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The Heavy Photon Search experiment took its first data in a 2015 engineering run using a 1.056 GeV,
50 nA electron beam provided by CEBAF at the Thomas Jefferson National Accelerator Facility, searching
for a prompt, electroproduced dark photon with a mass between 19 and 81 MeV=c2. A search for a resonance
in the eþe− invariant mass distribution, using 1.7 days (1170 nb−1) of data, showed no evidence of dark
photon decays above the large QED background, confirming earlier searches and demonstrating the full
functionality of the experiment. Upper limits on the square of the coupling of the dark photon to the standard
model photon are set at the level of 6 × 10−6. Future runs with higher luminosity will explore new territory.
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I. INTRODUCTION

The search for low-mass hidden sectors weakly coupled
to the standard model (SM) has received increased attention
over the last decade [1–5]. Hidden sectors are motivated by
the existence of dark matter, appear in myriad extensions of
the SM, and have been invoked to explain a wide variety of
experimental anomalies.
A prototypical hidden sector consists of a spontaneously

broken “hidden”Uð1Þ0 gauge symmetry, whose mediator is
the “heavy photon” or “dark photon”, A0. The heavy photon
interacts with SM particles through kinetic mixing with the
Uð1ÞY (hypercharge) gauge boson [6,7], resulting in the
effective Lagrangian density

L ⊃ −
ϵ

2 cos θW
F0
μνF

μν
Y : ð1Þ

Here ϵ denotes the strength of the kinetic mixing, θW is the
Weinberg mixing angle, F0

μν ¼ ∂μA0
ν − ∂νA0

μ is the Uð1Þ0
field strength, and similarly Fμν

Y denotes the SM hyper-
charge Uð1ÞY field strength. This mixing generates an
interaction between the A0 and the SM photon at low
energies, allowing dark photons to be produced in charged
particle interactions and, if sufficiently massive, to decay
into pairs of charged particles like eþe− or hidden-sector
states. The value of ϵ is undetermined, but a value of ϵ2 ∼
10−8–10−4 is natural if generated by quantum effects of
heavier particles charged underUð1Þ0 andUð1ÞY . If the SM
forces unify in a grand unified theory, then ϵ2 ∼ 10−12–10−6

is natural [8–10]. The mass of the A0, mA0 , is also
undetermined, but the MeV-to-GeV mass scale has
received much attention over the last decade as a possible
explanation for various anomalies related to dark matter
interacting through the A0 [11–15] and for the discrepancy
between the observed and SM value of the muon anoma-
lous magnetic moment [16–18]. Moreover, this mass range
appears naturally in a few specific models [8–10,19,20].
The Heavy Photon Search (HPS) is an experiment

utilizing the CEBAF accelerator at the Thomas Jefferson
National Accelerator Facility (JLab) in Newport News,
Virginia, USA. The experiment can explore a wide range
of masses (mA0 ∼ 20–500 MeV=c2) and kinetic mixing
strengths (ϵ2 ∼ 10−6–10−10), using both resonance search
and separated vertex strategies. In this paper, results of a
resonance search from a Spring 2015 engineering run using
a 50 nA, 1.056 GeV electron beam impinging on a thin
(0.125%X0) tungsten target are reported. Electron inter-
actions with the target nuclei could produce an A0 particle,
which could subsequently decay to an eþe− pair [21–23]. A
spectrometer, triggered by an electromagnetic calorimeter,
measures the momenta and trajectories of this pair,
allowing for the reconstruction of its invariant mass and
decay position. The A0 would appear as a narrow resonance,
with a width set by the mass resolution, on top of a smooth
and wide distribution of prompt background events from

ordinary quantum electrodynamic (QED) processes. Such a
search is only sensitive to ϵ2 values for which the A0 decay
is prompt.
The cross section for A0 production and subsequent

decay to eþe− (“radiative A0 production”), ergo, the yield,
scales with ϵ2 and is directly proportional to the cross
section for eþe− pair production from virtual photon
bremsstrahlung (“radiative trident production”) [21] as

dσðe−Z → e − ZðA0 → lþl−ÞÞ
dσðe−Z → e − Zðγ� → lþl−ÞÞ ¼

3πϵ2

2Neffα

mA0

δm
: ð2Þ

Here, Neff is the number of decay channels kinematically
accessible (¼ 1 for HPS searches below dimuon threshold),
α is the fine structure constant and δm is the width of the
mass window centered at mA0 in which we search. Given
that the kinematics of A0 and radiative trident production
are identical at the same mass, the efficiency of prompt
heavy photons is the same as radiative tridents. The
measured eþe− yield, dN=dmA0 , is accounted for by the
sum of trident and wide-angle bremsstrahlung (WAB)
processes. Both radiative and Bethe Heitler diagrams
contribute to trident production. WABs contribute if the
photon converts and the resulting positron is detected along
with the electron which has radiated. After accounting for
the converted WABs, the trident yield is known. The
fraction of all tridents which are radiative can be calculated,
so the radiative trident yield is also determined, fixing the
sensitivity of the search. The experimental mass resolution
impacts the experimental reach and is a critical input to the
fits of the mass spectrum; it is calibrated by measuring the
invariant mass of Møller pairs, which have a unique
invariant mass for any given incident electron energy.
The outline of the rest of the paper is as follows. In Sec. II,

we describe the experimental setup and the detector. Sec. III
discusses the selection of the events to maximize the A0
signal over the QED background. Section IV describes the
analysis of the resonance search, while Sec. V presents the
results. Our conclusions are presented in Sec. VI.

II. DETECTOR OVERVIEW

The kinematics of A0 electroproduction result in very
forward-produced heavy photons, which carry most of the
beam energy and decay to highly-boosted eþe− pairs. To
accept these decays, the HPS detector is designed as a
compact forward magnetic spectrometer, consisting of a
silicon vertex tracker (SVT) placed in a vertical dipole mag-
netic field for momentum measurement and vertexing, and a
PbWO4 crystal electromagnetic calorimeter (ECal) for event
timing and triggering. The SVT consists of six layers of
detectors located in vacuum between 10 and 90 cm from the
target, and arranged just above and below the “dead zone,” a
horizontal fan of intense flux from beam particles which
have scattered or radiated in the target. Each layer consists of
two silicon microstrip sensors with a small (50 or 100 mrad)
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stereo angle for three dimensional position determination
[24]. The ECal has 442 crystals and is situated downstream
of the tracker [25]. The ECal is split above and below the
vacuumchamberwhich transports thebeam toward the dump.
HPS searches for a small signal above the much larger

QED trident background, so it must accumulate high
statistics. This was accomplished using CEBAF’s nearly
continuous beam, SVT and ECal readout with precision
timing, and a high rate data acquisition system. The
CEBAF accelerator provided a very stable beam with
negligible halo, focused to a ∼100 μm spot at the target
[26]. The SVT was read out using the APV25 ASIC
operating at 41.333 MHz [27] and triggered data from
each sensor was sent to the SLAC ATCA-RCE readout
system [28]. The ECal was read out with a 250 MHz JLab
FADC [29]. A custom trigger used the ECal information to
select events consistent with coming from a high-energy
eþe− pair. The data acquisition system could record events
at rates up to 25 kHz with less than 15% deadtime.
The analyzing magnet provided a field of 0.25 Tesla.

The resulting SVT momentum resolution is δp=p ¼ 7%
for beam energy electrons and is approximately constant
for all momenta of interest [24]. The ECal has an energy
resolution δE=E ¼ 5.7% at 0.5 GeV with energy and
position dependence [25]. Using information from the
ECal and the SVT, we select eþe− pairs and reconstruct
their invariant mass and vertex positions. This gives the
experiment access to two regions of parameter space,
comparatively large couplings using a traditional resonance
search strategy, and very small couplings using the distance
from the target to the decay vertex to eliminate almost all of
the prompt trident background.
The HPS detector was installed and commissioned within

the Hall B alcove at JLab early in the spring of 2015 and
subsequently took its first data. In total, 1170 nb−1 of data
was collected (corresponding to 7.25 mC of integrated
charge), equivalent to 1.7 days of continuous running.

III. EVENT SELECTION

Searching for a heavy photon resonance requires accu-
rate reconstruction of the eþe− invariant mass spectrum;
rejection of background events due to converted WAB
events, nonradiative tridents from the Bethe-Heitler proc-
ess, and occasional accidental eþe− pairs; and efficient
selection of A0 candidates. Selecting A0 candidates is
equivalent to selecting radiative tridents since they have
identical kinematics for a given mass. In order to perform a
blind search, the event selection was optimized using
∼10% of the 2015 engineering run data set.
Heavy photon candidates are created from pairs of

electron and positron tracks, one in each half of the SVT,
each of which point to an energy cluster in the ECal. Each
track must pass loose quality requirements and have a
reconstructed momentum less than 75% of the beam
energy (0.788 GeV=c2) to reject scattered beam electrons.

The background from accidental pairs was reduced to less
than 1% by requiring the time between the ECal clusters
be less than 2 ns and the time between a track and the
corresponding cluster be less than 5.8 ns.
Heavy photons decay to highly boosted eþe− pairs,

while the recoiling electron is soft, scatters to large angles,
and is usually undetected. Radiative tridents, having
identical kinematics, comprise an irreducible background.
The Bethe-Heitler diagram also contributes to trident
production, and in fact dominates over the radiative process
at all pair momenta. This background is minimized by
requiring the momentum sum of the eþe− pair to be greater
than 80% of the beam energy (0.84 GeV=c2), where the
radiative tridents are peaked.
The other significant source of background arises from

converted WAB events in which the bremsstrahlung photon
is emitted at a large angle (>15 mrad), converts in the target,
first or second layer of the SVT, and gives rise to a detected
positron in the opposite half of the detector from the
recoiling incoming electron. Although the fraction of such
WAB events that convert with this topology is extremely
low, it is offset by the fact that the bremsstrahlung rate is
huge compared to the trident rate. This results in converted
WAB events making up roughly 30% of our sample.
The converted WAB background was substantially

reduced by applying additional selection criteria. Since
the conversion usually happens in the first layers of the
silicon detector, requiring both tracks to have hits in the first
two layers of the SVT removes most of the converted
WABs. Requiring the transverse momentum asymmetry

between the electron and positron be ptðe−Þ−ptðeþÞ
ptðe−ÞþptðeþÞ < 0.47

and the transverse distance of closest approach to the beam
spot of the positron track to be less than 1.1 mm removes
many of the remaining conversions. With all these cuts,
contamination from converted WABs is reduced to 12%.
The composition of our event sample was checked by

comparing the rates and distributions of several key
variables (e.g., total pair energy, electron energy, positron
energy, and invariant mass) between data and Monte Carlo
(which included tridents, converted WABs, and accidental
background). The distributions of one such variable, the
total pair energy, for data (black), tridents (magenta),
converted WABs (red), radiatives (blue) and the sum of
tridents and coverted WABs (green) is shown in Fig. 1. We
find the data and MC are in reasonable agreement.

IV. RESONANCE SEARCH

A heavy photon is expected to appear as a Gaussian-
shaped resonance above the eþe− invariant mass spec-
trum, centered on the A0 mass and with a width, σmA0 , which
characterizes the experimental mass resolution. Møller
scattering events (e−e− → e−e−) are used to calibrate the
A0 mass scale and resolution. Figure 2 shows the mea-
sured Møller invariant mass, after a series of quality and
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selection cuts. For incident electrons of energy 1.056 GeV,
we observe a Møller mass peak of 33.915� 0.043 MeV,
within 3% agreement of the expected mass of 32.85 MeV.
The Møller mass resolution predicted by Monte Carlo is
1.30� 0.02 MeV, in contrast with the observed value of
1.61� 0.04 MeV. We ascribe the difference to the fact
that our measured momentum resolution for beam energy
electrons (7.03%) is significantly worse than predicted
by Monte Carlo (5.9%). Since the mass resolution scales
directly with the momentum resolution, it is underestimated
in Monte Carlo by 19%. Consequently, we scale up the
simulated A0 mass resolution by a factor of 1.19. It should
be noted that e−e− pair used to determine the mass
resolution are constrained to come from the target which
makes the contribution from the angular resolution negli-
gible. The resulting parameterization of the mass resolution
is an input to the resonance search.
Since the mass of a putative A0 is unknown a priori, the

entire eþe− invariant mass spectrum is scanned for any
significant peaks. This search is performed in a broad mass
window around each candidate mass, repeated in 0.5 MeV
steps between 19 and 81 MeV. Searches above 81 MeVare
limited by both statistics and the incident electron beam
energy. Within the window, which is 14σA0 wide below
39 MeV and 13σA0 wide between 39 and 81 MeV, the
invariant mass distribution of eþe− events is modeled using
the probability distribution function

Pðmeþe−Þ ¼ μ · ϕðmeþe− jmA0 ; σmA0 Þ þ B · expðpðmeþe− jtÞÞ
ð3Þ

where meþe− is the eþe− invariant mass, μ is the signal
yield, B is the number of background events within the

window, ϕðmeþe− jmA0 ; σmA0 Þ is a Gaussian probability
distribution describing the signal and pðmeþe− jtÞ is a
Chebyshev polynomial of the first kind with coefficients
t ¼ ðt1;…tjÞ that is used to describe the background shape.
From optimization studies, a 5th (3rd) order Chebyshev
polynomial was found to best describe the background
below (above) 39 MeV. Note that mA0 and σmA0 are set to
the A0 mass hypothesis and expected experimental mass
resolution, respectively. Estimating the signal yield, the
background normalization, and the background shape
parameters within a window is done with a binned
maximum likelihood fit using a bin width of 0.05 MeV,
which was found to have the lowest signal bias. A detailed
discussion of the procedures followed can be found in [30].
Briefly, the log of the ratio of likelihoods for the back-
ground-only fit to that of the best signal-plus-background
fit provides a test statistic from which the p-value can be
calculated, giving the probability that the observed signal is
a statistical fluctuation. The p-value is corrected for the
“look elsewhere effect” (LEE) by performing simulated
resonance searches on 4,000 pseudo data sets. This relates
the minimum p-value seen in a given mass bin to the global
probability of observing that p-value in the search of the
entire mass spectrum [31].

V. RESULTS

A search for a resonance in the eþe− invariant mass
spectrum, shown in Fig. 3, between 19 MeV and 81 MeV
found no evidence of an A0 signal. The most significant
signal was observed at 37.7 MeVand has a local p-value of
0.17%. After accounting for the LEE correction, the most
significant p-value is found to have a global p-value of
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FIG. 1. The sum of the energy deposited by the eþe− pair in the
ECal. The plot shows the contributions from radiatives (blue),
converted WABs (red), tridents (magenta) and the sum of tridents
and WABs (green) overlaid with data (black).
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FIG. 2. The Møller mass peak used to measure the mass
resolution. The peak was fit with a Crystal Ball function plus
a Gaussian for the tail at high mass. The σ of the Crystal Ball
function was taken as the mass resolution. The overall fit is in red;
the core Crystal Ball in dashed blue.
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17% corresponding to less than 2σ in significance. Since no
significant signals were found, a 95% C.L. upper limit is
set, power-constrained [32] to the expected limit.
The proportionality between A0 and radiative trident

production allows the normalization of the A0 rate to the
measured rate of trident production [21]. This leads to a
relation that allows the signal upper limit, Sup, to be related
to the A0 coupling strength as

ϵ2 ¼
�

Sup=mA0

fΔB=Δm

��
2Neffα

3π

�
ð4Þ

where ΔB=Δm is the number of background events per
MeVand f ¼ 8.5% is the fraction of radiative trident events
comprising the background. Using Eq. (4), the limits on ϵ
set by HPS are shown on Fig. 4.
The reach shown in Fig. 4 includes all statistical and

systematic uncertainties. To account for the use of a
Gaussian instead of a Crystal Ball shape to describe the
signal, the signal yields were corrected by 3.5%–6%
depending on the mass. Additional systematic uncertainties
on the signal yields arise from the uncertainty in the mass
resolution (3%) and biases observed in the fit due to
the background and signal parameterization (1.3–1.5%,
depending on mass). When scaling the extracted signal
yield upper limits to a limit on ϵ, the primary systematic
uncertainty in the radiative fraction is due to the unknown
composition of the final eþe− sample (7%). The 7%
uncertainty is associated with the contribution of converted
WABs to the radiative fraction. This arises by taking a 50%
uncertainty in the rate of converted WABs. The radiative to
trident fraction is determined using the cross sections
obtained from MADGRAPH. The uncertainty in the cross-
section was determined by comparing to the cross sections
obtained using CALCHEP and was found to be on the order

of 0.3%. Therefore, any contribution to the radiative
fraction uncertainty is negligible. Many other possible
sources of systematic uncertainty were investigated and
accounted for but contribute negligibly to the result.

VI. CONCLUSION

A resonance search for a heavy photon with a mass
between 19 and 81 MeV which decays to an eþe− pair was
performed. A search for a resonance in the eþe− invariant
mass spectrum yielded no significant excess and estab-
lished upper limits on the square of the coupling at the level
of 6 × 10−6, confirming results of earlier searches. While
not covering new territory in this short engineering run,
this search did establish that HPS operates as designed and
will, with future running and upgrades to the detector,
extend coverage for ϵ2 below the level of 10−6. Coverage
of unexplored parameter space at smaller values of the
coupling will be possible from a search for events with
displaced vertices.
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