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The proton-proton and proton-antiproton inelasticity profiles in the impact parameter display very
interesting and sensitive features which cannot be deduced solely from the current large body of high-
energy scattering data. In particular, phenomenological studies exhibit a link between the ratio of the real to
imaginary parts of the elastic scattering amplitude at a finite momentum transfer, and the corresponding
change of character of the inelastic processes from central to peripheral collisions. We describe how a
theoretical model, accommodating the existing data, based on the Regge hypothesis including both the
Pomeron and odderon as double poles, and ω and f mesons as single poles in the complex-J plane,
generates a hollow in the inelasticity at low impact parameters. The hollowness effect, which generally may
be sensitive to model details, does unequivocally take place both for pp and pp̄ collisions within the
applied Regge framework, indicating inapplicability of inelasticity-folding geometric approaches.
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I. INTRODUCTION

Scattering experiments with hadrons are usually designed
to learn about their structure and interactions [1]. In the case
of proton-proton (pp) and proton-antiproton (pp̄) collisions,
a wealth of differential elastic scattering data has been
collected since the mid 1950s above center-of-mass (CM)
energies of

ffiffiffi
s

p ¼ 6 GeV, characterized by elastic diffractive
scattering. Accordingly, the data exhibit a peak at soft
kinematics, i.e., at small momentum transfers −t ≪ s (for
recent comprehensive reviews of the data and models see,
e.g., [2,3]). Despite the abundant experimental information
and numerous theoretical efforts, it is fair to say that we lack
a truly working approach based directly on the fundamental
quantum chromodynamics (QCD) in the nonperturbative
soft regime −t≲ Λ2

QCD ≪ s. This situation has stimulated
the use of pre-QCD ideas and models which embody not

only the desirable theoretical constraints such as unitarity,
crossing, and analyticity, but also display the outstanding
experimental features of the data. These models and the
following parametrizations have been steadily and quanti-
tatively tested and improved along the years. Regge theory,
while phenomenological and not fundamental from the QCD
viewpoint, satisfies these important theoretical constraints
and at the same time is flexible enough as to allow for a
uniform quantitative description of the data.
A complementary and enlightening way of visualizing

the high-energy scattering results is by passing, via the
Fourier-Bessel transform, from the momentum transfer t to
the impact parameter b. This variable is conjugate to

ffiffiffiffiffi
−t

p
,

with b ∼ 1=
ffiffiffiffiffi
−t

p
. In 1963 van Hove introduced the inelas-

ticity profile or the overlap function [4,5] (see also [6] and
the references therein), which corresponds to the impact
parameter distribution of the inelastic cross section. This
representation has a transparent interpretation, since differ-
ent impact parameters decouple from one another. A major
issue in this regard is the fact that the inelastic profile
depends on the phase of the scattering amplitude and thus is
not determined solely from the differential elastic scattering
cross section without some additional assumptions. Despite
this generic source of arbitrariness, most pp analyses in the
wide range of 10 GeV ≤

ffiffiffi
s

p
≤ 500 GeV have provided a

shape for the inelasticity profile which is compatible with a
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natural expectation that the most inelastic collisions are
central, i.e., the inelasticity profiles have a maximum
at b ¼ 0.
Whereas this central maximum of inelasticity is in fact

explicitly implemented in geometric models [7–12] which
are quite naturally based on folding of partonic distribu-
tions in the impact parameter space, there is no particular
a priori reason why it should be so. In fact, recent papers
[13–25] have reported a mounting evidence suggesting that
this paradigm may change in the light of the measurements
by the TOTEM collaboration at the CERN Large Hadron
Collider (LHC). The found hollowness feature shows that
the inelasticity profile becomes maximal at a finite value
of b, whereas at b ¼ 0 it has a local minimum.
In this paper we reanalyze this issue in a simple Regge

model which, as will be shown, provides efficiently a
reasonable description of a large pp and pp̄ elastic
scattering data in the range 10 GeV ≤

ffiffiffi
s

p
≤ 13 TeV.

The main advantage of the Regge framework is that it
not only predicts the s dependence at small t, but also fixes
the total amplitude, and hence a fit to the elastic differential
cross section allows one to determine both the modulus and
the argument of the amplitude. Of course, there are many
Regge models on the market, so the question of uniqueness
of the description is a pertinent one; we leave a thorough
comparison of different model proposals and parametriza-
tions for a future research and here focus on a particularly
simple Regge model.

II. THE BASICS

In this section we introduce our notation and method-
ology in a way that our problem can be easily stated, and
motivate in passing our use of the Regge theory within this
context. In general, the NN and NN̄ elastic scattering
amplitudes have 5 independent complex components
which can only be determined from a complete set of
experiments involving 9 observables, such as differential
cross sections and polarization data [26]. The amplitudes
fulfill the crossing relations [27,28]. As is customary in
such studies, we neglect the spin dependence. Whereas the
degree of uncertainty introduced by this approximation is
not known, the spin-flip amplitudes have been found to be
nonvanishing but small in E950 fixed target experiment atffiffiffi
s

p
∼ 25 GeV at the BNL Relativistic Heavy-Ion Collider

(RHIC) (for a review see, e.g., [29] and references therein).
Thus a small but systematic error in the amplitude is
foreseen. This is an important observation for the statistical
analysis of the data which allows for a more relaxed
interpretation of the χ2 minimization than the conventional
one, as will be used in Sec. III.

A. The phase ambiguity

An important issue which is of relevance in our analysis
regards the uniqueness of the amplitude obtained from the

differential cross section via fitting analysis in the presence
of absorption, as it is the case for pp and pp̄ scattering at
t < 0 and s > 4M2, with M denoting the proton mass.
Indeed, if fðs; tÞ is the elastic scattering amplitude,

fðs; tÞ ¼ Refðs; tÞ þ i Imfðs; tÞ ð1Þ

the invariant differential elastic cross section is given by

dσel
dt

¼ π

p2
jfðs; tÞj2; ð2Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −M2

p
denotes the CM momentum of the

proton. Only the absolute value jfðs; tÞj enters Eq. (2), thus
in the notation

fðs; tÞ ¼ jfðs; tÞj ρðs; tÞ þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρðs; tÞ2

p ð3Þ

the real function ρðs; tÞ, defined as

ρðs; tÞ ¼ Refðs; tÞ
Imfðs; tÞ ð4Þ

remains unconstrained by the elastic scattering data alone.
This freedommerely reflects the incomplete information on
the system. Of course, the ðs; tÞ dependent phase of the
scattering amplitude is not arbitrary and has a physical
significance [30] (for a review see, e.g., [31]).
In quantum mechanics, this ambiguity is resolved by

analyticity in the scattering potential at a fixed distance.
Likewise, the fixed-t dispersion relations have been sug-
gested as a possible way to circumvent the ambiguity
problem in pp or pp̄ scattering, since they impose
analyticity in the s variable for the scattering amplitude
fðs; tÞ. Thus, up to subtractions (which may depend on t),
the real and imaginary parts are related to each other via the
dispersion relation

Refðs; tÞ ¼ 1

π

Z
∞

4M2

ds0
Imfðs0; tÞ
s0 − s

: ð5Þ

For t ¼ 0 one has the optical theorem

Imfðs; 0Þ ¼ p
4π

σtotðsÞ: ð6Þ

If one uses the crossing-odd variable

ν ¼ s − u
4M

¼ 2s − t − 4M2

4M
; ð7Þ

one has the crossing relation fppðν; tÞ ¼ fpp̄ð−ν; tÞ�
[27,28] for the central interaction. In the limit s ≪ t, it
yields fppðs; tÞ ¼ fpp̄ð−s; tÞ�, such that one can write a
fixed-t dispersion relation for the odd and even
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combinations, f�ðs; tÞ ¼ fpp̄ðs; tÞ � fppðs; tÞ, independ-
ently. In this limit, and neglecting the threshold effect
which can be done at large s, the family of functions
βðtÞsαðtÞ fulfills Eq. (5), since for −1 < α < 0 one has the
identity

1

π

Z
∞

0

ds0s0α
�

1

s0 − s
� 1

s0 þ s

�
¼ ð−sÞα � ðsÞα

sin πα
: ð8Þ

Here we take −s ¼ jsjeiπ and proceed by analytic con-
tinuation, making the necessary subtractions for other
values of α. Therefore, the Regge theory, where the
amplitude reads fðs; tÞ ¼ P

iβiðtÞsαiðtÞ, does indeed satisfy
the fixed-t dispersion relations for s ≪ t. The Regge
amplitude is odd under crossing pp → pp̄.1 These features
justify our motivation to take a particular phenomenologi-
cally based realization of a Regge theory in the following
sections.

B. Impact parameter and the overlap function

The Fourier-Bessel transform of the amplitude fðs; tÞ is
denoted as phðb; sÞ [6], with p denoting the CM momen-
tum of the proton,

2phðb; sÞ ¼ 2

Z
∞

0

qdqJ0ðbqÞfðs;−q2Þ: ð9Þ

Next, we present a glossary of formulas for the total, elastic,
and inelastic cross sections in the b representation:

σtotðsÞ ¼ 4p
Z

d2bImhðb; sÞ; ð10Þ

σelðsÞ ¼ 4p2

Z
d2bjhðb; sÞj2; ð11Þ

σinðsÞ≡ σtotðsÞ − σelðsÞ ¼
Z

d2bσinðb; sÞ: ð12Þ

Here, the dimensionless integrands σtotðb; sÞ, σelðb; sÞ, and
σinðb; sÞ can be interpreted as profiles representing the
b-dependent relative number of the appropriate collisions.
The inelasticity profile is equal to

σinðb; sÞ ¼ 4pImhðb; sÞ − 4p2jhðb; sÞj2: ð13Þ

Unitarity and positivity of absorption imply

1 ≥ σinðb; sÞ ≥ 0; ð14Þ

whereas the condition

σinðb; sÞ ≤ 2ð2pImhðb; sÞÞ − ð2pImhðb; sÞÞ2 ð15Þ

yields, consistently, the upper bound σinðb; sÞ ≤ 1.
The criterion for hollowness is to have a minimum of

σinðb; sÞ at b ¼ 0, i.e.,

dσinðb; sÞ
db2

����
b¼0

< 0: ð16Þ

At this point it should be noted that the phase ambiguity
discussed in Sec. II is transferred to the impact parameter
space, hence the very issue of hollowness cannot be
decided based just on the elastic scattering data, without
further theoretical or model input. In fact, in [32] it has been
shown that adopting various admissible choices of ρðs; tÞ
influences quantitatively and qualitatively the result.

C. The exponential fall-off and hollowness

The most characteristic feature of the high-energy elastic
scattering is the diffraction peak, which is characterized by
the slope parameter at the origin, defined as

BðsÞ ¼ d
dt

ln
dσelðs; tÞ

dt

����
t¼0

: ð17Þ

A simple Gaussian profile in the momentum transfer [note
an assumed t-independent ρðsÞ function]

fðs; tÞ ¼ pσtotðsÞ
4π

½iþ ρðsÞ�eBðsÞt=2 ð18Þ

fulfills the optical theorem. In the −t ≪ s limit, one has

σelðsÞ ¼
Z

0

−sþ4M2

ð−dtÞ dσel
dt

ðs; tÞ →
Z

0

−∞
ð−dtÞ dσel

dt
ðs; tÞ

ð19Þ

and the following equation is satisfied:

σelðsÞ
σtotðsÞ

¼ ½1þ ρðsÞ2�σtotðsÞ
16πBðsÞ : ð20Þ

This relation has been observed to work quite accurately
in a soft-Pomeron pp and pp̄ model for a fit range of
5 GeV <

ffiffiffi
s

p
< 500 GeV [33]. The model applied in

Sec. III also fulfills relation (20) to an accuracy better
than 5% in the whole fitting range.
The Fourier-Bessel transform of the exponential profile

(18) is

2phðb; sÞ ¼ σtotðsÞ
4πB

½iþ ρðsÞ�e−b2=2B: ð21Þ

Substitution of this form into Eq. (13) at b ¼ 0 implies, via
the positivity condition (14), that

1This in particular refers to single Regge poles, but it is also
valid for derivatives with respect to α which arise for the n-fold
Regge poles, see Sec. III.
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σelð0; sÞ ¼
σtotðsÞ
4πB

�
2 − 4

σelðsÞ
σtotðsÞ

�
≥ 0; ð22Þ

and thus

σelðsÞ ≤
1

2
σtotðsÞ; ð23Þ

in accordance with experiment. Thus, in the Gaussian
model the largest elastic cross section which can be
achieved is half of the total cross section, which shows
that the scattering in this model is intrinsically inelastic.
In order to better appreciate this point, it is worth to

consider a situation for an arbitrary inelasticity profile,
however, with a sharp edge at, say, b ¼ R,

2phðb; sÞ ¼ 0; b ≥ R: ð24Þ

Thus, we have

σin ¼
Z

R

0

2πbdb½4p Imhðb; sÞ − 4p2jhðb; sÞj2�;

σtot ¼
Z

R

0

2πbdb½4p Imhðb; sÞ�: ð25Þ

Our goal is to maximize σin for a general complex profile
hðb; pÞ with a fixed σtot which can be readily done by
maximizing

max
hðp;sÞ

½σin − λσtot�; ð26Þ

with λ a Lagrange multiplier. We get from the correspond-
ing Euler-Lagrange equations Rehðp; sÞ ¼ 0, and thus

1 − λ − 2pImhðb; sÞ ¼ 0; ð27Þ

which implies a constant profile. For such a situation, the
smallest possible elastic cross section is σel ¼ σtot=2 with a
black-disk geometry σinðb; sÞ ¼ 1 for b ≤ R, yielding
σinðsÞ ¼ πR2. Therefore, if σelðsÞ < σtotðsÞ=2, as happens
experimentally, the edge cannot be sharp and a gray disk
picture sets in.
Turning to the Gaussian profile, the curvature of the

inelasticity profile at the origin is

1

2

d2σinðb; sÞ
db2

����
b¼0

¼ 64πσ2elð4σelðsÞ − σtotðsÞÞ
ðρðsÞ2 þ 1Þ2σtotðsÞ4

; ð28Þ

such that the turnover to hollowness takes place at [32]

σelðsÞ
σtotðsÞ

¼ 1

4
; ð29Þ

a fact that will also follow to a good accuracy in the more
sophisticated Regge model discussed in Sec. III.

III. THE DIPOLE REGGE MODEL

One of the most remarkable successes of the Regge
theory was the early prediction of a diffraction pattern in
high energy collisions [1]. However, the conventional
Regge theory based on single Regge poles in the com-
plex-J plane does not account easily for the dip or the bump
structures unveiled in the CERN Interacting Storage Rings
(ISR) experiments (see, e.g., [6] and references therein),
hence modifications became mandatory. The Barger and
Phillips empirical parametrization [34], which was suc-
cessful in fitting the early data and was improved recently
by the inclusion of form factors [35], does not provide an
energy dependence stemming from Regge ideas, and hence
does not comply to the fixed-t dispersion relations.
However, as noted many years ago, multiple Regge poles

are not only not forbidden, but may in fact naturally occur
quantummechanically [36,37]. They are actually suggested
by the dual models with the Mandelstam analyticity (see,
e.g., [38] for an impact parameter analysis). The model
with different Regge trajectories, including the double-pole
odderon, was thus proposed [39] and later extended for
finite t [40] and the odderon rise [41,42]. The upgraded
version was described in [43].
Let us mention in this regard that whereas the order of

the Regge pole cannot be fixed by first principles, the
Froissart bound prevents poles or order higher than 3, and
the requirement σel ≤ σtot prevents asymptotically a mov-
ing triple pole [44].
In the light of the recent TOTEM measurements atffiffiffi
s

p ¼ 13 TeV, the double pole Pomeron is preferred
compared to a single- or triple-pole Pomeron [45]. The
statement is based on dispersion relations for the meson-
proton and proton-proton forward elastic scattering. Recent
data from the TOTEM Collaboration at 13 TeV provide a
convincing evidence on the existence of the odderon [46],
discarding many of the models on the market not including
this particular element. Further successful fits were pro-
posed in [47–49].
In this paper, we consider the spin-averaged case of the

invariant high-energy scattering amplitudes, which are
sums of four terms [43]. The two asymptotically leading
terms are the Pomeron (P) and the odderon (O), and
two secondary contributions come from the f and ω Regge
poles.
We note that P and f have positive C, thus enter the

scattering amplitude with the same sign in pp and pp̄
scattering, whereas O and ω have negative C, thus enter
with opposite signs2:

Aðs; tÞpp̄pp ¼ APðs; tÞ þ Afðs; tÞ � ½Aωðs; tÞ þ AOðs; tÞ�:
ð30Þ

2Here we use the normalization where dσel
dt ðs; tÞ ¼ π

s2 jAðs; tÞj2
and σtotðsÞ ¼ 4π

s ImAðs; t ¼ 0Þ.
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The model of Eq. (30) may be extended by adding more
Reggeons, whose role becomes increasingly important
towards lower energies. In our fits at relatively large s,
their contribution can be effectively absorbed in f and
ω [50].
Secondary Reggeons are parametrized in a standard way

[50,51], with linear Regge trajectories and exponential
residua. The f andωReggeons are the principal nonleading
contributions to pp or pp̄ scattering:

Afðs; tÞ ¼ afe−iπαfðtÞ=2ebftðs=s0fÞαfðtÞ; ð31Þ
Aωðs; tÞ ¼ iaωe−iπαωðtÞ=2ebωtðs=s0ωÞαωðtÞ; ð32Þ

with αfðtÞ ¼ α0f þ α0ft and αωðtÞ ¼ α0ω þ α0ωt.
As already mentioned, the Pomeron is a dipole in the

J-plane

APðs; tÞ ¼
d

dαP
½e−iπαP=2GðαPÞðs=s0PÞαP �

¼ e−iπαPðtÞ=2ðs=s0PÞαPðtÞ
× ½G0ðαPÞ þ ðLP − iπ=2ÞGðαPÞ�: ð33Þ

Since the first term in squared brackets determines the
shape of the cone, one fixes

G0ðαPÞ ¼ −aPebP½αP−1�; ð34Þ
whereGðαPÞ is recovered by integration. Consequently, the
Pomeron amplitude of Eq. (33) may be rewritten in the
following “geometric” form (for details see [52] and
references therein):

APðs; tÞ ¼ i
aPs
bPs0P

½r21PðsÞer
2
1PðsÞ½αP−1�

− εPr22PðsÞer
2
2PðsÞ½αP−1��; ð35Þ

where r21PðsÞ ¼ bP þ LP − iπ=2, r22PðsÞ ¼ LP − iπ=2,
LP ≡ lnðs=s0PÞ, and the Pomeron trajectory is

αP ≡ αPðtÞ ¼ 1þ δP þ α0Pt: ð36Þ

The odderon contribution (labeled with the subscript
“O”) is assumed to be of the same form as for the Pomeron,
apart for different values of the adjustable parameters:

AOðs; tÞ ¼
aOs
bOs0O

½r21OðsÞer
2
1OðsÞ½αO−1�

− εOr22OðsÞer
2
2OðsÞ½αO−1��; ð37Þ

where r21OðsÞ ¼ bO þ LO − iπ=2, r22OðsÞ ¼ LO − iπ=2,
LO ≡ lnðs=s0OÞ, and the trajectory is

αO ≡ αOðtÞ ¼ 1þ δO þ α0Ot: ð38Þ

The free parameters of the model were simultaneously
fitted to the data on the differential elastic pp and pp̄ cross
section, as well as to the data on the total cross section and
the ratio

ρðsÞ ¼ ReAðs; t ¼ 0Þ
ImAðs; t ¼ 0Þ : ð39Þ

The fit was done by using the MIGRAD algorithm of
MINUIT 2 with the data in the following intervals:

(i) for pp differential elastic cross section at 7 TeV
[53]: 0.35 GeV2 ≤ −t ≤ 2.5 GeV2;

(ii) for pp̄ differential elastic cross section at 546 and
630 GeV [54]: 0.5 GeV2 ≤ −t ≤ 2.5 GeV2;

(iii) for pp and pp̄ total cross section and parameter ρ:
20 GeV ≤

ffiffiffi
s

p
≤ 57 TeV [53,55–61].

The above intervals in t were chosen to optimize our fit,
whereby the number of the outliers in the differential cross
section was reduced to 63. The optimum values of the fitted
parameters and the values of χ2 are collected in Table I.
Figures 1–2 show the quality of the model fit to the world
data. We note that the overall agreement catches all the
features of the data. The value of χ2=NDF ¼ 1.4 indicates a

TABLE I. Optimum values and the uncertainties of the model parameters following from a joint fit to pp and pp̄ data for elastic
differential cross section, the total cross section, and the parameter ρ. See text for details.

Pomeron Odderon Reggeons

aP½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbGeV2

p
� 360 (fixed) aO½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbGeV2

p
� 1.75� 0.11 af½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbGeV2

p
� −20.05� 0.17

bP 4.19� 0.15 bO 0.914� 0.007 bf½GeV−2� 0 (fixed)
δP 0.0293� 0.0005 δO 0.275� 0.005 α0f 0.703 (fixed)

α0P½GeV−2� 0.5069� 0.0028 α0O½GeV−2� 0.2309� 0.0017 α0f½GeV−2� 0.84 (fixed)
εP 0.278� 0.015 εO 1.318� 0.003 s0f½GeV2� 1 (fixed)

s0P½GeV2� 100 (fixed) s0O½GeV2� 100 (fixed) aω½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbGeV2

p
� 10.65� 0.64

bω½GeV−2� 0 (fixed)
α0ω 0.435 (fixed)

NDF ¼ 159 χ2 ¼ 223.5 χ2=NDF ¼ 1.4 α0ω½GeV−2� 0.93 (fixed)
s0ω½GeV2� 1 (fixed)
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need for improvement on the theoretical model side, as
remarked in Sec. II.
The results for σelðsÞ and σinðsÞ are shown in Fig. 3. The

model elastic cross section σelðsÞ is calculated by integra-
tion of our fit to dσelðs; tÞ=dt. Again, we note a fair
agreement with the experimental data.
Next, we pass to a discussion of the “anatomy” of the

model, focusing on the role of its various components. In
Fig. 4 we plot the absolute values of the pp and pp̄ elastic
scattering amplitudes and their components. At low −t the
Pomeron contribution is dominant, and at high −t the
odderon takes over, as is evident from the relation
between the slopes of their trajectories, α0P > α0O, and the
b-parameters. The interference of bothP andO components
shows up in the transition region around −t ¼ 0.5 GeV2,
generating the dip. We note that the contribution of the
mesonic Regge trajectories is negligible at the TOTEM
collision energies and is essential only at low s.

In Fig. 5 we show the phase of the elastic amplitude,
defined conventionally as π=2 − Arg½Aiðs;−tÞ�. We note
that the Pomeron determines the phases for both pp and pp̄
at low values of −t. At high values of −t the phase of pp̄
is determined by the odderon, and the phase of pp is
relatively shifted upwards by π, which simply reflects the
relative sign between the odderon component of the two
amplitudes.

IV. HOLLOWNESS ANALYSIS

As stated in the Introduction, in the present work we
focus on the surprising feature of the pp (and pp̄)
scattering, the hollowness, which emerges at the LHC
energies: the most inelastic collision become slightly
peripheral, with σinðb; sÞ assuming a maximum at b > 0,
and having a minimum at b ¼ 0. In what follows we
complement the balanced review of Ref. [19] and the

FIG. 1. Fit to the pp and pp̄ differential elastic cross sections at
several collision energies, plotted as a function of the momentum
transfer −t, compared to the data of Refs. [53,54].

(a) (b)

FIG. 2. (a): Total pp and pp̄ cross sections plotted as a functions of
ffiffiffi
s

p
, compared to the data of Refs. [55–59]. (b): The ratio of the

real to imaginary part of the elastic pp and pp̄ amplitude at t ¼ 0, plotted as a function of
ffiffiffi
s

p
and compared to the data of

Refs. [53,58,60,61]. The lines indicate our joint fit. The LHC collision energies are indicated with the vertical labels.

FIG. 3. Elastic and inelastic pp and pp̄ cross sections, plotted
as functions of

ffiffiffi
s

p
and compared to the data of Refs. [56–59].

The lines indicate our fit.
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discussion in [20] with the results in the Regge model of
Sec. III. The peripheral or central character of both the
elastic and inelastic scattering was questioned in [62],
where it was shown that the shape of the inelastic profile
depends strongly on the phase of the elastic amplitude [63].
In a recent upgrade [64,65], a preference for more periph-
eral elastic than inelastic scattering is supported, based on a
careful treatment of the Coulomb interaction and the
corresponding strong phase (see, however, the critical
remarks in [66], where a different formula for the strong

phase is proposed). The shadowing and antishadowing
scattering scenarios have been discussed together with the
hollowness behavior in [67]. In addition, unitarization
features also produce hollowness [68], based on the old
scheme from Ref. [69].
A recent discussion of hollowness by two of the present

authors (W.B. and E.R.A.) within an inverse scattering
approach, where a distinction of the 2D- and 3D-hollowness
was established [16,17,20,32], was based on empirical
parametrizations [35,70,71]. These parametrizations qualify
as means of fitting the data, but actually feature no particular
theory or physical picture. We also point out that a rather
flat behavior in the inelastic profile near b ¼ 0 has been
observed [72],whichmaybe interpreted as a precursor of the
2D-hollowness and the occurrence of the 3D-hollowness
[16,17,20,32]. Hollowness has also been reported to emerge
from a hot-spot picture of the pp collision at the LHC
energies [18].
In [32] we have shown that the existence of hollowness

depends strongly on the t-dependence of the ρ parameter.3

Once we recognize that hollowness cannot be deduced
from present data alone, in this paper we take a different
point of view, where we want to decide on the hollowness
within a given theoretical framework.
In the following, we apply the formulas of Subsection II B

to themodel of Sec. III.We first look at the inelasticity profile
σinðb; sÞ, shown

ffiffiffi
s

p ¼ 13 TeV in Figs. 6 and 7. We clearly

FIG. 4. Absolute values of the pp and pp̄ elastic scattering
amplitudes (thick lines), and absolute values of their components
(thin lines), plotted as functions of −t for the TOTEM collision
energy of

ffiffiffi
s

p ¼ 13 TeV. At low −t the Pomeron dominates,
whereas at high −t the odderon dominates, and the interference of
both components is manifest in the transition region around
−t ¼ 0.5 GeV2. The contribution of the mesonic Regge trajec-
tories is negligible at the TOTEM collision energies.

FIG. 5. Same as in Fig. 4 but for the phases, defined as
π=2 − Arg½Aiðs;−tÞ�. At low −t the phases for both pp and pp̄
are determined by the Pomeron, whereas at high −t the phase of
pp̄ is determined by the odderon, while the phase of pp is shifted
upwards by π.

FIG. 6. The inelastic profiles σðb; sÞ for pp and pp̄ collisions,
plotted as functions of the impact parameter b for the TOTEM
collision energy of

ffiffiffi
s

p ¼ 13 TeV. We note the presence of the
hollowness effect, somewhat stronger for pp̄ than for pp. The
uncertainty bands, following from the error propagation from our
fit parameters, are within the thickness of the lines.

3The criticism that has been raised in Ref. [73] is based on an
incorrect perception of the approximations involved and does not
address the arbitrariness of the t-dependence of the ρðs; tÞ
parameter, which is crucial for hollowness.
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note the feature of hollowness, i.e., a (shallow) minimum in
the center. We note that the phenomenon occurs for both pp
and pp̄ collisions, and is slightly stronger for the latter case.
We also display the uncertainty bands corresponding to the
error propagation from our fit parameters using the conven-
tional error matrix.4 As we can clearly see the hollowness is
a robust feature as long as the statistical uncertainties are
concerned.
From Fig. 8 we see that the onset of hollowness occurs at

similar collision energies for pp and for pp̄, namely around
3 TeV. However, at higher

ffiffiffi
s

p
the hollowness becomes

somewhat stronger in pp̄ compared to pp, as the curvature
at the origin is larger for the former case (the dashed curve
goes above the solid curve in Fig. 8). This is also manifest
in the behavior displayed in Fig. 7.

In the model with strictly linear Regge trajectories the
amplitude is a combination of Gaussians in q2, hence the
expression for 2phðbÞ is analytic, involving a combination
of Gaussians in b (with complex parameters). In that case
one can write down the criterion of Eq. (16) for hollowness
in terms of a relation of the model parameters and s.
However, the final formula is long and not very illuminat-
ing. A simpler result follows with the condition

2pImhðs; b ¼ 0Þ > 1; ð40Þ

which becomes equivalent to Eq. (16) in the absence of the
real part in the amplitude [17,20]. The behavior of the real
and imaginary parts of the elastic amplitude in the b-
representation, 2phðb; sÞ, plotted in Fig. 9. We note that
near b ¼ 0 the imaginary parts go above 1, whereas the real
parts are small.
In the model with strictly linear trajectories we find

numerically for the dominant component

2pImhPðb ¼ 0; sÞ ¼
aP cosðπδP2 ÞðebPδP − ϵPÞð s

sP0
ÞδP

2bPsP0αP1
≃ 0.64ðs=GeV2Þ0.028;

2pImhOðb ¼ 0; sÞ ¼
aO sinðπδO

2
ÞðeϵO−bOδOÞð s

sO0
ÞδO

2bOαO1sO1

≃ 0.88ðs=GeV2Þ0.27: ð41Þ

The growth with s leads to inevitable crossing of the value 1
at b ¼ 0, as seen in Fig. 10.
Finally, we examine condition (29) in our model. The

result for the total and 4 times the elastic pp cross sections
is displayed in Figs. 11 and 12 for the pp and pp̄

FIG. 7. Close-up of Fig. 6, with visible error bands.

FIG. 8. The criterion for hollowness for pp and pp̄, Eq. (16),
plotted as a function of the collision energy. Positive values of the
curves mean hollowness, with its onset indicated with arrows.

FIG. 9. The real and imaginary parts of the amplitudes
2phðb; sÞ for pp and pp̄, plotted as functions of the impact
parameter b for the TOTEM collision energy of

ffiffiffi
s

p ¼ 13 TeV.
We note that near the origin the imaginary parts go above 1.

4Namely, for a function Fðp1;…; pNÞ of the fitting parameters
pi with correlation matrix Cij we take ðΔFÞ2 ¼ P

ijCij∂iF∂jF.
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scattering, respectively. We notice the expected crossing
near the hollowness transition, near

ffiffiffi
s

p
∼ 3 TeV.

We have thus demonstrated a firm occurrence of hollow-
ness in the Regge model of Sec. III above

ffiffiffi
s

p
∼ 3 TeV.

We have also illustrated the criteria for its appearance.
As shown in [17], the very existence of the hollowness
phenomenon is quantum-mechanical in nature, as it invalid-
ates folding constructions of the inelasticity profile, as
used, e.g., in Refs. [7–12], where hollowness is prevented
from the outset.
After this paper was submitted, a work analyzing the

overlap function for the pp TOTEM data at the fixed CM
energy of 13 TeV [74] was released. It uses the finite
binning method suggested in [6], including also error
estimates. The results of [74] are compatible with ours,

with a clear development of the hollow. We recall that ours
is a multi-energy analysis which includes both pp and pp̄
within a Regge setup. The persistent occurrence of
hollowness at the LHC can be traced to quantum
mechanical interference effects which defy purely geo-
metric models [17]. As we have already mentioned, our
motivation to use the Regge approach is a realization of
analytic properties, such as a fixed-t dispersion relation
and crossing, which allows to fix the phase of the
amplitude whose absolute value is determined from
LHC data. The question whether it is possible or not to
redesign a model where analyticity and geometric features
are implemented and at the same time data are described,
is left for future research.

V. CONCLUSIONS

Over the years, there have been two basic, presumably
complementary approaches to the high-energy hadron
scattering. The geometric and Regge models rest on
different assumptions but they have been implicitly
assumed to be dual to each other [1] in the sense that
they emphasize the t or s dependence of the scattering
amplitude. Based on the results shown in this paper, we
argue that this may not necessarily be so, as a simple Regge
model fitting globally the pp and pp̄ data in a wide energy
range displays hollowness at the LHC energies, an effect
incompatible with the folding feature characterizing the
geometric models [17]. At the same time hollowness is not
a priori precluded by the Regge theory nor by the fixed-t
dispersion relations, and our analysis exemplifies this
possibility.
Admittedly, the emergence of hollowness, in pp and pp̄

collisions is a remarkable and unexpected feature, unveiling
a so far puzzling property which can only stem from a
quantum mechanical effect encoded in the amplitude.
However, this property cannot be deduced solely from

FIG. 11. Comparison of the total and 4 times the elastic pp
cross sections, plotted as a function of

ffiffiffi
s

p
. The crossing occurs

near the transition to hollowness at
ffiffiffi
s

p
∼ 3 TeV.

FIG. 12. Same as Fig. 11, but for pp̄ scatteringFIG. 10. Value of 2pImh at the origin, plotted as a function offfiffiffi
s

p
. The curves cross the value 1 near the hollowness transition atffiffiffi
s

p
∼ 3 TeV.
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the elastic scattering data, but needs some theoretical
assumptions enabling us to constrain the phase. Our
Regge model includes both the Pomeron and the odderon
on equal footing, which properly describes the energy-
and momentum-transfer dependence in the range from
the old ISR to the newest LHC data, and exhibits the
phenomenon of hollowness. We have shown that within
this framework the onset of hollowness rests mainly on
the double-pole Pomeron component. Within the present
model we predict the transition region to take place
at

ffiffiffi
s

p
∼ 3 TeV, and the feature to hold at all higher

energies. Further work is needed to unveil the precise

microscopic mechanism behind this emergent and in-
triguing phenomenon.
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