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We discuss a possible definition of the Faddeev-Popov matrix for the minimal linear covariant gauge on
the lattice and present first results for the ghost propagator. We consider Yang-Mills theory in four space-
time dimensions, for SU(2) and SU(3) gauge groups.
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I. INTRODUCTION

The behavior of Green’s functions in the infrared limit of
Yang-Mills theory has been studied extensively in Landau
gauge, both analytically and numerically [1–3]. However,
since the evaluation of propagators and vertices depends on
the gauge condition, a natural extension of these works
would be to consider the linear covariant gauge (LCG),
which depends on a gauge-fixing parameter ξ and has the
Landau gauge as a limiting case, corresponding to ξ ¼ 0. On
the lattice, there have been a few studies [4,5] of the gluon
propagatorDðpÞ in the LCG. These numerical data seem to
agree with several analytic predictions [6–8], e.g., the
transverse component of DðpÞ is similar to the Landau
case,withDð0Þdecreasingwhen thegauge-fixing parameter
ξ increases. On the other hand, for the ghost propagator
GðpÞ, there is a wide range of different analytic predictions.
Indeed, the ghost dressing function p2GðpÞ has been
predicted to be flat (and nonzero) in the infrared limit [9]
or to be suppressed at smallmomentawhen ξ increases [6] or
to be null at p ¼ 0 [7,10]. Numerical results for GðpÞ,
however, are not yet available, since a lattice definition of the
Faddeev-Popov (FP) matrix, corresponding to the minimal
LCG on the lattice [5], has not been implemented so far.
In this work, we define the FP matrix in the lattice

minimal LCG by considering the quadratic expansion of

the corresponding minimizing functional, in analogy with
the Gribov-Zwanziger approach in Landau gauge [1,2]. We
start by reviewing how the minimal LCG can be fixed on
the lattice, in Sec. II. We then consider the quadratic form
obtained from the second variation of the LCG minimizing
functional and its relation to the FP operator in the
continuum formulation. First results for the ghost propa-
gator in the LCG are shown in Sec. III for the SU(2) and
SU(3) gauge groups. Finally, in the last section, we present
our conclusions.

II. MINIMAL LINEAR COVARIANT GAUGE

The minimal LCG can be obtained [5] by minimizing the
functional

ELCG½U;Λ;h�≡ℜTr
X
x⃗∈Λx

�
½ihðx⃗ÞΛðx⃗Þ�

−
Xd
μ¼1

½hðx⃗ÞUμðx⃗Þhðx⃗þ e⃗μÞ†�
�
; ð1Þ

with the remark that, in the numerical minimization, the
link variables Uμðx⃗Þ are gauge transformed, while the
Λðx⃗Þ matrices are not. The above definition applies to a
d-dimensional Euclidean lattice Λx—usually with periodic
boundary conditions—for an SUðNcÞ gauge theory. Here, e⃗μ
is a vector of lengtha in the positive μ direction,a is the lattice
spacing, thevectors x⃗ have componentsxμ ∈ fa; 2a;…; Nag
so that the lattice volumeV is equal toNd, we indicatewith Tr
the trace in color space, ℜ selects the real part, and † stands
for the Hermitian conjugate. Also, fUμðx⃗Þg ∈ SUðNcÞ is a
given thermalized link configuration, and fhðx⃗Þg ∈ SUðNcÞ
is a gauge transformation. Both the Uμðx⃗Þ and hðx⃗Þ
matrices are in the Nc × Nc (fundamental) representation.
For the N2

c − 1 traceless Hermitian generators λb of
SUðNcÞ, we use the normalization TrðλbλcÞ ¼ 2δbc.
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Finally, Λðx⃗Þ≡P
bΛbðx⃗Þλb are (Hermitian) matrices

belonging to the SUðNcÞ Lie algebra, and the Λbðx⃗Þ are
random real numbers, usually Gaussian distributed around
zero with a width σ ¼ ffiffiffi

ξ
p

.
The first and second variations of ELCG½U; h� can be

obtained [11] by considering for the gauge transformation a
one-parameter subgroup hðτ; x⃗Þ≡ exp ½iτPbγ

bðx⃗Þλb�,
where the parameter τ and the factors γbðx⃗Þ are real.
Then, by expanding the functional ELCG½U;Λ; h�ðτÞ around
a minimum fUμðx⃗Þg up to terms linear in τ, and by using
periodicity, one finds that the stationarity condition
ELCG½U;Λ; h�0ð0Þ ¼ 0—where 0 indicates the derivative
with respect to the parameter τ—gives

0 ¼ ℜTrλb
�
−Λðx⃗Þ þ

Xd
μ¼1

Uμðx⃗Þ −Uμðx⃗ − e⃗μÞ
i

�
ð2Þ

for any lattice site x⃗ and color index b. One usually defines
the lattice gauge field Aμðx⃗þ e⃗μ=2Þ ¼

P
bA

b
μðx⃗þ e⃗μ=2Þλb

through the relation

ð3Þ

where is the Nc×Nc identity matrix, yielding
Ab
μðx⃗þe⃗μ=2Þ¼ℜTr½λbUμðx⃗Þ=ð2iÞ�. Then, if we indicate

with

ð∇ · AbÞðx⃗Þ≡Xd
μ¼1

ð∇μAb
μÞðx⃗Þ

≡Xd
μ¼1

Ab
μðx⃗þ e⃗μ=2Þ − Ab

μðx⃗ − e⃗μ=2Þ ð4Þ

the lattice divergence of the gauge field and we use ∇μ for
the symmetrized lattice derivative, Eq. (2) becomes

ð∇ · AbÞðx⃗Þ ¼ Λbðx⃗Þ: ð5Þ

We also define Uμðx⃗Þ≡ exp ½iag0Âμðx⃗þ e⃗μ=2Þ�, where
Âμðx⃗Þ is the continuum gauge field and g0 is the bare
coupling constant. Thus, in the limit of small a, we have
that Ab

μðx⃗þ e⃗μ=2Þ ¼ ag0Â
b
μðx⃗þ e⃗μ=2Þ þOða3g30Þ, and a

similar relation applies to Ab
μðx⃗Þ. Note that, compared to the

usual generators λ̃b with normalization Trðλ̃bλ̃cÞ ¼ δbc=2,
we have λ̃b ¼ λb=2. This implies that 2Âb

μðx⃗Þ ≈
2Ab

μðx⃗Þ=ðag0Þ is the usual gauge field in the continuum
limit. Also, in the formal continuum limit, i.e., a → 0,
N → þ∞ with L≡ aN fixed, the above equation (5)
becomes a2g0

P
d
μ¼1 ½∂μÂ

b
μðx⃗Þ þOða2Þ� ¼ Λbðx⃗Þ, which

should be compared1 to the (usual) continuum gauge
condition 2

P
μ∂μÂ

b
μðx⃗Þ¼Λ̂bðx⃗Þ; i.e., the continuum func-

tions Λ̂bðx⃗Þ satisfy the relation a2g0Λ̂bðx⃗Þ ≈ 2Λbðx⃗Þ. More-
over, since the lattice parameter β is given by 2Nc=ða4−dg20Þ
in the d-dimensional case, by setting2

ξ ¼ Ncξ̂

2β
; ð6Þ

we have that

1

2ξ

X
x;b

½ΛbðxÞ�2 ¼ β=ð2NcÞ
2ξ̂

X
x;b

½a2g0Λ̂bðxÞ�2 ð7Þ

goes to ð2ξ̂Þ−1 R ddx
P

b½Λ̂bðxÞ�2 in the formal continuum
limit. Thus, the continuum and lattice widths (of the
corresponding Gaussian distributions) are related through
the expression σ ¼ σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc=ð2βÞ

p
; i.e., for Nc ¼ 2, 3, one

has σ < σ̂ for typical values of β in the scaling region.
In minimal Landau gauge, the FP matrix Mbcðx⃗; y⃗Þ is

obtained from the second-order expansion, with respect to
the parameter τ, of the corresponding minimizing func-
tional, i.e., through the relations3

ELG½U; h�00ð0Þ
2

¼
X
b;x⃗

γbðx⃗ÞðMγÞbðx⃗Þ ð8Þ

ðMγÞbðx⃗Þ ¼
X
c;y⃗

Mbcðx⃗; y⃗Þγcðy⃗Þ; ð9Þ

where ELG½U; h� is the Landau-gauge minimizing func-
tional, given by the second term in the above Eq. (1).
On the other hand, one can easily verify that the first term

in Eq. (1) does not contribute to this second-order expan-
sion in powers of the parameter τ. Indeed, the expression
multiplying τ2 is given by

Tr
X
b;c;e;x⃗

½γbðx⃗Þγcðx⃗ÞfbceλeΛðx⃗Þ�: ð10Þ

In the above derivation, we made use of the Hermiticity of
the matrices λb, Λðx⃗Þ, and we employed the cyclic property
of the trace and the commutation relations ½λb; λc�≡
2i
P

ef
bceλe, where fbce are the (real) structure constants

of the SUðNcÞ gauge group. Let us recall that these
structure constants are completely skew symmetric in all
indices [12], since the Lie algebra of the SUðNcÞ group is

1Here, notation and conclusions are different from Ref. [5].
2When one considers the usual generators λ̃b, the relation

between the lattice and continuum gauge parameters is
ξ ¼ 2Ncξ̂=β.

3From now on, we simplify the notation, and we do not
indicate explicitly the lower and upper bounds for the summation
indices.
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simple and compact, and the generators λb constitute an
orthonormal basis (through a global rescaling). Therefore,
the expression

P
b;cγ

bðx⃗Þγcðx⃗Þfbce in Eq. (10) is zero
∀ e; x⃗. As a consequence, the second variation of
ELCG½U;Λ; h� yields the same matrix obtained in the
Landau case, i.e., [11]

Mbcðx⃗; y⃗Þ≡X
μ

�
Γbc
μ ðx⃗Þ½δx⃗;y⃗ − δx⃗þe⃗μ;y⃗�

þ Γbc
μ ðx⃗ − e⃗μÞ½δx⃗;y⃗ − δx⃗−e⃗μ;y⃗�

−
X
e

fbec½Ae
μðx⃗ − e⃗μ=2Þδx⃗−e⃗μ;y⃗

− Ae
μðx⃗þ e⃗μ=2Þδx⃗þe⃗μ;y⃗�

�
ð11Þ

with

Γbc
μ ðx⃗Þ≡ Tr

�
λbλc þ λcλb

4

Uμðx⃗Þ þU†
μðx⃗Þ

2

�
: ð12Þ

It is immediate to verify thatMbcðx⃗; y⃗Þ is symmetric under
the simultaneous exchanges b ↔ c and x⃗ ↔ y⃗.
One can also set

M ¼ 1

2
ðMþ þM−Þ; ð13Þ

ðM�γÞbðx⃗Þ≡ ðMγÞbðx⃗Þ � ðΔMγÞbðx⃗Þ ð14Þ

ðΔMÞbcðx⃗; y⃗Þ≡X
e

fbecð∇ · AeÞðx⃗Þδx⃗;y⃗: ð15Þ

At the same time, we define the lattice gauge-covariant
derivative by the relation [11]

Dbc
μ ðx⃗; y⃗Þ≡ Γbc

μ ðx⃗Þ½δx⃗þe⃗μ;y⃗ − δx⃗;y⃗�
−
X
e

fbecAe
μðx⃗þ e⃗μ=2Þ½δx⃗þe⃗μ;y⃗ þ δx⃗;y⃗�: ð16Þ

Indeed, in the formal continuum limit, we have Γbc
μ ðx⃗Þ →

δbc þOða2g20Þ, giving

ðDμγÞbðx⃗Þ → a½ðDμ½Â�γÞbðx⃗Þ þOða; ag0Þ�; ð17Þ

where Dbc
μ ½Â�≡ δbc∂μ þ 2g0

P
ef

bceÂe
μðx⃗Þ is the con-

tinuum gauge-covariant derivative. [As explained above,
with our notation, the continuum gauge field is given by
2Âe

μðx⃗Þ.] Then, it is easy to verify that

ðMþγÞbðx⃗Þ ¼ −
X
μ

½ðDμγÞbðx⃗Þ − ðDμγÞbðx⃗ − e⃗μÞ�

≡ −
X
μ

½∇ð−Þ
μ ðDμγÞ�bðx⃗Þ; ð18Þ

where ∇ð−Þ
μ is the usual backward lattice derivative.

Thus, Mþ is a lattice discretization of the continuum
operator M̂bc

þ ½Â�≡ −
P

μ∂μDbc
μ ½Â�, and we have Mbcþ ¼

a2½M̂bc
þ ½Â� þOða; ag0Þ� in the limit a → 0. Also, from the

above Eq. (16), we can define the transpose lattice gauge-
covariant derivative

ðDT
μ Þbcðx⃗; y⃗Þ≡ Γbc

μ ðx⃗ − e⃗μÞδx⃗−e⃗μ;y⃗ − Γbc
μ ðx⃗Þδx⃗;y⃗

þ
X
c;e

fbec½Ae
μðx⃗þ e⃗μ=2Þδx⃗;y⃗

þ Ae
μðx⃗ − e⃗μ=2Þδx⃗−e⃗μ;y⃗�; ð19Þ

which goes to −a½Dbc
μ ½Â� þOða; ag0; ag20Þ� in the formal

continuum limit. Then, one can verify that

ðM−γÞbðx⃗Þ ¼
X
μ

½DT
μ ð∇ðþÞ

μ γÞ�bðx⃗Þ; ð20Þ

where ∇ðþÞ
μ is the usual forward lattice derivative, and

we can identify M− with a lattice discretization of
the continuum operator M̂bc

− ½Â�≡ −
P

μD
bc
μ ½Â�∂μ. Indeed,

in the limit a → 0, we have that M− goes to
a2½M̂bc

− ½Â� þOða; ag0; ag20Þ�. Finally, since the transpose

of the backward lattice derivative ∇ð−Þ
μ is given by −∇ðþÞ

μ , it
is evident that MT

− ¼ Mþ [and thus MTþ ¼ M−].
Therefore, the matrix M in Eq. (13) can be written as
ðMþ þMTþÞ=2 ¼ ðMT

− þM−Þ=2, which is clearly sym-
metric (and real), in agreement with the expression (11).
One should recall that, in the Landau case, the expression

(15) is trivially null, due to the transversality condition
ð∇ · AeÞðx⃗Þ ¼ 0, and one has that (on the lattice as well as
in the continuum)M ¼ Mþ ¼ M−. This is not the case in
the LCG; the matrices M, Mþ, and M− are different.
However, since the expression (15) for ðΔMÞbcðx⃗; y⃗Þ is
skew symmetric under the simultaneous exchanges b ↔ c
and x⃗ ↔ y⃗, these matrices cannot be distinguished as
quadratic forms. This is a general result; given a square
matrix M, the corresponding quadratic form depends [13]
only on its symmetric part ðM þMTÞ=2. Thus, the FP
matrix obtained from the second variation of a minimizing
functional is defined modulo an arbitrary, additive skew-
symmetric term. The situation is similar to the problem
of defining a conserved energy-momentum tensor Tμν in
field theory [14], since the condition ∂μTμν ¼ 0 implies
that Tμν is defined modulo an additive term ∂ρfμνρ, with
fμνρ ¼ −fρνμ. This freedom is related to the freedom of
adding to the Lagrangian a null (surface) divergence term,
and it is usually employed to make the energy-momentum
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tensor symmetric and gauge invariant (in the case of a
gauge theory). In our case, we can use the freedom of
adding to the symmetric lattice FP matrix M the skew-
symmetric termΔM in order to obtain the lattice FP matrix
Mþ ¼ −∇ð−Þ ·D, thus getting (in the limit a → 0) the
usual continuum result −

P
μ∂μDbc

μ ½Â�. Equivalently, we
could add to the minimizing functional ELCG½U;Λ; h� the
null term −ℜTr

P
x⃗i½hðx⃗Þ;Λðx⃗Þ�hðx⃗Þ†, which obviously

does not affect the minimizing procedure. Indeed, by
considering the one-parameter subgroup hðτ; x⃗Þ and by
expanding the above expression at order τ2, we find—by a
convenient reordering of the null terms and by using the
stationarity condition (5)—the quadratic expressionP

b;c;x⃗;y⃗γ
bðx⃗ÞðΔMÞbcðx⃗; y⃗Þγcðy⃗Þ.

Let us note that, following the usual continuum FP
approach, the matrix Mþ can also be obtained from a
variation of the gauge condition (2) with respect to the
gauge transformation hðx⃗Þ≡ exp ½iPbγ

bðx⃗Þλb�, namely, by
evaluating the functional derivative of

ℜTrλb
�
−Λðx⃗Þ þ i

Xd
μ¼1

hðx⃗ − e⃗μÞUμðx⃗ − e⃗μÞhðx⃗Þ†

− hðx⃗ÞUμðx⃗Þhðx⃗þ e⃗μÞ†
�

ð21Þ

with respect to γcðy⃗Þ. This adds a heuristic motivation for
the consideration of Mþ among all the possible discreti-
zations of the continuum FP matrix in LCG.

III. GHOST PROPAGATOR

In order to evaluate the ghost propagator

GðkÞ≡ 1

V

X
b;x⃗;y⃗

eik⃗·x⃗½ðMþÞ−1�bbðx⃗; y⃗Þe−ik⃗·y⃗ ð22Þ

in the LCG, we need to invert the FP matrixMþ, defined in
Eqs. (11), (14), and (15) above. Since thismatrix is real but not
symmetric, its eigenvalues and eigenvectors do not need to be
real, and the nonreal eigenvalues and eigenvectors occur in
complex-conjugate pairs. Also, one can easily check that only
the symmetric (respectively, skew-symmetric) part of the
inverse matrix ðMþÞ−1 contributes to the real (respectively,
imaginary) part of the rhs of Eq. (22). Thus, the ghost
propagator in the LCG is in general a complex quantity,
while in Landau gauge it is always real. Finally, in order to
invert Mþ, one cannot use, as in the Landau cause, the
conjugate gradient method (sinceMþ is not symmetric); i.e.,
one needs a more general iterative Krylov subspace method,
applicable to generic nonsingular matrices [15].
We have performed tests evaluating the ghost propagator

in the four-dimensional case, for the SU(2) and SU(3)
gauge groups, using, respectively, the biconjugate gradient
stabilized algorithm and the generalized conjugate residual
for the inversion of the FP matrix [15]. For these two gauge

groups, we have considered lattice couplings β ¼ 2.4469
and β ¼ 6.0, respectively, which both correspond [16] to
lattice spacing a ≈ 0.102 fm. Simulations have been done
for lattice volumes V ¼ 164 and 244. Thus, for the larger
volume, the (nonzero) lattice momenta range from about
500 MeV to about 7.7 GeV. For each thermalized gauge
configuration, we have generated 20 sets of Gaussian-
distributed fΛðxÞg matrices, with variance4 ξ ¼ 0.1 in the

 0.01
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FIG. 1. The (real part of the) ghost propagator GrðpÞ in the
minimal LCG (filled rectangle) and in Landau gauge (filled
circle), as a function of the lattice momentum p, with pμðkÞ ¼
2 sin ðπkμ=NÞ and kμ ¼ 1; 2;…; N=2. Note the logarithmic scale
on the y axis. Both GrðpÞ and p are in physical units. Top: SU(2)
case with V ¼ 244, β ¼ 2.4469 and ξ ¼ 0.1, corresponding to the
continuum value ξ̂ ¼ 0.24469, for 60 thermalized configurations.
Bottom: SU(3) case with V ¼ 244, β ¼ 6.0 and ξ ¼ ξ̂ ¼ 0.1 for
79 thermalized configurations.

4In the SU(2) case, we used the λb generators with normali-
zation TrðλbλcÞ ¼ 2δbc. For SU(3), we employed the λ̃b ¼ λb=2
generators with normalization Trðλ̃bλ̃cÞ ¼ δbc=2. Thus, in the
former case, we have ξ̂ ¼ βξ [see Eq. (6)], while in the latter, we
find ξ̂ ¼ βξ=6 [see the equation in Footnote 2].
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SU(2) case (corresponding to ξ̂ ¼ 0.24469) and ξ ¼ ξ̂ ¼
0.1, 0.2 and 0.3 in the SU(3) case.5 The ghost propagator
has been evaluated using a point source for the inversion
[17]. Results are reported in Fig. 1, where we compare the
real part of the ghost propagatorGrðpÞ in the minimal LCG
with the corresponding data in Landau gauge, using
the same set of thermalized configurations. Clearly, the
data in the LCG are in agreement, within error bars, with
the data in Landau gauge. Let us mention that, in
continuum analytic works, one usually finds that GðpÞ
is real [6,7,10,18]. A numerical check of this result is
postponed to a future study.

IV. CONCLUSIONS

In this work, we have discussed the relation among the
FP matrix in lattice minimal LCG and the second variation
of the corresponding minimizing functional, following the
usual Gribov-Zwanziger approach for Landau gauge [1,2].
In particular, we have chosen the matrixMþ [see Eqs. (11),
(14), and (15) above] as a natural lattice discretization of
the LCG continuum FP operator −

P
μ∂μDbc

μ ½Â�. We have
also carried out some tests for the numerical inversion of
the matrix Mþ and evaluated the ghost propagator.
Preliminary results for the (real part of the) ghost propa-
gator GrðpÞ show no detectable difference with the corre-
sponding lattice data in Landau gauge. Of course,
numerical simulations for larger physical volumes,

different lattice spacings a, and different gauge parameters
ξ should be performed before any final conclusion is drawn
about the behavior in the minimal LCG of GrðpÞ at small
momenta. One should also recall that, in the continuum,
there are different possible setups for the ghost sector in the
LCG (see e.g., Appendix A in Ref. [1]). The FP matrix
Mþ, considered here, corresponds to the usual choice of
complex ghost/antighost fields, without enforcing the
ghost-antighost symmetry, which is naturally realized in
Landau gauge. On the other hand, for a generic linear
covariant gauge with ξ ≠ 0, this choice is at odds with
demanding Hermiticity of the underlying Lagrangian,
which requires in principle the introduction of a doublet
of real ghost/antighost fields [1,19]. Clearly, it would be
important to analyze if and how the other setups can also be
implemented on the lattice in minimal LCG. Another open
question is how to define an appropriate Gribov region,
similarly to the Landau-gauge case. A more detailed
analysis of these issues will be presented elsewhere.
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