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The global picture of the Higgs potential in the bottom-up approach is still unknown. A large deviation
as big as Oð1Þ fluctuations of the Higgs self-couplings is still a viable option for the new physics. An
interesting new physics scenario that can be linked to a large Higgs self-coupling is the baryogenesis based
on the strong first order phase transition. We revisit the strong first order phase transition in two classes of
beyond the Standard Models, namely the Higgs portal with the singlet scalar under the Standard Model
gauge group with Z2 symmetry and the effective field theory approach with higher-dimensional operators.
We numerically investigate a few important issues in the validity of the effective potential, caused by
the breakdown of the high-temperature approximation, and in the criteria for the strong first order
phase transition. We illustrate that these issues can lead to Oð1Þ uncertainties in the precision of the Higgs
self-couplings, which are relevant when discussing sensitivity limits of different future colliders. We also
find that the quartic coupling of the above two classes of scenarios compatible with the strong first order
electroweak phase transition where the cubic coupling is not negligible can achieve a 2σ sensitivity at the
100 TeV pp collider. From this novel observation, we show that the correlation between the Higgs cubic
coupling and the quartic coupling will be useful for differentiating various underlying new physics
scenarios and discuss its prospect for the future colliders. Throughout our numerical investigation, the
contribution from the Goldstone boson is not included.
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I. INTRODUCTION

The baryon asymmetry of the universe remains a
challenging mystery. An explanation of the baryon asym-
metry based on the strong first order electroweak phase
transition (SFOEPT) of the Higgs potential is a commonly
explored option. A motivation for pursuing this idea is
partly related to the fact that a large deviation of the
Higgs self-coupling with respect to the Standard Model
(SM) value is still phenomenologically allowed [1–3].
A reconstruction of the global picture of the Higgs potential
via the Higgs self-coupling measurement is of utmost
importance for a better understanding of the nature of
the electroweak phase transition as well as the dynamics of
the electroweak symmetry breaking (EWSB).

The electroweak baryogenesis (EWBG) based on the
SFOEPT is an attractive way to explain the baryon asym-
metry [4]. Today, electroweak symmetry is broken but in the
early universe it was electroweak symmetric [5–8]. About
10−11 s after the big bang, the universe undergoes a phase
transition from the electroweak symmetric (unbroken) phase
to the asymmetric (broken) phase. This leads to the
formation and expansion of bubbles of the true vacuum
configuration into the false one if the phase transition is the
first order [5,6]. If there exists CP violation, particle
interactions with an expanding bubble may create a baryon
asymmetry in the vicinity of the bubble via the baryon
number violating process induced by the sphaleron. The
generated baryon asymmetry near the bubble will enter into
the bubble as it expands. However, the baryon asymmetry
would have been washed out if the sphaleron process inside
the bubbles is not sufficiently suppressed. This requires that
the phase transition needs to be strongly first order for the
successful EWBG based on the SFOEPT. While a realistic
EWBG scenario requires a large enough CP violation as one
of the Sakharov conditions for the EWBG to be realized [9],
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we will focus in this work only on the plausibility for having
a strong first order electroweak phase transition in the Higgs
potential [10–12] (for a recent review, see Ref. [13]).
A tight correlation between the Higgs cubic coupling and

the dynamics of electroweak phase transition has been
explored in several beyond the SM (BSM) scenarios in the
context of the EWBG, and it has been shown that these
models can be tested at future colliders via the cubic
coupling measurement [14–17]. The effective potential at a
finite temperature is the main theoretical tool to check the
compatibility of BSM scenarios with the SFOEPT, but
there have been some variations in the form of the effective
potential that has been used in their analyses. For a
successful EWBG, the phase transition must be strongly
first order. The criterion for baryon number preservation
that requires the suppression of the sphaleron process is
approximated by the threshold value of vc=Tc. Here vc is
the critical Higgs vacuum expectation value (VEV) at
critical temperature, Tc. The uncertainty in the precision
calculation of baryon number asymmetry is reflected in the
range of vc=Tc ≳ 0.6–1.4 used in literature instead of a
unique threshold value (e.g., see [18]). This approximate
ratio has been used to claim that the phase transition is
strongly first order.1 In this work, we aim to study in detail
the impact on the precision of the Higgs self-couplings
caused by the ambiguity in the form of the effective
potential and by the finite range of vc=Tc values. We will
show that the uncertainty on the Higgs self-coupling due
to the various ambiguities can be as big as Oð1Þ and that
there can also be a dramatic impact on the prospect for the
future colliders. To this end, we will consider two classes of
BSM scenarios that have been extensively considered in
literature: a Higgs portal with a singlet scalar2 [17,19–28]
and an effective field theory (EFT) approach with higher-
dimensional operators [15,29–32]. For the EFT approach,
we will not only consider the case only with dimension-
six operator, jHj6, but also extend to the scenario where
all higher-dimensional operators, jHj4þ2n (n ≥ 1), are
resummed up to the infinite order in the Higgs field
[15].3 In particular, universal Wilson coefficients are
assumed and the EFT description will be valid even when
coefficients deviate largely, provided the energy is well
below the cutoff scale.

The quartic coupling in the context of EWBG based
on the SFOEPT has not been well studied. This is mainly
because the production channels that directly access
this coupling have a very small production cross section
[34–40]. We make the novel observation that there is a large
parameter space for SFOEPT in the commonly explored
BSM scenarios, where the quartic coupling can deviate
with respect to the SM one by a factor of Oð1–10Þ. We
found it very illuminating to study the strength of the
electroweak phase transition in the cubic versus quartic
Higgs self-coupling plane as it highlights the utility of the
quartic coupling as a way to disentangle various BSM
scenarios. In particular, if the deviation of the cubic
coupling with respect to the SM one is not negligible,
then the measurement of Higgs quartic coupling is palpable
in the future colliders [37,40,41]. This can serve as a
discriminator among different underlying models respon-
sible for the electroweak phase transition.
Our paper is organized in the following way. In Sec. II,

we define two prescriptions for the effective potential at a
finite temperature that differ by the use of the high-
temperature approximation of the thermal potential. We
then briefly discuss the thermal potential in various temper-
ature limits. We first focus our attention to the benefit of
using the series sum of Bessel functions of the second kind
for thermal potential computation. This approximation
reproduces the exact evaluation for the entire temperature
range when a large number of terms are included—we
choose n ¼ 50 in this work. In Sec. III, we introduce two
types of benchmark scenarios: the Higgs portal with a
singlet scalar with Z2 symmetry and the effective field
theory approach with higher-dimensional operators. In
Sec. IV, we explore the commonly used criteria for the
SFOEPTand review related issues. We scan the variables of
the benchmark BSM scenarios to identify the compatible
parameter space with SFOEPT. In each benchmark sce-
nario, we examine the relationship between the cubic
and quartic couplings. Finally, we present the prospects
for the Higgs self-couplings at the future colliders. In the
course of our discussion in Sec. V, we comment on the
issue regarding the validity of the effective potential,
mainly caused by the high-temperature approximation
of the thermal potential and vc=Tc values in a finite range.
We conclude in Sec. VI.

II. EFFECTIVE POTENTIAL IN FINITE
TEMPERATURE

The dynamics of the electroweak phase transition is
governed by the finite-temperature effective action, SeffðTÞ,
where T is the temperature. The SeffðTÞ reduces to an
integral over the effective potential Veffðϕj; TÞ, which is
the free energy density for fields, ϕi (where i ≥ 1). A one-
loop effective potential, which we explore in this work, is
[42–45] (see [46] for a related discussion)

1As will be discussed in Sec. IV, a similar ambiguity exists in
the determination of the nucleation temperature and the Higgs
VEV, denoted by TN and vN , in a more sophisticated treatment of
the criteria for the SFOEPT (see [19] for a related work).

2Note that we are interested in exploring the case which is
difficult to falsify. That is, a nightmare scenario of a Z2 symmetric
singlet scalar extension of SM is of interest for us as it is the
scenario of which we need to take care in order to cover the whole
possible scenarios relevant for the SFOEPT.

3Unlike the case in [15], we keep the universal Willson
coefficient as the free parameter while taking into account the
power counting in the strongly interacting light Higgs (SILH)
basis [33] (see Sec. III B).
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Veffðϕi; TÞ≡ V treeðϕiÞ þ VCWðm2
i ðϕÞ þ ΠiÞ

þ VTðm2
i ðϕÞ þ Πi; TÞ; ð1Þ

where Πi is thermal masses (or Debye masses). It was
pointed out in [47,48] that the effective potential in Eq. (1)
is not theoretically consistent in that it miscounts the two-
loop daisy diagrams. The first term V tree is the tree-level
SM Higgs potential augmented by BSM features that
we will discuss in detail later. The second term VCW is
the one-loop Coleman-Weinberg potential [49]. Using an
on-shell renormalization scheme in the Landau gauge,
it is given by

VCWðm2
i ðϕÞ þ ΠiÞ

¼
X

i

ð−1ÞFi
gi

64π2

�
m4

i ðϕÞ
�
log

m2
i ðϕÞ þ Πi

m2
i ðvÞ þ Πi

−
3

2

�

þ 2ðm2
i ðϕÞ þ ΠiÞðm2

i ðvÞ þ ΠiÞ
�
; ð2Þ

where the sum runs over the SM particles including the
Goldstone bosons and BSM particles. The degrees of
freedom for each particle is gi with Fi being the fermion
number. The expression for VT, the thermal potential at
finite temperature, is defined as

VTðm2
i ðϕÞ þ Πi; TÞ

¼
X

i

ð−1ÞFi
giT4

2π2

Z
∞

0

dxx2

× log
h
1 ∓ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðm2

i ðϕÞ þ ΠiÞ=T2

q �i
; ð3Þ

where the integral with a “−=þ” sign denotes the thermal
bosonic/fermionic function. The exact thermal mass is
computed by solving finite-temperature gap equations
properly, which is beyond the scope of this paper. We
simply take the leading contribution in temperature to
thermal mass (which amounts to the resummation of daisy
diagrams) in the high-temperature limit. We call the recipe
in Eq. (1) with truncated thermal masses prescription A.
In a fully consistent high-temperature expansion, the

thermal potential should also be approximated accordingly.
In this approximation, VT effectively splits into the
one-loop thermal potential without thermal mass and
the IR divergent piece, known as ring-term Vring, which
counts zero modes of the Debye masses [45,50]. The
effective potential with this self-consistent high-temper-
ature approximation will be referred to as prescription B,
which is defined as

Veffðϕ; TÞ≡ V treeðϕÞ þ VCWðm2
i ðϕÞÞ þ VTðm2

i ðϕÞ; TÞ
þ Vringðm2

i ðϕÞ; TÞ; ð4Þ

where the one-loop Coleman-Weinberg potential is the
familiar expression

VCWðm2
i ðϕÞÞ ¼

X

i

ð−1ÞFi
gi

64π2

�
m4

i ðϕÞ
�
log

m2
i ðϕÞ

m2
i ðvÞ

−
3

2

�

þ 2m2
i ðϕÞm2

i ðvÞ
�
; ð5Þ

and the ring term is given by

Vringðm2
i ðϕÞ; TÞ

¼
X

i

T
12π

Tr½m3
i ðϕiÞ − ðm2

i ðϕÞ þ Πið0ÞÞ3=2�: ð6Þ

The thermal potential for fermions and bosons is written as

VTðm2
i ðϕÞ; TÞ ¼

X

i

ð−1ÞFi
giT4

2π2
JB=F

�
m2

i ðϕÞ
T2

�
; ð7Þ

where the loop functions, JB=F are given in the high-
temperature expansion, α ¼ m=T ≪ 1 [7],

JBðα2Þ ¼
Z

∞

0

dxx2 ln
�
1 − e−

ffiffiffiffiffiffiffiffiffi
x2þα2

p �

∼
π2

12
α2 −

π

6
α3 −

π4

45
−

1

32
α4 ln

�
α2

ab

�
;

JFðα2Þ ¼
Z

∞

0

dxx2 ln
�
1þ e−

ffiffiffiffiffiffiffiffiffi
x2þα2

p �

∼ −
π2

24
α2 þ 7π4

360
−

1

32
α4 ln

�
α2

af

�
; ð8Þ

where ab ¼ 16π2 expð3=2 − 2γEÞ and af ¼ π2 expð3=2−
2γEÞ.4 Note that JB from bosons has a T-dependent cubic
term which can induce a first order phase transition via
thermal effects [51]. The sign of the α3 term is undeter-
mined and a flip of the sign can dramatically change
conclusions.
Another variation of the effective potential takes the

similar form to Eq. (4) except that thermal potential VT
is not expanded to be valid in a larger domain of m=T.
We call it prescription C.
The low-temperature approximation [51], namely

α ¼ m=T ≫ 1, yields the following analytical expressions:

JBðα2Þ≡ JBðα2; nÞ ¼ −
Xn

k¼1

1

k2
α2K2ðαkÞ;

JFðα2Þ≡ JFðα2; nÞ ¼ −
Xn

k¼1

ð−1Þk
k2

α2K2ðαkÞ; ð9Þ

4log ab ∼ 5.4076 and log af ∼ 2.6350.
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where K2 is the modified Bessel function of the second
kind. The series in Eq. (9) are uniformly convergent for all
positive α2. It is possible to combine two approximations in
Eqs. (8) and (9) to define a single piecewise function that
covers the entire m=T range for a relatively small n [46].
However, we find that the low-temperature approximation
in Eq. (9) with n of order a few tens gives a very good
agreement with the exact evaluation, even for near-zero
m=T values. This implies that the low-T approximation
with a sufficiently large n can replace the exact evaluation
for the entire range of the argument. An additional
advantage of using a low-temperature approximation with
large n is the better agreement with the exact method, even
for a large negative m2=T2, as compared to the piecewise
function. Throughout our simulation, we adopt the analytic
expressions in Eq. (9) with n ¼ 50 as the replacement of
the exact thermal potential in the prescriptions A and C. We
will use the effective potential using the above-mentioned
three prescriptions in the context of two different BSM
scenarios. While these prescriptions differ in forms of the
thermal potential approximations, which prescription suits
the case better should depend on the typical values of m=T
ratios in the integrals in the domain of interest for SFOEPT.
A related issue is illustrated in Fig. 1 for the bosonic and
fermionic thermal potentials. It is evident in Fig. 1 that the
high-temperature approximation starts breaking down
roughly around m=T ≳ 2 above which the low-temperature
approximation with just n ¼ 1 matches with the exact
contribution. When it comes to the SFOEPT in BSM
scenarios where usually larger values of m=T above the
breaking point are likely, using the high-temperature
approximation introduces Oð1Þ uncertainties in evaluating
the thermal potential (as we will show in the following
sections). In this sense we see that our “prescription A” is
more accurate as it does not expand the thermal potential in
m=T when it is not small. However, the “prescription B”
might be considered the more consistent choice in terms of
the consistency of the high-temperature approximation.

The gauge (in)dependence of the effective potential at
finite temperature is an important issue (or source of
uncertainty) that has not been firmly established (see
[18,52] for a related discussion). Addressing this issue
even numerically is beyond the scope of our work. While
we adopt the on-shell renormalization scheme for the
effective potential, the MS scheme is another option. See
[17] for the discussion of the scheme dependence in the
Higgs portal scenario.

III. BENCHMARK SCENARIOS

We focus on two classes of benchmark scenarios that
have been extensively considered in the literature. For the
first scenario, SM is extended to include a real singlet scalar
with Z2 symmetry via renormalizable interactions, and in
the second, SM is extended to include higher-dimensional
operators. In both scenarios, the one-loop effective poten-
tials are computed using two prescriptions introduced
in Sec. II.

A. Higgs portal with a singlet scalar

This scenario has been well studied in a variety of
different contexts [14,17,20,21,23–26,53–56]. We restrict
to the case of a Higgs portal with a real singlet scalar,
denoted by S, under the SM gauge group that respects the
discrete Z2, to avoid the mixing with the Higgs field. The
singlet mass is assumed to be larger than mh=2 in order
to evade the constraints from exotic Higgs decay searches.
We take the exact Z2 symmetric case for simplicity even
though Z2 can be softly broken in certain scenarios,
allowing S to decay to SM particles. Such a model provides
the so called “no-lose” theorem for testing EWBG in future
colliders, as it is the most phenomenologically challenging
case; i.e., it can be probed only in the future collider
searches via measurements of the Higgs potential. Tree-
level potential in the unitary gauge takes the form

FIG. 1. A contribution to the thermal potential, VT , from a fermion (left) and boson (right) as a function of m=T, in the high-T
approximation (black-dashed line), low-T approximation in Eq. (9) (red-dashed line) with n ¼ 1, and in the exact form (black-solid
line). The dotted-blue line is the low-T approximation with the approximated K2 as in [51].
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V tree¼−
μ2

2
h2þ λ

4
h4þ1

2
λHSh2S2þ

1

2
μ2SS

2þ1

4
λSS4; ð10Þ

where h is the electromagnetic neutral real component of
the Higgs doublet. The EWSB occurs when μ2 > 0, giving
rise to the EWSB minimum for the Higgs, hhi ¼ v ¼
μ=

ffiffiffi
λ

p
≈ 246 GeV. One among the three Lagrangian

parameters, μS, λHS; λS, related to the singlet can be traded
for the physical singlet mass, mS. The potential at large
fields can be approximated to

V tree ≈
λ

4
h4 þ 1

2
λHSh2S2 þ

1

4
λSS4

¼ 1

4

h� ffiffiffi
λ

p
h2 −

ffiffiffiffiffi
λS

p
S2
�
2 þ 2h2S2

�
λHS þ

ffiffiffiffiffiffiffi
λλS

p �i
:

ð11Þ

The stability of the potential at large fields, or avoiding
negative runaway directions in the potential, requires
λ > 0; λS > 0, and λHS > −

ffiffiffiffiffiffiffi
λλS

p
.

In the early universe at a very high temperature, the
temperature dependent mass term dominates the effective
potential, and the global minimum occurs at the electro-
weak symmetry preserving point, or ðhhi; hSiÞ ¼ ð0; 0Þ. As
the universe cools down, EWSB global vacua can develop
away from the symmetric point. The phase transition can
proceed in two different ways in this scenario, assuming
that our global vacua is always ðv; 0Þ. The first possibility is
the direct transit from ðhhi; hSiÞ ¼ ð0; 0Þ to the global
minimum ðv; 0Þ, called the one-step phase transition. This
occurs when μ2S > 0, and in the event λHS < 0, λS gets a
lower bound to prevent the negative runaways. However,
the singlet quartic, λS, mildly affects the effective potential
as it only enters the Debye mass terms for the singlet. We
parametrize the one-step phase transition effectively in
terms of two relevant parameters,mS and λHS, while setting
λS ¼ 0 in our numerical simulations. Alternately, it is also
possible for the singlet to acquire a VEV at some point in
the cosmological history while the Higgs is still in an
unbroken phase; thus a local minima develops at
ðhhi; hSiÞ ¼ ð0; wÞ. As the universe evolves, the EWSB
finally occurs, ensuring that ðv; 0Þ is the global minimum.
This case is called the two-step phase transition. The singlet
gets a VEVwhen μ2S <0. Demanding Veffð0;wÞ>Veffðv;0Þ
at zero temperature ensures that ðv; 0Þ is the global vacua,
and it puts a lower bound on the singlet quartic as

λS ≥ λ
μ4S
μ4

≡ λS min: ð12Þ

The scalar sector masses exhibit field dependence on
both h and S. The diagonalized masses of the scalar sector
enter the one-loop masses, mi, where i ¼ h; S. In both

possibilities of the transition history, the upper limit on λS is
set by the perturbativity.
It would be interesting to explore if an exactly Z2-

symmetric scalar singlet, S, in the Higgs portal can also
partly account for the dark matter abundance [17].

B. Effective field theory approach

We will consider the possibility of SFOEPT in the
context of the effective field theory [14,15,29,31,57,58].
We proceed with the assumption that Higgs belongs
to the linear representation of the SUð2Þ gauge group.
Furthermore, we have assumed that the Higgs is realized as
a Goldstone boson. We first focus on one type of dimen-
sion-six operatorO6 ∼ jHj6 in the SILH basis [33] with the
same normalization as in Ref. [59],

ΔL ¼ c6
v2

m2
h

2v2
jHj6: ð13Þ

The Higgs trilinear coupling, in principle, is also modified
by the OH ∼ ð∂μjHj2Þ2 operator, which is strongly con-
strained by the current Higgs coupling measurements and
the electroweak precision measurements [60]. Our consid-
eration is suitable for a new physics scenario with
OH ≪ O6, which we will briefly discuss later in this
subsection. As the current LHC has a poor sensitivity on
the Higgs self-coupling, a large deviation of theO6 is still a
viable option for the new physics such as the SFOEPT.
With the O6 operator in Eq. (13) added to the SM Higgs
potential, the tree-level potential in terms of h is

V tree ¼ −
μ2

2
h2 þ λ

4
h4 þ 1

8

c6
v2

m2
h

2v2
h6: ð14Þ

The Higgs VEV is determined by the equation

−μ2 þ λh2 þ 3c6m2
h

8v4
h4j

h¼v
¼ 0: ð15Þ

The physical Higgs mass is obtained by d2V treeðhÞ=dh2jh¼v,

m2
h ¼ −μ2 þ 3λv2 þ 15

8
c6m2

h ¼ 2λv2 þ 3

2
c6m2

h; ð16Þ

which determines the quartic coupling as a function of the
m2

h, v, and c6,

λ ¼ m2
h

2v2

�
1 −

3

2
c6

�
: ð17Þ

The bare mass squared as a function of them2
h and c6 can be

written as

−μ2 ¼ −
m2

h

2

�
1 −

3

4
c6

�
: ð18Þ
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Using Eqs. (17) and (18), the field-dependent Higgs mass
term that goes into the effective potential is given by

m2
hðhÞ ¼ −

m2
h

2

�
1 −

3

4
c6

�
þ 3

2
m2

h

�
1 −

3

2
c6

�
h2

v2

þ 15

8
c6m2

h
h4

v4
: ð19Þ

The cubic and quartic couplings at tree level are given by

λ3 ¼
d3V treeðhÞ

dh3

				
h¼v

¼ 6λvþ 15

2

c6m2
h

v
¼ 3m2

h

v
ð1þ c6Þ;

λ4 ¼
d4V treeðhÞ

dh4

				
h¼v

¼ 6λþ 45

2

c6m2
h

v2
¼ 3m2

h

v2
ð1þ 6c6Þ:

ð20Þ

In our normalization, c6 is literally the deviation of the cubic
coupling from the SM value,

λ3
λ3SM

− 1 ¼ c6;
λ4
λ4SM

− 1 ¼ 6c6: ð21Þ

The relation between the cubic coupling and c6 is linear with
the choice of our normalization of the O6 operator, and the
same is true for quartic coupling. Even though the corre-
lation between λ3 and λ4 is an interesting observation, this
relation holds only at the level of dimension-six operators,
e.g., adding a dimension-eight operator could break the
relation. When assuming T dependence only in the Higgs
mass parameter as in [15,29], the constraint on c6 compatible
with the first order (either strong or weak) phase transition
can be analytically obtained [15],

2

3
< c6 < 2: ð22Þ

While we will be exploring the viable parameter space of c6
with the full effective potential, the Oð1Þ deviation in
Eq. (22) is already alarming from the EFT viewpoint, and
the truncation at the level of the dimension-six operators may
not be well justified. The effect from the dimension-six
operators will be order Oðμ2EW=Λ2Þ, as the electroweak
phase transition occurs around the electroweak scale, μEW.
A large modification of the Higgs potential from the
SM for the SFOEPT would imply a large EFT coefficient,
compared to its naive dimensional analysis (NDA) estimate,
or equivalently a low cutoff scale for the NDA-sized
coefficient.
A large deviation of the trilinear coupling or a large

size of the O6 operator in the linear representation, while
suppressing the remaining operators to be consistent with
the current Higgs data, is usually not a generic feature of the
EFT. However, there are a few well motivated scenarios that
could give a parametric hierarchy between O6 and OH,

which was discussed in [59]. Here, we will assume that the
new physics sector is broadly characterized by one cou-
pling g� and one mass scale Λ, associated with the new
states. When the Higgs is assumed to be a generic
composite state, not being a Goldstone boson, the O6

can be bigger than OH by the factor g2�=λ4. Basically, the
suppression of the O6 operator by λ4=g2� which accounts
for the shift symmetry breaking is undone. Another
alternative is to couple the Higgs to a strongly coupled
sector via the Higgs portal, or λjHj2O. When the operatorO
in the strongly coupled sector is characterized by one strong
coupling and one scale, it can be shown that the ratio ofO6

to OH can get enhanced by the factor λ=λ4.
When the cutoff scale, for a given power counting,

is dangerously low or the coefficient of the higher-
dimensional operator is large for the SFOEPT, the trunca-
tion at the level of dimension-six operators may cause a
large uncertainty, as it is not well justified to ignore all the
higher-dimensional operators. In such a situation, the EFT
approach with resummed operators is a good illustration to
represent a possible qualitative behavior of the scenario
where the validity of EFT expansion is guaranteed.5 While
this type of the EFT might not be readily matched to a
concrete UV model, this is one of the few examples where
the EFT description is valid provided the energy is well
below the cutoff scale, E < Λ. This type of EFT can be
described as follows.
The generic Higgs potential in the EFT approach can be

written as

V tree ¼ −μ2jHj2 þ λjHj4 þ
X∞

n¼1

c4þ2n

v2n
m2

h

2v2
jHj4þ2n: ð23Þ

We have chosen the normalization in Eq. (23) such that
the NDA estimates of the coefficients scale like c4þ2n ∼
ðv=fÞ2n where the factor f is defined as f ≡ Λ=g�. Using
the parametrization H ¼ ð0; h= ffiffiffi

2
p ÞT , the above potential

becomes

V tree ¼ −
μ2

2
h2 þ λ

4
h4 þ

X∞

n¼1

c4þ2n

v2n
m2

h

2v2

�
h2

2

�
2þn

: ð24Þ

Assuming that all the Wilson coefficients are universal (and
therefore, it would require only one counterterm for all
higher-dimensional operators for the renormalization),
while employing NDA scaling for all the universal coef-
ficients, namely, c4þ2n ¼ cðv=fÞ2n with c ∼Oð1Þ, all
higher-dimensional operators up to infinite order in the
Higgs field can now be resummed to give

5Another aspect of the resummed EFT is that it matches to the
EFT in the nonlinear basis, up to resuming over the Higgs powers
and expanding them in terms of the neutral Higgs h, which can
accommodate the large deviations from the SM values.
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V tree ¼ −
μ2

2
h2 þ λ

4
h4 þ 1

8

c
f2

m2
h

2v2
h6

1

1 − h2

2f2
: ð25Þ

Analogous to the case of the dimension-six operator,
the Higgs VEV is determined by the equation
dV treeðhÞ=dhjh¼v ¼ 0 of the tree-level potential and the
physical Higgs mass by d2V treeðhÞ=dh2jh¼v ≡m2

h. The bare
mass parameter and the quartic coupling in terms of
physical Higgs mass and Higgs VEV along with c and f
[or ξ≡ ðv=fÞ2] are determined to be

−μ2 ¼ −
m2

h

2

�
1 −

3

4
c

ξ

1 − ξ=2
−
5

8
c

ξ2

ð1 − ξ=2Þ2

−
1

8
c

ξ3

ð1 − ξ=2Þ3
�

ð26Þ

and

λ ¼ m2
h

2v2

�
1þ c

�
1 −

1

ð1 − ξ=2Þ3
��

: ð27Þ

The field-dependent Higgs mass term is given by

m2
hðhÞ¼−μ2þ3λh2þm2

h

ξ

X∞

n¼1

c
2nþ2

ðnþ2Þð2nþ3Þ
�
h
f

�
2nþ2

¼−
m2

h

2

�
1−

3

4
c

ξ

1−ξ=2
−
5

8
c

ξ2

ð1−ξ=2Þ2

−
1

8
c

ξ3

ð1−ξ=2Þ3
�
þ3

2
m2

h

�
1þc

�
1−

1

ð1−ξ=2Þ3
��

h2

v2

þcm2
hξ
15

8

h4

v4
1− 17

30
ξh

2

v2þ 1
10
ξ2 h

4

v4

ð1−ξ h2

2v2Þ3
: ð28Þ

We find that the Goldstone boson mass is given by

m2
χðhÞ ¼ −μ2 þ λh2 þm2

h

ξ

X∞

n¼1

c
2nþ2

ðnþ 2Þ
�
h
f

�
2nþ2

: ð29Þ

The thermal mass in the high-T approximation can easily
be obtained by using the above-mentioned field dependent
masses into Eq. (8). The additional contribution to the
thermal mass from the higher-dimensional operators with
universal Wilson coefficients is given by

ΔΠh=χð0Þ ¼
1

2
c

�
1 −

1

ð1 − ξ=2Þ3
�

m2
h

2v2
T2: ð30Þ

The cubic and quartic couplings at tree level are

λ3 ¼
d3V treeðhÞ

dh3

				
h¼v

¼ 3m2
h

v

�
1þ 16c

ξ

ð2 − ξÞ4
�
;

λ4 ¼
d4V treeðhÞ

dh4

				
h¼v

¼ 3m2
h

v2

�
1þ 32c

ð6þ ξÞξ
ð2 − ξÞ5

�
: ð31Þ

It is interesting to note that the deviation of the quartic
coupling is 2ð6þ ξÞ=ð2 − ξÞ times bigger than that of the
cubic coupling, that is,

λ3
λ3SM

− 1 ¼ 16c
ξ

ð2 − ξÞ4 ;

λ4
λ4SM

− 1 ¼ 32c
ð6þ ξÞξ
ð2 − ξÞ5 ¼ 2

6þ ξ

2 − ξ
× 16c

ξ

ð2 − ξÞ4 : ð32Þ

In the limit f → v (or ξ → 1), the ratio 2ð6þ ξÞ=ð2 − ξÞ
reaches a maximum value,

λ3
λ3SM

− 1 ¼ 16c;
λ4

λ4SM
− 1 ¼ 14 × 16c; ð33Þ

where the deviation of the quartic coupling appears 14
times bigger than the deviation of the cubic coupling.
While we highlighted the tree-level relations between

cubic and quartic couplings in Eqs. (20) and (31) that look
very different from the Higgs portal case, throughout our
simulation, the cubic and quartic couplings are numerically
evaluated with the full effective potential (similarly for the
Higgs portal).

IV. STRONG FIRST ORDER ELECTROWEAK
PHASE TRANSITION AND HIGGS

SELF-COUPLING

A. On the criteria of strong first order
phase transition

There have been some ambiguities in the literature
pertaining to the exact criteria for SFOEPT. A quantity
commonly used is the ratio of the critical Higgs VEV to the
critical temperature, namely, vc=Tc, which simply checks
the existence of the degenerate vacua at Tc. The threshold
value of the vc=Tc has been used in a certain range (e.g.,
see [18]),

vc
Tc

≳ 0.6–1.4: ð34Þ

Once the degenerate vacua with the potential barrier is
formed, eventually it should transit from one vacuum to the
global vacua as the universe cools down. In a more
sophisticated treatment, the Euclidean action, S3, is com-
puted at a finite temperature, and we demand that the
Euclidean action suppressing the tunneling rate is smaller
than a certain value for the successful nucleation of the
bubble [48]. The corresponding temperature and the Higgs
VEV in this approach are denoted by TN and vN whose
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values are also used in a certain range. For instance, TN is
determined such that

S3

TN
∼ 100–140: ð35Þ

Addressing the phenomenological impact on the Higgs
self-coupling of this criteria involves the calculation of the
Euclidean action. The discrepancy between ðvc; TcÞ and
ðvN; TNÞ can depend on the structure of the effective
potential during the phase transition (see [19] for a recent
discussion on this aspect). While the overall ballpark of the
parameter space does not seem to make a significant
change under the variations mentioned above, there are
several overlooked aspects that we will address below. The
precision of the Higgs self-couplings is subject to the Oð1Þ
uncertainty, which can make a dramatic impact on the
prospect for future colliders. We will address these issues in
Sec. V in detail.

B. On the parameter space for strong first order
phase transition and Higgs self-couplings

In the scenario of the SM extension with the scalar
singlet as described in Sec. III A, the relevant parameters
are the singlet mass, mS, the coupling λHS between the
Higgs and the singlet, and the scalar singlet quartic
coupling λS. For the one-step phase transition the quartic
coupling λS does not play much of a role directly in the
phenomenology apart from ensuring the stability of the
potential at a large field. In our simulation of the one-step
phase transition, we simply fix λS to zero and scan over the
bare singlet mass μS and the quartic coupling λHS in the
intervals μS ¼ ½10; 1310� GeV (in steps of 10 GeV) and
λHS ¼ ½0; 5� (in steps of 0.05). In contrast, when the phase
transition proceeds via a two-step cascade, the λS needs to
stay above the minimum λmin

S in Eq. (12) so that ðv; 0Þ
remains the global minimum. We perform a scan only over
mS and λHS in the intervalsmS ¼ ½65; 700� GeV (in steps of
5 GeV) and λHS ¼ ½0; 5� (in steps of 0.05) for a few choices
of λS, parametrized as λS ¼ λmin

S þ δS. We assume that the
singlet mass is heavier than roughly mh=2 to avoid the
Higgs decays to the singlet scalar. We impose arbitrary
hard cutoffs on the quartic couplings, namely λHS < 5 and
λS < 5 (smaller than 4π which is the typical unitarity
bound), to avoid the strongly coupled regime. On the other
hand, in the EFT approach with the O6 operator described
in Sec. III B, we scan over c6 in the interval c6 ¼ ½0; 4� (in
steps of 0.025). For the specific case where all higher-
dimensional operators can be resummed up to infinite order
in the Higgs field, the universal Wilson coefficient c is
coarsely scanned over c ¼ ½0; 5� (in steps of 0.05) along
with ξ≡ ðv=fÞ2 scanned over in the interval ξ ¼ ½0; 1� (in
steps of 0.02). For the special limit f → v (or ξ → 1), we
make a separate fine-grid scan over c in the window [0, 0.3]
(in steps of 0.002). Throughout all our simulations, we do

not include the Goldstone bosons (in the Landau gauge) in
the effective potential.6

The viable parameter space for SFOEPT satisfying
vc=Tc ≥ 1 in two classes of scenarios are shown in
Fig. 2. For the illustration in Fig. 2, we chose prescription
A where the finite temperature potential is computed
exactly, while the thermal mass entering into the potential
is obtained using the high-T approximation. In the plot on
the left, we see that the Higgs portal with the scalar singlet
becomes a plausible option for SFOEPT only for a strong
coupling λHS ∼Oð1Þ when it proceeds via one-step phase
transition. This corresponds to a region of parameter space
where a naive approach based on the one-loop effective
potential requires a careful treatment—the higher loop
corrections to the one-loop Coleman-Weinberg potential
may become large and the reliability of perturbative
analysis may break down. Three dashed lines in the left
panel of Fig. 2 represent a few rough estimates of the loop
contribution to the Higgs quartic coupling.7 The issue of the
strong coupling is a bit ameliorated for the case of the two-
step phase transition as the SFOEPT can be realized for a
wide range of coupling sizes including the small coupling
region. However, the perturbative region is still limited due
to the constraint on the minimum quartic coupling of the
singlet, λS ≥ λmin

S . In the left panel of Fig. 2, the corre-
sponding region to 5 > λmin

S > 0 appears as a narrow strip.
In the presence of a strong coupling, especially for the
finite-temperature quantum field theory, a consistent treat-
ment of the effective potential involves a thermal resum-
mation of various types of diagrams, which is beyond the
scope of this work (see [46] for a recent discussion). A
systematic approach for the power counting and thermal
resummation remains to be developed to correctly address
the plausibility of the SFOEPT.
In the middle panel of Fig. 2, we find that the coefficient

of the dimension-six operator for SFOEPTwith vc=Tc ≥ 1
criteria appears to have a large deviation, c6 ∼Oð1Þ.
As aforementioned, a large coefficient is alarming from
the EFT perspective, and the truncation at the level of the
dimension-six operators should be taken with a grain of

6However, we have checked, using the approximate prescrip-
tion adopted in [61] in our prescription A, that the contribution
from the Goldstone bosons for the one-step phase transition in the
Higgs portal scenario and for the EFT approach with higher-
dimensional operators have only a mild effect. The effect from the
Goldstone bosons is found to be small in [62] as well, using an
alternative prescription for treating Goldstone bosons in the
Higgs portal scenario. Similarly, we find that the contribution
from the Higgs is almost negligible for the one-step phase
transition in the Higgs portal scenario and for the EFT approach
with the O6 operator.

7These three lines were drawn based on the formula in
Eqs. (3.2) and (3.3) in [17]. We intend to use these contours
as the guideline for the rough estimate of higher-loop contribu-
tions to the effective potential at zero temperature, and we do not
impose this on our parameter space.
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salt. Given a large coefficient of the dimension-six operator,
dimension-eight operators or higher may not be ignored,
and the presence of higher-dimensional operators with non-
negligible coefficients may change the details of the
physics relevant for the SFOEPT. A large value of c6
may indicate a strongly coupled new physics not far away
from the TeV scale although the exact translation depends
on the assumption of the UV completion. In the right panel
of Figs. 2 and 3, we show the result of the EFT approach
when all higher-dimensional operators with universal

coefficients are resummed to all orders in the Higgs field.
In the region of c ∼Oð1Þ in Fig. 2, the range of λ3=λ3SM
values satisfying vc=Tc > 1 is similar to the case only with
the dimension-six operator. The right panel of Fig. 2 shows
that the cubic coupling can deviate by a larger amount with
increasing ξ (equivalently to decreasing c as is evident in
Fig. 3). In the special limit f → v (or ξ → 1), the coefficient
c is well below one, or c ∼ ½0.14; 0.23�, and the overall
deviation of the cubic coupling reaches the maximum,
λ3=λ3SM ∼ ½3.45; 5.35� shown in the plot.8 The deviation of
the cubic coupling is much larger than the case with only
theO6 operator. In a situation where we observe λ3=λ3SM ∼
Oð1Þ deviation of the cubic coupling from the SM value, it
could be induced by various types of new physics models.
When the phenomenological disentanglement of various
new physics scenarios becomes challenging, the measure-
ment of the Higgs quartic coupling can be beneficial. As is
illustrated in Fig. 4, two different classes of scenarios based
on either the Higgs portal with a singlet scalar or the EFT
approach are widely separated in the ðλ3=λ3SM; λ4=λ4SMÞ
plane.9 Within the EFT approach, as was discussed in III B
and illustrated in Fig. 4, the relation between λ3=λ3SM and
λ4=λ4SM widely varies depending on the details of the
underlying models. While the resulting quartic coupling

FIG. 3. The viable (ξ, c) region for the EFT approach where all
higher-dimensional operators, jHj4þ2n (n ≥ 1), are resummed to
all orders in the Higgs field for universal Wilson coefficients
(blue dots)—a particular limit f → v (or ξ → 1) shown in green.

FIG. 2. Left: The viable ðmS; λHSÞ region for the one-step SFOEPT (red) and for the two-step phase transition (green) in prescription
A. The singlet quartic coupling is set to λS ¼ λmin

S (or δS ¼ 0) for the two-step phase transition in the plot. In the left panel, ðv; 0Þ is
assumed to be the global minimum. Light-blue (part of them covered by green) corresponds to the strip with 0 < λmin

S < 5, and the grey
region to λmin

S > 5. The three dashed curves denote the lower bound of perturbative limits, where the one-loop contribution to the Higgs
quartic coupling becomes 0.4, 0.5, or 0.6, respectively, from the bottom to the top. Middle: The viable (c6, λ3=λ3SM) region for the
SFOEPT in the EFT approach with the O6 operator. Right: Similar region for the EFT approach with the resummed jHj4þ2n (n ≥ 1)
operators with universal coefficients c (blue dots)—a particular limit f → v (or ξ → 1) shown in green. In all plots, the parameter spaces
are shown for vc=Tc > 1.

8Note that the blue points on top of the green line, in the right
panel of Fig. 2 (similarly for the left panel of Fig. 4), which
corresponds to the special limit ξ → 1 do not cover the entire
green line simply because of the coarse two-dimensional scan
over c and ξ.

9One should not take the Higgs self-couplings at face values in
Fig. 4 as they could be out of the EFT validity region in which
case their values are subject to Oð1Þ fluctuation.
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can still be in the perturbative regime for the singlet-
assisted BSM and the EFTonly with theO6 operator due to
the small λ4SM, the situation is likely pointing toward a
strongly coupled dynamics for the EFTwith the resummed
higher-dimensional operators. The latter case with a very
large quartic coupling might be constrained by other
means. For instance, the unitarity bound on the cubic
and quartic couplings were discussed in [63] and a
possibility of constraining models via the S and T electro-
weak precision parameters induced by large Higgs self-
couplings was considered in [64]. On the other hand, the
high-luminosity LHC (HL LHC) may have a sensitivity on
the order one deviation of the Higgs self-coupling as will be
discussed in detail in Sec. IV C. It implies that a large
fraction of the parameter space of the cubic coupling in
Fig. 4 can be tested at the HL LHC.
In two classes of benchmark scenarios that we consid-

ered in our study, the deviation of the Higgs self-couplings
compatible with the SFOEPT are positive. It will be
interesting to explore the BSM models that predict the
large negative deviation of the Higgs self-coupling as the
negative deviation has better sensitivity at the colliders.

C. Prospect for future collider

The measurement of the Higgs self-coupling at the LHC
is very challenging. The currently available projections of
the Higgs cubic coupling on the HL LHC assuming 3 ab−1

indicates too poor sensitivity at 95% C.L. [65–67] to test
any part of the parameter space shown in Fig. 4. However,
demanding the sensitivity at 68% C.L. may have a chance
to access a chunk of the parameter space in Fig. 4. It has
been shown in [59], using the same luminosity at the HL
LHC, that the sensitivity of λ3=λ3SM − 1 at 68% C.L. has
two intervals, ½−1.0; 1.8� ∪ ½3.5; 5.1� (see [68] for the
related discussion). The first interval around the SM value

can test the Higgs cubic coupling with order one deviation,
and this will exclude most EFT cases considered in this
work. Any improvement of the Higgs self-coupling at the
HL LHC will be beneficial in testing the BSM scenarios for
the EWBG based on the SFOEPT. The sensitivity of the
cubic coupling gets significantly improved at the 100 TeV
pp collider due to the increased signal rate, and its
sensitivity can reach up to the ∼3% level [40]. The cubic
coupling can also be accessed at the ILC, and its sensitivity
dominantly comes from the vector boson fusion (VBF)
process at the high center of mass energy. The VBF process
at 1 TeV, assuming that the integrated luminosity can reach
5 ab−1, can measure the cubic coupling up to ∼10% [69].
One might naively think that the measurement of the

quartic coupling is extremely difficult as the SM cross
section is tiny even at the 100 TeV pp collider. The cross
section σSMðpp → hhhÞ (before folding in Higgs decays)
at 100 TeV is a few fb. However, unlike a common lore that
there is no meaningful sensitivity for the Higgs quartic
coupling at the 100 TeV pp collider unless the deviation of
the quartic coupling from the SM is very large, the results in
[37,41] suggest that the 100 TeV pp collider would have a
meaningful sensitivity to the quartic coupling in a situation
where the deviation of the cubic coupling is as big as (or
bigger than) ∼40% (see Fig. 6 of [37] for the 2σ sensitivity
on the cubic and quartic couplings). As is evident in Fig. 4,
all EFT scenarios for the SFOEPT in this study can be well
differentiated by the quartic coupling at the 100 TeV pp
collider. Even for the Higgs portal with a real singlet scalar
that predicts rather a small size of the quartic coupling,
almost half of the quartic coupling compatible with the
SFOEPT can have a 2σ sensitivity at the 100 TeV pp
collider. Our novel observation highlights the utility of the
quartic coupling as a way to disentangle various BSM
scenarios for the SFOEPT. The analyses of hhh → bb̄bb̄γγ

FIG. 4. The correlation between the cubic and quartic Higgs self-couplings in two classes of BSM scenarios: the one-step SFOEPT in
the BSM with a singlet scalar (red) and the phase transition in the EFT approach with only the O6 operator (black) and with all the
higher-dimensional operators, jHj4þ2n (n ≥ 1), with universal coefficients (blue)—a particular limit f → v (or ξ → 1) shown in green.
The parameter spaces (except the light-purple region) are shown for vc=Tc > 1. The light-purple region is the corresponding region to
Eq. (22) using a crude high-T approximation. The middle (last) plot is the zoomed-in version of the left (middle) plot.
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[37] and hhh → bb̄bb̄τþτ− [41] also show that two differ-
ent channels are sensitive to the different regions in ðλ3; λ4Þ
space in such a way that they are complementary.10 While
the hhh → bb̄bb̄γγ channel has a better sensitivity on
the positive deviation of the quartic coupling for the case
with a positive large deviation of the cubic coupling, the
hhh → bb̄bb̄τþτ− channel has a better sensitivity on the
negative deviation of the quartic coupling for the same
deviation of the cubic coupling.

V. VALIDITY OF EFFECTIVE POTENTIAL

Among several issues regarding the validity of the
effective potential, in this section, we will focus on the
issue caused by the breakdown of the high-temperature
approximation of the thermal potential and its impact or
uncertainty on the precision of the Higgs self-couplings. As
is evident in Fig. 2, the coupling λHS ∼Oð1Þ for the one-
step SFOEPT. For the two-step case, λHS can be a bit
relaxed, but still the region for perturbative λS is limited.
When the naive criteria for the SFOEPT is satisfied, or
vc ≳ Tc, with Oð1Þ coupling, the field dependent mass
parameter in the potential is not small compared to the
critical temperature, or

m2ðvcÞ
T2
c

∼Oð1Þ × v2c
T2
c
≳ 1; ð36Þ

which invalidates the high-T approximation. The exact
amount of the uncertainty depends on the degree of the
violation of the high-T approximation—the value of m=T
(e.g., m=T ∼ 2–5) shown in the first and second panels in
Fig. 5 indicates that the high-T approximation is not
appropriate for the one-step SFOEPT. Its violation is more
pronounced for the two-step SFOEPT. On the other hand, a
coupling with Oð1Þ strength can be the signal of the
breakdown of the perturbation theory.

The discrepancy between two prescriptions is very
pronounced in the values of the critical VEV and critical
temperature, as is seen in the third and fourth panels in
Fig. 5. Prescription A leads to a more focused region where
the VEV at the critical temperature is always smaller than
zero-temperature VEV, or vc ≲ v ¼ 246 GeV. The same
plots show that the critical temperatures in prescription A
are densely populated in the vicinity of Tc ∼Oð100Þ GeV.
We estimate the highest precision of the Higgs self-

couplings that future colliders need to achieve to rule out
the considered scenario. The situation is illustrated in
Fig. 6. The highest precision corresponds to the left
boundaries of both plots in Fig. 6 whose contributions
are due to the lower singlet masses11—exactly where the
high-temperature approximation relatively works the best
amongst viable parameter space in Fig. 6 and three
prescriptions agree well.12 Demanding vc=Tc ≳ 1 translates
to ∼15% deviation of the Higgs cubic coupling as the
smallest in all prescriptions as is seen in Fig. 6. As was
mentioned in Sec. IV C, the 15% precision can be achieved
in both the 100 TeV pp collider and ILC (via variety of
the processes). On demanding vc=Tc ≳ 0.6, ruling out the
scenario requires ∼5% precision of the Higgs cubic
coupling, and this precision can be achieved only at the
100 pp collider [40]. In other words, the exact numerical
criteria on the vc=Tc has a drastic impact on the prospect
for future colliders. An interesting question regarding this
observation will be to know if the vc=Tc has a preferred
value in this specific nightmare scenario instead of equally
probable values in the finite range.
In making plots in Fig. 6, we have included only the

bare singlet masses in the window μS ¼ ½10; 900� GeV.
While the contribution from higher singlet masses to the

FIG. 5. The discrepancy between prescriptions A and B for the one-step SFOEPT of the Higgs portal with a singlet scalar. The
mSðvcÞ=Tc vs λ3=λ3SM (left two plots), and Tc vs vc (right two plots) for the SFOEPT using two prescriptions.

10The exclusion plots in [37,41] are the 2σ sensitivity
contours—excluding at 68% C.L. will be much stronger.

11In the first two plots of Fig. 11 in Appendix A, we present
similar plots to Fig. 6 but including the contributions only from
the low mass range, μS ¼ ½10; 90� GeV, in both prescriptions.
They clearly show that the lower masses are responsible for the
vicinity of the smallest deviation of the Higgs cubic coupling.

12The typicalmsðvcÞ=Tc is roughly 2 along the left boundaries,
which indicates relatively good agreement between the high-T
approximation and the exact evaluation according to Fig. 1.
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vc=Tc ≳ ½0.6; 1.4� region naturally decouples around μS ∼
550 GeV in prescriptions A and C, a similar decoupling
does not occur in prescription B using the high-T approxi-
mation of the thermal potential.13 Instead, the higher

FIG. 7. The decoupling (nondecoupling) of the high singlet masses for one-step phase transition in prescription A (prescription B). In
all plots, the bare mass was scanned over the window μS ¼ ½10; 1310� GeV in steps of 10 GeV and λHS ¼ ½0; 5� (in steps of 0.05).

FIG. 6. The correlation between vc=Tc and λ3=λ3SM for one-step phase transition in three different prescriptions. The color is divided by
vc=Tc ¼ 1. In all plots, the bare mass was scanned over the window μS ¼ ½10; 900� GeV in steps of 10 GeV. The light-blue band represents
the variation of the highest precision of λ3=λ3SM corresponding to the variation of the criteria on vc=Tc in the interval vc=Tc ≳ ½0.6; 1.4�.

FIG. 8. A similar plot to Fig. 6 but with μS ¼ ½10; 1310� GeV.

13The nondecoupling behavior we found is not the same
nondecoupling issue addressed in the literature (see, e.g., [46],
where a different type of nondecoupling issue is mentioned): since
the high-temperature approximation enters into the effective
potential either indirectly via the truncated thermal mass or directly
via the approximated thermal potential itself, it reveals a different
form of nondecouplings. The nondecoupling of the heavy singlet
mentioned is about the truncated thermal mass at leading order in a
high-temperature approximation. Since the leading order thermal
mass is proportional to the temperature without depending on the
singlet mass, the thermal mass does not show the decoupling
behavior even when the singlet mass approaches infinity. This type
of nondecoupling universally exists in all prescriptions as long as
one uses the leading order thermal mass (as commonly done in
most literature). On the other hand, the nondecoupling of the heavy
singlet that we newly addressed in our work is apparent only in
prescription B, and it is a very different aspect of the high-
temperature approximation of the thermal potential.
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masses in prescription B continue to contribute to the
SFOEPT parameter space, as is seen in Figs. 7 and 8, and
severely affect the precision of λ3 when using rather
conservative criterion of vc=Tc > 0.6–0.9. If more com-
monly used vc=Tc > 1 is adopted as the criterion for the
SFOEPT, this problem will not affect the observable such
as the Higgs self-coupling. While the newly added region,
[900, 1310] GeV, corresponds to bigger msðvcÞ=Tc where
the high-T approximation fails badly (thus one should not
trust the result), it is interesting to observe that their
contribution severely distorts the left boundary of the plot
where the precision was previously set by the contribution

from lower singlet masses. For clarification, a separate plot
showing only the contribution from μS ¼ ½910; 1310� GeV
using prescription B is presented in the last panel of Fig. 11
in Appendix A.
We show the correlation between vc=Tc and λ3=λ3SM

for the EFTapproach with theO6 operator in Fig. 9. Similar
results for the EFT approach with resummed higher-
dimensional operators are presented in Fig. 10. As is
evident in Figs. 9 and 10, the viable parameter spaces in
two prescriptions look similar in the region of interest
although prescription A favors slightly larger values. For
instance, while we read off λ3=λ3SM ≳ ½1.66; 1.91� in Fig. 9

FIG. 10. The correlation between vc=Tc and λ3=λ3SM for the EFT approach with the resummed higher-dimensional operators with
universal coefficients in two different prescriptions. The color is divided by vc=Tc ¼ 1. The light-blue band represents the variation of
the highest precision of λ3=λ3SM corresponding to the variation of vc=Tc in the interval vc=Tc ≳ ½0.6; 1.4�—they are [1.77, 2.2] for
prescription A and [1.58, 2.12] for prescription B.

FIG. 9. The correlation between vc=Tc and λ3=λ3SM for the EFTapproach only with theO6 operator in two different prescriptions. The
color is divided by vc=Tc ¼ 1. The light-blue band represents the variation of the highest precision of λ3=λ3SM corresponding to the
variation of vc=Tc in the interval vc=Tc ≳ ½0.6; 1.4�.
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for vc=Tc ≳ ½0.6; 1.4� in prescription A, it becomes
λ3=λ3SM ≳ ½1.54; 1.85� in prescription B for the same
vc=Tc. For the EFT approach with the resummed higher-
dimensional operators, the corresponding values are
extracted from Fig. 10, and they are λ3=λ3SM≳ ½1.77;2.2�
in prescription A and λ3=λ3SM ≳ ½1.58; 2.12� in prescription
B. The similar results between two prescriptions are easily
understood since there is no large m=T parameter involved
in this scenario unlike the mSðvcÞ=Tc that became large in
the Higgs portal with a singlet scalar. The smallest deviation
of λ3 in the EFT approach which reads ∼60% can easily be
accessed by any future colliders unlike the situation of the
scenario with the singlet scalar which predicts ∼5%.

VI. CONCLUSION

In this paper, we have numerically examined a few issues
regarding the validity of the effective potential and its
implication on the Higgs self-couplings. Amongst several
issues that can cause non-negligible uncertainties in the
Higgs self-couplings, we have focused on the validity of
the high-temperature approximation and on the impact of
the threshold vc=Tc value in the range of [0.6, 1.4] on the
precision of the Higgs self-couplings. To this end, we have
adopted three prescriptions of the effective potential that
differ by the treatment of the thermal potential. We have
also explored the correlation between the Higgs cubic and
the quartic couplings in the scenarios where electroweak
phase transition is strongly first order. We have addressed
these subjects in the context of two types of BSM scenarios,
namely: (i) the Higgs portal with a singlet scalar with the
Z2 symmetry, and (ii) the EFT approach with higher-
dimensional operators.
We have shown that the precision of the Higgs self-

couplings behaves very differently under two prescriptions
for the case of the Higgs portal with the singlet scalar.
While the singlet mass contributing to the viable region
with the one-step SFOEPT naturally decouples at high
masses in the prescription using the exact evaluation of
the thermal potential, a similar decoupling does not happen
when using the high-T approximation of the thermal
potential with a rather conservative criterion of
vc=Tc ≳ 0.6–0.9. We demonstrate that the precision of
the cubic Higgs self-coupling that has to be achieved to rule
out a minimal singlet scalar case with the Z2 symmetry that
proceeds via one-step phase transition significantly varies
depending on the vc=Tc values. While demanding vc=Tc >
1ð1.4Þ requires the measurement of the coupling at ∼15%
(35%) precision which is achievable at various future
colliders such as ILC (via VBF process at higher c.o.m
energy) and the 100 TeV pp collider, more conservative
criteria, vc=Tc > 0.6, require ∼5% precision of the cubic
Higgs self-coupling which is likely plausible only at the
100 TeV pp collider.
We repeated similar exercises for the EFT approach.

We found that, unlike the Higgs portal scenario, the EFT

approach shows a similar pattern of the Higgs self-cou-
plings under all prescriptions in the region of interest,
namely, vc=Tc ≥ 0.6, except an overall shift of the
deviation of the Higgs self-couplings. We observe that
the prescription using the exact thermal potential favors
slightly higher deviation. The smallest deviation of
the trilinear Higgs self-coupling compatible with the
SFOEPT is found to be higher than about 60%, typically
δðλ3=λ3SMÞ ∼Oð1Þ. Therefore, the EFT approach explored
in this paper will be well tested in various future colliders.
We have pointed out that a large fraction of the parameter
space of the EFT approach can already be tested at the HL
LHC at 68% C.L.
We examined the correlations between λ3=λ3SM and

λ4=λ4SM in our benchmark scenarios when they are com-
patible with the SFOEPT. Interestingly, we found that the
various new physics scenarios for the SFOEPT not only
appear widely separated in the two-dimensional Higgs self-
coupling space, but also the actual coupling sizes can be
quite large enough for them to be tested via either direct or
indirect measurements. For instance, we show that the
quartic coupling, λ4=λ4SM, can reach a very large value as
big as Oð1–10Þ for the EFT approach where all higher-
dimensional operators are resummed assuming universal
coefficients. The deviations of both Higgs cubic and quartic
self-couplings in the Higgs portal scenario with a singlet
scalar is less pronounced. However, even in that case, we
found that about a half of the parameter space allowed for
the SFOEPT has a meaningful sensitivity for the Higgs
quartic coupling at the 100 TeV pp collider. And therefore,
the Higgs quartic coupling measurement will be relevant
for the study of the SFOEPT at the 100 TeV pp collider.
In this work, we have not considered the impact on the

Higgs self-couplings caused by the discrepancy between
the critical temperature, Tc, and the nucleation temperature,
TN , as well as the effect due to the finite range of S3=TN
which is used to determine TN . We have also not studied an
issue caused by the coupling λHS with order one strength at
the finite temperature in the context of our specific BSM
scenarios. Addressing the above issues requires a reliable
computation of the tunneling rate from the electroweak
symmetric vacua to the broken vacua in the first order phase
transition,14 the systematic classification of all non-negli-
gible thermal diagrams, and the resummation of those
diagrams [46]. Including all sources of uncertainties (as
well as what we have considered in this work) at the same
time to accurately estimate the impact of them on the
precision of the Higgs self-couplings will be an important
exercise to know the plausibility of testing BSM scenarios
in various future colliders.

14See [32,70] for the recent computations of the sphaleron in
the context of the composite (and nonstandard) Higgs models and
the EFT with dimension-six operators.
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APPENDIX A: ONE-STEP SFOEPT IN HIGGS PORTAL WITH A SINGLET SCALAR

In Fig. 11, we present similar plots to Fig. 6 but with the contributions from the mass region, μS ¼ ½10; 90� GeV in the
first two plots and with the contribution from the mass region, μS ¼ ½910; 1310� GeV, in the last plot.

APPENDIX B: HIGGS PORTAL WITH A SINGLET SCALAR IN PRESCRIPTION B

In Fig. 12 (Fig. 13), we present similar plots to Fig. 2 (Fig. 4) but made using prescription B. In prescription B, the
thermal potential in the high-T approximation is used as in Eq. (8). At a glance, the ballpark of the viable parameter space
for the SFOEPT looks similar to those obtained from prescription A. Looking at them closely we observe a few obvious

FIG. 11. The correlation between vc=Tc and λ3=λ3SM for one-step SFOEPT in two different prescriptions. The color is divided by
vc=Tc ¼ 1. In the first two plots (last plot), the bare mass was scanned over the window μS ¼ ½10; 90� GeV ([910, 1310] GeV). The
light-blue band represents the variation of the highest precision of λ3=λ3SM corresponding to the variation of the criteria on vc=Tc in the
interval vc=Tc ≳ ½0.6; 1.4�.

FIG. 12. Similar plots to Fig. 2 with prescription B.

VALIDITY OF THE EFFECTIVE POTENTIAL AND THE … PHYS. REV. D 98, 075002 (2018)

075002-15



discrepancies between two prescriptions. First, the viable
singlet scalar masses for the SFOEPT in prescription B
extend to higher values with the increasing λHS value as is
seen in the left panel of Fig. 12. We suspect that the region
with larger values of the λHS and mS is where the high-
temperature approximation more badly fails as was indi-
cated in Eq. (36). Also, comparing right panels of Figs. 4
and 13 shows the different shapes of the compatible region
with the SFOEPT.

As was briefly mentioned in Sec. V, we have observed
that the discrepancy between two prescriptions is more
pronounced in the case of the two-step SFOEPT. In Fig. 14,
we show the viable parameter ðλHS;mSÞ space for the
two-step SFOEPT. Four plots in Fig. 14 (along with the
left panel of Fig. 12) differ by the quartic coupling,
λS ≡ λmin

S þ δS, where λmin
S was defined in Eq. (12), and

they illustrate how sensitively the parameter space depends
on the quartic coupling, λS.
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