð1520Þ. The data are from PDG [78] and CLAS/JLab [44,73,74].
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C. Discussion

We constructed parametrizations for the γ�N → R
transition form factors based on analytic properties.
Instead of fitting the data for the helicity amplitudes we
directly fitted the constraint-free form factors. In the
majority of cases these show a monotonous behavior
which is well described by simple parametrizations. For
the cases where data coverage is still poor we did not
attempt to achieve a pointwise description but rather
employed qualitative fits. In any case, the resulting helicity
amplitudes automatically satisfy the kinematic constraints
e.g., at the pseudothreshold, which can lead to significant
deviations from the MAID parametrizations especially
near the photon point.
The fits can be improved when more data become

available. The Q2-dependence of several transition form
factors is still poorly known, especially at low Q2: even
the best known resonances such as the Nð1440Þ,
Nð1520Þ and Nð1535Þ do not have any data below
Q2 ≲ 0.3 GeV2. This is particularly relevant for the form
factors F1ðQ2Þ for J ¼ 1=2 states and F3ðQ2Þ for J ¼
3=2 states, which cannot be extracted at the photon
point because S1=2ð0Þ cannot be measured directly. It is
then mandatory to expand the databases in this region to
pin down the trend of the transition form factors near
Q2 ¼ 0, which is also the relevant region for Compton
scattering.

VIII. COMPTON FORM FACTORS

We now have everything in place to work out the nucleon
resonance contributions to the CFFs. In practice we set up

the resonance terms in Eqs. (5.1) and (6.1) in a specific
Lorentz frame, Eqs. (A8)–(A9), and extract the CFFs by
matrix inversion. For the JP ¼ 1=2� resonances we employ
the off-shell transition vertex (5.11) and for the JP ¼ 3=2�
cases we use Eq. (6.24), together with our parametrizations
for the transition form factors.
Fig. 16 shows the resulting CFFs inside the TPE

cone. The bands include the dependence on all four
variables ηþ, η−, ω and λ as well as the uncertainty
bands from our form factor parametrizations. In particular,
we plot the residues ĉi at the s and u-channel poles
defined by

ciðηþ; η−;ω; λÞ ¼ δ2
ĉiðηþ; η−;ω; λÞ
ðη− þ δÞ2 − 4λ2

; ð8:1Þ

so that the poles do not appear in the plots but the static
values at ηþ ¼ η− ¼ λ ¼ ω ¼ 0 can be read off directly.
One can see that the ĉi typically fall into relatively thin

bands. In the few cases where the bands are broader this is
mainly due to the uncertainties from the form factors.
Obviously this would not have been possible with a non-
minimal basis: if some of the CFFs had kinematic singu-
larities inside the cone or on its boundary, the spread of the
bands would become infinite. Instead, the bands are narrow
so that the dependence on four variables effectively reduces
to a one-dimensional dependence on ηþ. This is very
helpful because instead of facing the need for studying
many different kinematic slices the essential information is
already encoded in a single variable.
Concerning the individual resonances, the Δð1232Þ

clearly provides the largest contribution to most CFFs.
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FIG. 15. Same as Fig. 12 but for γ�N → Nð1720Þ. The data are from PDG [78] and CLAS/JLab [85].
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The higher-lying states usually only have little impact. The
biggest subleading contributions come from the Nð1520Þ
and Nð1720Þ, which all carry spin 3=2 as well, whereas the
J ¼ 1=2 resonances such as the Roper resonance or the
Nð1535Þ are almost negligible.
Table XIII collects the CFFs c1, c2, c6, c10, c11 and c12 in

the static limit where all kinematic variables vanish. From
the results in Tables VI and IX one extracts the following
relations for JP ¼ 1=2� states in that limit:

26666666664

c1
c2
c6
c10
c11
c12

37777777775
¼ F2

2

δ2

26666666664

∓ δ

−δδ�
δδ∓
� 1

2
δ

∓ 1

−δ�

37777777775
; ð8:2Þ
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FIG. 16. Residues of the Compton form factors inside the TPE cone, plotted as functions of ηþ. The bands contain the variation inside
the cone as well as the uncertainties from the form factor parametrizations. The contributions from states other than the Δð1232Þ and
Nð1520Þ are only shown for ĉ3;4;13;17;18 where they are visibly different from zero.

TABLE XIII. Resonance contributions to the nucleon’s scalar and spin polarizabilities. The experimental values of α and β are from
the PDG [78] and those for the spin polarizabilities from Refs. [126–128]. For the resonance masses that enter in Eqs. (8.2)–(8.3) we use
the PDG 2016 estimates for the real parts of the pole positions [78]. The CFFs are dimensionless, α and β carry units of 10−4 fm3,
and the spin polarizabilities are given in 10−4 fm4. We do not display the numbers if both their absolute values and uncertainties are
smaller than 0.05 in the respective units.

Exp. Nð1440Þ Nð1710Þ Nð1535Þ Nð1650Þ Δð1620Þ Δð1232Þ Δð1700Þ Nð1520Þ Nð1720Þ
−c1 20.2(4) 0.2(0) 0.1(0) −0.3ð1Þ 10.6(8) −0.1ð2Þ 0.9(2) 0.0(1)
−c2 3.7(6) 0.2(0) 0.1(1) 0.1(0) 10.8(8) 0.0(1) 1.0(2)

−c6 27.8(4.1) −0.4ð1Þ −0.1ð0Þ 6.3(9) 0.0(1) 0.3(1) 0.0(1)
c10 9.0(8.6) 0.1(0) −0.1ð0Þ 0.1(4) 0.1(1) −0.6ð1Þ
c11 3.3(6.7) −0.2ð0Þ 0.2(0) 11.1(8) −0.4ð1Þ
c12 8.6(5.1) −0.2ð0Þ −0.1ð0Þ 11.0(8) 0.1(1) −0.2ð0Þ
α 11.2(4) −0.3ð0Þ −0.1ð0Þ −0.1ð1Þ −0.1ð0Þ
β 2.5(4) 0.1(0) 0.1(0) 0.1(0) 7.3(6) 0.0(1) 0.7(2)

γE1E1 −3.5ð1.2Þ 0.1(0) −0.4ð0Þ −0.1ð0Þ
γM1M1 3.2(0.9) −0.1ð0Þ 3.6(3) 0.1(0)
γE1M2 −0.7ð1.2Þ −0.4ð0Þ −0.1ð0Þ
γM1E2 2.0(0.3) 0.4(1)
γ0 −0.9ð0.1Þ −0.1ð0Þ −3.2ð2Þ 0.1(0)
γπ 8.0(1.8) −0.1ð0Þ −0.2ð0Þ 4.9(4) 0.3(0)
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whereas for JP ¼ 3=2� resonances one obtains26666666664

c1
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37777777775
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We abbreviated G1 ¼ δ2�F
2
1 þ δ2∓F2

2 and G2 ¼ δ�F2
1−

δ∓F2
2, and the Fi ≡ FiðQ2 ¼ 0Þ denote the static values

of the transition form factors. With our parametrizations
they are fully specified by the parameters a0 � e0. For a
spin-1=2 resonance only the form factor F2ð0Þ contributes
and for a spin-3=2 state only F1ð0Þ and F2ð0Þ survive.
These CFFs are related to the scalar and spin polar-
izabilities through Eqs. (2.31)–(2.33); for example the
scalar polarizabilities α and β become

�
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¼ αem
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8>>><>>>:
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δ�F2
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�
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2
�:

ð8:4Þ

Those CFFs in Fig. 16 that are more sensitive to the
higher-lying resonances do not contribute to the polar-
izabilities, so that also here mainly the Δð1232Þ is relevant.
The largest subleading effects come from the Nð1520Þ and
Nð1535Þ but they are very small. That the Δ plays an
important role is of course well known, and chiral effective
field theory and dispersive approaches provide a more
quantitative description than the simple tree-level expres-
sions that we collect here [1–5]. For example, pion loops
reduce the large Δ contribution to the magnetic polar-
izability β and, as a result of this cancellation, β is small
compared to the electric polarizability α. The sum αþ β is
proportional to c1 and constrained by the Baldin sum rule
[129]. Indeed, Table XIII shows that none of the resonances
contributes anything substantial to α. What is noteworthy is
the Nð1520Þ contribution to β, which is about a quarter of
the size of its PDG value.
For the spin polarizabilities the situation is less well

established. Fig. 17 contrasts experimental results from
A2/MAMI [126] with predictions from dispersion theory
and chiral perturbation theory. Instead of the spin polar-
izabilities, we plot the CFFs directly because their leading
ChPT values from Eq. (2.34) are simple: c12 vanishes and
after removing the pion pole in c6 the remaining ones are
identical up to signs. The various chiral approaches display
sizeable uncertainties. The difficulty arises from the Δ
resonance, which has a large effect and should be incorpo-
rated in the description. In Fig. 17 one can see that even by

simply adding together the Δ and leading-order ChPT
results one obtains values that are roughly compatible with
experiment and dispersion theory. On the other hand, it is
reassuring that it is practically only theΔ resonance that has
an impact on spin polarizabilities because all other reso-
nances are negligible.
Returning to the CFFs in general kinematics, the

practical result is that the same 18 CFFs describe the
Compton scattering process in general. If one had complete
knowledge of the Compton amplitude that information
could be condensed in the 18 panels of Fig. 16 as well. For
Compton scattering on a pointlike scalar particle only c1
and c2 survive; for a nonpointlike scalar the first five ci
contribute; the scalar t-channel poles can only appear in c2
and c3; pseudoscalar poles can only appear in c6; the
nucleon Born term contributes to eight CFFs in Fig. 5; in
RCS the six CFFs discussed above remain; in VCS the
twelve CFFs from Eq. (2.37) and in the forward limit the
four combinations in Eq. (2.41) survive.
The question is then whether the observation from

Fig. 16 also holds in other kinematic limits, i.e., whether
the momentum dependencies in the variables η−, ω and λ
are generally weak. In general the answer depends on the
singularity structure: viewed as analytic functions, the
CFFs are determined by their physical singularities. Our
present situation is of course rather special because we
merely add up tree-level resonances. The formulas for the
resonance terms contain s and u-channel nucleon reso-
nance poles together with timelike poles in Q2 and Q02
from the transition form factors.
Consider e.g., the situation in VCS, which is illustrated

in Fig. 18. At fixed ηþ, the TPE cone becomes a circle and
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FIG. 17. Resonance contributions to the spin polarizabilities
encoded in the static values of c6, c10, c11 and c12. We compare to
experiment [126], dispersion theory [1,130,131], leading-order
ChPT [54], and higher-order chiral approaches [132–137]; see
Refs. [1,5] for compilations. For c6 the pion pole contribution
from Eq. (2.34) has been excluded.
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the VCS and forward planes become the lines with ω ¼ ηþ
and η− ¼ ηþ, respectively. In the limit ηþ → 0, the
circle shrinks to a point and VCS collapses into RCS.
The vector-meson poles in the transition form factors
appear at timelike photon virtualities, which correspond to
ω ¼ �ðηþ þm2

ρ=m2Þ as indicated by the vertical (orange)
bands. They are symmetric in ω and the CFFs depend on ω
only quadratically, so it is clear that a multipole falloff in
the form factors cannot induce an overly strong ω depend-
ence in the interior jωj≲ ηþ but mainly affects the
momentum dependence in ηþ.
Including also the remaining variable λ (again at fixed

ηþ) yields the Mandelstam plane in λ and η−. This is where
the resonance poles at η− ¼ �2λ become visible, which are
illustrated by the diagonal (red) bands in Fig. 18. The
physical VCS region is the shaded (blue) area with
j cos θj < 1, where θ is the CM scattering angle. In RCS
it would be the domain enclosed between η− ¼ 0 and
η− ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2

p
; for increasing ηþ the line t ¼ 0moves

upwards and “drags” the physical region with it. DVCS is
the domain of large λ and moderate t.
Clearly, the dependence in λ cannot be weak because this

is where the resonance bumps appear. Recalling the
discussion around Eq. (4.21), the λ dependence of the
resonance terms is trivial and can be removed by splitting
the CFFs into non-resonant and resonant parts,

ciðηþ; η−;ω; λÞ ¼ cð0Þi ðηþ; η−;ωÞ þ
δ2cð1Þi ðηþ; η−;ωÞ
ðη− þ δÞ2 − 4λ2

;

where cð0Þi and cð1Þi no longer depend on λ. At fixed ηþ and
with the ω dependence being weak, the remaining question
is how strong their variation in η− is.

The right panels in Fig. 18 compare some of the cð1Þi
inside the TPE cone and in VCS. In the VCS case we limit
the range of η− to −ηþ < η− < ηþ with the same extent as

the cone, whereas inside the cone the functions vary
over the full η− and ω range. The bands do not change
substantially, which generally also holds for the remaining
CFFs and means that the VCS region is still sufficiently
close to the cone. Thus, in principle one could predict the
functional dependence of the CFFs in VCS from their
knowledge, e.g., near the symmetric limit where all
variables except ηþ vanish.
While these observations are particular to the case of

resonances, they can be useful in more general situations.
From the viewpoint of analyticity, the fact that the CFFs (and
therefore structure functions) depend on λ at all is tied to the
s- and u-channel resonance structure, which points to the
idea of quark-hadron duality [138–140]. On the other hand,
in the microscopic decomposition of Compton scattering the
nucleon resonance structure is produced by different quark-
gluon topologies than the handbag and t-channel diagrams
[27]. Without an underlying mechanism to generate singu-
larities in λ, the momentum dependence in that variable
would disappear; unless it creates unphysical singularities,
but those must ultimately cancel with other parts of the
amplitude. Such calculations are typically easier to perform
inside the TPE cone (the “Euclidean region”) where one can
avoid timelike singularities in the underlying correlation
functions like the quark propagator; cf. Refs. [141,142] for
studies of the pion transition form factor. Thus it may be
possible to analytically continue results inside the cone,
where λ is imaginary, also to the domain of large and real λ
which is accessible in DVCS.
Finally, the discussion in terms of Lorentz-invariant and

constraint-free CFFs can be useful for amplitude analyses
of Compton scattering [143]. For illustration we plot in
Fig. 19 the reconstructed Compton amplitude in RCS, in
particular the imaginary parts of the six associated CFFs,
inside the physical RCS region and between −2 < η− < 0.
We equipped the resonances with widths according to
Eq. (2.16), where mR and −Γ=2 are taken to be the real and
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FIG. 18. Left: Singularity structure of the Compton scattering amplitude at fixed ηþ in the fω; η−g and fλ; η−g planes; see text for a
discussion. Right: Compton form factor residues for the Δð1232Þ resonance inside the TPE and VCS regions.
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imaginary parts of the respective pole positions from the
PDG [78]. Analogous plots can be drawn in the forward
limit, where the imaginary parts are proportional to the
nucleon’s structure functions, or in VCS. The Δð1232Þ
clearly dominates, whereas other resonances such as the
Nð1520Þ are enhanced in particular CFFs; and with
Tables VI and IX one can form CFF combinations where
resonances with specific JP drop out.

IX. SUMMARY AND OUTLOOK

In this work we have detailed the tensor basis con-
struction for Compton scattering on the nucleon, which
implements the constraints of electromagnetic gauge invari-
ance, crossing symmetry, and the absence of kinematic
singularities. The resulting 18 Lorentz-invariant Compton
form factors are free of kinematic constraints and describe
the process in general kinematics.
As a practical application we worked out the Compton

form factor contributions coming from intermediate JP ¼
1=2� and 3=2� nucleon resonances. We derived the general
forms for their off-shell nucleon-to-resonance transition
vertices according to electromagnetic and spin-3=2 gauge
invariance. This automatically defines constraint-free on-
shell transition form factors, for which we constructed fits
using the available experimental data.We find that apart from
the Δð1232Þ the resonance contributions to the scalar and

spin polarizabilites are very small, although the Nð1520Þ
could play a role for the proton’s magnetic polarizability.
Our study can be extended to calculate resonance

contributions to two-photon exchange processes or baryons
with higher spin. Moreover, since the tensor basis con-
struction follows a general recipe it provides a template for
other systems, such as the hadronic light-by-light scattering
amplitude which enters in the standard model prediction for
the muon anomalous magnetic moment.
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Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP) under Project No. 2017/02684-5 and Grant
No. 2017/17020-BCO-JP.

APPENDIX A: CONVENTIONS AND FORMULAS

1. Euclidean vs Minkowski conventions

We use Euclidean conventions throughout this paper, but
we took care in constructing the notation such that many
identities are the same in Euclidean and Minkowski
conventions. In the following we summarize the tran-
scription rules from a Minkowski metric with signature
ðþ;−;−;−Þ to a Euclidean metric ðþ;þ;þ;þÞ; more
relations can be found in Appendix A of Ref. [28].
The replacement rules for vectors aμ and tensors Tμν are

given by

aμE ¼
�

a

ia0

�
; Tμν

E ¼
�
Tij iTi0

iT0i −T00

�
; ðA1Þ

where ‘E’ stands for Euclidean and no subscript refers to
the Minkowski quantity. As a consequence, the Lorentz-
invariant scalar product of any two four-vectors differs by a
minus sign from its Minkowski counterpart:

aE · bE ¼
X4
k¼1

akEb
k
E ¼ −a · b: ðA2Þ

Therefore, a vector is spacelike if a2 > 0 and timelike if
a2 < 0. Because the metric is positive, the distinction
between upper and lower indices disappears. To preserve
the meaning of the slash =a ¼ a0γ0 − a · γ we must also
redefine the γ-matrices:

iγμE ¼
�

γ

iγ0

�
; γ5E ¼ γ5; ðA3Þ

so that
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FIG. 19. Imaginary parts of the six Compton form factors in
RCS, plotted in the physical s-channel region for different values
of η− between −2 < η− < 0.
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=aE ¼ aE · γE ¼ i=a; fγμE; γνEg ¼ 2δμν: ðA4Þ

Our sign convention for the Euclidean γ-matrices
changes all signs in the Clifford algebra relation (A4) to
be positive, and since this implies ðγiEÞ2 ¼ 1 for i ¼ 1…4

we can choose them to be Hermitian: γμE ¼ ðγμEÞ†. For
example, in the standard representation they read

γkE¼
�
0 −iτk
iτk 0

�
; γ4E¼

�
1 0

0 −1

�
; γ5¼

�
0 1

1 0

�
;

where the τk are the usual Pauli matrices. Also the
generators of the Clifford algebra are then Hermitian:

σμν ¼ i
2
½γμ; γν� ⇒ σμνE ¼ −

i
2
½γμE; γνE� ðA5Þ

with ðσμνE Þ† ¼ σμνE .
The resulting replacement rules for some typical

quantities are collected in Table XIV. For expressions
involving the ε-tensor the situation is slightly more
complicated but follows from the same principles: the
spatial parts of Lorentz tensors are identical in Minkowski
and Euclidean conventions, so this must also hold for
εμναβaαbβ. In Euclidean space the ε-tensor is defined by
ε1234 ¼ ε1234 ¼ 1, whereas in Minkowski conventions one
has ε0123 ¼ −ε0123 ¼ 1, i.e., the spatial components
switch sign when lowering or raising indices. Denoting
spatial indices by i, j, k and summing over k, one has

εijαβaαbβ ¼ εijk0ðakb0 − a0bkÞ
¼ −εijk0ðakb0 − a0bkÞ
¼ iεijk4ðakb4 − a4bkÞE
¼ ðiεijαβaαbβÞE; ðA6Þ

because ε1234 ¼ 1 ¼ ε1230 and a0 ¼ −ia4E. Repeating this
for rank-1 and rank-3 tensors results in the analogous
identities in Table XIV [which would also follow from
Eq. (A16) below)].
With these rules it is straightforward to transform

Euclidean tensors, such as e.g., those in Table XV, to
Minkowski space. To further facilitate the transcription, we
have introduced the variables ηþ, η−, λ and ω in the main
text, Eq. (2.6), because they allow for a common definition
in Euclidean and Minkowski space. For example, with
qμE ¼ Qμ:

ηþ ¼ Q2 þQ02

2m2
¼ −

q2 þ q02

2m2
; ðA7Þ

and so on for the remaining variables. Once the momentum
variables and Lorentz tensors are given appropriate names,
all Lorentz-covariant and Lorentz-invariant relations
between them are the same in Euclidean and Minkowski
conventions.
The advantage of the Euclidean metric is that one

can perform numerical calculations directly in a given
frame, with explicit γ matrices and without the need for
inserting the metric tensor in each summation. A practical
Lorentz frame for the momenta p, Σ and Δ defined in
Eq. (2.7) is [27]

Δμ

m
¼ 2

ffiffi
t

p
26664
0

0

0

1

37775; Σμ

m
¼ ffiffiffi

σ
p

26664
0

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p

Z

37775;

pμ

m
¼ i

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
26664

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p

Y

0

37775; ðA8Þ

where t, σ, Z and Y are defined in Eqs. (2.8)–(2.10). Inside
the TPE cone, the angular variables Z and Y fill the interval
½−1; 1�whereas in its exterior they can become complex. In
the VCS limit it is more convenient to use the frame where
pμ ¼ im

ffiffiffiffiffiffiffiffiffiffi
1þ t

p ½0; 0; 0; 1� and

Q0μ

m
¼ α

26664
0

0

1

i

37775; Qμ

m
¼

26664
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4t − β2
p
αþ β

iα

37775; ðA9Þ

TABLE XIV. Replacement rules for some typical quantities.
For expressions with Lorentz indices, the right column defines
their Euclidean version in the sense of Eqs. (A1) and (A3). Each
additional Minkowski summation over Lorentz indices leads to a
minus sign in Euclidean conventions.

Minkowski Euclidean

a · b −a · b

aμ aμ

γμ iγμ

γ5 γ5
=a −i=a
gμν −δμν

aμbν aμbν

½γμ; γν� −½γμ; γν�
½γμ; =a� ½γμ; =a�
½γμ; γν; =a� i½γμ; γν; =a�
½=a; =b� −½=a; =b�
εμνραaα iεμνραaα

εμναβaαbβ iεμναβaαbβ

εμαβγaαbβcγ iεμαβγaαbβcγ

εμναβaαγβ −εμναβaαγβ
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with α ¼ λ=
ffiffiffiffiffiffiffiffiffiffi
1þ t

p
and β ¼ η−=α. In any case, this does

not affect the CFFs because they are frame-independent.

2. Formulas

Dropping the index “E,” we collect some useful
Euclidean formulas. The γ5 matrix is defined by

γ5 ¼ −γ1γ2γ3γ4 ¼ −
1

24
εμνρσγμγνγργσ ðA10Þ

with ε1234 ¼ 1. It is convenient to define the fully antisym-
metric combinations of Dirac matrices via the commutators

½A;B� ¼ AB − BA; ðA11Þ
½A;B; C� ¼ ½A;B�Cþ ½B;C�Aþ ½C;A�B; ðA12Þ
½A;B; C;D� ¼ ½A;B;C�D − ½B;C;D�A

þ ½C;D; A�B − ½D;A; B�C: ðA13Þ
Inserting γ-matrices, this yields the antisymmetric
combinations

½γμ; γν� ¼ γ5ε
μναβγαγβ; ðA14Þ

1

6
½γμ; γν; γρ� ¼ 1

2
ðγμγνγρ − γργνγμÞ

¼ 1

4
f½γμ; γν�; γρg ðA15Þ

¼ −γ5εμνρσγσ;
1

24
½γμ; γν; γα; γβ� ¼ −γ5εμναβ: ðA16Þ

The various contractions of ε-tensors are given by

εμνρλεαβγλ ¼ δμαðδνβδργ − δνγδρβÞ þ δμβðδνγδρα − δναδργÞ
þ δμγðδρβδνα − δραδνβÞ;

1

2
εμνλσεαβλσ ¼ δμαδνβ − δμβδνα;

1

6
εμλστεαλστ ¼ δμα;

1

24
ελστωελστω ¼ 1 ðA17Þ

and the ε-tensor satisfies

afμεαβγδg ¼ 0; ðA18Þ

where aμ is an arbitrary four-vector and f…g denotes a
symmetrization of indices.
Four-momenta are conveniently expressed through

hyperspherical coordinates:

TABLE XV. Elementary tensors for the nucleon Compton scattering amplitude. We suppressed the Lorentz indices for Kμν
i and Tμν

i to
avoid clutter. The Ki are dimensionless and invariant under photon crossing and charge conjugation. The Ti are the same as in Eq. (8) of
Ref. [29]. n counts the powers of photon momenta; λ contributes one power and ω two.

n Basis element n Basis element

0 K1 ¼ −T1 ¼ δμν 2 imK11 ¼ −iλT11 ¼ λδμν=Σ
2 m2K2 ¼ T2 ¼ Q0μQν 4 im3K12 ¼ iλT12 ¼ λQ0μQν=Σ
2 m2K3 ¼ T3 ¼ QμQ0ν 4 im3K13 ¼ iλT13 ¼ λQμQ0ν=Σ
2 m2K4 ¼ T4 ¼ QμQν þQ0μQ0ν 4 im3K14 ¼ iλT14 ¼ λðQμQν þQ0μQ0νÞ=Σ
4 m2K5 ¼ ωT5 ¼ ωðQμQν −Q0μQ0νÞ 6 im3K15 ¼ iλωT15 ¼ λωðQμQν −Q0μQ0νÞ=Σ
0 m2K6 ¼ T6 ¼ pμpν 2 im3K16 ¼ iλT16 ¼ λpμpν=Σ
2 m2K7 ¼ λT7 ¼ λðpμQ0ν þQμpνÞ 2 im3K17 ¼ iT17 ¼ ðpμQ0ν þQμpνÞ=Σ
4 m2K8 ¼ −λωT8 ¼ λωðpμQ0ν −QμpνÞ 4 im3K18 ¼ −iωT18 ¼ ωðpμQ0ν −QμpνÞ=Σ
2 m2K9 ¼ λT9 ¼ λðpμQν þQ0μpνÞ 2 im3K19 ¼ iT19 ¼ ðpμQν þQ0μpνÞ=Σ
4 m2K10 ¼ −λωT10 ¼ λωðpμQν −Q0μpνÞ 4 im3K20 ¼ −iωT20 ¼ ωðpμQν −Q0μpνÞ=Σ
3 m2K27 ¼ ωT27 ¼ ω½pμγν þ γμpν; =Σ� 0 imK21 ¼ −iT21 ¼ pμγν þ γμpν

1 m2K28 ¼ −T28 ¼ ½pμγν − γμpν; =Σ� 2 imK22 ¼ iωT22 ¼ ωðpμγν − γμpνÞ
5 m2K29 ¼ λωT29 ¼ λω½Q0μγν þ γμQν; =Σ� 2 imK23 ¼ −iλT23 ¼ λðQ0μγν þ γμQνÞ
3 m2K30 ¼ −λT30 ¼ λ½Q0μγν − γμQν; =Σ� 4 imK24 ¼ iλωT24 ¼ λωðQ0μγν − γμQνÞ
5 m2K31 ¼ λωT31 ¼ λω½Qμγν þ γμQ0ν; =Σ� 2 imK25 ¼ −iλT25 ¼ λðQμγν þ γμQ0νÞ
3 m2K32 ¼ −λT32 ¼ λ½Qμγν − γμQ0ν; =Σ� 4 imK26 ¼ iλωT26 ¼ λωðQμγν − γμQ0νÞ
1 K33 ¼ λT33 ¼ λ½γμ; γν� 1 imK34 ¼ iT34 ¼ f½γμ; γν�; =Σg
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pμ ¼
ffiffiffiffiffi
p2

q
2666664

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
sinϕffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

cosϕffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
y

z

3777775; ðA19Þ

and a four-momentum integration reads:Z
d4p
ð2πÞ4 ¼

1

ð2πÞ4
1

2

Z
∞

0

dp2p2

Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
×
Z

1

−1
dy

Z
2π

0

dϕ: ðA20Þ

The positive- and negative-energy on-shell spinors for
spin-1=2 particles satisfy the Dirac equations

ði=pþmÞuðpÞ ¼ 0 ¼ ūðpÞði=pþmÞ;
ði=p −mÞvðpÞ ¼ 0 ¼ v̄ðpÞði=p −mÞ; ðA21Þ

where the conjugate spinor is ūðpÞ ¼ uðpÞ†γ4. Since the
on-shell spinors only depend on p they are the same as in
Minkowski space; e.g., in the standard representation:

usðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2m

r � ξs
p·τ

Epþm ξs

�
ðA22Þ

with

ξþ ¼
�
1

0

�
; ξ− ¼

�
0

1

�
; Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
:

We have normalized them to unity,

ūsðpÞus0 ðpÞ ¼ −v̄sðpÞvs0 ðpÞ ¼ δss0 ;

ūsðpÞvs0 ðpÞ ¼ v̄sðpÞus0 ðpÞ ¼ 0; ðA23Þ
and their completeness relations define the positive- and
negative-energy projectors:X

s

usðpÞūsðpÞ ¼
−i=pþm

2m
¼ ΛþðpÞ;

X
s

vsðpÞv̄sðpÞ ¼
−i=p −m

2m
¼ −Λ−ðpÞ: ðA24Þ

Therefore, ΛþðpÞuðpÞ ¼ uðpÞ and Λ−ðpÞuðpÞ ¼ 0.

APPENDIX B: TENSOR BASIS

In the following we derive the tensor basis of the nucleon
Compton amplitude given in Table I and Eq. (2.26). To
begin with, we follow the construction by Tarrach [29] and
define the 34 auxiliary tensorsKμν

i in Table XV. The Tμν
i are

the Euclidean versions of Tarrach’s Eq. (2.8) according to
the replacement rules in Appendix A. We construct the Kμν

i
by attaching prefactors of λ, ω or λω, which makes them
even under Bose symmetry and charge conjugation,

cf. Eq. (2.19), and powers of the nucleon mass m to make
them dimensionless. Thus, the initial nucleon Compton
scattering amplitude has the form

Γμνðp;Q0; QÞ ¼ Λf
þ

�X34
i¼1

giK
μν
i

�
Λiþ: ðB1Þ

Here we abbreviated the positive-energy projectors from
Eq. (2.2) by Λf;i

þ and the dressing functions gi depend on
the variables ηþ, η−, ω and λ defined in Eq. (2.6).
That theKi are fully symmetric will be important in what

follows, because it implies that the gi are even in bothω and
λ. The analysis in terms of the Ti would complicate the
discussion of kinematic singularities; take e.g., the con-
tribution from K33:

g33K33 ¼ λg33T33 ¼ g033T33: ðB2Þ
Clearly, g33 ¼ g033=λ does not have a kinematic singularity
at λ ¼ 0 because g033 is odd under photon crossing and
therefore must be proportional to λ.
There are two non-trivial linear dependencies between

the Kμν
i , namely [29]

K17 − K19 þ K22 − K23 þ K25 þ K28 − K33

þ
�
1þ ηþ − η−

2

�
K34

2
¼ 0 ðB3Þ

and

K8 þ K10

2
þ K12 − K13 −

K24 þ K26

2
þ K29 − K31

4

− λ2
�
K2 − K3 þ K28 þ

K34

2

�
þ ηþ þ η−

2
ðK7 − K9 − K23 þ K25Þ

þ ηþ − η−
4

ðK30 þ K32Þ

þ
�
λ2 þ η2þ − η2− − ω2

4

�
K33 ¼ 0: ðB4Þ

These relations hold inside the positive-energy projectors
of Eq. (B1). Therefore, only 32 tensors are linearly
independent. This is analogous to the discussion of the
light-by-light scattering amplitude in Ref. [50]: an n-point
function depends on n − 1 momenta, but with increasing n
one can only construct a limited number of orthogonal
momenta due to the fixed dimension of spacetime. In
practice this leads to relations between the basis elements
and thus to a smaller number of independent tensors than
what can be naively written down.
One must therefore eliminate two tensors in such a way

that the resulting 32 coefficients gi do not pick up kinematic
singularities. To do so, it is sufficient to eliminate one tensor
from the first row in Eq. (B3) and another from the first two
rows in Eq. (B4). Within this constraint, any choice is
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equivalent and we choose to eliminate K22 from the first
equation and K31 from the second one. After crossing off
these two tensors from Eq. (B1) the sum goes over 32
linearly independent tensors.

1. Transverse part

To derive the transverse part Γμν
⊥⊥ in Eq. (2.20), we work

out the transversality conditions

Q0μΓμνðp;Q0; QÞ¼! 0;
QνΓμνðp;Q0; QÞ¼! 0: ðB5Þ

Either one of these is sufficient as long as we respect
photon-crossing and charge-conjugation invariance. For
example, the contraction of (B1) with Q0μ,

X34
i¼1

nf22;31g

giQ0μKμν
i ¼

X8
j¼1

AjKν
j¼! 0; ðB6Þ

produces eight linearly independent tensors Kν
j :

pν; Q0ν; Qν; pν=Σ; Q0ν=Σ;

Qν=Σ; γν; ½γν; =Σ�:

This leads to eight conditions Aj ¼ 0 for their Lorentz-
invariant coefficients and thus eight relations between the
dressing functions gi. Whereas the Aj are either even or odd
in λ, they are superpositions of even and odd pieces in ω:

Aj ¼ Að1Þ
j þ ωAð2Þ

j ¼! 0: ðB7Þ

Thus we arrive at 16 conditions Að1Þ
j ¼ 0 and Að2Þ

j ¼ 0,
where it turns out that only 14 are independent.
The resulting relations are rather complicated but they

can be solved without divisions: similarly to (B3)–(B4) one
can eliminate 14 dressing functions gj (e.g., those for
j ¼ 1, 2, 4, 6, 9, 11, 12, 14, 19, 21, 23, 27, 28, 33)
without dividing by terms depending on the kinematic
variables ηþ, η−, ω2 and λ2. If we relabel the independent
functions by ci with i ¼ 1…18, the relations take the form
gj ¼ gjðc1;…c18Þ and reinserting them into (B1) yields the
transverse Compton amplitude

Γμν
⊥⊥ ¼ Λf

þ

�X18
i¼1

ciX
μν
i

�
Λiþ: ðB8Þ

The transverse tensors Xi are given in Table XVI and
identical to those in Table I in the main text.
We did check other choices of eliminating two tensors

from (B3)–(B4) within the aforementioned constraints.
They all produced equivalent bases in the sense that the
determinants of the transformation matrices between the

bases are constant and not momentum-dependent (so they
can never vanish or diverge).
The procedure byBardeen andTung [30] and Tarrach [29]

for deriving the transverse basis is slightly different from
ours. In that case one enforces transversality by acting with
projectors on the initial amplitude:

tμαQ0Q

Q ·Q0 Γ
αβ

tβνQ0Q

Q ·Q0 ¼
! Γμν; ðB9Þ

which gives 18 tensors with single and double poles in the
variableQ ·Q0. By forming appropriate linear combinations
one then eliminates as many poles as possible, multiplies the
remaining double-pole structures with Q ·Q0, repeats, and
finally multiplies the single-pole tensors by Q ·Q0. In
contrast to Eqs. (B5)–(B7), however, this does not auto-
matically lead to a minimal basis. Tarrach derives the tensors
τ1…18, given in Table XVII, but notes that the resulting basis
is not minimal due to τ5, τ15 and τ16, which are subsequently
exchanged with new tensors τ19, τ20 and τ21 to form a
minimal basis. Written in terms of the Xi, the problem with
these tensors is evident as one can see in the table: e.g., all
coefficients of the Xi in the equation for τ5 are momentum-
dependent and thus the determinant of the basis trans-
formation from τ1…18 to X1…18 would depend on the
kinematics. Phrased differently, the crossing- and charge-
conjugation symmetric combination λωτ5 has a higher
photon momentum power (namely n ¼ 6) than its replace-
ment τ19 ∼ X4 with n ¼ 4; cf. the discussion in Sec. II B.

TABLE XVI. Basis of Table I expressed through the elemen-
tary tensors Ki of Table XV. The equalities hold inside the
nucleon spinors since we exploited the relations (B3)–(B4). For
X15 and X16 we abbreviated K̃ ¼ X6 þ 4K6 þ 2K21 þ K33.

X1 ¼ λ2K1 þ η−K6 þ K7

X2 ¼ η−K1 − K3

X3 ¼ ðη2þ − ω2ÞK1 þ η−K2 − ηþK4 þ K5

X4 ¼ λ2K2 þ ðη2þ − ω2ÞK6 þ ηþK9 − K10

X5 ¼ λ2ð−2ηþK1 þ K4Þ − ηþK7 − K8 þ η−K9

X6 ¼ −K28 þ K33 − 1
2
K34

X7 ¼ 2ð−K19 þ K22 − K23 þ 1
4
ηþK34Þ

X8 ¼ 2ðK20 − ηþK22 − K24 − 1
4
ω2K34Þ

X9 ¼ 4ðK18 − η−K22 − K26Þ þ X8

X10 ¼ −2K11 þ η−K21 þ 2K25 − 1
4
η−K34 þ 2X1

X11 ¼ 4K16 þ 2λ2ðK21 þ 1
4
K34Þ þ λ2X6 þ 1

4
X13

X12 ¼ −4λ2K1 − 2K7 þ 4K11 − 2K25 þ K32 þ η−K33

X13 ¼ −4λ2K2 þ 2K10 þ 4K12 − 2K24 þ K29

−2ηþðK9 þ K23 − 1
2
K30Þ þ ðη2þ − ω2ÞK33

X14 ¼ 2ð−K8 þ K26Þ þ η−ð2K22 þ K27Þ þ K31

X15 ¼ 2ð−K9 þ K19Þ þ K27 − K30 − ηþK̃ − X7

X16 ¼ 2ð−K10 þ K20Þ þ ηþK27 þ K29 − ω2K̃ þ X8

X17 ¼ −K14 þ ηþð2K11 − K25Þ þ η−K23 þ K26

X18 ¼ K15 − ω2ð2K11 − K25Þ þ η−K24 − ηþK26
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For these reasons we prefer the more direct method of
Eqs. (B5)–(B7) for deriving the basis, because it is failsafe
and also provides a safety check: if it were not possible to
solve (B7) without divisions, this would point to a problem
with minimality. Fortunately, in the case of Compton
scattering there is no such problem. Our main reasons
for working with the Xi instead of Tarrach’s (modified)
basis are a cleaner physical interpretation (see the remarks
at the end of Sec. B), a simpler form of Table I, and simpler
expressions for Tables IV, VI and IX.
As discussed in connection with Eq. (2.44), it is still

possible to identify kinematic limits where kinematic sin-
gularities cannot be avoided. In that case the 18 tensors Xi
collapse into a set of fewer tensors whose coefficients are
linear combinations of the ci butwith singular denominators.
However, this does not change the fact that the ci themselves
are still finite in those limits. Take e.g., our results in Fig. 16:
the ĉi obtained from the intermediate nucleon resonances are
nonsingular everywhere inside the TPE cone, although the
cone contains the VVCS limitω ¼ 0. This means we can go
arbitrarily close to that limit and extract the ĉi, which also
remain finite in the limit. On the other hand, had we
calculated directly in the VVCS limit, the ĉi would have
collapsed into fewer functions with kinematic singularities.
In any case, this situation does not affect the kinematic

limits of RCS, VCS and the forward limit where direct
measurements are possible. This is evident from the
discussion below Eq. (2.30), Eqs. (2.36)–(2.37), and
Eq. (2.41), as well as the following subsection B 2: in
all those cases the Xi collapse into fewer tensors but the
respective coefficients do not pick up kinematic singular-
ities. Hence, in principle the CFFs (or their combinations)
can be measured directly in these limits.

2. Kinematic limits

In the following we collect the relations between the Ki
in Table XV in the various kinematic limits, which leads to

the reduced transverse bases discussed in Sec. II C. We
further relate the CFFs in those limits to some common
amplitude choices employed in the literature.
RCS: Here the condition ω ¼ 0 eliminates the tensors

K5 K15 K22 K27

K8 K18 K24 K29

K10 K20 K26 K31

ðB10Þ

from the basis. In addition, applying polarization vectors
for the on-shell photon momenta has the same effect as
crossing off tensors which contain instances of eitherQ0μ or
Qν, so that also

K2 K12 K23

K4 K14 K30

K9 K19

vanish in RCS. From Table XVI one then infers that only
the transverse tensors X1, X2, X6, X10, X11 and X12 survive
in RCS. The relations between our CFFs and the RCS
amplitudes Aiðη−; λÞ defined by L’vov et al. [51,52] are
given in Table XVIII.
VCS: The same strategy applied to VCS amounts to

dropping instances of Q0μ only. With ηþ ¼ ω this implies

TABLE XVIII. Relations between the RCS amplitudes Ai of
Refs. [51,52] and our CFFs in RCS (ηþ ¼ ω ¼ 0).

26666664
A1

A2

A3

A4

A5

A6

37777775 ¼ − e2

m3

2666666664

1
4
ðη− − 2Þc1 þ c2 þ 1

2
η−c10 þ λ2c11

−ðc6 þ c10Þ
−
�

1
2
c1 þ c10 − c11

�
c11

1
2
ðη− − 2Þc11 þ 2c12
c10 þ 1

2
ðη− − 2Þc11

3777777775

TABLE XVII. Tarrach’s basis for the Compton amplitude [29]. The τi are the transverse tensors in Eqs. (12–13) therein; with
appropriate prefactors λ, ω or λω they become symmetric under photon crossing and charge conjugation. The Xi are our Compton
tensors from Table XVI.

τ1=m2 ¼ X2 λτ12=m4 ¼ X5 − 1
2
ηþX12 þ X17

τ2=m4 ¼ −X3 λωτ13=m4 ¼ ðη2þ − ω2ÞX1 þ λ2X3 − η−X4 þ ηþX5 − 1
2
ω2X12 − X18

τ3=m4 ¼ −X1 ωτ14=m4 ¼ X14

λτ4=m4 ¼ −X5 ωτ20=m4 ¼ −ðω2X6 − 2X8 þ X16Þ
τ19=m6 ¼ 2X4 τ21=m4 ¼ −ðηþX6 þ 2X7 þ X15Þ
λτ6=m4 ¼ − 1

4
X13 λτ17=m2 ¼ −X12

λτ7=m3 ¼ −2λ2X6 þ 2X11 − 1
2
X13 τ18=m3 ¼ 4X6 − 2X7

τ8=m3 ¼ − 1
2
X7

ωτ9=m3 ¼ − 1
2
X8 λωτ5=m4 ¼ ðη2þ − ω2ÞX1 þ λ2X3 − η−X4 þ ηþX5

τ10=m4 ¼ 4X10 þ 2X12 λωτ15=m4 ¼ ω2ðη−X6 þ 2X10 þ X12Þ − η−ð2X8 − X16Þ − ηþX14

ωτ11=m3 ¼ 1
4
ðX8 − X9Þ λτ16=m4 ¼ ηþðη−X6 þ 2X10 þ X12Þ þ η−ð2X7 þ X15Þ − X14
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K2 ¼ 0; K12 ¼ 0;

K5 ¼ ηþK4; K15 ¼ ηþK14;

K10 ¼ ηþK9; K24 ¼ −ηþK23;

K20 ¼ ηþK19; K29 ¼ −ηþK30

which induce the linear relations (2.36) between theXi. The
resulting CFFs are those in Eq. (2.37).
The relations between the Compton tensors Ti employed

by Drechsel et al., defined in Appendix A of Ref. [31], with
Tarrach’s τi are given by:

T1 ¼ −τ1; T6…18 ¼ τ6…18;
T2 ¼ −4τ3;
T3 ¼ τ2; T19 ¼ 2τ19;
T4 ¼ 2τ4; T20 ¼ τ20;
T5 ¼ −2τ5; T21 ¼ τ21:

ðB11Þ

These are subsequently used to define the VCS tensors ρi
and corresponding dressing functions fi, cf. Eq. (A10) in
[31]. Their relations with our CFFs are given in Table XIX.
The nucleon’s generalized polarizabilities can then be
reconstructed using Eqs. (3)–(8) in Ref. [7] or in a
manifestly covariant form via Eq. (A1) in Ref. [9]. Note
that in the conventions of Drechsel et al. the average
nucleon and photon momenta differ by a factor 2 and one
has to interchange the Lorentz indices μ ↔ ν.
FWD: In the doubly-virtual forward limit the condition

ω ¼ 0 disposes again of the tensors in Eq. (B10). In
addition one has Q0μ ¼ Qμ, but without any polarization
vectors because the photons are still virtual. Because the
incoming and outgoing nucleon momenta are the same, one
exploits the identities

ΛþðpÞγμΛþðpÞ ¼
pμ

im
ΛþðpÞ ðB12Þ

and

ΛþðpÞ½pμγν − γμpν; γρ�ΛþðpÞ

¼ ΛþðpÞ
�
im
3
½γμ; γν; γρ� − ½γμ; γν�pρ

�
ΛþðpÞ ðB13Þ

to obtain further relations between the Ki:

K3 ¼
1

2
K4 ¼ K2;

K9 ¼ K17 ¼ K19 ¼ −K23 ¼ −K25 ¼ K7;

K11 ¼ λ2K1; K12 ¼ K13 ¼
1

2
K14 ¼ λ2K2;

K16 ¼ λ2K6; K21 ¼ −2K6;

K28 ¼ K33 −
1

2
K34; K32 ¼ K30

In total only seven tensors K1, K2, K6, K7, K30, K33 and
K34 remain independent. The resulting four transverse
tensors in the forward limit are given in Eq. (2.39) and
the corresponding CFFs in Eq. (2.41).

3. Nontransverse part

Next, we work out the remaining nontransverse tensors
of the basis, i.e., the Γμν

⊥ and Γμν
G from Eq. (2.20). For the

physical amplitude they are irrelevant because their coef-
ficients vanish due to gauge invariance, but projecting onto
the full 32-dimensional basis including all terms serves as a
useful test of gauge invariance.
The “partially transverse” piece Γμν

⊥ is subject to the
weaker constraint

Q0μΓμνðp;Q0; QÞQν¼! 0: ðB14Þ
To derive it, we lift the requirement of gauge invariance and
add the 14 tensors belonging to the gj [given above
Eq. (B8)] that we previously eliminated:

Γμν ¼ Λf
þ

�X
j

gjK
μν
j þ

X18
i¼1

ciX
μν
i

�
Λiþ:

Since the transverse tensors Xi already satisfy Eq. (B14) the
condition only affects the first sum. Its contraction withQ0μ
and Qν generates two independent structures proportional
to 1 and =Σ,X

j

gjQ0μKμν
j Qν ¼ A0

1 þ A0
2iλ=Σ¼! 0; ðB15Þ

with two resulting conditions A0
1 ¼ A0

2 ¼ 0. This leaves 12
independent functions; if we relabel them by ci with
i ¼ 19…30, the result is

TABLE XIX. Relations between the fi defined in Ref. [31] and
our CFFs in VCS (ηþ ¼ ω). The relations between the nucleon’s
generalized polarizabilities and the fi can be found in Refs. [7,9];
the fi in [7,31] are identical to the Ai in Ref. [9]. We abbreviated
c̄7 ¼ c7 − ηþc8, c̄15 ¼ c15 þ ηþc16 and c̄17 ¼ c17 − ηþc18.

m3f1 ¼ −c2
m5f2 ¼ 1

4
c1

m5f3 ¼ − 1
2
λðc5 − c̄17Þ

m4f4 ¼ 1
2
λc11

m4f5 ¼ −ðc6 þ 2c̄7 − 2ηþc9 þ λ2c11 − ðηþ þ 4Þc̄15Þ
m5f6 ¼ 1

4
c10

m4f7 ¼ −4ηþc9
m5f8 ¼ λc̄17
m5f9 ¼ ηþc14
m3f10 ¼ 1

2
λðc10 − 2c12 − ηþc̄17Þ

m4f11 ¼ 1
4
ðc6 þ λ2c11 − ηþc̄15Þ

m5f12 ¼ −c̄15
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Γμν
⊥ ¼ Λf

þ

�X30
i¼19

ciX
μν
i

�
Λiþ; ðB16Þ

where the tensors X19…30 are collected in Table XX.
Unfortunately, here it is no longer possible to solve the

system (B15) without divisions, which means that some of
the resulting tensors acquire kinematic singularities. Those
are the ones proportional to X19 and X20, whose original
form as a result of the equations is X19=η− and X20=η−.
Therefore, they must be multiplied by η− which removes
the kinematic singularities at η− ¼ 0 and in the process
raises their photon momentum powers.
That the X19…30 satisfy Eq. (B14) is a simple check; for

example, Table XV entails

Q0μKμν
22Q

ν ¼ ω

im
ðp ·Q0=Q − =Q0p ·QÞ ¼ imλω=Δ;

which vanishes in the contraction with the positive-energy
projectors. In analogy to Eq. (2.26), it is possible to recast
the X19…30 in a form where the (partial) transversality is
manifest. For example, using the definition (2.25):

Xμν
21 ¼

1

m2
ðtμνQ0Q0 þ tμνQQÞ;

Xμν
23 ¼

iλ
m
ðtμνQ0γ þ tμνγQÞ;

Xμν
28 ¼

iλω
m

ðtμνQ0γ − tμνγQÞ: ðB17Þ

Finally, the remaining nontransverse part

Γμν
G ¼ Λf

þ½c31Xμν
31 þ c32X

μν
32�Λiþ ðB18Þ

depends on the two tensors X31 ¼ K1 and X32 ¼ K21

corresponding to the coefficients that we eliminated in
the solution of Eq. (B15). In total, the sum of Eqs. (B8),
(B16) and (B18) constitutes a complete 32-dimensional
tensor basis according to Eq. (2.20).

4. Effects of breaking gauge invariance

Finally we return to the question posed in Sec. IV C:
what are the consequences of breaking gauge invariance on
purpose? To investigate this, we consider the nucleon Born
term from Eq. (4.1) but implement a nucleon-photon vertex
that differs from the Dirac form (4.18). For example:

Γμðk;QÞ ¼ i

�
F1G

μ
1 þ F2

Tμ
3

2
þ αTμ

4

�
ðB19Þ

with the usual Dirac and Pauli form factors F1;2ðQ2Þ, but
including the tensor Tμ

4 from Table II with a constant
coefficient α. For simplicity, let us set F1 ¼ 1 and F2 ¼ 0.
Then for α ¼ 0 one obtains the CFFs for a pointlike Dirac
particle: c̃1 ¼ −4 and c̃10 ¼ 2.
After switching on α, the Compton amplitude is no

longer gauge invariant. However, by projecting it onto its
full 32-dimensional tensor basis,

Γμν ¼ Γμν
G þ Γμν

⊥ þ Γμν
⊥⊥; ðB20Þ

with the transverse part Γμν
⊥⊥ from Eq. (B8) and the

remainders Γμν
⊥ and Γμν

G from Eqs. (B16) and (B18), we
can isolate the terms that violate gauge invariance and work
out the effects on the transverse CFFs.
The result for the simple example above is given in

Table XXI. The transverse CFFs pick up extra terms which
depend on α, but in addition we have also generated a
gauge part ∝ X30. As in Eq. (4.21) we quote the residues c̃i
for the transverse parts but the CFF c30 itself for the gauge
part: only the transverse terms contain the nucleon poles
whereas they drop out in the gauge part.
Note also that no additional kinematic singularity has

been generated in any CFF. Had we simply performed a
transverse projection of the full amplitude, both gauge and
transverse parts would have collapsed into 18 transverse
functions; however, because the gauge part has a lower
photon momentum power it will produce kinematic sin-
gularities in those functions.
This principle can be taken further to test off-shell effects

in the nucleon Born term within a hadronic description

TABLE XXI. Compton form factors for a pointlike nucleon but
with an extra term ∝ Tμ

4 that violates gauge invariance, see
Eq. (B19).

c̃1 ¼ −4þ A − BþD c̃11 ¼ −4α2

c̃2 ¼ Aþ η−ð4α − CÞ c̃12 ¼ 2α − C
c̃6 ¼ −A − 2αη− c̃15 ¼ −α2η−
c̃10 ¼ 2 − 4α − 1

2
ðA − BþDÞ c30 ¼ − 1

2
α

A ¼ α2ðη2− − 4λ2Þ C ¼ α2ð2ηþ − η− þ 4Þ
B ¼ α2ðη2þ − ω2Þ D ¼ 4αðηþ − αη−Þ

TABLE XX. Nontransverse basis tensors for the Compton
amplitude. Taken together with those in Table XVI, they form
a complete basis.

X19 ¼ η−K2 − ðη2þ − ω2ÞK1 X27 ¼ K22

X20 ¼ η−K6 − λ2K1 X28 ¼ K26

X21 ¼ 2ηþK1 − K4 X29 ¼ K27

X22 ¼ 2ηþK6 − K9 X30 ¼ K34

X23 ¼ 2K11 − K25

X24 ¼ 2K12 þ ðη2þ − ω2ÞK21 X31 ¼ K1

X25 ¼ K19 − K23 − 2ηþK21 X32 ¼ K21

X26 ¼ K28 þ K33 þ 4K21 þ 8K6
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[144]. To do so, we restore the proton’s Dirac and Pauli
form factors in Eq. (B19) but add other tensors with a
simple momentum dependence of the form

αTμ
4 →

α

ð1þQ2=m2ÞT
μ
i ; ðB21Þ

with i ≠ 1 and i ≠ 3. After the projection we drop the
unphysical gauge parts and consider the transverse CFFs
only. In Fig. 20 we show a few selected results for the
leading transverse CFFs obtained with α ¼ 1. Without the
additional tensors (upper left panel) they are identical to
those in Fig. 5. As one can see, breaking gauge invariance
has rather modest effects on the transverse part of the
Compton amplitude because the CFFs do not change their
form dramatically. Thus, even if off-shell effects played a
role (as far as that can be judged within an effective
hadronic theory) their correct implementation leads back to
results which resemble the on-shell forms.
This observation is useful also in a different context,

namely in microscopic calculations of Compton scattering.
In that case the complete expression for the Compton
amplitude in terms of quark and gluon d.o.f. has been
derived based on electromagnetic gauge invariance
[26,27]. As usual only the sum of all diagrams is gauge
invariant but not the individual terms.Unfortunately, some of
those diagrams are numerically hard to calculate. Keeping
only parts of the results, even if they provide the dominant
contributions,would indeed be useless if one cannot quantify
the effects of breaking gauge invariance. For example,
with a naive transverse projection the resulting CFFs would
be contaminated by unphysical kinematic singularities.
The separation (B20) resolves the problem: one can project
the dominant diagrams onto the complete basis, which
ensures both transversality and the absence of kinematic

singularities, and subsequently retain the transverse CFFs.
This leads to well-defined expressions, which can be
systematically improved upon, where the subleading dia-
grams would mainly serve to cancel the gauge parts because
the sum of all diagrams is known to be gauge invariant.

APPENDIX C: SPIN-3=2 LAGRANGIANS AND
POINT TRANSFORMATIONS

In this Appendix we collect some further properties of
spin-3=2 Lagrangians. We drop the label “R” that was used
in the main text and denote the mass of the spin-3=2 particle
by m, its tree-level propagator by Sαβ, and the nucleon-to-
resonance transition vertex by Γαμ.
The free spin-3=2 Lagrangian

L ¼ ψ̄αΛαβψβ; Λαβ ¼ −
i
2
fσαβ; i=kþmg ðC1Þ

with i=k ¼ =∂ is a special case of more general possible forms
that are related to each other by point transformations
[47,65,68]. Let us define the transverse and longitudinal
projectors onto γ-matrices,

Pαβ
⊥ ¼ δαβ −

1

4
γαγβ; Pαβ

k ¼ 1

4
γαγβ ðC2Þ

with the properties

Pαβ
⊥ γβ ¼ 0; Pαβ

k γβ ¼ γα; Pαγ
⊥Pγβ

k ¼ 0: ðC3Þ
The so-called point transformation tensors

ΘαβðλÞ ¼ Pαβ
⊥ þ λPαβ

k ðC4Þ
form a group:

ΘαγðλÞΘγβðλ0Þ ¼ Θαβðλλ0Þ;
ΘαγðλÞΘγβðλ−1Þ ¼ δαβ; ðC5Þ

where the group parameter λ is the coefficient of the
longitudinal part in ΘαβðλÞ. The general form of the inverse
propagator Λαβ can then be written as [47]

ΛαβðξÞ ¼ Θαγ

�
1

ξ

�
Λγδðξ ¼ 1ÞΘδβ

�
1

ξ

�
: ðC6Þ

It depends on a gauge parameter ξ, where ξ ¼ 1 corre-
sponds to the “Rarita-Schwinger gauge” and Λαβðξ ¼ 1Þ is
the expression in Eq. (C1).4 From Eqs. (C5)–(C6) one has
the general relation

ΛαβðξÞ ¼ Θαγ

�
ξ0

ξ

�
Λγδðξ0ÞΘδβ

�
ξ0

ξ

�
; ðC7Þ
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FIG. 20. Compton form factor residues of the nucleon Born
term from an off-shell nucleon-photon vertex that violates
electromagnetic gauge invariance. The upper left panel shows
the original result from Fig. 5 where gauge invariance is
preserved. In the remaining panels we switch on Tμ

4…8 as in
Eq. (B21), with α ¼ 1 in all cases.

4To compare with the notation in the literature, e.g., [47,145],
use ξ ¼ −1=ð1þ 2AÞ and λ ¼ 1þ 4a.
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which entails that the Lagrangian L ¼ ψ̄αΛαβðξÞψβ is
invariant under the point transformation

ξ → ξ0; ψα → ψ 0α ¼ Θαβ

�
ξ0

ξ

�
ψβ: ðC8Þ

DefiningΩ ¼ i=kþm, one can further show that Eq. (C6) is
identical to

ΛαβðξÞ ¼ Pαγ
⊥ΩPγβ

⊥ −
3

ξ2
Pαγ
k ΩPγβ

k

−
1

ξ
ðPαγ

⊥ΩPγβ
k þ Pαγ

k ΩPγβ
⊥ Þ: ðC9Þ

The spin-3=2 propagator is the inverse of ΛαβðξÞ in
momentum space and therefore it satisfies

SαβðξÞ ¼ ΘαγðξÞSγδðξ ¼ 1ÞΘδβðξÞ; ðC10Þ

where Sαβðξ ¼ 1Þ is the Rarita-Schwinger propagator in
Eq. (6.3). The explicit form of the general tree-level
propagator is

SαβðξÞ ¼ −i=kþm
k2 þm2

Δαβ þ ð1 − ξÞ2
24im2

γα=kγβ

−
1 − ξ

6im2
ðkαγβ þ γαkβÞ þ 1 − ξ2

12m
γαγβ; ðC11Þ

where only the first term survives for ξ ¼ 1. Using the spin-
3=2 and spin-1=2 projectors defined in Eqs. (6.5)–(6.7) and
(6.10), the propagator can also be written as [146]

SαβðξÞ ¼ −i=kþm
k2 þm2

Pαβ
3=2 þ

1 − ξ

4m

�
ð1þ ξÞ þ ð1 − ξÞ i=k

2m

�
Pαβ
11

þ 3þ ξ

12m

�
ð3 − ξÞ − ð3þ ξÞ i=k

2m

�
Pαβ
22

þ 3þ ξ2

4
ffiffiffi
3

p
m
ðP12 þ P21Þαβ

þ ð1 − ξÞð3þ ξÞ
8

ffiffiffi
3

p
m2

i=kðP12 − P21Þαβ; ðC12Þ

which reduces to Eq. (6.11) if ξ ¼ 1.
The invariance of matrix elements under point trans-

formations can be discussed along the same lines. A
generic interaction term for the electromagnetic coupling
of the nucleon to a spin-3=2 resonance has the form

LNΔγ ¼ ψ̄αΓαμAμψ ; ðC13Þ
where ψ denotes the nucleon and Aμ the photon field. Γαμ is
the tree-level interaction vertex that satisfiesQμΓαμ ¼ 0 and
kαΓαμ ¼ 0 in momentum space, with Qμ the photon
momentum and kα the spin-3=2 momentum. The first

condition follows from electromagnetic gauge invariance
and the second from spin-3=2 gauge symmetry.
Following Ref. [146], one can interpret the tree-level

vertex as the special case Γαμðξ ¼ 1Þ, so that its general
form becomes

ΓαμðξÞ ¼ Θαβ

�
1

ξ

�
Γβμðξ ¼ 1Þ; ðC14Þ

and the invariance of the Lagrangian under the point
transformation (C8) follows from

ΓαμðξÞ ¼ Θαβ

�
ξ0

ξ

�
Γβμðξ0Þ: ðC15Þ

In combination with Eq. (C10), under a change ξ → ξ0
these transformation matrices will trivially cancel each
other in any Lagrangian

L ¼ ψ̄αΛαβðξÞψβ þ ψ̄αΓαμðξÞAμψ ðC16Þ

as well as any matrix element with internal spin-3=2 legs.
Since this always leads back to ξ ¼ 1, it is sufficient to
restrict the discussion to the Rarita-Schwinger gauge.
For the correct counting of d.o.f., the invariance under

point transformations is also satisfied if either the propa-
gator or the vertex is transverse to γα. Imposing this
condition on the propagator by setting ξ ¼ 0 in
Eq. (C10) has the undesired consequence that it is no
longer invertible. On the other hand, it is legitimate to set
ξ → ∞ in Eq. (C14) because we never need to invert
vertices; this is equivalent to imposing γαΓαμ ¼ 0. In that
case the interaction term is already invariant by itself and
any point transformation leads to the same result:

ΘαβðλÞΓβμ ¼ Γαμ: ðC17Þ

Matrix elements where the internal spin-3=2 propagator is
connected with two vertices are also invariant, because the
relation

SαβðξÞ ¼ Θαγ

�
ξ

ξ0

�
Sγδðξ0ÞΘδβ

�
ξ

ξ0

�
ðC18Þ

entails Γ̄μαSαβðξÞΓβν ¼ Γ̄μαSαβðξ0ÞΓβν. The resulting
dressed vertex admits 12 independent tensor structures,
which translates to at most 12 possible independent
electrocouplings in an effective Lagrangian. As discussed
below Eq. (6.12), any vertex that is transverse in kα and γα

will also remove the spin-1=2 contributions from the
propagators that appear in such matrix elements. In the
Rarita-Schwinger gauge the condition kαΓαμ ¼ 0 is suffi-
cient for this purpose because the projector Pαβ

11 decouples
from the propagator.
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APPENDIX D: FORM FACTOR RELATIONS

Here we give the relations between the constraint-free
form factors FiðQ2Þ, which we use to parametrize the
nucleon-to-resonance transition currents (with i ¼ 1, 2 for
JP ¼ 1=2� resonances and i ¼ 1, 2, 3 for JP ¼ 3=2�
resonances), and the experimental helicity amplitudes.
We also compare with the standard form factor conventions
in the literature [48,49]; see also the reviews [41,113].
We first collect the necessary definitions to arrive at

compact expressions. These are the relations between the
nucleon and resonance masses,

r ¼ mR

m
;

δ ¼ m2
R −m2

m2
¼ r2 − 1;

δ� ¼ mR �m
2m

¼ r� 1

2
; ðD1Þ

abbreviations for the photon momentum transfer,

τ ¼ Q2

4m2
; τ0 ¼ τ −

δ

4
; ðD2Þ

and

λ� ¼ ðmR �mÞ2 þQ2

4m2
¼ τ þ δ2�;

R� ¼ e

ffiffiffiffiffiffiffiffi
2λ�
mδ

r
;

κ ¼
ffiffiffiffiffiffiffiffiffiffi
λþλ−

p ffiffiffi
2

p
r

; ðD3Þ

where e2 ¼ 4παem is the electric charge. Note also that
λþλ− ¼ r2τ þ τ02. In the CMS frame of the pion electro-
production process γ�N → πN, the Lorentz-invariant
quantity

2
ffiffiffi
2

p
mκ ¼ 2m

r

ffiffiffiffiffiffiffiffiffiffi
λþλ−

p ¼ jkj ðD4Þ

becomes the three-momentum of the virtual photon
evaluated at the resonance position. Likewise, the three-
momentum of the pion at the resonance position and for a
vanishing pion mass is the so-called photon-equivalent
energy: jk0jmπ¼0 ¼ mδ=ð2rÞ.

1. JP = 1
2
� transition form factors

We express the on-shell N → 1=2� transition matrix
element in terms of Eq. (5.5),

JμRðk;QÞ ¼ ΛþðkþÞΓμ
Rðk;QÞΛþðk−Þ; ðD5Þ

with the onshell kinematics as in Sec. VA: kμ− is the
nucleon momentum, kμþ the resonance momentum, Qμ the
incoming photon momentum, and kμ ¼ ðkμþ þ kμ−Þ=2
the average momentum of the nucleon and the resonance.
On the mass shell: k2− ¼ −m2, k2þ ¼ −m2

R and therefore k2

and w ¼ k ·Q are given by Eq. (5.6). The transition form
factors F1ðQ2Þ and F2ðQ2Þ are defined in (5.8),

Γμ
Rðk;QÞ ¼ i

�
1

γ5

��
F1T

μ
1 þ F2

Tμ
3

2

�
; ðD6Þ

where the Tμ
i are given in Table II and the upper (lower)

entry corresponds to positive (negative) parity.
The definition in Ref. [49] is analogous but expressed in

terms of two dimensionful transition form factors G1ðQ2Þ
and G2ðQ2Þ:

Γμ
Rðk;QÞ ¼ im2

�
1

γ5

��
G1T

μ
1 þG2

m2

w
Tμ
7

�
: ðD7Þ

With Tμ
7 being proportional to Tμ

3 on the mass shell,
cf. Table V, one can read off the on-shell relations between
the form factors:

G1 ¼
F1

m2
; G2 ¼∓ F2

2m2δ∓
; ðD8Þ

where upper (lower) signs correspond to resonances with
positive (negative) parity.
The helicity amplitudes A1=2ðQ2Þ and S1=2ðQ2Þ are

related with the form factors through [41]

A1=2 ¼ R∓ð4τF1 � δ�F2Þ;
S1=2 ¼ κR∓ð�4δ�F1 − F2Þ; ðD9Þ

with the inverse relations

F1 ¼
1

4R∓λ�

�
A1=2 �

δ�
κ
S1=2

�
;

F2 ¼
1

R∓λ�

�
�δ�A1=2 −

τ

κ
S1=2

�
: ðD10Þ

Note that because of the factors R∓ and κ the helicity
amplitudes vanish either at λþ ¼ 0, the pseudothreshold
λ− ¼ 0, or both.

2. JP = 3
2
� transition form factors

The onshellN → 3=2� transition matrix element is given
by Eq. (6.20),

JαμR ¼ ΛþðkÞPαβ
3=2ðkÞΓβμ

R ðk;QÞΛþðk −QÞ; ðD11Þ
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where k is the outgoing momentum of the resonance and
Q is the incoming photon momentum. On the mass shell:
ðk−QÞ2¼−m2 and k2¼−m2

R, which entails k ·Q ¼ 2m2τ0.
The constraint-free transition form factors FiðQ2Þ are
defined via (6.24),

Γαμ
R ðk;QÞ ¼

�
γ5

1

�
ðF1T

αμ
1 − F2T

αμ
2 − F3T

αμ
3 Þ; ðD12Þ

where the upper (lower) entry corresponds to positive
(negative) parity. The Tαμ

i are defined in Table VII.
To write down the various different versions of the

onshell currents used in the literature, we define the tensors
T21…T25 in Table XXII in addition to those in Table VII.
On the mass shell and inside the positive-energy and Rarita-
Schwinger projectors (D11) they are linearly related with
T1, T2 and T3, but with the exception of T21 they do not
satisfy the off-shell constraint kαTαμ

i ¼ 0.
Following [41], the experimentally extracted helicity

amplitudes A3=2ðQ2Þ, A1=2ðQ2Þ and S1=2ðQ2Þ are related to
the helicity form factors hiðQ2Þ via

fh1; h2; h3g ¼
ffiffiffi
3

2

r
4

R∓

�
rS1=2
2κ

;�A3=2ffiffiffi
3

p ; A1=2

�
; ðD13Þ

where upper (lower) signs denote positive (negative) parity.
The corresponding form of the current is [49]

Γαμ
R ¼ 1

16λþλ−

�
γ5

1

�
ð−h1Tαμ

22 þ 2h2T
αμ
21

þ ðh2 þ h3ÞTαμ
25Þ; ðD14Þ

which is neither free of kinematics nor satisfies the off-shell
constraints. Using the on-shell relations in Table XXII, the
helicity form factors (and thus helicity amplitudes) are
related to the Fi via

F1 ¼ −
h2 þ h3
8λ�

;

F2 ¼ −
1

8λþλ−
½2τh1 þ τ0ðh2 − h3Þ�;

F3 ¼ � 1

8rλþλ−

�
τ0h1 −

r2

2
ðh2 − h3Þ

�
ðD15Þ

and vice versa

h1 ¼ −4ðr2F2 ∓ 2rτ0F3Þ;
h2 ¼ −4ðλ�F1 þ τ0F2 � 2rτF3Þ;
h3 ¼ −4ðλ�F1 − τ0F2 ∓ 2rτF3Þ: ðD16Þ

Also here the helicity amplitudes in Eq. (D13) vanish either
at λþ ¼ 0 or λ− ¼ 0 due to the factors R∓.
Another form of the current expressed in terms of three

form factors GiðQ2Þ is [41,49]:

Γαμ
R ¼

�
γ5

1

�
ðG1T

αμ
23 þG2T

αμ
2 þ G3T

αμ
24Þ: ðD17Þ

Here we defined theGi to be dimensionless (in the standard
definition they carry dimensions: replace G1 → mG1 and
G2;3 → m2G2;3.) They are free of kinematics but again the
current does not satisfy the off-shell constraints. Their
relation with the Fi is

G1 ¼ �rF1; G2 ¼ −ðF1 þ F2Þ; G3 ¼∓ rF3:

Finally, the Jones-Scadron form of the current in terms of
G�

E, G
�
M and G�

C is given by [48,49]

Γαμ
R ¼ �

ffiffiffi
3

2

r
δ�

2λþλ−

�
γ5

1

���
G�

M −G�
E

2G�
M

�
λ∓Tαμ

1

þ
� −2G�

E

G�
M −G�

E

�
Tαμ
21

2
∓ G�

C
Tαμ
22

2

�
: ðD18Þ

As before, upper (lower) components and signs denote
positive (negative) parity. The Jones-Scadron form factors
are related to the helicity form factors via�

G�
M

G�
E

�
¼ −

ffiffiffi
3

2

r
h3 � 3h2
12δ�

;�
G�

E

G�
M

�
¼

ffiffiffi
3

2

r
h3 ∓ h2
12δ�

;

G�
C ¼

ffiffiffi
3

2

r
h1
6δ�

: ðD19Þ

This coincides with the conventions in [41,48] whereas in
Ref. [49] G�

M, G
�
E and G�

C are defined without the factorffiffiffiffiffiffiffiffi
3=2

p
on the r.h.s. The relations between the Jones-

Scadron form factors and the Fi are given by

TABLE XXII. Additional tensors appearing in the JP ¼ 3
2
�

currents (D14), (D17) and (D18). For positive parity, the right
column gives their onshell relations which relate them to T1, T2

and T3 defined in Table VII. For negative parity the same
relations hold if one exchanges r → −r and λ− → λþ.

m4Tαμ
21 ¼ εαβkQε

βμ
kQ T21 − 2τ0T2 − rT3

m4Tαμ
22 ¼ QαkβtβμQQ rT22 þ 4rτT2 − 2τ0T3

mTαμ
23 ¼ −itαμγQ rT23 − T1 − T2

m2Tαμ
24 ¼ tαμQQ rT24 − T3

m4Tαμ
25 ¼ =kQαγβεβμkQ T25 þ 2λ−T1 þ 2τ0T2 þ rT3
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G�
M ¼

ffiffiffi
2

3

r
1

δ�

�
2λþF1 þ τ0F2 þ 2rτF3

−λ−F1

�
;

G�
E ¼

ffiffiffi
2

3

r
1

δ�

�
τ0F2 þ 2rτF3

−λ−F1 − 2τ0F2 þ 4rτF3

�
;

G�
C ¼

ffiffiffi
2

3

r
1

δ�
ð−r2F2 � 2rτ0F3Þ ðD20Þ

and vice versa

F1 ¼
ffiffiffi
3

2

r
δ�

2λþλ−

�
λ−ðG�

M − G�
EÞ

−2λþG�
M

�
;

F2 ¼
ffiffiffi
3

2

r
δ�
λþλ−

�
τ0G�

E − τG�
C

1
2
τ0ðG�

M −G�
EÞ − τG�

C

�
;

F3 ¼
ffiffiffi
3

2

r
δ�

2rλþλ−

�
r2G�

E þ τ0G�
C

− 1
2
r2ðG�

M −G�
EÞ − τ0G�

C

�
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