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This is a collection of notes about spectral form factors of standard ensembles in random matrix theory,
written for the practical usage of the current study of late time quantum chaos. More precisely, we consider
the Gaussian unitary ensemble, the Gaussian orthogonal ensemble, the Gaussian symplectic ensemble, the
Wishart-Laguerre unitary ensemble, the Wishart-Laguerre orthogonal ensemble, and the Wishart-Laguerre
symplectic ensemble. These results and their physics applications cover a threefold classification of late

time quantum chaos in terms of spectral form factors.
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I. OVERVIEW

The theory of quantum chaos, and its connection to
random matrix theory, have several new recent develop-
ments on understanding novel behaviors of condensed
matter systems and the quantum nature of black hole
physics. The definition of quantum chaos has various
versions. Following the pioneering works done by
Wigner [1] and Dyson [2], people regard random matrix
theory as a tool to classify a generic random Hamiltonian
with discrete symmetries, and their energy spectra have
been observed to satisfy universal behaviors [3—5]. The
scientific interest of random matrix theory varies from
nonlinear science, mathematics, and mathematical physics,
to nuclear physics, statistical physics, and quantum field
theory. (See, for instance, [6—10] for reference.) Some
recent discoveries about black hole physics have lead to
interest in the understanding of scrambling properties of
quantum chaotic systems [11-13], where people start to
consider an early chaotic behavior. The Lyaponov exponent
appears in the out-of-time-ordered correlators of the large
N theory [14,15], which is bounded by temperature in the
thermal ensemble [16]. A concrete condensed matter
model, the Sachedev-Ye-Kitaev (SYK) model [17-19],
has been proposed to realize the chaotic properties that
saturate the bound. Interestingly, one can also apply the
random matrix theory classification to the SYK model
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[20,21]. Moreover, the spectral form factor, namely, the
analytic-continuated partition function correlations in the
SYK model, could be matched with the prediction of
the spectral form factor in random matrix theory [22]. Some
further investigations show that the spectral form factor is
one of the key roles serving in several quantum chaotic
systems, and it could connect to out-of-time-ordered
correlators and some other chaotic diagnostics [23-25].

Those facts motivate us to study the spectral form factor in
random matrix theory and its mathematical properties, in
detail, from a modern chaotic physicist point of view. In this
paper, we are mostly interested in the higher-point spectral
form factors and how to reach them, in general, from some
building blocks. As an explicit example, we will describe the
four point spectral form factors, which are mostly closed to
the four point out-of-time-ordered correlators.

From Dyson’s classification, for Gaussian ensembles one
could classify them by antiunitary symmetries as a Gaussian
unitary ensemble (GUE), a Gaussian orthogonal ensemble
(GOE), and a Gaussian symplectic ensemble (GSE). For real
systems like the SYK model, those ensembles often appear
periodically in a list from a number of sites. In this paper, we
will consider all of them. Moreover, we will also discuss the
Wishart-Laguerre ensembles with three symmetry classes.
Those ensembles will correspond to supersymmetrized SYK
models [26-28]. As some examples of physics applications,
we will comment on SYK model classifications, out-of-time-
ordered-correlators, and Page states.

This paper is organized as follows. In Sec. II, we will
discuss the spectral form factor in the GUE, the simplest
symmetry class. In Sec. III, we will extend our discussions
to the GOE and the GSE. In Sec. IV, we will discuss the
spectral form factor properties of the Wishart-Laguerre
ensembles. In Sec. V, we plot some figures for random
matrix theory form factors to show their behaviors.
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In Sec. VI, we put the collections of physics applications
about spectral form factors in random matrix theory. In
Sec. VII, we will arrive at the conclusion and discussion.

II. GUE SPECTRAL FORM FACTOR

A. Random matrix theory overview

We consider the GUE in this section. This ensemble is
defined by introducing the following distribution function
over the space of Hermitian matrices L X L,

P(H) « exp <—%Tr(H2)>, (2.1)

which means that, for Hermitian matrices H, the off-
diagonal elements are independent complex random dis-
tributions following Gaussian distribution with a mean of 0
and variance 1/L, while the diagonal elements are inde-
pendent real random distributions following Gaussian
distribution with a mean of 0 and variance 1/L. From this
form, one can observe that the GUE ensemble is invariant
under a unitary transformation H — UHU".

One can also write the result in the eigenvalue basis,
where one can show that the distribution over a set of
matrices could reduce to the distribution of eigenvalues
with the following joint distribution,

P(Ay. 2. Ar) —exp<——212> I =42

l<j

(2.2)

where ;s are eigenvalues. We could write down the
measure of it more formally by defining the
Vandermonde determinant

:H(Ai—ﬂj),

i<j

A(R) (2.3)

and we could formally write down the measure
P(2)dA = D1 = exp —521’4‘ AR)2 (2.4)
2 2A . .

Thus, based on this, we could compute the n-point
correlation function, where n < L as

p(”>(/11,...,/1,,)—/dﬂ,,Jr,...d/lLP(/ll,...,/IL), (2.5)

where we are going to integrate out all eigenvalues from
n + 1 to L. One might be interested in what the result of the
correlation function is if we take the large L limit. From
random matrix theory, people find that the n-point function
could be determined by a kernel K

(L —n)!

M (A4, ..
P (1, I

hn) =

de t( (/'il’j'j))l] 1 (26)

where the kernel K, in the large L limit, behaves as

sin(L(4i—4;))
Lk /1)

- \JA— 27 fori=].

The kernel packages information about random matrix
theory in the large L limit, where, at the colliding case
i = j, this kernel, as a one-point function, serves as
Wigner’s semicircle law. While in the case where i # j,
this kernel is called the sine kernel in random matrix theory,
which is universal even in most standard ensembles beyond
the GUE.

The main goal of this paper is to try to build up the
technology on how to compute the Fourier transformation
of the n-point correlation functions, which is called the
spectral form factor,

Ro(1) Z/Dﬂe Wiy et i Ay == Ay, )

where k is any positive integer. We will start from our
simplest example, the two-point form factor

)=y [ it
i.j

and we will discuss how to compute higher points and finite
temperature results.

fori #j

K(dind;) = (2.7)

N|[~. 3 \l“

(2.8)
(2.9)

B. Two-point form factor

1. The disconnected piece

We start to compute the two-point form factor R,,

t) = Z / daiddip® (A;, 2;) el it
ij

=L+ L(L-1) / dAdlop® (A, Ay et

(2.10)
By directly computing the determinant, we have
12
PP (A, 4) = mﬂ(/ﬁ)ﬂ(ﬂz)
L sin’(L( = 4y)) (2.11)

L(L=1) (La(k = A))* "

where we define
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p(2) =V (2), (2.12)
which has been reduced to the Wigner semicircle
— (1 1 2
p(A)=p () =—V4-2° (2.13)
2z

We call the leading piece disconnected, and it is relatively
simple to deal with it. The Fourier transformation along this
part is

Rg(t) = L? / dhdaop(h)p(22)e =" = L2r3(1),
(2.14)

where the function r|(¢) is written as

(2.15)

where J,(z) means the standard notation of the Bessel
function.

2. The connected piece: box approximation

Now let us discuss the connected piece, which is
defined as

RE™ (1) = Ra(1) = RY™(1)
sin®(L (4 = 4)) (

=L —LQ/dll d i(h=2)t
e (Lz(d) — 2y))?

(2.16)

However, the integral that appearing here, is divergent. The
reason is that the sine kernel written here cannot probe two
energy eigenvalues, 4, and 4,, that are very close to each
other, more precisely, around |4, — 4,| ~ 1/L. However, we
could invent a technology that is called a box approxima-
tion that could still capture some physics, which we will
describe as the following.
First, try to do a coordinate transformation

up :ll—lz

U = 12, (217)

and thus, the integral becomes

L’ / diydiy SELO = 22) i i
T (LA - 1))

0
= Lz/dulduzsm (L;tl)ei”".
Lruy

(2.18)

The expression, written in this form, manifests the diver-
gence because we have an uncontrolled integral over the

variable u,. Now, let us first integrate over the variable u;.
Implementing the integral, we have

Lz/d sin®(Lu;) , , L {1—5; fort<2L
U ————t ettt ==
" (Lau, )? 710 for t > 2L,

(2.19)

so the whole connected piece should be given by this
function times the volume of the integration region of u,:
vol(R). However, one could try to cut off the integration
range by brute force to get a finite value. Let us assume that
this cutoff space is symmetric around the origin, [—cut, cut],
then the result is given by

Lz/d/’{ldﬂz Sinz(L(/ll —/12)2) ei(’ll_h)f
(Lz(4 = 42))

for t < 2L

(2.20)
for t > 2L.

_ 2cutx L [1-57
== 0

One can try to solve the cut by checking the consistency of
the result at r = 0. At t = 0, we know that the disconnected
piece has contributed L2, which is the whole form factor
result, so the connected piece should obtain zero at t = 0,
which means that

2cut = vol(R) = 7 — cut = g (2.21)

One can see, which we will discuss later, that this cutoff
7/2 also works for higher-point cases. Thinking about the
origin of it, we first write down the one-point function with
the Wigner semicircle law

1
p(A) = — /4 -2

5 (2.22)

Now, let us pretend that A is very small, which is close to the
origin, and then we have

ph=0) =1, (2.23)
/4

Now, we could approximate, for a small enough 4, that the
semicircle distribution is approximately a line. To compute
the length of this line, we could use the normalization
condition. The integral over p is normalized by 1, so if we
choose our line to be distributed in the range [—cut, cut], we
get 2cut/z = 1, namely, cut = z/2. A short explanation of
this phenomena is that the box approximation is a brute
force choice to make up the difference between the sine
kernel and the semicircle when two energies are very close
to each other 1 — 4.

There is another interpretation to this result. The con-
nected part of the two-point form factor is a linear increase,
from (0,0) to (2L, L) in the coordinate (¢, RS°™(¢)), and it
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stops growing (we call it as plateau). The origin (0,0) is
fixed, and the plateau time, 7, = 2L, is fixed by the
property of the Fourier transformation of the sine kernel,
which will be independent of the cutoff choice. The plateau
value, RS$*™(t, =2L)) = L, is fixed by the long time
average interpretation of the definition of the form factor
(which means that the damping e4=%)") for A, # A, will
be canceled after long time averaging, and the only constant
piece with 4; = 1, will give the result L because there are L
eigenvalues in total). Thus, drawing a line from (0,0) to
(2L, L), assuming linearity, has to obtain the slope 1/2.
Because (2L, L) is already fixed, we could claim that the
result beyond the box approximation should be some
nonlinear physics.

As a summary, we obtain the connected piece of the two-
point form factor, given by

RS = L(1 = ry(1)), (2.24)
where r,(t) is defined as
0 { -5y fort<2L (2.25)
r = .
? 0 for 1 > 2L.

3. The connected piece: an improvement

Now, we introduce an improvement that is more refined
than the box cutoff. In this part, we will try to use the short
distance kernel,

sin(zL(4; — 4;)p((4; +4;)/2))
mL(4; - Aj) ’

K(1,4;) =L

is 4 (2.26)
where this kernel is an approximation when 4; and 4; are
sufficiently close. The following technology is also men-
tioned in [24], but the results here, as far as we know,
are novel.

Take this kernel in our hand, let us try to compute the
connected part of the form factor. It is now captured by an
integral,

in?(zL (A, — A M+4)/2)) .
Lz/d/hd/lzsm (m ((;L(fi)f(,;].)ly 2)/ )>el<ll_/12)[.

(2.27)
Here, we try applying a different coordinate transformation

up =4 —4
_/11 + 15

5 (2.28)

U

Ry™(1) = {L

L — 2 Larcesc | ——2L
n V4L> -1

so the integral becomes

sin?(zL(A; = A2)p((A) + 42)/2)) (A=)t
L2 / dA,diy L0k —/1]-))2 eilhi=h)

in?(zL .
_ 2 / dulduzwew
1

(2.29)
With the treatment here, we could split the space of u; in R
by an infinite number of intervals Q at the center u,, with
the assumption that the integrand outside of the interval will
quickly decay. Suppose that we are now at the center, u,,
and the interval has the range [—€2y/2,€/2], then by
implementing the integral, in the large L limit, we have

2 /Qo/2 d M iugt
23] 2 ¢
—Q/2 (”Lul)

T 1 2
_ Ep(uz) /L,D(uz) Qy/2 dul Sin (2u1) eiult/Lﬂ-'p(Ltz)
T —Lp(uy) 7 /2 uy

L +oo in2 .
iy [ S i
b4 — uy

_ Lp(uz){ 1 —m for t < Zﬂ'Lp(l/lz)
0 for t > 2zLp(u,)

— max (Lp(uz) —é,o) (2.30)

Here, an assumption that we are making is that we are
extending the range from an L amplified interval to infinity,
regardless of the fact that the exponent will be O(1) even if
u; could scale as O(L).

Now, we sum over all of the intervals, which means that
we are integrating over u, in the range [—2, 2] (the range of
the semicircle), and we get

22
Lz/duldu2Wem” (2.31)
LU
2 t
= /2 dl/lz max <Lp(u2) —E,()) (232)

B {%Larccsc(\/éélg—_tz) -5 VAL? — 1 fort < 2L

0 for t > 2L.
(2.33)
Thus, the connected form factor is given by
sLVAL? — 2 fort < 2L
)+ or (2.34)

for t > 2L.
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This result will capture more accurate physics. One
interesting thing is that in the early time, we expand it
in small ¢, and we get

2t P r 6

x  12zL*> 320zL* +0(). (235)
Thus, this method will give the slope 2/7 in the early time.
This fact is verified by numerics in [23], but with the
plateau still (2L, L). The reason is that the function in the
middle is nonlinear. One can estimate the nonlinear time
scale, which is given by t = O(L), where in this time scale
the higher-order corrections to the linear function become
important.

However, as this refined technology cannot be general-
ized simply to a higher-point case, we will keep using the
box cutoff for a higher-point case, which is believable for
physics in spectral form factors.

C. Higher point form factor: theorem

Higher point form factor calculations are based on
multivariable Fourier transformations of the determinant
of sine kernels. We will derive some generic results to
establish the framework of computing higher-point form
factors, in general, based on the box approximation, and we
compute a four-point example. Our starting point will be
the following theorem,

Theorem 2.1 (Convolution formula for infinite L, in
Eq. 5.2.23, [7]): We have the following formula to
compute the convolution of the sine kernel:

/ H dy;exp <27Ti Z kj)’j) s(y1 = y2)
i=1 =1

X 8(Y2 =3)--SVm=1 = Yim)S(Ym — V1)

:5(2/9)/dkg(k)g(k+kl)...g(k+km_l). (2.36)

/ H dy; exp <27ri Z kjyj> s(n
i=1 =1

/ H du; exp <2m zm: k; Zm: u(,) s(uy)s(uy

=1 a=j

[ Tlmesn(asr$5 (S50 st

a=1

where s is the sine kernel,

sin(zr)

s(r) = ,

nr

(2.37)

and the principle valued Fourier transformation of the sine
kernel is given by

1|k <3
/ 2rikrg(rYdr = g(k) = (2.38)
0 |k]>3.
Proof.—Change the variables
Uy =yY1—»"n
Up =Y2— 3
Up—1 = Ym-1 —"IYm
Uy = Vs (2.39)
and the inverse transformation is
Vi=u +uytus+---+u,
o=ty tuz+ -+ u,
Ym—2 = Up—2 + Up—1 + Uy
Ym—-1 = Uy + Uy,
Vin = Ups (2.40)
whose Jacobian is 1. Thus, we obtain
¥2)S(¥2 = ¥3) -8 (Vmet = Vi) (Vm = V1)
m—1
Upm—1 S(Z u/)
j=1
m—1
s< u1> (2.41)
Jj=1

From this, we observe that we could first read off the integral over u,,, which is
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/iljldu,-exp<27ri§m: <la1 kz) ua)s(ul)s(uz)...s(um_l)s<n§ Mj>

a=1

m—1 m—1 a m—1 m
:/Hduiexp(ZﬂiZ( kl> ua)s(ul) §(U)...s (U s< u]> /exp(Zni(Zk;)um)du
i=1 a=1 =1 j=1

af$) /n(z(z))w i (20) .

=1 a=1 \I=1

Now, to deal with the last sine kernel, introduce a new variable u, which is
m—1 m—1 m—1
S(Z”/) :s(—Zuj) /dus(u <”+Z ) (2.43)
J=1 J=1
and then, replace the delta function by the exponential function
m—1 m—1
s (Z u j> = / dudks(u) exp <2m'k <u +Y u J>) : (2.44)
j=1 J=1

Inserting the integral, we have

/lﬂdy,- exp (2ﬂiZm: kjyj>S(y1 = y2)s(V2 = ¥3)- 8 (Vumt = Yu)s (v = ¥1)
( k1> / ﬁdu dudkexp(Zm’j : ) ) exp(Zm’k(u—l—§uj)>s(ul)s(uz)...s(um_l)s(u)

=1

b
- ( Y k, /ﬁdu dudkexp(Zm’mZ (IZ ki +k> )exp(2ﬂiku))s(u1)S(u2)---S(”m—l)s(”)

:< k; dk(lj/duiexp<2m<lll k; + )u> l))(/duexp(hiku)S(M))
)

£
(50 [ Eo (o

i=1

(2.45)

as desired.
Now, it is obvious to generalize this claim of a large but finite L. We have

/ H dl{lK(il ’ /12)1((]'29 /13) . 'K(/Im—l s ;Lm)K(j’m’ ll )ei Z?’:l i

i=1

_L iy " kil ky ky ki1
= ﬂ/dﬂe =1 dkg(k)g <k+2L k—|—2L k + oL ) (2.46)

where the delta function is replaced by an integral over the exponential function. We impose the box approximation again

X /2 )
/ d,{e’zle kia _, d}belzzzl k"i, (2.47)

—/2

which is always fixed by the normalization at the initial time,
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L /2 N k k k
= dae 25t | akg(gl k+ L) g k+ 2. g k+Zm=t
;z/_,,/z . 9 )g< Y LAGRIET REAGREY)

and we find the number z/2 is universal for all m. We finally get the useful formula:
Theorem 2.2 (Convolution formula for finite large L):

=1L, (2.48)
ki =kr=...kpp_ =0

/ T dAiK (1. 40)K (2. 25) ... K (B A K (B A ) 201
i=1

= Lr, (Zk) /dkg(k)g(k+§—£)g<k+§—z>...g(k—l—k;’:), (2.49)

i=1

where we define the function

ry(1) = % (2.50)

This convolution formula allows us to compute any higher-point spectral form factors. We will show an example about how
the four-point form factor has been computed.

D. Four-point form factor

Now, let us consider the four-point form factor as an example
L
Ry = Z /Dﬂei(ia""ﬁb—%—ﬁdﬁ- (251)
a.b.c,d=1
Before our computation, we will define the following building block functions

ri(t) = 4 (t2t)

B l—ﬁ for t < 2L
r(t) =
0 for t > 2L

ry(1) = % (2.52)

Take a look at the classifications of combinations in R4, which are

i) a=b=c=d=e= f: Contribute L.
(i) @ = b: Contribute L(L — 1)(L —2) [ Die!®h—=k),
(ili) ¢ = d: Contribute L(L — 1)(L —2) [ DAe!i+h=24)1,
(iv) a=cora=dorb=corb=d: Contribute 4L(L — 1)(L —2) [ DAe!i =),
(V) b=c=dora=c=dora=b=dora=b=c: Contribute 4L(L — 1) [ DAe'n=%),

(vi) @ = b and ¢ = d: Contribute L(L — 1) [ DAe!*h=20)1,

(vil) a=cand b =d, or a =d and b = c: Contribute 2L(L — 1).
(viii) All inequal indexes: L(L — 1)(L —2)(L — 3) [ DAe!ith=h=4)t,
Adding the total prefactors will give L*. Add them together and we get

Ry =L(L—1)(L-2)(L-3) / Dielhith=t=2)t L 21 (L — 1)(L — 2)Re / Die!Phi=h=h)t
+L(L-1) / DJe!Ph=2R)t 4 4L (L — 1)? / Dielh=h)t 4 212 — [,

=L(L-1)(L-2)(L-3) / Dielhith=h=2)t L 2L (L —1)(L — 2)Re / Dje!Phi—h=h)t
+ L2|r (20) ) = Lry(2) +4(L — 1)(L?|ry(£)]> = Lry(1)) +2L% — L. (2.53)

We have already obtained what the last three terms are. Now we only need to consider the first two terms.
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1. The first term

The first term is an actual four-point function,

L(L-1)(L-2)(L-3) / Deith+i—ia=ia)t

When expanding the determinant, the terms could be summarized as the following:
(1) 4-type: In this case, we have

-2 / Ay ddnddsdAuK (A 23)K (A3, 20)K (A, Ag)K (G Ay )i +ha—hs=dat

—2/dﬂ.ldllzd/l_gd/hl((/{l,/12)[((12,13)]((13,14) (/14,/11) (|+’12 }“? /14)

—2/d/lld/lzd/13d/14K(/I],AZ)K(/IZ,,L‘)K(/M,13)1((/13,ﬂ,)ei(’{'ﬂz‘%"h)’,

and thus the result is
—6L r2 (Zt) .

(i1) 1-1-1-1-type: In this case, we have

/dllK(ﬂl,/ll)eull/d/lzK(/Iz,/Iz)éMzt/d/13K(/13,/13)€_M3t/d/14K(/14,ﬂ4)€_M4t.

This term contributes
L¥ri(1)]*.
(iii) 1-1-2-type: In this case, we have
—/d/lld/lz 2(Ay,dp)eiith)t /d/l3K(/13 A3)e ”13t/d/14K(14,/14)e‘“4’
dl3d/14K2(/13,/13)e"'(’k““)’/dlllK(/Il,/ll)e”lf/d/lzK(iz,/Iz)e”ﬂ
VAAgK? (A, Ay) Pt /d/IZK A2, 2) ”12’/d/13K(/13,/13)e‘”3’

2dﬂ4 /12,},4 i(22=24)1 d/l]K ll’ M]t/dﬂg,K(lg,,/lg,)e_Mﬁ

—/dﬂ
_/dlld/h (A1.23)e i(=23) /d K(A2, 4 t/lzt/d/L‘K(/u’/u)e—iht
/dﬁ

dﬂ.Qd}G /12 l} i(A—=23)t /d/{]K M]t/d/14K(l4,/14)€_M4t.

This term contributes

—2L3Re(r3(1)) ry (1) r3(21) = 4L3|ry (1) 2ry ().

(iv) 2-2-type: In this case, we have

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

+ / dA Ay K2 (A, Ay ) e Pi=Rat / dlrd)zK?(Jy,A3)e =)t 4 / dA dIsK? (A, Az )elPi=R)t / Ay dIyK? Ny, Ay ) et

/ dAdInK* (A4, ) e th) / dA3dAyK? (N3, 04) e~ st

086026-8
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This term contributes
2L%73(1) + L*r3(1)r3(21).
(v) 3-1-type: In this case, we have
BLZRe(ry (1))r2(1)rs(2).
Finally, as a summary, we have
L(L—-1)(L=2)(L-3) / Delhth=ta=t)t = [4|r (£)|* = 2L3Re(r2 (1)) ry (1) r3(21) — 4L3 |1, (£)|* 1, (1)

+2L2r3(1) + L2r3(1)r3(21) + 8L2Re(ry (1)) ra (1) (1)
— 6Lry(21).

2. The second term
In this part, we will evaluate the second term,
2L(L —1)(L —2)Re / Die!h—h=k)t,
Let us first consider it without a factor of 2,
L(L-1)(L-2)Re / Dje'®h=hh)r,

Then, we obtain:
(i) 3-type: In this case, we have

2Re / dAdladIsK (A1, ) K (Ay, A3)K (A3, Ay ) e!Ph—r=2)t,
This term contributes
2Lr3(1).
(ii) 1-1-1-type: In this case, we have
Re/d/llK(/ll,/ll)ez“l’/dllzK(/lz,/lz)e‘”ﬂ/dA3K(/13,/13)e‘“3’.
This term contributes
L3Re(r (21)r2(2)).
(iii) 2-1-type: In this case, we have
- / dAK(Ay, A )eh! / dArd)zK*(Ay, Az ) e~ ath)t — / dArK(2y, y)e %t / dAdIsK? (A, As)e!Ph=R)t
- / d3K (23, A3)e st / dAdIaK? (A, Ay )elPhi=)t,
This term contributes

—L*Re(r(21))r3(2t)ry(t) — 2L*Re(r; (1)) r3(1)ro (21).
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So, finally, we make a summary that is

2L(L —1)(L —2)Re / Die!Ph=h=k)t = 2 3Re(r) (2t)r12(1)) — 2L?Re(ry (21))r3(2t)r, () — 4L*Re(ri(t))r3(t)r,(21)

+4Lry(31). (2.73)

3. The final result

Here, we make a summary. The final result for R, is

Ry = Ly (1)|* - 2L3RC(V2(I))V2(I)V3(21) —4L|r (1) Pry(r) + 2L Re(ry (20)r{*(1)) +4L%|ry (1)
+2L2r5(1) + L?r3(1)r3(21) + 8L*Re(r (1)) ro (1) r3(1) — 2L*Re(ry (21))r3(21)r5(1)
— 4L7Re(r}(1 )) 3(0)r2(20) + L2 |ry 20) P = 4L2[r (1) = 4L%ry (1) + 2L7
—TLry(2t) +4Lry(3t) +4Lry(t) — L. (2.74)

In the large L limit, one can find some terms are suppressed in the all time scale. We could also have an approximate formula
Ry = L*ri(t)[* +2L%r3(1) —4L%ry(1) + 2L? — TLry(21) + 4Lry(3t) + 4Lry(t) — L, (2.75)
which captures the main physics of the four-point spectral form factor.

E. Finite temperature result

Finally, we will take a look at the finite temperature result, where this result will also rely on the refined kernel and the
interval splitting technology, as mentioned before; here, we only precisely compute the two-point case. The definition of the
finite temperature two-point form factor is

Ry=)_ / Dieithi)tg=Phi=4;) (2.76)
ij
Following from a simple analysis, we have
R, = Z/ Del =4t o=Blith;) — L/dﬂp(l)e‘zﬁ’l +L(L-1) / dAydiop® (2)elhi=h)tg=Plhi+4)
iJ

= Lry(2if) + L?*ry(t + ip)r,(t — if) — / dAdInK? (Mg, Ay)e!i=R)te=Pith). (2.77)

so we have the separation
RG(1, ) = L?ry(t + i)y (1 = if)
RS (¢, B) = Lry(2if) — / dAydi K2 (A, Ay ) el =Rt g=Plhi+a). (2.78)

Thus, for the connected part, we could compute the integral

in?(x 1 — 42 1 2 _ _
L2/d/11dzzsn ( L(/an(ii)—(ﬁ))H )/2)) ith=t)t yplis-+4a) (2.79)

Transform the coordinate again and we get

in2 in2
12 / iy dis sin (ﬂ'L(ﬂl - /12> ((ll + 12)/2)) i(A =2t e Plath) — 2 / du]duzwei”"e‘zﬁuz. (280)
(wL (% = 4;))? (zLuy)

The small interval contribution will again give
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/2  sin®(zL , t
L2/ " du, sin”(rLuyp(i6)) eitle=2Pua  o=2Pu2 max <Lp(u2) - %0)

Q,/2 (”Lul)z

(2.81)

We cannot find an analytic formula for a general f if we wish to compute this integral over u,. However, one can expand it

over a small . We have

2 2L t /AT 2 2
;LaI'CCSC (\/T——t2> ~ 5L 4L —t

in?(zL A
L / duoydiey ST EEP ) -2
(mLuy) +

0

III. GOE/GSE SPECTRAL FORM FACTOR

A. Random matrix theory review

GOEs and GSEs describe physical systems with discrete
antiunitary symmetries. Here, we will briefly review the
mathematical construction. We define the joint distribution
of eigenvalues for GOEs and GSEs as

P(Ay, ..., 21) Ne_ﬁ%z’i?n(li _’ljy}’

i<j

(3.1)

where [Nf =1, 4 for a GOE or a GSE. Here, our convention
is L x L for a GOE and 2L x 2L for a GSE (where the later
only has L independent eigenvalues because it has a natural
degeneracy of two by construction). Again, we define the
n-point correlation function as

p<”>(/11,...,/1,,):/d/l,,H...d/lLP(/ll,...,/IL). (3.2)

To go further, we need some quaternion matrix theories.
A quaternion is generated by four units e ; 3,
g=q"9 +qWe, + gPe, + q¥es. (3.3)

The units are defined to satisfy the following multiplication
laws

Ixej=e¢;x1=e¢;
e?=e5=e]=eere3=—1. (3.4)
These units have matrix representations:
<1 0) (i 0 )
1 - e —
0 1 0 —i
< 0 1) <0 i) (3.5)
e — e3 — . .
7 -1 0 7\ o

The determinant of a n x n quaternion matrix Q = (Q ) is
defined as

P (—10L2tVAL? =243 V4L~ 2 +24 L *arcesc( \/%)) . for 1< 2L
67[L3 =t + O(ﬁ )
for t > 2L.
(2.82)
¢(0.0)
detQ =Y (=1)" ] cye,(e.0).  (3.6)
c t=1

where ¢ is any possible permutations from 1 to n. For
corresponding permutations, we could find all # closed
cycles for those permutations. For instance, for a cycle ¢
like

tta->b->c—--—>d-a, (3.7)
the corresponding contribution in the product is
cye/(6, Q) = (qupve **~ Geadaa)”.  (3.8)

where the upper index (0) means the scalar part, or
equivalently

1
(Gavpe - chCIda)(O) = ETr(%bec “qeadaq)- (3.9)

There are some useful theorems to compute the quaternion
determinant. For instance, if we use the matrix representation
of the quaternion by replacing ¢; with 2 X 2 matrices, we can
define a 2n x 2n complex matrix C(Q) for a n x n quatern-
ion matrix Q. Now, define Z = C(e,1,), where I, is the
n x n unit matrix. Then, if Q is a self-dual matrix, namely,
each cycle from the product in the definition of the deter-
minant is reversible (dual to each other), then one can show
that

det Q = Pf(ZC(Q)) = det'/2(C(Q)).  (3.10)
With these definitions, we could define the quaternion
kernels for a GOE and a GSE. In a GOE and a GSE, the
sine kernel K is replaced by a quaternion, which could be

represented as a2 x 2 matrix. In fact, we define the following
function:
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K(4;,4;) =

while for a GSE it is

150) = [ st (3.11)
DS(L(4; — 4,
. for i # j
e(L(4i=4))  3(L(A—4) ) (3.12)
. (1 0
L _/1’(0 1) for i = j,
DS(2L(4; — 4;
A for i #
S(2L(4 — 4) > (3.13)

The structure of a GOE and a GSE is not called simply
determining the ordinary meaning of a determinant of some
two-point functions. It is not called the determinantal point
process in random matrix theory literature, but it is called the
Pfaffian point process. For our practical motivation, we may
define the joint eigenvalue distribution as some linear
combination of the cluster function T,

p<n)(j.1,

(3.14)

where TS = TZ(X x,z, cee ,xil) and S = {i], iz, ey, il},
and the sum is over all possible decompositions of
{1,...,n} (Y means disjoint union). For instance,

™) (2. 4) = (T1 (AT (A2) — T2 (41, 4p)).

(3.15)

1
L(L-1)

The cluster function could be computed by the quaternion
kernel as

(/11"'-’ ZTI' /161’/102)
XK (A, 20,) K (A s 2g))s  (3.16)
where the sum is taken over all permutations ¢ of {1, ..., n}.

Thus, from these computations, we could, in principle,
reduce the correlation functions into cluster functions, and

then the products of trace of kernels, which are essentially
computable. There are some of the simplest examples for
those formulas, for instance,

1 1
p(l)(ﬂl) = z X ETr(K(ﬂ’lyﬂ'l))

P (A1) = X (%Tr([{(ﬂl,ﬂl))Tr(K(/lz,/lz))

L(L-1)

1
TR ). ()

With this knowledge, we could start to compute spectral form
factors.

B. Form factor computation with box approximation

1. Theorems

It is straightforward to generalize our previous formula
of convolution kernels to the quaternion matrix theory.
We have

Theorem 3.1 (Convolution formula for GOE): We have

/HdﬂiK(ﬂl,/lz)K(/lz,/13)...K

i=1

(lm—l ’ A'm)

X K (Ao Ay )eizrzlk"’l"

—Lr3(2k>/de <k+2L>
XG<k+§_z> G<k+k2L)

(3.18)
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where

k —2mik)g(k
G<k>=(§k(>_)1 | g(k);’()) 3.19)

—2rik

and
Theorem 3.2 (Convolution formula for GSE): We have

/ﬁdﬂiK(/h,/lz)K(ﬂz’/13)---K(/1m—1aﬁm)
X K (A Ay) € 21K

(z) /M(k) =
(ke gp) (452

wo=3() (4, )

The original infinite L versions of these formulas are
hidden in Egs. (6.4.21) and (7.2.10) in [7].

(3.20)

where

(3.21)

2. Two-point form factor

Based on our GUE knowledge, we will briefly describe
how to compute form factors.

We start by computing R, at infinite temperature for a
GOE,

Ry(t) =L+ / dayda, GTr(K(/l,,/ll))

1 ‘
xTr(K(4,42)) —ETr(K(,ll,/lz)K(,lz,il)o eilh=A)t.

(3.22)
Evaluating the first term in the integral, we find
1
/dﬂ,ldllz (ZTI'(K(ﬂl, >)Tr(K(/12’/12))> i(A=Ap)t
= L?r(1). (3.23)

The second term can be evaluated as

1 .
/d/’{ldﬂz (ETI‘(K(AI’AZ)K(AZ’)Q))> el(ll_h)t = er(t),
(3.24)

where

—+t+5log(14+£) t<2L
7y (1) = 3.25
2(1) -1 455 10g<’“) t>2L. (3.25)
The final result is
Ro(t) =L+ Lzrf(t) — Lry(1). (3.26)

In a GSE, the only difference between a GOE and a GSE is

1 )
/ dhddy (zTr<Kul,xz>K<ﬂz,zl>>)elw—w

-1t dog|l— 4| 1<A4L
.y it orlogll ol (3.27)
0 t>4L.

This integration is, in fact, divergent between 0 < r < 2L. It
is because of a pole 1/k in the expression of H(k).
However, that is an artifact of the Fourier transformation
of the integral of the sine kernel sinc(x). Besides the
methods of explicitly computing the Fourier transforma-
tion, we could also understand the time before 2L as a
continuation. As a result, there is a pole at r = 2L.

So as a conclusion, in a GSE we have to replace the result
of r, by

1 -
ry = 0

t<4L
t>4L.

ar +splog|l — 5 (3.28)

3. Four-point form factor

In this part, we need to compute R4 in a GOE, which is

L
R4:

/ DieiCativ=rc=a)t
a,b,c.d=1

(3.29)

Take a look at the classifications of combinations in R,
which are:
(i) a=b=c=d=e= f: Contribute L.
(i) a=b: Contribute L(L—1)(L—2) [DAe!h—h%)!
(ili) ¢=d: Contribute L(L — 1)(L —2) [ DAe/th+= 20)1

@(iv) a=c or a=d or b—c or b=d: Contrlb—
ute 4L(L — 1)(L = 2) [ Dieith=h)1,
V) b=c=d or a=c=d or a=b=d or
a =b = c: Contribute 4L(L — 1) [ Dieih=2)",
(vij a=b and c¢=d: Contribute L(L-1)
fDAei(Ml—Mz)t_
(vil) a=c and b =d, or a =d and b = c: Contribute
2L(L - 1).
(viii) All inequal indexes: L(L—1)(L—2)(L-3)

[ Dieln+ia—ts=ia)t
Adding the total prefactors will give L*. Add them together
and we get
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R4 =L(L-1)(L-2)(L-3) / Dielhith~%=2)t 4 21 (L — 1)(L — 2)Re / Die!Phi=h=h)t
+L(L-1) / DAe!Ph=2)t L AL (L — 1)? / Diei=R)t 4 212 —

=L(L-1)(L-2)(L-3) / Diellh+h=h=2)t L 21 (L —1)(L — 2)Re / Dje!Phi—h=h)t

2r3(21) = Lry(2t) + 4(L — 1)(L?r(t) = Lry(1)) +2L% — L. (3.30)
We have already obtained what the last three terms are. Now we only need to consider the first two terms.

The first term.—The first term is an actual four-point function,
L(L-1)(L-2)(L-3) / Dellth=is=h)t, (3.31)

In order to compute it, we will use the following decomposition from the correlation function to cluster function

L(L = 1)(L =2)(L =3)p®W (A1, Ao, A3, Ag) = =T4(A1. A2, A3, ) + T3(Ap, A3, A) Ty (Ay) + T3(A1. A3, 44) Ty (42)
+ T3(A1s A2, A4)T1(A3) + T3(A1, A2, 43)T1 (Ag) + T2(A1,42) T2 (23, As)
+ Ta (A1, 43) T2 (A2, Aa) + To (A1, A4) T2 (20, A3) — T2 (A1) T1(A2) T2 (43, Aa)
= T1(A)T1(43)T2 (A2, Ag) = T1(A)T1(A4)T2(22. A3) — T1(A2)T1(A3) T2 (A1, Aa)
= T1(2)T1(Aa) T2 (A1, 43) = T1(23)T1(Aa) T2 (41, A2)
+ Ty (2)T1(42)T1(43)T 1 (Ag). (3.32)

From the previous discussions, we have
1
T, (la) = ETr(K(/lav la))

T ) = 5 TE(K (i 20K (3. 2)
STEK (i 20)K (22K G 22)) 5 THK (s ADK (1 26)K B 1)
Talar I e Aa) = 5 TR G 23K U 20K s Aa)K s ) + 5 TH(K G 20K G, K Gt 2K (1. 4)

TB(/Iavlbv’10> =

ST (2K G K iy ) K it 22) 3 THK (220K Gl A)K ot 1)K (2 )

3 TR Gl 2K (s ) K s 2K s 2) 3 T (K (s A K s 20K G 2K G ). (3.33)

where we have already used the property of cyclic invariance for the trace operator. We can separately discuss these terms as

the following:
(i) 4-type: In this case, we only have the T,4. Also in this case, all six terms in the expansion give the same answer,

which is

/ Ay ddadisdigT4(Ay. Ay, dg, Ag)eiiT==ia)t = _6Lr, (1), (3.34)
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where

11—+ 2llog (14 4) 0<tr<L
ra(t) = =342+ 3og (L (1 +52L)) L<t<2L. (3.35)
0 t> 2L

(i1) 1-1-1-1-type: In this case, we only have 7. Thus, we have
[ dndiadidi T )T G Ty )T )l i = L), (3.36)
(iii) 1-1-2-type: In this case, we have both T; and T,. Thus, we have
—/d/lldizd/hdthl(ﬁ) 1(A2)To (A3, Ay ) e/ Prtha—la=da)t — /dlld}OdlSd/th(ﬂ) 1(23) T2 (A, Ay )€ tha—ha=dalt

—/61/1103/1261/1361/14T1(/1 )T1(A4) T2 (An, A3) e Hha—ha=ha)t — /d/11d/12d/13d/14T1(ﬂz)Tl(ﬂs)Tz(/ﬁ Ay)ehithaha i)t

/d/ﬁd/lzdﬂ%dﬂﬂl(ﬁz)T1(/14)T2(/11 A3)elttrth=h=iit /d/1 dAydazdasT1(23) T\ (Ag) T (21, Ay) e/ Hhmha—holt

= =2L372(1)r3(20)ry (1) — 4L3r3 (1) ry(1). (3.37)

(iv) 2-2-type: In this case, we only have T,. Thus, we have

/ dAdAodisdasTH (A, 2p)To (A3, Ag) e/ Hah=io)t / A dAodlsdisTs(Ay, A3)To (R, Ag) e/ Hahma)t

/d}v d/12d13d/14T2(/11,/14)T2(12 l’;) (ith=2s=A)t — 2L2r%(t) +L2r%(l‘)i’%(2t). (338)
(v) 3-1-type: In this case, we have both 75 and T';. Thus, we have

+ / dAdAydlydAgT5 (g, A3, Ag) Ty (A ) e Hha=ha=ha)t / A dlydinddsTs(Ay, A3, )Ty (A et tha=h=dt

+ / A dlydl3dAgT5 (A1, Agy Ag) Ty (A3) el H=ha=da)t 4 / dAdAydAzdAsT5 (A1, Ay, 23) T (Ag) ! ta=ha= )t

= 6L%r (t)rs 1 (t)rs(1) + 2L2r  (1)r3 5 (1)r3 (1), (3.39)
where
1—24 log(1 +4) O0<t<L
rsat) =9 2+ L+ dlog(A(1+2L) L<t<2L (3.40)
0 t> 2L,
and
r3,2(t) = 7'2([). (341)
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We have the total expression as

L(L-1)(L-2)(L-3) / Die!hith=i=t)t = L4 (1) — 21373 (2)r3 (2t)ry (1) — 4L3 73 (1) ry (2) + 2L%15(1)

+ L2r3(0)r3(2t) 4+ 6L%r (1) r3, ()r3(1) + 2L2r (1) r35(2) r3 (1) — 6Lr4(1).

(3.42)
The second term.—In this part, we will evaluate the second term
2L(L —1)(L —2)Re / Dae! =)t (3.43)
Let us first consider it without a factor of 2,
L(L—1)(L —2)Re / Die!h=h=h)t, (3.44)
Do the same cluster decomposition,
L(L =1)(L =2)p® (A1, 40, 43) = T3(A1, 40, 43) = To (A2, A3)T1 (A1) = Ta (A1, 43)T1 (A2) = T2 (A1, 42)T1(23)
+ T1(4)T1(42)T1(43). (3.45)
Then, we obtain:
(1) 3-type: In this case, we have
Re / A didisT3(Ay, Ay, A3)e!PH==h)t = 2Ly (1), (3.46)
where
1 -3+ Llog(l+£)+3flog(1+%) 0<t<3L
5
s () = -2 +§’—£+élog(3€%£2) +Llog(4H) 3FL<t<L (3.47)
_1+ﬁ+i10g(§t+—i) L <t<?2L
0 t>2L.
(i) 1-1-1-type: In this case, we have
Re / A dlyddsT ()T (2) T (A3)e! R4 = L3r (21)r3(2). (3.48)
(iii) 2-1-type: In this case, we have
—Re / dAdladisTo(Ay, A3)T () )e!PHi—2=%)l — Re / dAdladisTo (A1, A3) T (Ay)e'Phi—hh)t
—Re / dAdladisTo (A1, 20T (A3)e'Ph=2=2)t = — 125 (28)r5(21)ry(2) — 2L2r (1) r3(2) 2 (21). (3.49)
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Finally, we can collect all of those terms together, and then we get

2L(L —1)(L —2)Re / DAe'Ch=hmk)t = 237 (26)r3(t) — 2L%r  (2t)r3(28)ry(£) — 4L%r (1) r3(£)r5(28) + 4Lr3 5(2).

(3.50)
Final expression and summary.—From those calculations, we could obtain the final expression for R4, which is
Ry = +L*ri(1) = 2L r1(0)ra () r3(21) = AL (0)ra (1) + 2L°ry (20)r (1) + AL P} (1) + 2L2r3(1) + L2r3(1)r3(21)
+6L2r ()13 1 (8)r3(1) + 2L2r (8)r3 (1) 3 (1) = 2L2r (20)r3 (20)r5 (1) = 4L 1, (1)r3 (8)r2(20) + L1} (20) — 4L7ri(1)
- 4L2}’2(t) + 2L2 - 6Lr4(t) - Lr2(2t) + 4Lr373(t) + 4Lr2(t) - L, (351)
|
where After dropping out the less-dominated terms, we could
obtain
1—f+57log(144) t<2L
(1) = { 15 4 log(th) ronp B Ry~ LA () + 20253 (1) = 4L2ry (1) + 2L2 — 6Lry (1)
—
—Lr2(2t) +4Lr3,3(t) —|—4Lr2(t) —L (357)
1 -2+ 3l log(1 + 1) 0<t<L
) = — 3t 3L
r3a(7) 2+ +3log ( (I+57) L<r<2L GSE.—In a GSE, the computations are very similar, and we
0 t>2L have to replace these block functions by
(3.53) {
1-1t4 3 jog|L—1| t<2L
r4(l‘):{0 2zt ierlog ]z~ 1 N CED)
>
r3a(t) = ry(t) (3.54)
r3’1 =Ty (359)
1 =3+ Llog(1+£) +2tlog(1+2) O<t<%L
=) 2 34 Log(Ltt) 3 log(L2) 2L <1< L ra=r (3.60)
r33\l) =
—1 455+ Llog (L2 L<t<2L
i +arlog5D) 1 -2+ log|272E |+ 2hlog|3£—1| 1<3L
0 t>2L 33 = 4
0 t>3L.
3.55 ’
( ) (3.61)
— 24 log (1 + 1) O0<r<L
ra(t) = _34_ 2_2 ﬁlog (E (1+ Z?TLL)) L <t<?2L C. Refined two-point form factor
0 t>2L. Now, we discuss the trick that is similar to our previous
improvement. Let us start from a GOE. We will use the
(3.56) short distance refined kernel,
|
K(A;.2;) = Lp((4; + 4;)/2)

* (1@(@(( >

(zLp((4i +4;)/2) (4 = 4;))
2)(4i = 4;)) —e(mLp((4; + 4;)/2)(4; = 4;))

Ds(zLp((A4i + 4;)/2) (4 = ,)))
S(xLp((4i +2))/2)(2i = 4;)) )
(3.62)

We will try to use this formula to evaluate the two-point form factor, at a generic finite temperature, # (while the refined
infinite temperature form factor could be obtained by sending f — 0). We have
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1 ‘
Ro(t, ) = Lry(2if) + L?ry(t + ip)r (1 — if) - 5/ Ay ddy(Tr(K (21, 22) K (2, 41)) ) e/l et (3.63)
while for the later integral, we expand it as

1 .
- 5/ d/lldﬂz (TI'(K(/“, /12>K(12, ﬂl)))el(’ll_h)te_ﬁuﬁflz)

sin?(zLp((A; + A A =2 0o,

+L? / dAydiyp* <ﬂ]%ﬂz> <D§ <7er <@> (A — /12)> I$ (;sz <¥) (A — @)) ) eih=h)t o=k 1)
- L? / dAydiyp? (@) (DS (ﬂLp <@) (A — /12)> € <an (@) (A=A ))) =kt =Pl +a)

(3.64)
Again, changing the variable,

M+

uy = )«1 —)«2 Uy = (365)

we simplify it as

1 4 in?(zL 4
-5 / A dlo(Tr(K (A, ) K (Ap. A1) )eli=R)tg=Plath) — [ 2 / dulduzwe“”e‘zﬂuz
LUy

+L2/du1d142p2(u2)(D:V(”Lﬂ(uz)”l)13(”14’(”2)“1))ei“‘te_zﬂuz

—Lz/du1d142p2(142)(Dﬁ(ﬂLP(uz)ul)6(”LP(M2)M1))ei"‘te_zﬂuz'

(3.66)
We could first perform the integral over u;, and the result is
B lm(uz)L T 2wl uz) 10g< ”/’(ltlz)L) t < 2zp(uz)L
Le="p(u,) T
p(uy)
1+ st log (2 = =) ¢ > 2zp(uy)L
1+ 1
t t t t 7p(uy)L
— —2pu I BN, Py _L L og [ 7wl ) ) 3.67
e max (Lo(uc) = £t otog (14 L), mm+h%Q@ﬂq (3.67)

In the GSE case, we have the refined kernel,

$Q2zLp((Ai +4;)/2)(Ai — 4j))  D3Q2zLp((4: + 4;)/2)(4; —

2;))
I32zLp((4: 4+ 4;)/2) (4 = 4;))  $QaLp((A4; + 4;)/2)(4; — 4;) ) (3.68)

Rlis) = Lo+ 4)/2) )

The same technology gives

Rz(t,ﬁ) = Lrl (Zlﬁ) + Lzrl(l‘ + iﬂ)rl (t - lﬁ) —;/ dﬁldﬂz(Tr(K(ﬂl,/12)1((/12,/11)))e’“‘_’12)’6_/}(’1'“2), (369)

where
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1 .
—E/dﬂld/lz(Tr(K(,ll,,12)1((/12,/11)))el(il—iz)te—ﬂ(hw)

t

= - / du,e=?P"> max <Lp(u2) e
3

t

1—
8

_|_

m‘, o). (3.70)

Although we did not find an analytic result, one can
compute those integrals numerically.

log

IV. WISHART-LAGUERRE SPECTRAL
FORM FACTOR

A. Random matrix theory review

In this part, we will consider the Wishart-Laguerre
random matrices from the product of square Gaussian
ensembles. These Wishart-Laguerre random matrices are
squares of standard Gaussian random matrices, which we
call a Wishart-Laguerre Unitary Ensemble (LUE), a
Wishart-Laguerre Orthogonal Ensemble (LOE), and a
Wishart-Laguerre Symplectic Ensemble (LSE), for squares
of a GUE, a GOE, and a GSE distribution (For a LSE, we
also mean a 2L x 2L matrix, while for a LUE and a LOE,
we mean L x L matrices). The joint eigenvalue distribution
is given by

L

PO) ~ AP e,

k=1

(4.1)

where ,B =1, 2, 4 corresponds to LOE, LUE, and LSE
ensembles. We are also interested in the n-point correlation
functions

|

Lp(bt)(
K(2;,4;) =

and for the LSE we have

" ( S(2nLp(u)(h - 4,))

K(A. 1)

S(Lp(u)(d; ~ 1)) §
Ls(Lp(u)a(d; ~ 1)) — e(Lp(u)a( = 4y))  3(Lpu)a(d; = 4;))

I5(2xLp(u)(A; = 4;))
L 1(4—/1)((1) ?)

p<">(,11,...,,1n):/dzm...dzLP(,ll,...,AL). (4.2)

The one-point function is the square of the semicircle law in
the large L limit, which we could call a Pastur-Marchenko
distribution

P00 = ph) = 5o JAG= D). (43)
where now the value of A ranges from 0 to 4.

We will use the kernels in the large L limit to compute
correlation functions and form factors in terms of a box
approximation. Similarly, for a LUE, it is a determinant
point process, so we could determine the correlation
functions as

(L-n)!

P Ay e dy) = T det(K (4, 4;)) iy (4.4)
where
sin(Lp(u)w(4;—4;)) . .
—— L Afori#j
a(4i=4;
K(2;,2)) = , S (45)
g VA4 = 4;)  fori=j,

with an undetermined constant u from [0, 4]. The origi-
nation of this constant is from the approximation method,
finding an average to put a box in the whole interval [0, 4].
In the GUE case, we naturally choose u to be 0 because the
interval is symmetric in the range [—2, 2]. However, here in
a range with a positive definite eigenvalue, we cannot use
such a prescription.
Similarly, for the LOE case, we have

The Pfaffian point process will determine the structure of the correlation functions in terms of form factors as

p(n) (/11 yoeen

DS(Lp(u)(4; =4, ) for i # j
(4.6)
for i = j,
D3(2zLp(u)(4; - 4;)) .
8(2zLp(u)(4; = 4;)) > ori# (4.7)
for i = j.
S;={1.....n}
(_l)n_mTSl‘ Ts , (48)
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where

1
Ty(Ays o dy) = %ZTr(K(Am o) K (R g)- K (A, 2g,))- (4.9)
About convolution theorems, in this case, we could obtain
Theorem 4.1 (Convolution formula for LUE): We have
/Hd,1iK<,11,/12)[((/12’/13)“_1((1”1_]’/1"1)1((,1’”’/1])eZ;"likﬂf
i=1
=Lr Zm:k- /dk (k)g( k+ ul k2 k4 Kmt (4.10)
3 " A 2z g 2ray - 2ra; )’ '
where
ap = Lp(u) (4.11)
and
in(z/2,
r3(1) _ snt/20(w)) (4.12)
1/2p(u)
Theorem 4.2 (Convolution formula for LOE): We have
/HdﬁiK(ilJz)K(ﬂz’%)---K(lm-l,ﬂm)K(/lmvlll)eiZ?llkili
i=1
=Lr Em:k /de(k)G PRRELIER PP (AN BT P (4.13)
3 =1 ! 277,'(ZL 27[(XL 2JTQL ’ ’
Theorem 4.3 (Convolution formula for LSE): We have
/Hd’liK(/ll,ﬂz)K(izai3)-~-K(im-1’/lm)K(/imJ])eiZ:'n‘k'%"
i=1
=Lr zm:k- /dkH(k)H PRRELIEN o7 UL T By P (4.14)
3 ! 2ray, 2ra; ) 2ra; ) '
|
Notice that, in order to mimic the delta function, we have to where we always have
integrate over R for all variables instead of a bounded range
(Similar with the treatment in the Gaussian random . )
matrices). Based on this knowledge, we could start to ri(t) = e*'(Jo(21) — iJ,(21)). (4.16)
summarize the results for form factors in the case of
Wishart-Laguerre matrices.
For a LUE, we have
B. Result summary
1 -5t~ for0<t<2zL
1. Two-point form factor ry(t) = { 2ot 1O mLp(u) (4.17)
The two-point form factor has the universal form 0 for 1> 2zLp(u),
R, =L+ L2r1 (t)r‘f(t) - er(l‘), (415) for a LOE, we have
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- /’( )L +271,0( ()L IOg(l ﬁ) 1< 2L”p(u)

ry(t) = : (4.18)
-1+ Zﬂ/)(lu)L log (ithj/m(pu()ZJ t>2Lap(u).
For a LSE, we have
r(t):{l 47!!7( )L+87rpu 10g|1 | t<4L”p( ) (4 19)
’ 0 t>4Lap(u). '

2. Four-point form factor
The four-point form factor has the universal form

Ry =L |1y (1) =2L7Re(r} (1)) ra(e)rs (26) =4L2 |, (1) Pra(e) - 2L Re(r (20)r? (1)) +4L%ry (1) P4+2L2 73 (1) +-L773 (1) (21
+6L7Re(r((1))r3,1(1)r3(1)+2L*Re(ry (1)) r3 (1) r3 (1) =2L*Re(ry (21)r3(21) ry (1) —4L*Re(r] (1)) r3(1)r(21)
+L2|r (28) 2 =4L2|r (1) > =4L%ry (1) +2L% —6Lr4(t) = Lry(2t) +4Lr3 5(t) +4Lr (1) - L, (4.20)

where the dominated term is
R4 ~ L4|r1 (t)|4 + 2L2r%(t) - 4L2r2(t) + 2L2 - 6Lr4(t) - Lr2(2t) + 4Lr3’3(t) + 4L7'2(t> —_ L (421)

Now, we specify these block functions for different ensembles. For all three ensembles, we still have

, , sin(¢/2p(u))
t) = e¥(Jo(2t) — i (2t ) = — 10 4.22
n() = @) —in@)  n =" (4.22)
For a LUE, we have
1 -5+~~~ for0<1t<2zLlp(u)
2rLp(u
i) = o) = ras3) = rae/2) = () = { T 423)
0 for t > 2zLp(u).
For a LOE, we have
” » 1- ( T 2ﬂp(u) 7log(1 + —(’M)L) t <2Lrp(u)
r3p\t) = nit) =
, /mp(u)L+1
— 1+ gty log (1At t > 2Lp(u)
7[/)( )L + 27[/)(14 log( n/)(;)L) 0<r< n'p(u)L
ra(t) =19 —2 + ( it Zﬂp( i log< (1 +W)) map(u)L < t < 2zp(u)L
0 t>2mp(u)L
1= it + otog (14 o) + sibrlog (14 525)  0< 1 <3mp(u)L
1+1/7p(u) 1+2t/zp(u)L
rs 3([) _ -2+ 2ﬂp3(tu)L + zrp(tu)L IOg <3t/7rp(p)L 1) + 47rp(u) 10g<3t/7rp(LSL—1) %ﬂp(M)L <tr< ﬂp(u)L
142t/ 7p(u
-1+ anéu)L + 4,[/)5(’,4)1‘ log (3;;/(;))(1421) ap(u)L <t <2mp(u)L
0 t > 2zmp(u)L
- 47r/)(u)L + ZwL 47[/) u) 10g< ﬂ/)(tu)L) 0<r< ﬂp(u)l‘
1) = 4.24
r4( ) 2 +47rp( )L +47[/)( )L 10g( ( + 21/7rp(3Lt)L—l)> L<t< ZEP(M)L ( )
0 t > 2mp(u)L.
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For a LSE, we have

1-1

ry =r4(t) = {

r3(t) = (1)

0

2 7p(u )L+ 167[/)( )L Og|7m - 1|

o { - 47[/)( )L + 327[/) 10g| 2— l/l[/)
33 =

3. Refined two-point form factor

t < 2mp(u)L
t > 2ap(u)L
2t/mp
Lo | + 327[/) g | 2,[/,t - 1| 1< %ﬂp(u)L (4 25)
t>3mp(u)L.
|
L(m —2arctan(£ — 5%
Ra(t) = L2l () + 2 Giar)) (g 08)

We will discuss the improvement of the two-point form
factor with a finite temperature by the interval method in
this section. For a LUE, we have

Ro(t.p) = Lr(2ip) + L*ri(t 4 if)r (1 — if)

t
- /duze‘zﬁ“z max <Lp(u2) - 2—0>
T

(4.26)
When f = 0, the integral is
—2fu !
duye "> max | Lp(u,) ——,0
27
_ L(2arctan(5*) + 7) ’ (4.27)
2n
so we get
Ro(t, ) = Lr(2if) + L?r((t + ip)r (1 — ip)

2w

The early time expansion of the connected piece gives

2t
R™ (1) ~ —+ o), (4.29)

which means that in the box approximation, we could
approximately set

1 16

—— s u=—, 4.30
plu) =3 = 1= (430)

and then it could approximately capture the form factor
dynamics.
For a LOE, we have

I+ ot
p " ¢ t o(uy)L
) ] e . b lr—" )L | ﬂ 4.31
/ u,e max( p(us) ﬂ+2ﬂ 0g< +7rp(u2)L> ﬂ(uz)+2ﬂ Og(m_l (4.31)

This time, in the f = O case, the expansion gives

4t
RS (1) — + O(F), (4.32)
T
but we still have
1 16
=- = . 4.
plu) = = = (433)
For a LSE case, we have
Ro(t.p) = Lr(2if) + L*ri(t 4 if)r (1 — if)
t
_ —2fuy L _
/duze max( p(us) e
+ Lloglt——" |0 (4.34)
871 gl 2mp(uy)L|" )7 '

where in the f = 0 case, the expansion gives

t
R™ (1) = . + O(t3), (4.35)
and the solution of u is still the same
1 16
=- = 4.36
plu) =g = u= (436)
V. FIGURES

We obtain numerous analytic results in the previous

sections. In this section, we will try to plot some of those
results.
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Ra(t)
104
1000+
— GOE
100k L — GUE
— GSE
10
1 L
. . . ‘ ‘ 't
1074 0.1 100 10° 108 10"
Rgonn(t)
250}
200}
— GOE
150+ — GUE
— GSE
100F
50}
. . . . _t
200 400 600 800 1000
FIG. 1. GOE, GUE, GSE two-point form factors Rz(t) with

box cutoff and infinite temperature. We choose L = 100. Up: full
form factor; Down: connected form factor.

In Fig. 1 we are describing the two-point spectral form
factors in Gaussian ensembles. One could observe that the
main difference among the three ensembles is the behavior
around the plateau time. We have a smooth corner for the
GOE, a kink for the GUE and a sharp peak for a GSE.
These features are universal also for because of different
sine kernels.

Figure 2 shows a similar behavior for the four-point form
factor Ry.

We plot similar figures for Wishart-Laguerre ensembles
in Figs. 3 and 4. The main difference is the decay rate in the

relatively early time from r,. Expanding r,(¢) we get r—3/
Rat)
1013,
1010,
ol — GOE
S —ax
— GSE
10*
10}
‘ ‘ ‘ ‘ t
0.01+ 0.01 1 100 10*

FIG. 2. GOE, GUE, GSE four-point form factors R,(7) with a
box cutoff and infinite temperature. We choose L = 1000.

Ra(t)
104}
5000f
— LOE
1000+ — LUE
so0l. — LSE
100}
. . . . . t
Fo-4 0.1 100 105 108 10"
Rgonn(t)
200}
150} — LOE
— LUE
100} — LSE
50}
200 400 600 800 1000"
FIG. 3. LOE, LUE, LSE two-point form factors R,(¢) with a

box cutoff and infinite temperature. We choose L = 100. Up: full
form factor; Down: connected form factor.

for Gaussian ensembles and r~'/2 for Wishart-Laguerre
ensembles. A direct comparison is displayed in Fig. 5.
There will be an interesting comparison showing the
improvement from the box approximation to the refined
form factors. Thus, we give Fig. 6 for the connected piece
of the GUE. The box approximation gives a linear result
from (0,0) to (2L, L). The plateau value L and the plateau
time 2L are both correct. However, the correct slope,
should be 2/7 instead of 1/2. Thus, one may consider
the Taylor expansion (a naive approximation only chooses
the slope, namely the derivative, at a relatively early time)
to capture the correct slope. Maintaining the correct slope

R4t
1012 L

1011 L

1070} — LOE
— LUE
— LSE

10
108¢

107

100¢

‘ ‘ ‘ ‘ ‘ it
1074 0.1 100 10° 108 10"

FIG. 4. LOE, LUE, LSE four point form factors R, (¢) with a
box cutoff and infinite temperature. We choose L = 1000.
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Ro(t)
104,
1000+
— GOE
100} — LOE
10}
‘ s s ‘ ‘ 1
F10-4 0.1 100 105 108 10"
Ro(t)
104,
1000+
— GUE
100¢ — LUE
10+
i ‘ ‘ ‘ ‘ it
1074 0.1 100 105 108 10"
Ro()
104,
1000}
100 — OSF
i — LSE
10+
1 L
‘ ‘ ‘ ‘ ‘ 't
1074 0.1 100 10% 108 10"
FIG. 5. A direct comparison between Gaussian ensembles and

Wishart-Laguerre ensembles in terms of two-point form factor
R,(r) with a box cutoff and infinite temperature. We choose
L = 100. Up GOE/LUE; Middle: GUE/LUE; Down: GSE/LSE.

and the plateau value, the plateau time is inaccurate. Thus, a
refinement will be to consider a nonlinear improvement,
which is given by our previous small interval integrals over
the short distance kernel. The situation is precisely
described in Fig. 6.

One can generalize this analysis to other Gaussian
ensembles, and also Wishart-Laguerre ensembles, which
are described in Figs. 7 and 8. One can notice that there is
an interesting observation, where the kinky behavior near
the plateau time for GSEs and LSEs is suppressed, which
causes a deviation between the box approximation and the
small interval approximation.

One can also take a look at the connected finite temper-
ature predictions from the refined kernel. We give them in

Rgonn(t)

100}

80+

— GUE Box approximation
— GUE Refined result
— GUE Taylor expansion

60

40}

20+

50 100 150 200 250 300 t

FIG. 6. GUE connected form factor R§"™(¢) with different
approximations in the infinite temperature. We choose L = 100.

Figs. 9 and 10 for Gaussian and Wishart-Laguerre ensem-
bles separately.

VI. APPLICATIONS

The spectral form factors of random matrix theory in the
standard ensembles have wide applications in many areas of
late time quantum chaos. In this section, we will review and
summarize some of the applications with recent interest.

A. SYK-like models and classifications

One direct application of the random matrix theory
form factor results will be matching the qualitative and

R gonn 0]
100+
80+
60 — GOE Box approximation
— GOE Refined result
— GOE Taylor expansion
40+
20+
s ‘ ‘ ‘ ‘ -t
100 200 300 400 500 600
chonn(t)
250}
200+
— GSE Box approximation
150} — GSE Refined result
— GSE Taylor expansion
100+
50+
160 260 360 460 560 660 t
FIG. 7. GOE(up) and GSE(down) connected form factor

RS (1) with different approximations in the infinite temper-
ature. We choose L = 100.
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Rgonn(t)
100

80

— LOE Box approximation
— LOE Refined result
— LOE Taylor expansion

60

40

20

200 200 600 800 1000
Rgonn (t)
100

80

— LUE Box approximation
— LUE Refined result
— LUE Taylor expansion

60

40

20

200 400 600 800 1000

Rgonn (t)

200+
— LSE Box approximation
150+ — LSE Refined result

— LSE Taylor expansion

100+

50+

t

200 400 600 800 1000

FIG. 8. LOE(up), LUE(middle) and LSE(down) connected
form factor R§°™ () with different approximations in the infinite
temperature. We choose L = 100. For a LUE case, by choosing u
in the box approximation, the Taylor expansion curve and the box
approximation curve are the same, so two of three curves are the
same for the figure in the middle.

quantitative behaviors of the spectral form factor of the
SYK model. In the Majorana SYK model, there exists an
eightfold classification of random matrix theory, with
respect to the number of Majorana fermions N [20-22].
The classification is N mod 8 = O fora GOE, N mod 8 = 4
for a GSE, and N mod 8 = 2, 6 for a GUE. The matching is
identified for level statistics and the degeneracies.

One can also study the spectral form factor of the theory.
One can show that for the simplest form factor R,, it could
also be identified as the combination of the analytic-
continued partition function, (Z(B + it)Z(f — it)) ~
R, (t, ). From the SYK model, one can read off the dip
time, the plateau time, and the ramp slope. These quantities
could be qualitatively and quantitatively checked by

R3™(B,Y)

150+

100+
— GOE g=0.1
— GOE =02
50+ — GOE =05

100 200 300 400 500
RZ™BY

150+

100+

— GUE g=0.1
— GUE =02
— GUE =05

50+

100 200 300 400 500 ¢

100}
— GSE =0.1
— GSE =02
— GSE =05

50+

100 200 300 400 500t

FIG. 9. GOE(up), GUE(middle) and GSE(down) connected
form factor R$™(r,p) for finite temperatures. We choose
L = 100.

numerical simulations and match with the corresponding
random matrix theory prediction [22].

One can observe the eightfold classification of the
random matrix theory prediction in the SYK model by
observing features of the plots. For instance, one can
observe a smooth corner for a GOE, a kink for a GUE,
and a sharp peak for a GSE around the time scale of the
plateau time. These features will show a clear threefold
classification of the SYK model in terms of spectral
form factors, and they could be read off from numerical
investigations [22].

These ideas could also be generalized to supersymmetric
SYK models. In supersymmetric models, one would expect
a disordered supercharge, Q, and a Hamiltonian, H ~ Q?.
Thus, if Q is from some Gaussian-like statistics, the result
of the squared Gaussian distribution will be the Wishart-
Laguerre-type ensembles. The classification is discussed in
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R3°™M(B,H)
80}
60|
40+ — LOE =0.1
— LOE=0.2
— LOE g=0.
20l OE $=0.5
200 400 600 800 1000"
R3°™(B,H)
80r
60/
40+ — LUE =0.1
— LUEB=02
— LUEB=05
20/ A
200 400 600 800 1000!
RE°™(B,Y)
80+
60}
40} — LSE g=0.1
— LSEp=0.2
— LSE g-0.
0l SE =05
200 400 600 800 10000

FIG. 10. LOE(up), LUE(middle) and LSE(down) connected
form factor R§$™(t, ) for finite temperatures. We choose
L = 100.

[26,27]. For the simplest case (N = 1 supersymmetrization
and four-point coupling), the eightfold classification is
modified by N mod 8 = 0, 6 for a LOE, and N mod 8 = 2,
4 for a LSE.

An early look of the Wishart-Laguerre ensemble’s
spectral form factor and a connection to the supersym-
metric SYK model are discussed in [26-28], where the
features are clearly different from the Gaussian ensembles.
One of the main differences is the early time behavior of the
disconnected spectral form factor R,, which could be
obtained from the r(¢) function that we discussed before
in these two different ensembles. In Gaussian ensembles,
we have 7 () ~ 1/13/2, while for Wishart-Laguerre ensem-
bles, we have r,(¢) ~ 1/t'/2. These facts could match with
predictions in the SYK model, and they could be obtained
by the one-loop Schwarzian action [22,28,29]. Moreover,

one can also match the kinky and smooth behavior around
the edge of the plateau from the numerics of the super-
symmetric SYK model [26].

B. Out-of-time-ordered correlation functions

The spectral form factor of random matrix theory could
be related to out-of-time-ordered correlators of the physical
models in an interesting way. Here, we will discuss the
unitary invariance case, where disordered physical models
are invariant, or nearly invariant, under a unitary trans-
formation. For Gaussian and Wishart-Laguerre disordered
models, one may predict them using a GUE or a LUE.

In this case [23,28], for operators A and B, one can
compute the two-point correlator as

AOB0) = yB) + 20 L iam). (61)
where
(AB) = (AB) — ()(B). (62)

Moreover, if A and B are nonidentity Pauli operators,
we have

Ry(1)-1

(Rl 4
<M®MW—{JI PG
Thus, if R,(z) > 1, we have
(A(0)B(1)) ~ RLZE’) . (6.4)

Similarly, one can generalize those relations towards four-
point or higher-point functions. For four-point functions,
assuming nonidentity Pauli operators A, B, C, D with the
relation ABCD = I, we have

(6.5)

another important object in quantum information, which
will show the averaged behavior of the out-of-time-ordered
correlation function, is called the frame potential. For a
given ensemble &, the kth order frame potential is defined
by

F / AUV Tr UV, (6.6)
uvet

One can define £ to be generated by the disordered
Hamiltonian H with a fixed time f, & = {e!',H €
disorder ensemble}, so F is identified as a functional of
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a disordered system and a fixed time ¢. In [30], one
can show that the frame potential is equal to the average
of out-of-time-ordered correlators, where the average is
over the Pauli group.

One can compute the relationship between the spectral
form factor and the frame potential in random matrix theory
[23,28]. For instance, in the two-point case, we have

~ R3(1) + L* - 2R, (1)
N L% —1

FO(1) (6.7)
One can generate these types of connections to higher-point
cases and finite temperatures.

C. Page states

A connection between Wishart-Laguerre ensembles and
the Page states is used to be a modified criterion for
quantum chaos in terms of wave functions [24]. The Page
state, or alternatively called the random pure state, is
defined as the following wave function in the Hilbert space
H="HsQ Hs,

Ny Ng

W) =D Xaplwd)lwh).

a=1 b=1

(6.8)

where X, is the element of the random matrix with the
volume N4 X Np, and one could fix the scaling by the
normalization condition of the wave function. One can
assume that this matrix X is a Gaussian N, X Ny matrix.
Thus, the reduced density matrix, when tracing out the
system B, is given by

pa ~XXT (6.9)
for subsystem A. Now one can consider diagonalization of
pa and compute the spectral form factor of it. Because of
the squaring structure XX, the density matrix p, will be a
Wishart-Laguerre random matrix. (Here, N, and Ny are
kept, in general, while in our previous computation, we
choose the specific case where Ny = Ng. When N4 # Np,
the result will be different, but some generic features are
similar with the equal case.)

This feature will appear in some real chaotic physical
systems. In [24], it is claimed that in splitting the qubits of
the real chaotic system, one would expect that the reduced
density matrix, or namely, the entanglement Hamiltonian,
will show a similar universal spectral correlation and will
match the prediction of Wishart-Laguerre ensemble when
considering time evolution. This phenomenon is verified in
the context of the Floquet system and quantum Ising model.

VII. CONCLUSION AND DISCUSSION

In this paper, we investigate spectral form factors
in detail, to establish a generic framework on the

computational technology. We hope that those technologies
will give a systematic description of spectral form factors
that are used in the field of quantum chaos, and will benefit
people studying the connection between random matrix
theory and notions of quantum chaos, quantum informa-
tion, and black holes, etc.

We will highlight some of the points of this paper with

the following:

(1) Traditional literature (for instance [7]) refers to the
n-point spectral form factor as the Fourier trans-
formation of n — 1 eigenvalue variables. To trans-
form the last variable, one obtains a delta function
in the infinite L limit. For a finite but large L, one
has to invent some regularization technologies. In
this paper, we systematically describe the notion
of the box approximation as a concrete way to
realize the cutoff, and we apply it to multiple
ensembles. We also show, in the Gaussian ensem-
ble two-point form factor context, that the approxi-
mation beyond the box cutoff must be related to
nonlinear physics for the Fourier transformation of
the sine kernel.

(i) We seriously consider how to use the short distance
kernel to give a precise prediction for the two-point
form factor with infinite and finite temperatures.
Inspired by the treatment from [22,24], we obtain an
analytic nonlinear connected two-point form factor
beyond the linear approximation in the GUE and
LUE, and we show the formal and numerical results
for the rest of the cases.

(iii) Based on existing infinite L mathematical algo-
rithms, we illustrate some theorems that could be
used to compute higher-point form factors for finite
but large L for multiple ensembles. We compute the
four-point form factors for them as examples.

We hope that this research will shed light on the

possibilities of the following directions:

(i) More general ensembles. Although the situations that
are considered are already pretty general, mathema-
ticians and mathematical physicists have a list of more
general ensembles. It will be interesting to consider
generalized classifications and related ensembles, and
compute the spectral form factors of them.

(ii)) More physical applications. One may consider
applying those form factors to some other chaotic
quantum systems and more black hole thought
experiments, such as chaotic spin chains or quantum
circuits.

(iii) Diving deeper into physical meaning of the non-
linearity in the connected two-point form factor.
The breakdown of the naive box cutoff, namely the
prediction beyond the linear approximation of the
Fourier transformation of the sine kernel, might be
connected to some physics of thermalization and,
moreover, holography and gravity [25].
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