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We derive equations of motion for the reduced density matrix of a heavy quarkonium in contact with a
quark-gluon plasma in thermal equilibrium. These equations allow in particular a proper treatment of the
regime when the temperature of the plasma is comparable to the binding energy of the quarkonium. These
equations are used to study how the quarkonium approaches equilibrium with the plasma, and we discuss
the corresponding entropy increase, or free energy decrease, depending on the temperature regime. The
effect of collisions can be accounted for by the generalization of the imaginary potential introduced in
previous studies, and from which collision rates are derived. An important outcome of the present analysis
is that this imaginary potential has a sizable dependence on the energy of the relevant transitions.
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I. INTRODUCTION

There is an ongoing major effort to measure the
production of heavy quark bound states in heavy-ion
experiments (for a recent review, see Ref. [1]). The goal
of such measurements is to obtain information on the
medium in which these heavy-quark systems evolve.
However, to achieve such a goal, we need to have good
control of the dynamics of heavy quarks in a plasma, which
is a difficult many-body problem. Different physical effects
play a role in modifying the properties of heavy-quark
bound states in a quark-gluon plasma, the most prominent
ones being the screening of the binding forces and the
collisions of the heavy quarks with the plasma constituents.
The various models used in phenomenological analyses
emphasize one aspect or the other, with of course many
refinements in either direction. It is important however that
all aspects of the dynamics be treated on the same footing,
within a coherent formalism. Only then can we be confident
that we understand the processes considered, and even-
tually extract from the data the properties of the medium in
which the bound state evolves.
Important progress in this direction has occurred in the

last few years. A major step forward was the recognition
that the effect of the collisions could be incorporated in an
imaginary potential [2–6], somewhat analogous to the
optical potential used in nuclear physics. This imaginary
potential can then be calculated, albeit not yet with the

same degree of accuracy as the real potential that is
responsible for binding and is screened in a plasma.
Attempts to access it via lattice calculations can be found
for instance in Refs. [7,8]. As for the real potential,
effective field theories have been used to constrain it in
some particular regimes [4–6]. It has also been realized that
techniques borrowed from the theory of open quantum
systems (see e.g., Ref. [9]) could offer a new perspective on
these issues. In particular, the imaginary potential appears
naturally in the construction of the operators of the
Lindblad equation [10]. The stochastic potential used in
some approaches in connection with a Schrödinger equa-
tion (see e.g., Refs. [11,12]) is also intimately related to this
imaginary potential. As we shall see in this paper, the
imaginary potential also directly enters the calculations of
the relevant transition rates.
The present paper complements the study presented in

Ref. [13]. There, a complete derivation of the equation of
motion for the reduced density matrix has been given,
under the assumption that the intrinsic dynamics of the
heavy quarks is slow compared to that of the plasma. This
assumption allowed us to reduce the equations of motion to
equations of a Langevin type. This assumption is strictly
valid in the regime of high temperature, where the effect of
binding forces are small and can be incorporated in the
Langevin dynamics. The results that had been obtained
along the same lines in the Abelian case in Ref. [14]
suggest that it is in this case a reasonable approximation,
even when bound states can form. However, this is not so in
QCD: when a quarkonium absorbs or emits a gluon its
color state changes, from singlet to octet or vice versa.
Since the potential between a quark and an antiquark is
attractive in the singlet channel, and repulsive in the octet
channel, the absorption of a gluon leads to a significant
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change in the effective heavy-quark Hamiltonian. This
conflicts with some of the assumptions underlying the
derivations presented in Ref. [13], which need therefore to
be revisited. More broadly, we need to address more
precisely the regime of moderate temperature where the
binding energy is of the order of the temperature.
We consider in this paper a simplified setup—a static

quark-gluon plasma in thermal equilibrium—and study the
time evolution of a single heavy quarkonium in such a
medium. The paper contains three main parts. In the next
section, we derive equations of motion for the reduced
density matrix for a quark-antiquark pair. These equations
reproduce in some limit those obtained in Ref. [13], but
they lend themselves to more accurate approximations in
the regime where the temperature is of the order of the
binding energy of the quarkonium. These equations are
simplified by integrating out the center-of-mass coordi-
nates, leaving us with equations for the relative motion
alone. The second part of the paper, which covers Secs. III
and IV, presents a general discussion of how the quarko-
nium approaches equilibrium with the quark-gluon plasma.
We shall see that different treatments can be given depend-
ing on whether the temperature is large compared to the
binding energy, or comparable to it. This will lead us to
consider the variation with time of an (off-equilibrium)
entropy and free energy. The third part of the paper, Sec. V,
presents some numerical calculations illustrating the main
features of the general equations in some simplified
situations. Conclusions are summarized at the end.

II. THE EVOLUTION EQUATION FOR THE
DENSITY MATRIX

We consider a single heavy quark-antiquark pair
immersed in a plasma of light quarks and gluons in thermal
equilibrium at a temperature T much smaller than the mass
M of the heavy quark. The condition M ≫ T ensures that
we can treat the heavy quark and antiquark as nonrelativ-
istic particles. Also, since the velocity of the heavy particles
is small (≲ ffiffiffiffiffiffiffiffiffiffi

T=M
p

), we neglect their magnetic interactions
(among themselves, and with the plasma constituents).1 We
assume then that the whole system can be described by the
following Hamiltonian:

H ¼ Hpl þHQ þH1; ð2:1Þ

whereHpl is the QCDHamiltonian governing the dynamics
of the plasma while HQ controls the dynamics of the heavy
quark-antiquark pair in the absence of the plasma. The
Hamiltonian HQ reads

HQ ¼ Hs;o ¼ −
Δr

M
−
ΔR

4M
þ Vs;oðrÞ; ð2:2Þ

where r andR denote respectively the relative and the center-
of-mass coordinates of the heavy particles. The interaction
potentialVs;oðrÞ is a function of the relative coordinates, and
it depends also on the color configuration of the pair. Thus,
as indicated in Eq. (2.2), we shall oftenwriteHQ as eitherHs

orHo, depending on whether the quark-antiquark pair is in a
color singlet (Hs) or a color octet (Ho) configuration. In the
leading-order nonrelativistic limit, i.e., keeping only the
color Coulomb interaction, we have

VsðrÞ ¼ −
CFαs
r

; VoðrÞ ¼
αs

2Ncr
; ð2:3Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ, where Nc ¼ 3 is the

number of colors, and αs is the strong coupling constant,
αs ¼ g2=ð4πÞ where g is the gauge coupling.
The last term in Eq. (2.1) is the interaction between the

plasma and the heavy quarks. It is of the form2

H1 ¼ −g
Z
x
aA0 ðxÞnAðxÞ; ð2:4Þ

where aA0 denotes the (color) Coulomb field created by the
plasma particles, while nA denotes the color charge density
of the heavy particles, where A is a color index. For a
quark-antiquark pair, the color charge density is given by

nAðxÞ ¼ δðx − r̂ÞTA ⊗ I − I ⊗ δðx − r̂ÞT̃A; ð2:5Þ

where r̂ denotes the position operator,3 and the two
components of the tensor product refer respectively to
the Hilbert space of the heavy quark (for the first compo-
nent) and the heavy antiquark (for the second component).
In Eq. (2.5), TA is a color matrix in the fundamental
representation of SU(3) and describes the coupling between
the heavy quark and the gluon. The coupling of the heavy
antiquark and the gluon is described by −T̃A, where T̃A is
the transpose of TA.

A. The reduced density matrix and its color structure

Consider now the density matrix D of the whole system.
We assume that initially, at time t0, this density matrix
factorizes as

Dðt0Þ ¼ DQðt0Þ ⊗ Dplðt0Þ; ð2:6Þ

1This means, in particular, that the processes of gluodissoci-
ation are left out of the present discussion. Including those would,
however, amount to a straightforward generalization of the
present formalism [see e.g., the footnote before Eq. (5.21)].

2Throughout this paper, we use the shorthand notationR
x ≡

R
d3x for the spatial integrals, and

R
p≡
R d3p

ð2πÞ3 for momentum
integrals.

3We occasionally put a hat on operators whenever confusion
may arise from not doing so.
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where the plasma density matrix Dplðt0Þ is an equilibrium
density matrix at temperature T ¼ 1=β:

Dplðt0Þ ¼
e−βH

Zpl
; Zpl ¼ Tre−βHpl : ð2:7Þ

The reduced density matrix, DQ, the object that we are
mostly concerned with, is defined by taking the trace over
the plasma degrees of freedom (d.o.f.)

DQðtÞ ¼ TrplðDðtÞÞ: ð2:8Þ

The state of a heavy quark can be characterized by a
position, a color, and a spin. We ignore here the spin d.o.f.
Then the reduced density matrixDQ has matrix elements of
the form

hr1a; r̄1ājDQjr2b; r̄2b̄i; ð2:9Þ

where a, b and ā, b̄ are color indices in the fundamental
representation and its conjugate, respectively, while ri and
r̄i (i ¼ 1, 2) denote respectively the coordinates of the
quark and the antiquark. Factorizing the color structure, one
can write DQ as follows (see Ref. [13] for more details on
the color structure of DQ):

DQðtÞ ¼
�
δaāδbb̄
Nc

DsðtÞ þ
TA
aāT

A
b̄b

TF
DoðtÞ

�
ja; āihb; b̄j

¼ DsðtÞjsihsj þDoðtÞ
X
C

joCihoCj; ð2:10Þ

where Ds and Do are matrices in the two-particle space,
with only coordinates as entries, e.g., the matrix elements
ofDs are hr1; r̄1jDsjr2; r̄2i. In the formula above, TF ¼ 1=2
and the color matrices are normalized as TrTATB ¼ δAB=2.
The relation between the first and second lines of Eq. (2.10)
follows from the following formulas:

haājsi ¼ δaā
1ffiffiffiffiffiffi
Nc

p ; haājoCi ¼
ffiffiffi
2

p
TC
aā; ð2:11Þ

where jsi and joCi denote respectively color-singlet
and -octet (normalized) states, with the index C in oC

being a color index that distinguishes the various
members of the octet. In the limit where the mass of
the heavy quark is infinite, the density matrix is diagonal
in coordinate space,

hr1; r̄1jDsjr2; r̄2i¼ δðr1− r2Þδðr̄1− r̄2ÞDsðr1− r̄1Þ; ð2:12Þ

and similarly for Do. In this limit the density matrix
depends only on the relative coordinate r1 − r̄1, which

follows from the fact that the plasma in equilibrium is
invariant under translations.

B. Approximate evolution equation for the
reduced density matrix

The time evolution of the density matrix of the full
system obeys the general equation of motion

i
dD
dt

¼ ½H;D�: ð2:13Þ

In order to treat the interaction between the plasma and the
heavy particles by using perturbation theory, we move to
the interaction representation with respect to the unper-
turbed Hamiltonian H0 ¼ HQ þHpl and define

DðtÞ ¼ U0ðt; t0ÞDIðtÞU†
0ðt; t0Þ; ð2:14Þ

where DIðtÞ satisfies the equation

dDI

dt
¼ −i½H1ðtÞ;DIðtÞ�;

H1ðtÞ ¼ U0ðt; t0Þ†H1U0ðt; t0Þ: ð2:15Þ

We can then rewrite the equation of motion (2.15) as

dDI

dt
¼ −i½H1ðtÞ;DIðt0Þ� −

Z
t

t0

dt0½H1ðtÞ; ½H1ðt0Þ;DIðt0Þ��:

ð2:16Þ

This exact equation is obtained by formally integrating
Eq. (2.15) and inserting the obtained solution back into
the equation. Perturbation theory at second order in H1 is
recovered by replacing DIðt0Þ by DIðt0Þ in the double
commutator.
We can however improve on strict perturbation theory,

with the help of two approximations. These are consistent
with strict second-order perturbation theory but go beyond,
in particular by performing partial resummations (analo-
gous to those in Schwinger-Dyson equations). The first
approximation consists in replacing in the double commu-
tator on the right-hand side of Eq. (2.16) the density matrix
by the factorized form

DIðtÞ ¼ DI
QðtÞ ⊗ DI

plðtÞ: ð2:17Þ

This is consistent with second-order perturbation theory
since deviation from this form necessarily involves extra
powers ofH1. The factorization allows us to easily perform
the average over the plasma d.o.f. We then obtain the
following equation for the reduced density matrix of the
heavy quarks:
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dDI
QðtÞ
dt

¼−g2
Z

t

t0

dt0
Z
xx0

ð½nAðt;xÞ;nAðt0;x0ÞDI
Qðt0Þ�Δ>ðt− t0;x−x0Þþ½DI

Qðt0ÞnAðt0;x0Þ;nAðt;xÞ�Δ<ðt− t0;x−x0ÞÞ: ð2:18Þ

Wehave used the fact that the linear termvanishes in a neutral
plasma, and the sum over the color index A is implicit.
Finally, we have written the correlator of the a0 fields as

Trpl½aA0 ðt;xÞaB0 ðt0; yÞDpl� ¼ δABΔ>ðt − t0;x − yÞ;
Trpl½aB0 ðt0; yÞaA0 ðt;xÞDpl� ¼ δABΔ<ðt − t0;x − yÞ: ð2:19Þ
The equation (2.18) can be given a simple diagrammatic

interpretation, illustrated in Fig. 1 (see Ref. [13] for more
details). The diagrams involve single gluon exchanges,
represented by the correlators (2.19), with the gluon
attached at points ðt0; x0Þ and ðt; xÞ. Contributions where
the two densities are on the same side of the density matrix
in Eq. (2.18), like in nAðt; xÞnAðt0; x0ÞDI

Qðt0Þ, are associated
to diagrams where the gluon joins lower or upper particle
lines among themselves (the first and third diagrams in
Fig. 1). Contributions where a density is lying on each side
of D, as in nAðt; xÞDI

Qðt0ÞnAðt0; x0Þ, are represented by
diagrams where the gluon joins upper and lower lines (the
second and fourth diagrams in Fig. 1).
The Eq. (2.18) contains a nontrivial memory integral.

However a second approximation allows us to obtain a
Markovian equation. Indeed, we note that the difference
DI

Qðt0Þ −DI
QðtÞ involves powers of the interaction. Thus, at

the order at which we are working, we can neglect this
difference on the right-hand side of Eq. (2.18), and simply
substitute there DI

Qðt0Þ with DI
QðtÞ. At this point, the

equation still contains a nontrivial time integral, but it is
Markovian. Moving back to the Schrödinger picture, one
can write this equation as

dDQ

dt
þi½HQ;DQðtÞ�

¼−g2
Z
xx0

Z
t−t0

0

dτ½nAx ;UQðτÞnAx0U†
QðτÞDQðtÞ�Δ>ðτ;x−x0ÞÞ

−g2
Z
xx0

Z
t−t0

0

dτ½DQðtÞUQðτÞnAx0U†
QðτÞ;nAx �Δ<ðτ;x−x0Þ;

ð2:20Þ
where we have made a change of variable in the time
integration, and set t − t0 ¼ τ. This Markovian equation is
the equation that was studied in Ref. [13], and it will prove
useful later on. In the rest of this section though, we shall use
Eq. (2.18), which has a simpler diagrammatic interpretation.
In fact, most of the derivations in this section are blind to this
modification of the equation, as will be discussed below. In
the Schrödinger picture, Eq. (2.18) reads

dDQ

dt
þ i½HQ;DQðtÞ� ¼ −g2

Z
xx0

Z
t−t0

0

dτ½nAx ; UQðτÞnAx0DQðt − τÞU†
QðτÞ�Δ>ðτ; x − x0ÞÞ

− g2
Z
xx0

Z
t−t0

0

dτ½UQðτÞDQðt − τÞnAx0U†
QðτÞ; nAx �Δ<ðτ; x − x0Þ: ð2:21Þ

C. Equation of motion for Ds and Do

We shall write Eq. (2.21) as follows:

d
dt
DQðtÞ ¼ −i½H;DQðtÞ� þ

Z
t−t0

0

dτLðτÞDQðt − τÞ; ð2:22Þ

where L is to be understood as a linear operator acting on the density matrix. It corresponds typically to one-gluon-
exchange processes (see Fig. 1), with the gluon being emitted at time t − τ and absorbed at time t.

FIG. 1. These four diagrams are in one-to-one correspondence with the four terms in Eq. (2.18). The time flows as in a Schwinger-
Keldysh contour: forward in the upper part, and backward in the lower part. The two upper lines represent the quark and the antiquark
propagating from t0 to t, while the lower lines represent the same particles propagating from t to t0.

JEAN-PAUL BLAIZOT and MIGUEL ANGEL ESCOBEDO PHYS. REV. D 98, 074007 (2018)

074007-4



Given the color structure of the density matrix [see
Eq. (2.10)], it is convenient to view L as a matrix in the
two-dimensional space spanned by the two components Ds
and Do of the density matrix. Thus, we write

dDs

dt
¼ −i½Hs; Ds� þ

Z
t−t0

0

dτfLssðτÞDsðt − τÞ

þ LsoðτÞDoðt − τÞg;
dDo

dt
¼ −i½Ho; Do� þ

Z
t

t0

dt0fLosðτÞDsðt − τÞ

þ LooðτÞDoðt − τÞg: ð2:23Þ
In order to perform the color algebra needed to obtain the
explicit expressions of the operators Lij, we note that both
the density matrix and the heavy-quark Hamiltonian are
diagonal in the singlet-octet basis [a property that we have
already used in writing Eq. (2.23)]. Furthermore, we note
that the density operator nAðxÞ can connect singlet to octet
states, and also various octet states among themselves. Its
matrix elements are given by (see e.g., Ref. [13])

hsjnAx joCi ¼
δACffiffiffiffiffiffiffiffi
2Nc

p nðxÞ;

hoDjnAx joCi ¼
1

2
dDACnðxÞ þ i

2
fDACmðxÞ; ð2:24Þ

where

nðxÞ≡ δðx − r̂Þ ⊗ I − I ⊗ δðx − r̂Þ;
mðxÞ≡ ðx − r̂Þ ⊗ I þ I ⊗ δðx − r̂Þ: ð2:25Þ

The calculation then proceeds easily by inserting closure
relations into the singlet-octet basis at appropriate places in
Eq. (2.21), for instance

hsjnAxnAx0 jsi ¼
X
C

hsjnAx joCihoCjnAx0 jsi;

hoCjnAxnAx0 joCi ¼ hoCjnAx jsihsjnAx0 joCi
þ
X
D

hoCjnAx joDihoDjnAx0 joCi; ð2:26Þ

and using the following formulas to complete the color
algebra:

fABCfABD ¼ Ncδ
CD; dABCdABD ¼ N2

c − 4

Nc
δCD;

dABCδAB ¼ 0: ð2:27Þ

It is then straightforward, by taking matrix elements of
Eq. (2.21) in singlet or octet states, to obtain the expres-
sions for the operators Lij in Eq. (2.23). Thus, by taking
matrix elements in singlet states, we get (with t0 ≡ t − τ)

LssðτÞDsðt0Þ

¼ −g2CF

Z
X;X0

fΔ>
−ðX;X0ÞPXUoðτÞPX0Dsðt0ÞU†

s ðτÞ

þ Δ<
−ðX;X0ÞUsðτÞDsðt0ÞPX0U†

oðτÞPXg; ð2:28Þ

LsoðτÞDoðt0Þ

¼ g2CF

Z
X;X0

fΔ>
−ðX;X0ÞUsðτÞPX0Doðt0ÞU†

oðτÞPX

þ Δ<
−ðX;X0ÞPXUoðτÞDoðt0ÞPX0U†

s ðτÞg: ð2:29Þ

In these equations,

Δ>
−ðX;X0Þ ¼ Δ>ðτ; x − x0Þ þ Δ>ðτ; x̄ − x̄0Þ − Δ>ðτ; x − x̄0Þ

− Δ>ðτ; x̄ − x0Þ; ð2:30Þ

and similarly for Δ<
−ðX;X0Þ. This expression represents the

combination of propagators that naturally emerges when
one adds the four possible ways to hook the gluon in
diagrams with a given topology (i.e., in one of the diagrams
of Fig. 2). The minus sign in the last two terms finds its
origin in the minus sign present in nðxÞ in Eq. (2.25) and
affects the contributions where the gluon couples a quark
and an antiquark. Furthermore, we have introduced the
notation X ¼ ðt;XÞ, where X represents the set of coor-
dinates of the quark-antiquark pair, i.e., X ¼ fx; x̄g, with
coordinates without (with) a bar giving the position of the
quark (antiquark). The integral

R
X in Eq. (2.29) runs over

FIG. 2. These four diagrams are in one-to-one correspondence with the four terms in Eqs. (2.28) and (2.29). In these diagrams the
evolution operators concern the heavy-quark pair (not the gluon). Each of these diagrams represents four similar diagrams where the
gluon is hooked in four possible ways without changing the topological structure [these four contributions are summarized by the
propagators Δ<

− and Δ>
− , cf. Eq. (2.30)]. The first and third diagrams represent Lss, while the second and fourth represent Lso.
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these coordinates, i.e.,
R
X¼
R
d3xd3x̄. Finally, PX ¼ jXihXj

is a projector, whose matrix elements between two local-
ized states read

hr1; r̄1jPXjr2; r̄2i¼ δðr1− r2Þδðr̄1− r̄2Þδðx− r1Þδðx̄− r̄1Þ:
ð2:31Þ

The evolution operators now depend on the color
state of the propagating quark-antiquark pair. They are
UoðτÞ ¼ e−iHoτ for an octet state and UsðτÞ ¼ e−iHsτ for a

singlet state. The operator UðτÞ propagates the quark-
antiquark pair forward in time, i.e., from t0 ¼ t − τ to t,
while its Hermitian conjugate, U†ðτÞ propagates the pair
backward in time, from t to t − τ. The two operators are
therefore attached respectively to the upper and lower
pairs of lines in diagrams such as those introduced in
Fig. 1. The structure of Eqs. (2.28) and (2.29) may then be
understood with the help of the diagrams displayed
in Fig. 2.
For the operators Loj, we get

LosðτÞDsðt0Þ ¼
g2

2Nc

Z
X;X0

fΔ>
−ðX;X0ÞUoðτÞPX0Dsðt0ÞU†

s ðτÞPXþΔ<
−ðX;X0ÞPXUsðτÞDsðt0ÞPX0U†

oðτÞg; ð2:32Þ

and, writing Loo ¼ Loo
1 þ Loo

2 þ Loo
3 ,

Loo
1 ðτÞDoðt0Þ ¼ −

g2

2Nc

Z
X;X0

fΔ>
−ðX;X0ÞPXUsðτÞPX0Doðt0ÞU†

oðτÞþΔ<
−ðX;X0ÞUoðτÞDoðt0ÞPX0U†

s ðτÞPXg; ð2:33Þ

Loo
2 ðτÞDoðt0Þ ¼ −

g2ðN2
c − 4Þ

4Nc

Z
X;X0

fΔ>
−ðX;X0Þ½PX; UoðτÞPX0Doðt0ÞU†

oðτÞ�þΔ<
−ðX;X0Þ½UoðτÞDoðt0ÞPX0U†

oðτÞ;PX�g;

ð2:34Þ

Loo
3 ðτÞDoðt0Þ ¼ −

g2Nc

4

Z
X;X0

fΔ>þðX;X0Þ½PX; UoðτÞPX0Doðt0ÞU†
oðτÞ�þΔ<þðX;X0Þ½UoðτÞDoðt0ÞPX0U†

oðτÞ;PX�g; ð2:35Þ

where

Δ>þðX;X0Þ ¼ Δ>ðτ; x − x0Þ þ Δ>ðτ; x̄ − x̄0Þ þ Δ>ðτ; x − x̄0Þ þ Δ>ðτ; x̄ − x0Þ; ð2:36Þ

and similarly for Δ<þðX;X0Þ. Note that there is no minus
sign in Δ>þðX;X0Þ. This is because this contribution arises
from products of factors mðxÞ in Eq. (2.25). As for the
color factors, their origins can be easily traced back to
Eqs. (2.24)–(2.27).
The equations of motion that we have obtained forDs and

Do are similar to those derived in Ref. [13], to within
the small change discussed above [see after Eq. (2.20)],
and the fact that in Ref. [13] the HamiltonianH0 used in the
interaction representation contains only the heavy quark
and antiquark kinetic energy. At that point, in Ref. [13] a
further approximation was performed, that consists in
expanding the evolution operators at short time, i.e., writing
UðτÞ ≃ 1 − iH0τ. Here we shall proceed differently in our
treatment of the time integrals. The need to go beyond the
approximation used in Ref. [13] is motivated in particular by
the color-changing transitions that take place inQCD:when a
quark-antiquark pair in a singlet state absorbs a gluon, it turns
into an octet state. This produces an immediate change in the
effective Hamiltonian of the pair, with the force between the
quark and the antiquark turning from attractive in the singlet
state to repulsive in the octet state. It is then important to keep

track of this change of the pair Hamiltonian as the pair
propagates during the lifetime of the exchange gluon. This is
precisely what the various evolution operators do in the
equations written above (see also Figs. 2 and 3), and why we
have included the leading-order interaction between the
quark and the antiquark in the Hamiltonian HQ.

D. Equations for the relative motion

At this stage, before doing any further approximation, we
shall first simplify the equations that we have obtained by
eliminating the center-of-mass coordinates. To that aim, we
define a further reduced density matrix by taking a trace over
the center-of-mass coordinates. With r and r̄ denoting
respectively the coordinates of the quark and the antiquark,
we call R ¼ ðrþ r̄Þ=2 the center-of-mass coordinate
and s ¼ r − r̄ the relative coordinate. The reduced density
matrix is defined from the matrix elements hr1r̄1jDs;ojr2r̄2i
which, with a slight abuse of notation, we write also as
hR1; s1jDs;ojR2; s2i. We call D̃s;o the reduced density matrix
obtained after taking the trace over the center-of-mass
coordinates. That is,
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hs1jD̃s;ojs2i≡
Z
R
hR; s1jDs;ojR; s2i: ð2:37Þ

The derivation of the equations of motion for the reduced density matricesDs;o is presented in Appendix A. It is assumed there
that the center-of-mass velocity is small, typically ≲ ffiffiffiffiffiffiffiffiffiffi

T=M
p

. We obtain then the following equations. For the singlet, we get

LssðτÞD̃sðt0Þ ¼ −g2CFfΔ>ðqÞSq·ŝUoðτÞSq·ŝD̃sðt0ÞUsðτÞ† þ Δ<ðqÞUsðτÞD̃sðt0ÞSq·ŝU
†
oðτÞSq·ŝg; ð2:38Þ

and

LsoðτÞD̃oðt − τÞ ¼ g2CFfΔ>ðqÞUsðτÞSq·ŝD̃oðt0ÞU†
oðτÞSq·ŝ þ Δ<ðqÞSq·ŝUoðτÞD̃oðt0ÞSq·ŝU

†
s ðτÞg: ð2:39Þ

In these equations (see Appendix A)

Sq·s ≡ 2 sinðq · ŝ=2Þ; ð2:40Þ

where ŝ is the operator measuring the relative coordinate.
For the octet, we get

LosðτÞD̃sðt0Þ ¼
g2

2Nc
fΔ>ðqÞUoðτÞSq·ŝD̃sU

†
s ðτÞSq·ŝþΔ<ðqÞSq·ŝUsðτÞD̃sðt0ÞSq·ŝU

†
oðτÞg; ð2:41Þ

Loo
1 ðτÞD̃oðt0Þ ¼ −

g2

2Nc
fΔ>ðqÞSq·ŝUsðτÞSq·ŝD̃oðt0ÞU†

oðτÞþΔ<ðqÞUoðτÞD̃oðt0ÞSq·ŝU
†
s ðτÞSq·ŝg; ð2:42Þ

Loo
2 ðτÞD̃oðt0Þ ¼ −

g2ðN2
c − 4Þ

4Nc
fΔ>ðqÞ½Sq·ŝ; UoðτÞSq·ŝD̃oðt0ÞU†

oðτÞ�þΔ<ðqÞ½UoðτÞD̃oðt0ÞSq·ŝU
†
oðτÞ;Sq·ŝ�g; ð2:43Þ

Loo
3 ðτÞD̃oðt0Þ ¼ −

g2Nc

4
fΔ>ðqÞ½Cq·ŝ; UoðτÞCq·ŝD̃oðt0ÞU†

oðτÞ�þΔ<ðqÞ½UoðτÞD̃oðt0ÞCq·ŝU†
oðτÞ; Cq·ŝ�g; ð2:44Þ

where we have set Cq·ŝ ≡ 2 cos ðq · ŝ=2Þ.

FIG. 3. These four diagrams are in correspondence with the various terms in Eqs. (2.32) and (2.35). For instance the second and fourth
diagrams in the first line correspond to Los, and the first and third correspond to Loo

1 , while the diagrams in the second line represent the
various contributions to Loo

2 and Loo
3 .
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The equations above give a fairly complete account of
the relative motion of a heavy quark-antiquark pair in a
static quark-gluon plasma in thermal equilibrium. They are
however difficult to solve in full generality. In order to
become familiar with their physical content, we consider, in
the next two sections the general question of how they
describe the approach to thermal equilibrium, in two
distinct regimes. The first regime is that of high temper-
ature, controlled by the increase of the entropy. In the
second regime, where the temperature is of the order of the
binding energy, entropy effects compete with binding
forces; there, the relevant quantity to look at is a non-
equilibrium free energy which will be seen to decrease
monotonously as the equilibrium is approached. We ana-
lyze first the Abelian case, and in the following section we
consider QCD.
From now on, in order to alleviate the notation, we omit

the tilde in D̃s;o since we shall be dealing only with the
reduced density matrix of the relative motion.

III. ENTROPY AND FREE ENERGY
IN THE ABELIAN CASE

A derivation completely analogous to the one done in the
previous section gives, for the case of an Abelian plasma,

dD
dt

¼ −i½HQ;D� þ
Z

t−t0

0

dτ
Z
q
e−iq0τLðτÞDðt − τÞ; ð3:1Þ

with

LðτÞDðt − τÞ ¼ −g2fΔ>ðqÞ½Sq·r̂; UðτÞSq·r̂Dðt − τÞU†ðτÞ�
þ Δ<ðqÞ½UðτÞDðt − τÞSq·r̂U†ðτÞ;Sq·r̂�g:

ð3:2Þ

This equation is identical to the equation forDs [Eq. (2.23)]
in which we replace CF by unity, set Do ¼ Ds ¼ D, and
use the expressions (2.38) and (2.39). Recall that D is the
reduced density matrix of the quark-antiquark pair, after
taking the trace over the center-of-mass coordinates. The
operator Sq·r̂ is an operator in the space of the relative
coordinates [cf. Eq. (2.40)], with r̂ denoting the relative
coordinate operator. Finally, in HQ, the potential is the
ordinary Coulomb potential, VðrÞ ¼ −α=r [analogous to
Vs in Eq. (2.3) from which it is deduced via the sub-
stitutions CF → 1 and αs → α, where α is the fine-structure
constant].
Our goal now is to perform, approximately, the integra-

tion over the time τ, in order to simplify the right-hand side
of the equation of motion. The strategies to do so differ,
depending on whether we are in the high-temperature limit
or not, that is whether binding energy effects play an
important role or not.

A. The entropy increase at high temperature

In this subsection we focus on the high-temperature
regime, i.e., the regime where the temperature is much
higher than the binding energy. In this regime, one can
ignore the binding energy, and the approach to equilibrium
is dominated by entropy effects. We shall indeed show that
the equations of motion predict a monotonous increase of
the entropy. These equations of motion lead naturally to
quantum Brownian motion, which was studied more
extensively in Ref. [13]. In fact the equation for the reduced
density matrix takes the form of a Lindblad equation, where
the effects of the collisions are accounted for by an
imaginary potential.
The temperature enters the equations through the gluon

propagator, and limits the range of the τ integration to
τ ≲ 1=mD, with mD ≲ T.4 The evolution operators UðτÞ
contribute phase factors of the form e−iτH, where H is the
sum of a kinetic and a potential energy V. Collisions change
the kinetic energy by an amount q2=M þ Pq=M, where
q ∼mD is the typical momentum of a gluon exchanged in a
soft collision, and P ∼ αM is the typical momentum of the
heavy quark or antiquark in its relative motion in a Coulomb
bound state. The contribution to the phase factor coming
from the change of the kinetic energy is then of order
mD=M ≪ 1 for the first term, and of order α for the second.
In either case, these are small contributions that can be safely
neglected. As for the binding force acting on the heavy
quark, this can be estimated as follows: for aCoulombbound
state, we have parametrically, α=r ∼ αp ∼Mα2. Thus, when
Mα2 ≲mD, which can be satisfied at sufficiently high
temperature, the potential energy V, and the binding energy,
are small compared to the Debye mass, and one can safely
set UðτÞ ≈ 1 in Eq. (3.2).5 Along the same line, we assume
that during the time interval between t − τ and t, the density
matrix does not vary significantly so that we can replace
Dðt − τÞ by DðtÞ on the right-hand side of Eq. (3.2)
[alternatively, we could use the form (2.20) of the evolution
equation for D]. With these approximations the evolution
equation is greatly simplified, and reads

dD
dt

þ i½HQ;DðtÞ�

¼ −g2
Z

t−t0

0

dτ
Z
q
e−iq0τðΔ>ðqÞ½Sq·r̂;Sq·r̂DðtÞ�

þ Δ<ðqÞ½DðtÞSq·r̂;Sq·r̂�Þ: ð3:3Þ

The integrand on the right-hand side can be written as
follows:

4In strict weak coupling, the Debye mass is of order gT ≪ T.
However, it is convenient to relax this condition and allow for
values of mD as large as the temperature. In fact, in the numerical
calculations presented later, we have typically mD ≃ 2T.

5Note that this is a much stronger approximation than that used
in Ref. [13] where a linear expansion in τ was used.
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1

2
½S2

q·r̂;DðtÞ�ðΔ>ðqÞ−Δ<ðqÞÞ

þ
�
1

2
fS2

q·r̂;DðtÞg−Sq·r̂DðtÞSq·r̂

�
ðΔ>ðqÞþΔ<ðqÞÞ:

ð3:4Þ

The contributions of the first and the second lines are
qualitatively different: as we shall see shortly, the first line
yields a correction to the real part of the potential, and
corresponds to Hamiltonian evolution, while the second line
involves the imaginary part of the potential, and accounts in
particular for dissipation. To see that, we perform the
integration over q0, and then the integration over τ in
Eq. (3.3). In the long-time limit, t − t0 ≫ 1=mD, we can
let the upper limit of the τ integration go to infinity. The τ
integrations then yield (see Ref. [13])

Z
∞

0

dτg2Δ>ðτ; qÞ ¼ i
2
δVðqÞ − 1

2
WðqÞ; ð3:5Þ

Z
∞

0

dτg2Δ<ðτ; qÞ ¼ −
i
2
δVðqÞ − 1

2
WðqÞ: ð3:6Þ

The correction δV to the real part of the potential provides a
contribution that adds up to theHamiltonian on the left-hand
side (HQ → H0

Q). This reads

−2i
Z
q
δVðqÞ½Sq·rSq·r;DðtÞ� ¼ i

�Z
q
δVðqÞðeiq·r−1Þ;D

�
¼ i½δVðrÞ−δVð0Þ;D�; ð3:7Þ

where we have used δVð−qÞ ¼ δVðqÞ. This is the screening
correction to the real part of the potential. In the hard thermal
loop (HTL) approximation, this is given by (see e.g.,
Ref. [3])

δVðrÞ − δVð0Þ ¼ αs
r
ðe−mDr − 1Þ þ αsmD; ð3:8Þ

so that the total potential in H0
Q is the screened potential

V ¼ ðαs=rÞ expð−mDrÞ (to within an irrelevant con-
stant term).
The remaining terms can be rearranged as follows:

dD
dt

þ i½H0
Q;DðtÞ�

¼ −
Z
q
WðqÞ

�
Sq·r̂DðtÞSq·r̂ −

1

2
fDðtÞ;S2

q·r̂g
�
: ð3:9Þ

This equation has the structure of a Lindblad equation [15].
It can be written as

dD
dt

¼−i½H0
Q;D�þ

Z
q

�
LqDðtÞL†

q−
1

2
fDðtÞ;L†

qLqg
�
;

ð3:10Þ

where the Lindblad operators Lq take the form
(g2Δ>ð0;qÞ¼−WðqÞ≥0)

Lq ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ>ð0;qÞ

p
Sq·r ¼ L†

q: ð3:11Þ

At this point, we could rely on the theorem derived in
Ref. [16] for the Lindblad equation, in order to show that
the entropy is a monotonically increasing function of time.

This theorem requires that
R d3q

ð2πÞ3 ðL†
qLq − LqL

†
qÞ ¼ 0,

which clearly holds in our case since L†
q ¼ Lq. However

in order to highlight the difference between the present
high-temperature regime, and the low-temperature regime
to be discussed in the next subsection, we shall proceed
with an explicit and elementary derivation.
From the definition of the von Neumann entropy,6

SðtÞ ¼ −TrðDðtÞ logDðtÞÞ ð3:12Þ

and using the fact that TrðDðtÞÞ is independent of time, a
property that can be verified explicitly using Eq. (3.10), one
easily obtains

dS
dt

¼−Tr
�
dD
dt

logD
�

¼−
Z
q
Tr

��
LqDðtÞLq−

1

2
fDðtÞ;LqLqg

�
logDðtÞ

�
:

ð3:13Þ

At this point, it is convenient to use a representation in
which DðtÞ is diagonal, viz.

DðtÞ ¼
X
n

pnðtÞjnihnj; ð3:14Þ

with pnðtÞ ≥ 0, and the states n are functions of time. We
then obtain

6SinceD is the reduced density matrix, obtained by tracing out
the plasma d.o.f., as well as the center-of-mass coordinates, this
may also be considered as an entanglement entropy. In this
context, it is useful to note that the factorization property (2.17) is
used only as an approximation for the right-hand side of the
equation of motion (2.16). The resulting equation for the reduced
density matrix, Eq. (2.18), keeps track, approximately, of
correlations between the heavy quarks and the plasma, and these
correlations are responsible for the nontrivial time evolution of
the entropy of the heavy-quark system.
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dS
dt

¼ −
Z
q

�X
n;m

pnðtÞ logpmðtÞjhnjLqjmij2

−
X
n

pnðtÞ logpnðtÞhnjLqLqjni
�

¼
Z
q

X
n;m

jhnjLqjmij2pnðtÞ log
�
pnðtÞ
pmðtÞ

�

¼ 1

2

Z
q

X
n;m

jhnjLqjmij2½pnðtÞ − pmðtÞ� log
�
pnðtÞ
pmðtÞ

�
:

ð3:15Þ
This expression is manifestly positive, which implies
that the entropy (3.12) indeed increaseswith time.As already
emphasized, this proof is less general than the use of the
theorem in Ref. [16] (it relies in particular on the prop-
erty L†

q ¼ Lq).
It is interesting to relate the rate of entropy increase to

our function WðrÞ, or equivalently ΓðrÞ. A crude estimate
can be obtained as follows. First we note that

SðtÞ ¼ −
X
n

pnðtÞ logðpnðtÞÞ; ð3:16Þ

and therefore the combination ðpnðtÞ − pmðtÞÞ logðpnðtÞ
pmðtÞÞ

that appears in Eq. (3.15) is a priori of the same size as S.
Also, having inmind the approach to equilibrium of a system
initially in a bound state, we may write [cf. Eq. (3.11)]

hnjLqjmi ≈ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ>ð0;qÞ

p
sin

�
qa0
2

�
Anm; ð3:17Þ

where a0 is a vector whose modulus coincides with the Bohr
radius of the bound state, and Anm are constants of order
unity. We can then estimate the order of magnitude of the
change of entropy as follows:

1

S
dS
dt

≈ g2
Z
q
Δ>ð0;qÞðSq·a0Þ2

¼ 2

Z
q
WðqÞðeiq·a0 − 1Þ

¼ 2Γða0Þ; ð3:18Þ

where we have used WðqÞ ¼ −g2Δ>ð0; qÞ, and ΓðrÞ ¼
WðrÞ −Wð0Þ, where WðrÞ is the imaginary part of the
potential. This estimate relates the rate of entropy increase to
the imaginarypart of the potential, that is to a typical collision
rate, at a scale determined by the size of the bound state.

B. Free energy minimization

Now we look at the regime in which the temperature and
the binding energies are of the same order of magnitude. It is
no longer legitimate to approximate the evolution operators
by unit operators, as we did in the previous subsection.

In this case, the effects of entropy and binding compete.
Then, a relevant object to look at is the nonequilibrium
generalization of the free energy. To analyze the time
dependence of this quantity one is naturally led to expand
on a complete set of eigenstates of the Hamiltonian. The
equations of motion lead in this case to rate equations, with
rates that match those obtained from Fermi’s golden rule.
One can still express the effect of the collisions, at least
partially, through the imaginary part of a potential, provided
one takes into account the energy dependence of this
potential.
We start again from Eq. (3.1), with the right-hand side

written as in Eq. (2.20), that is,

LðτÞDðt − τÞ ¼ −g2fΔ>ðqÞ½Sq·r̂; UðτÞSq·r̂U†ðτÞDðtÞ�
þ Δ<ðqÞ½DðtÞUðτÞSq·r̂U†ðτÞ;Sq·r̂�g:

ð3:19Þ

In order to more easily handle the evolution operators
UðτÞ ¼ e−iHQτ and U†ðτÞ, we introduce at appropriate
places projectors on eigenstates of HQ, Pn ¼ jnihnj, and
assume for simplicity absence of degeneracy. Note that, in
contrast to the previous subsection, the states n are now
independent of time. We get

LðτÞDðt − τÞ
¼ −g2

X
n;k

fΔ>ðqÞe−iðEn−EkÞτ½Sq·r̂;PnSq·r̂PkDðtÞ�

þ Δ<ðqÞe−iðEn−EkÞτ½DðtÞPnSq·r̂Pk;Sq·r̂�g: ð3:20Þ

The integration over τ can then be performed, usingZ
∞

0

dτe−iq0τe−iðEn−EkÞτe−ϵτ ¼ i
Ek − En − q0 þ iϵ

ð3:21Þ

with ϵ → 0þ. We get

dD
dt

þ i½H;D�

¼ −ig2
Z
q

X
k;n

�
Δ>ðqÞ

Ek − En − q0 þ iϵ
½Sq·r̂;PnSq·r̂PkDðtÞ�

þ Δ<ðqÞ
Ek − En − q0 þ iϵ

½DðtÞPnSq·r̂Pk;Sq·r̂�
�
: ð3:22Þ

In order to perform the integration over q0 we note that

Z
q0

Δ>ðqÞ
Ek−En−q0þ iϵ

¼−
i
2
Δ>ðEkn;qÞ−P

Z
q0

Δ>ðq0;qÞ
q0−Ekn

;

ð3:23Þ

where we have set Ekn ≡ Ek − En, and the symbol P in
front of the integral denotes the principal value. Similarly,
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Z
q0

Δ<ðqÞ
Ek − En − q0 þ iϵ

¼
Z
q0

Δ>ðqÞ
Ek − En þ q0 þ iϵ

¼ −
i
2
Δ>ðEnk; qÞ þ P

Z
q0

Δ>ðq0; qÞ
q0 þ Ekn

: ð3:24Þ

We have used Δ<ðq0; qÞ ¼ Δ>ð−q0;−qÞ ¼ Δ>ð−q0; qÞ, where the last equality follows from the rotational invariance of
the plasma. We can then rewrite Eq. (3.22) as

dD
dt

þ i½HQ;D� ¼ −
g2

2

Z
q

X
k;n

ðΔ>ðEkn; qÞ½Sq·r̂;PnSq·r̂PkDðtÞ� þ Δ>ðEnk; qÞ½DðtÞPnSq·r̂Pk;Sq·r̂�Þ

þ ig2
Z
q

X
k;n

P
Z
q0

Δ>ðq0; qÞ
q0 − Ekn

½Sq·r̂;PnSq·r̂PkDðtÞ� − ig2
Z
q

X
k;n

P
Z
q0

Δ>ðq0; qÞ
q0 þ Ekn

½DðtÞPnSq·r̂Pk;Sq·r̂�:

ð3:25Þ

In the case where the typical transitions involve energy differences that are small compared to the Debye mass, which
controls the decay of Δðq0Þ with q0, we can ignore the energies Ekn, and freely perform the sums over n and k, which
eliminates the projectors. Using the identities

P
Z
q0

g2Δ>ðq0; qÞ
q0

¼ −
1

2
δVðqÞ; g2Δ>ð0; qÞ ¼ −WðqÞ; ð3:26Þ

one then easily recovers the result of the previous section, i.e., Eq. (3.9).
We return now to Eq. (3.25). In order to minimize the effects of the principal parts and focus on the dissipative part of the

equation, we use the eigenstates ofH0
Q instead ofHQ, and accordingly subtract the corresponding contribution of δV on the

right-hand side of the equation. We get

dD
dt

þ i½H0
Q;D� ¼ −

g2

2

Z
q

X
k;n

ðΔ>ðE0
kn; qÞ½Sq·r̂;PnSq·r̂PkDðtÞ� þ Δ>ðE0

nk; qÞ½DðtÞPnSq·r̂Pk;Sq·r̂�Þ

þ ig2
Z
q

X
k;n

P
Z
q0

Δ>ðq0; qÞ
�

1

q0 − E0
kn
−

1

q0

�
½Sq·r̂;PnSq·r̂PkDðtÞ�

− ig2
Z
q

X
k;n

P
Z
q0

Δ>ðq0; qÞ
�

1

q0 þ E0
kn
−

1

q0

�
½DðtÞPnSq·r̂Pk;Sq·r̂�; ð3:27Þ

where the energies E0
n are the eigenvalues ofH0

Q. At this point, it is convenient to consider the explicit matrix elements ofD
and write the equation in a Liouvillian form

dDij

dt
þ iEijDij ¼ Lij;klDkl: ð3:28Þ

In order to simplify the writing, we set hijSq·r̂jji → Sij in the following. We then obtain

Lij;kl ¼ −
g2

2

Z
q
ðSinSnkδjlΔ>ðE0

kn; qÞ − SikSljΔ>ðE0
ki; qÞÞ −

g2

2

Z
q
ðSlnSnjδikΔ>ðE0

ln; qÞ − SikSljΔ>ðE0
lj; qÞÞ

þ ig2
Z
q

�
SinSnkδjlP0

Z
q0

Δ>ðq0; qÞ
q0 − E0

kn
− SikSljP0

Z
q0

Δ>ðq0; qÞ
q0 − E0

ki

�

− ig2
Z
q

�
SlnSnjδikP0

Z
q0

Δ>ðq0; qÞ
q0 þ E0

nl
− SikSljP0

Z
q0

Δ>ðq0; qÞ
q0 þ E0

jl

�
: ð3:29Þ

In this equation, P0 denotes the principal part of the integral from which the contribution 1=q0 is subtracted
[cf. Eq. (3.27)].
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Assuming that the Liouvillian on the right-hand side of
Eq. (3.28) can be treated as a perturbation, we expect the
effect of this perturbation at late time to be dominant when it
connects pairs of states with comparable energy differences,
that is, when jEijj ≃ jEklj. In particular, one expects the
diagonal elements of the density matrix, i.e., the occupation
probabilities of the various levels, for which Eij ¼ 0 to
decouple from the nondiagonal ones.7 We now restrict
ourselves to these diagonal matrix elements, and ignore
possible degeneracies. It is easy to verify that the principal
values then cancel. We get, for the case i ≠ k,

Lii;kk ¼ g2jSikj2Δ>ðEki; qÞ: ð3:30Þ

This is nothing but the decay rate Γk→i calculated according
to Fermi’s golden rule. That is,

Γk→i ¼ g2
Z
q
jhijSq·r̂jkij2Δ>ðEki; qÞ; ð3:31Þ

where Δ>ðEki; qÞ plays the role of the density of available
states for the transition k → i. Similarly, for the case i ¼ k
we get

Lii;ii ¼
X
j≠i

Γi→j: ð3:32Þ

At this point we denote by pnðtÞ ¼ hnjDðtÞjni the
probability to find the system in the eigenstate n of H0

Q.
The Eq. (3.28) then yields

dpn

dt
¼
X
k

ðpkΓk→n − pnΓn→kÞ: ð3:33Þ

From the property

Δ>ðEkn;qÞ ¼ e−
Enk
T Δ>ðEnk;qÞ; ð3:34Þ

and Eq. (3.31), it follows that

Γk→n ¼ e−Enk=TΓn→k: ð3:35Þ

Thus, in equilibrium where dpn=dt ¼ 0, the detailed
balance relation pkΓk→n ¼ pnΓn→k implies

pk

pn
¼ e−ðEk−EnÞ=T; ð3:36Þ

that is pn ∝ e−En=T . In other words, the system reaches
thermal equilibrium at the temperature of the plasma.
In order to see globally how the equilibrium is achieved,

we look at the free energy F, defined in terms of the density
matrix as in equilibrium, viz.

F ¼ TrH0
QDþ TTrD lnD ¼

X
n

ðEn þ T logpnÞpn;

ð3:37Þ

where in the last equality, the states n are the eigenstates of
H0

Q. Taking the time derivative of this equation, and using
Eqs. (3.33) and (3.34), we get

dF
dt

¼ −
X
nk

ðEn þ T logpnÞ
�
pn − e−

Enk
T pk

�
Γn→k

¼ −
T
2

X
nk

�
pn − e−

Enk
T pk

�
log

�
pn

pke−
Enk
T

�
Γn→k: ð3:38Þ

Since all the terms in the sum are positive, this equation
shows that the free energy is a monotonously decreasing
function of time (at least in the large-time limit). An
alternative and more formal proof can be obtained by
using Lemma 1 of Ref. [17]. Note that if we use this
evolution equation to compute the derivatives of S and E
separately, one obtains expressions that do not necessarily
have a well-defined sign.
We may estimate the rate of change in the free

energy, using a similar argument as that used for the
entropy. We get

1

F
dF
dt

≈ −4g2
Z
q
Δ>ðΔE;qÞ

�
sin

�
qa0
2

��
2

≈ −2ΓðΔE; a0Þ; ð3:39Þ

where ΔE is a quantity that represents an average value
for the binding energy differences. In the last line
ΓðΔE; a0Þ is a damping rate that summarizes the effect
of the collisions. This can be viewed as a definition that
generalizes that of Γða0Þ to include an energy dependence
[i.e., Γða0Þ ¼ ΓðΔE ¼ 0; a0Þ; see the previous section].
Equation (3.39) is essentially the same as that giving the
entropy increase, Eq. (3.18), with Δ>ð0;qÞ replaced by
Δ>ðΔE;qÞ. We shall discuss in the last section the size of
the correction due to this energy dependence.

IV. ENTROPY AND FREE ENERGY IN A
NON-ABELIAN THEORY

In this section we repeat the analysis of the previous
section in the case of QCD. The generalization is straight-
forward except for obvious complications related to the
color algebra, and the existence of several components of
the density matrix.

A. Entropy increase

As in the Abelian case, in the high-temperature limit, the
evolution equations for the reduced density matrix are a set
of Lindblad equations, in which the effect of collisions is
taken into account via an imaginary potential. We shall

7A more formal discussion of this issue is presented in
Appendix B.
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verify that the entropy increases monotonously as the
equilibrium is approached.
Following the same reasoning as in Sec. III A we get

the following simplified expressions for the various
operators L:

LssDs ¼ −
CF

2

Z
q
½LqLq; Ds� −

CF

2

Z
q
fLqLq; Dsg; ð4:1Þ

LsoDo ¼ CF

Z
q
LqDoLq; ð4:2Þ

LosDs ¼
1

2Nc

Z
q
LqDsLq; ð4:3Þ

and

Loo
1 Do ¼ −

1

4Nc

Z
q
½LqLq; Do� −

1

4Nc

Z
q
fLqLq; Dog;

ð4:4Þ

Loo
2 Do ¼

ðN2
c − 4Þ
4Nc

Z
q

�
LqDoLq −

1

2
fLqLq; Dog

�
; ð4:5Þ

Loo
3 Do ¼

Nc

4

Z
q

�
L̄qDoL̄q −

1

2
fL̄qL̄q; Dog

�
: ð4:6Þ

In the previous equations we have used Lq as defined in
Eq. (3.11) while

L̄q·r ≡ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ>ð0; qÞ

p
cos ðq · r=2Þ: ð4:7Þ

In the QCD case the entropy can be written as

S ¼ −TrðDs logDsÞ − ðN2
c − 1ÞTrðDo logDoÞ; ð4:8Þ

where the factor N2
c − 1 is due to the normalization chosen

in Eq. (2.10). By using the explicit expression of the
operators Lij just given above, we can write the derivative
of the entropy as

dS
dt

¼ −TrððLssDs þ LsoDoÞ logDsÞ
− ðN2

c − 1ÞTrððLosDs þ Loo
1 DoÞ logDoÞ

− ðN2
c − 1ÞTrðLoo

2 Do logDoÞ
− ðN2

c − 1ÞTrðLoo
3 Do logDoÞ: ð4:9Þ

Using exactly the same reasoning as in Sec. III A we
can then show that the second line of Eq. (4.9) is
positive, i.e.,

−ðN2
c − 1ÞTr½ðLoo

2 Do þ Loo
3 DoÞ logDo� ≥ 0: ð4:10Þ

The first line of Eq. (4.9) introduces an additional com-
plication, in particular because it mixes Ds and Do. At this
point, we use a (time-dependent) basis in which Ds and Do
are diagonal, that is we set

Ds ¼
X
n

ps
njs; nihs; nj; Do ¼

X
m

po
mjo; miho; mj;

ð4:11Þ

where, in the last expression, jo; miho; mj actually
stands for

jo; miho; mj ¼ 1

N2
c − 1

X
C

joC;mihoC;mj: ð4:12Þ

Then, a simple calculation allows us to write the first line of
the right-hand side of Eq. (4.9) as

4g2CF

X
nm

ðps
n − po

mÞ log
�
ps
n

po
m

�Z
q
jhs; njLqjo; mij2 ≥ 0:

ð4:13Þ

In conclusion, all the terms contributing to the derivative
of the entropy are positive. This implies that in the regime
where the temperature of the quark-gluon plasma is large
in comparison to the typical binding energies, the equa-
tions for the reduced density matrix yield a monotonous
increase of the entropy as the quarkonium approaches
thermal equilibrium. The rate of entropy change can be
estimated in the same way as we did for the Abelian case
in Sec. III A.

B. Free energy minimization

We consider now the regime of moderate temperatures,
and will proceed to the calculation of the free energy. We
shall first write the necessary rate equations describing the
evolution of the populations of the various states. Although
many of these states belong to a continuum, we write the
summations over states as discrete sums, as in Eq. (4.11),
instead of integrations, since we focus here on the general
structure of the equations. The continuum states will be
explicitly dealt with in the examples treated in the next
section.
The probabilities ps

n and po
m fulfill the following evo-

lution equations:

dps
n

dt
¼ g2CF

X
m

�
po
m − ps

ne−
Eom−Esn

T

�

×
Z
q
Δ>ðEo

m − Es
n; qÞjhs; njSq·r̂jo; mij2; ð4:14Þ

and
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dpo
m

dt
¼ −

g2

2Nc

X
n

�
po
m − ps

ne−
Eom−Esn

T

�Z
q
Δ>ðEo

m − Es
n; qÞjhs; njSq·r̂jo; mij2

−
g2ðN2

c − 4Þ
4Nc

X
k

�
po
m − po

ke
−
Eom−Eo

k
T

�Z
q
Δ>ðEo

m − Eo
k; qÞjho; mjSq·r̂jo; kij2

−
g2Nc

4

X
k

�
po
m − po

ke
−
Eom−Eo

k
T

�Z
q
Δ>ðEo

m − Eo
k; qÞjho; mjCq·r̂jo; kij2: ð4:15Þ

Note that in order to obtain Eq. (4.14), we had to combine
Eqs. (4.1) and (4.2), while the first of Eq. (4.15) involves
both Eqs. (4.3) and (4.4). The structure here is very much
like what occurs in the entropy calculation, Eq. (4.9).
We may define, in agreement with Fermi’s golden rule

[see Eq. (3.31)],

Γo;m→s;n ¼
g2

2Nc

Z
q
Δ>ðEo

m − Es
n; qÞjhs; njSq·r̂jo; mij2;

Γs;n→o;m ¼ g2CF

Z
q
Δ>ðEs

n − Eo
m; qÞjhs; njSq·r̂jo; mij2:

ð4:16Þ

The first equation gives the transition rate Γo→s from one
particular member of an octet state to a singlet state [the
factor 1=ð2NcÞ follows from Eq. (2.24)]. In the second
equation, giving Γs→o, all members of the considered octet
are summed over (producing a factorN2

c − 1). Similarly, we
have, for the octet-to-octet transitions

Γð2Þ
o;m→o;k ¼

g2ðN2
c − 4Þ

4Nc

Z
q
Δ>ðEo

m −Eo
k;qÞjho;mjSq·r̂jo; kij2;

Γð2Þ
o;m→o;k ¼

g2Nc

4

Z
q
Δ>ðEo

m −Eo
k;qÞjho;mjCq·r̂jo; kij2:

ð4:17Þ

All these transition rates are those which control the
evolution of the populations, according to the equations
written above.
With these ingredients we can compute the evolution of

the free energy. Expanding on the basis of the eigenstates of
H0

Q, and dropping the 0 on the energies in order to simplify
the notation, one gets

F ¼
X
n

ðEs
nps

n þ Tps
n logps

nÞ

þ ðN2
c − 1Þ

X
m

ðEo
mpo

m þ Tpo
m logpo

mÞ: ð4:18Þ

Using analogous manipulations as the ones we used in
Sec. III B we get

dF
dt

¼ −TðN2
c − 1Þ

X
nm

log

 
po
m

ps
ne−

Eom−Esn
T

!

×
�
po
m − ps

ne−
Eom−Esn

T

�
Γo;m→s;n

−
T
2

X
mk

log

 
po
m

po
ke

−
Eom−Eo

k
T

!�
po
m − po

ke
−
Eom−Eo

k
T

�
Γð2Þ
o;m→o;k

−
T
2

X
mk

log

 
po
m

po
ke

−
Eom−Eo

k
T

!�
po
m − po

ke
−
Eom−Eo

k
T

�
Γð3Þ
o;m→o;k:

ð4:19Þ
Again the physical interpretation is straightforward: each of
the elementary transitions makes the free energy decrease
separately, in a way that is very similar to what happens in
the Abelian limit.

V. SOME ILLUSTRATIVE CALCULATIONS

In this last section, we present results of some numerical
solutions of the equations for the density matrix in simplified
situations. We emphasize that our main goal here is to
illustrate some of the concepts that we have introduced.
Thus, although the numbers are adjusted to bottomonium
physics, we make no attempt at a complete phenomeno-
logical description. The first example that we treat is that of
an infinitely massive quark-antiquark pair. This provides a
simple illustration of the role of the energy dependence of
the imaginary potential, as well as a quantitative indication
of the magnitude of the effect. In principle, such a setting
corresponds to that used in lattice QCD calculations, and we
briefly compare with relevant lattice results. The next
example involves a simplified picture of a bottomonium
in a plasma, with a single bound state in the singlet channel,
and octet states involving the free quark and antiquark. In
this case, rate equations are complemented by a Langevin
equation describing the Brownian motion of the heavy quark
and antiquark in the plasma.

A. Infinitely massive quark-antiquark pair

The physics of singlet-to-octet transitions is best ana-
lyzed by completely ignoring the motion of the heavy
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particles and focusing on their color d.o.f. alone. This is
what we do in this subsection.
We consider an infinitely massive quark-antiquark pair,

and assume that it can exist in two color states: a singlet (s)
state and a (N2

c − 1) degenerate octet (o) state. There are no
continuum states, so the problem reduces to that of a two-
level system. The partition function reads

Z ¼ e−
Vs
T þ ðN2

c − 1Þe−Vo
T ; ð5:1Þ

where VsðrÞ and VoðrÞ denote the energies of the pair in a
singlet and an octet state, respectively. Since the particles
do not move, they have no kinetic energy, and the energy of
the pair is just the potential energy, which depends on the
distance r between the quark and the antiquark. We assume
that Vs < Vo, and set ΔV ¼ Vo − Vs. The free energy is
given by F ¼ E − TS ¼ −T lnZ, where E is the internal
energy and S is the entropy. The latter can be deduced from
F by using the thermodynamic relation S ¼ −∂F=∂T. In
the low-temperature limit,

F ≈ Vs − TðN2
c − 1Þe−ΔV

T : ð5:2Þ

In this regime, the dominant contribution to the free energy
is the energy of the ground state Vs, the correction from
the octet excited states being exponentially small, ∝ Te−

ΔV
T .

The internal energy and entropy are given by

E ¼ Vs þ ðN2
c − 1ÞΔVe−ΔV

T ;

S ¼ ðN2
c − 1Þe−ΔV

T

�
1þ ΔV

T

�
: ð5:3Þ

In the opposite limit of high temperature, the free energy
is entirely dominated by the entropy. Indeed, a simple
calculation yields

F ¼ −T lnN2
c þ

Vs þ ðN2
c − 1ÞVo

N2
c

; S ¼ lnN2
c: ð5:4Þ

The factor N2
c is just the total number of available states:

one singlet and ðN2
c − 1Þ degenerate octet states. All are

present in equilibrium with the same probability. The
Boltzmann factors in the partition function can all be
approximated by unity, and the internal energy is simply
given by

E ¼ 1

N2
c
Vs þ

�
1 −

1

N2
c

�
Vo: ð5:5Þ

It is independent of the temperature.
Let ps and po be the probabilities to find the system

respectively in the singlet or a given octet state. In the
infinite-mass limit, these are simply the diagonal elements
of the density matrix [cf. Eq. (2.12)], i.e., ps ¼ DsðrÞ and
po ¼ DoðrÞ. In equilibrium, we have

ps ¼
e−Vs=T

Z
; po ¼

e−Vo=T

Z
; ps þ ðN2

c − 1Þpo ¼ 1:

ð5:6Þ

These probabilities depend only on the ratio ΔV=T,
which controls the transition between the low- and high-
temperature regimes:

ps

po
¼ eΔV=T; ps ¼

1

1þ ðN2
c − 1Þe−ΔV=T : ð5:7Þ

At low temperature, T ≪ ΔV, and ps ≲ 1. At high temper-
ature, T ≫ ΔV, ps ≃ po ≃ 1=N2

c. In the numerical calcu-
lations, we use

ΔVðrÞ ¼ Ncαsð1=rÞe−mDr

2r
; ð5:8Þ

where mD is the HTL Debye mass calculated with a
running coupling at the scale 2πT.
We are interested in the dynamics of the approach to

the equilibrium state. As we have seen in the previous
sections, this is controlled by a rate equation, generically of
the form

dps

dt
¼ ðN2

c − 1ÞpoΓo→s − psΓs→o; ð5:9Þ

where Γo→s denotes the transition rate from any one of
N2

c − 1 degenerate octet states, and similarly for Γs→o. In a
stationary state, the rate equation dps=dt ¼ 0 yields the
detailed balance condition

ps

po
¼ ðN2

c − 1ÞΓo→s

Γs→o
: ð5:10Þ

This is to be compared to the result that we expect when
the stationary state is the state of thermal equilibrium
[cf. Eq. (5.7)]

psðrÞ
poðrÞ

¼ e
ΔVðrÞ
T : ð5:11Þ

By comparing the two equations (5.11) and (5.10) one gets
the relation

Γs→oe−Vs=T ¼ ðN2
c − 1ÞΓo→se−Vo=T: ð5:12Þ

This relation is satisfied by the rates that we have obtained
in the previous section. It implies in particular that their
energy dependence needs to be taken into account when the
temperature is of the same order of magnitude as ΔV; in
that case the static imaginary potential is not sufficient to
fully account for the effects of collisions. We will return to
this issue shortly.
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The evolution equation (5.9) has the following solution,
for arbitrary initial conditions:

psðtÞ ¼ peq
s ð1 − e−Γ̃tÞ þ psð0Þe−Γ̃t; ð5:13Þ

and

poðtÞ ¼ peq
o

�
1þ eΔV=Te−Γ̃t

ðN2
c − 1Þ

�
− psð0Þ

e−Γ̃t

N2
c − 1

; ð5:14Þ

where peq
s and peq

o are the equilibrium values, given in
Eq. (5.6), and Γ̃ is an effective rate defined as

Γ̃ ¼ Γs→o

�
1þ eΔV=T

N2
c − 1

�
: ð5:15Þ

The solutions psðtÞ and poðtÞ obtained for psð0Þ ¼ 1 and
r ¼ 0.15 fm are plotted in Fig. 4, together with the free

energy calculated from Eq. (4.18). For both the survival
probability psðtÞ and the free energy, the effective rate Γ̃ðrÞ
determines the time scale that controls the approach to
equilibrium.
In order to quantify the importance of the energy

dependence of the rates, we use the explicit results that
we have obtained in the previous section. From Eq. (4.14),
we get

dps

dt
¼ g2CFðpo − e−

ΔV
T psÞ

Z
d3q
ð2πÞ3Δ

>ðΔV;qÞðSq·r̂Þ2:

ð5:16Þ

This equation is identical to Eq. (5.9), now with the
following explicit expressions for the rates:

Γo→s ¼
g2

2Nc

Z
q
Δ>ðΔV; qÞjSq·r̂j2;

Γs→o ¼ g2CF

Z
q
Δ<ðΔV; qÞjSq·r̂j2

¼ g2CFe−
ΔV
T

Z
q
Δ>ðΔV; qÞjSq·r̂j2: ð5:17Þ

It is easily verified that these rates satisfy Eq. (5.12), as
stated above.
In the static limit, and at high temperature, one can

express the survival probability of the singlet state in terms
of an imaginary potential. We have

ΓsðrÞ≡ CFðWðrÞ −Wð0ÞÞ ¼ CF

Z
q
WðqÞðeiq·r − 1Þ

¼ g2CF

2

Z
q
Δ<ð0;qÞðSq·r̂Þ2

¼ 1

2
Γs→o; ð5:18Þ

where we have used WðqÞ ¼ −g2Δ<ð0;qÞ, and in the last
line Γs→o is given by Eq. (5.17) in which one sets ΔV ¼ 0.
This relation suggests the following definition of a gener-
alized, energy-dependent, “potential” Wðω; rÞ:

Wðω; rÞ −Wðω; 0Þ≡ g2

2

Z
d3q
ð2πÞ3 Δ

<ðω;qÞðSq·r̂Þ2;

¼ g2

2

Z
d3q
ð2πÞ3 NðωÞσðω;qÞðSq·r̂Þ2

¼ g2NðωÞ
Z

d3q
ð2πÞ3 σðω;qÞð1 − eiq·r̂Þ

ð5:19Þ

where σðω; qÞ ¼ Δ>ðω;qÞ − Δ<ðω;qÞ is the (longi-
tudinal) gluon spectral function, and we have used the
relation

FIG. 4. Top: Time evolution of the probabilities ps and po,
assuming psð0Þ ¼ 1 and r ¼ 0.15 fm, corresponding approxi-
mately to the Bohr radius a0 of the singlet bound state. Bottom:
Free energy computed in the same conditions. The temperature of
the plasma is T ¼ 200 MeV.
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Δ<ðω;qÞ ¼ σðω; qÞNðωÞ; NðωÞ ¼ 1

eω=T − 1
: ð5:20Þ

Note that as ω → 0, Wðω; rÞ reduces to WðrÞ since, in this
limit, NðωÞ ∼ T=ω, and Tσðω; qÞ=ω → Δ<ð0; qÞ.
It is perhaps useful to recall here a few basic properties of

the gluon spectral function σðω; qÞ. To be specific, we shall
rely on the HTL approximation, for which an explicit
expression is known (see e.g., Ref. [3]).8 At fixed momen-
tum, σðω; qÞ is an increasing function of the energy (linear
at small energy), in the space-like domain jωj < jqj. For
jωj > jqj it vanishes, except for an isolated delta-function
contribution corresponding to the plasmon excitation at ωq

(ω2
q ≃ ω2

pl þ 6q2=5, with ωpl ¼ mD=
ffiffiffi
3

p
), which exists only

for jqj≲mD. The specific contribution of the plasmon to
Eq. (5.19) will be ignored in this paper.9 For ω ¼ 0, we
know σðω; qÞ, and hence Δ<ð0; qÞ, analytically. This is

Δ<ð0; qÞ ¼ πm2
DT

jqjðq2 þm2
DÞ2

; ð5:21Þ

so that [2]

ΓðrÞ ¼ WðrÞ −Wð0Þ ¼ g2T
2π

Z
∞

0

dx
x

ðx2 þ 1Þ2

×

�
1 −

sinðxrmDÞ
xrmD

�
: ð5:22Þ

When the energy is nonvanishing, the expression of
σðω; qÞ is more complicated. It can be obtained from the
analytic propagator (see e.g., Ref. [21])

Δðω; qÞ ¼ −
1

q2 þ ΠLðω; qÞ
þ 1

q2
¼
Z
q0

σðω; qÞ
q0 − ω

ð5:23Þ

where ΠL is the longitudinal self-energy

ΠLðω; qÞ ¼ m2
D

�
1 −

ω

2q
ln

�
ωþ q
ω − q

��
: ð5:24Þ

The imaginary part of ΠL (obtained by setting ω → ωþ iη,
with ω real) determines the continuum part of the spectral
function at small energy. It is given by

ImΠLðω; qÞ ¼
πm2

Dω

2q
θðq − jωjÞ: ð5:25Þ

More generally, we have

σðω; qÞ ¼ 2ImΠLðω; qÞ
ðq2 þ ReΠLðω; qÞÞ2 þ ðImΠLðω; qÞÞ2

: ð5:26Þ

Note that the temperature enters the spectral function
only through the Debye mass mD, and we can set
σðω; qÞ ¼ m−2

D σ̄ðω=mD; q=mDÞ, where σ̄ðω=mD; q=mDÞ
is a dimensionless function. For later convenience we
define the dimensionless quantities q̄ ¼ q

mD
and w̄ ¼ w

mD
.

On the other hand, the statistical factor that multiplies
σðω; qÞ in Eq. (5.20) depends only on T.
Knowing the spectral function, one can then determine

the energy-dependent potential (5.19). The results of this
calculation are displayed in Fig. 5 for two values of the

FIG. 5. The function ð4π=Tg2ÞðWðω; rÞ −Wðω; 0ÞÞ as a func-
tion of rmD for two different temperatures. Top: T ¼ 5mD.
Bottom: T ¼ mD.

8Note that all the numerical calculations presented in this paper
use this approximation. Note also that we shall be using this
approximation beyond its strict regime of validity, which requires
ω, q ≪ T.

9It should of course be included in a more quantitative study. It
represents a process analogous to that of gluon dissociation
involving the transverse modes of the gluon [18–20]. The
collective plasmon exists only at small momentum q≲mD,
and its contribution to Wðω; rÞ −Wðω; 0Þ is expected to be
modest in the region of interest. Taking it into account would not
alter the main conclusions of this section.
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temperature: T ¼ mD and T ¼ 5mD. One sees there that
the dominant effect of the energy dependence is a sizable
reduction of the imaginary potential, a reduction which
gets amplified as the temperature, when it is of the order
of the energy, decreases. This reduction arises from the
fact that as the energy ω of the transitions increases the
phase space of the space-like gluons that induce such
transitions decreases. The density of such gluons in
momentum space is essentially the quantity Δ<ðω; qÞ
and its decrease with increasing ω, for a given q, results
from the combination of two effects: the statistical factor
suppresses transitions with ω > T, and the spectral
density vanishes when ω > q.
To proceed further, it is convenient to rewrite Eq. (5.19)

in terms of dimensionless variables, as follows:

Wðω; rÞ −Wðω; 0Þ
g2T

¼ h

�
ω

T

�
1

ω̄

Z
d3q̄
ð2πÞ3 σ̄ðω̄; q̄Þð1 − eiq̄·r̄Þ;

ð5:27Þ

where

hðxÞ≡ x
ex − 1

: ð5:28Þ

The curves in Fig. 5 are obtained after integration over
q, which affects the dependence on r of Wðω; rÞ at fixed
ω. In particular, at large values of rmD, the last term in
the integral (5.27) yields a vanishing contribution, which
is the origin of the flat behavior observed in Fig. 5.
Another factor determines the r dependence of the
rates: the energy ω is to be set equal to ΔVðrÞ [see
Eq. (5.17)]. It turns out that, after this substitution, the
dominant r dependence, in the relevant range, is
captured by the function h in Eq. (5.27), that is

WðΔV; rÞ −WðΔV; 0Þ ≃ h

�
ΔV
T

�
gðω ¼ 0; rÞ

≃ h

�
ΔV
T

�
ΓsðrÞ; ð5:29Þ

where, after reinstating the appropriate color factor CF,
we have set

gðω; rÞ≡ g2CFT
2ω

Z
q
σðω; qÞðSq·r̂Þ2; ð5:30Þ

and ΓsðrÞ is given explicitly in Eq. (5.18).
The suppression factor hðΔVðrÞT Þ is plotted as a function of

r for different temperatures in Fig. 6. Note that hðxÞ → 1 as
x → 0, while, hðxÞ ∼ e−x as x → ∞. Thus, the strong
suppression at small r originates from the fact that
ΔVðrÞ → ∞ as r → 0, that is, hðrÞ ∼ expf−ΔVðrÞ=Tg.
This overwhelms the suppression already present in

ΓsðrÞ ∼ r2 lnð1=rÞ, reflecting color transparency, i.e., the
suppression of interactions when the size of the color
dipole made by the quark and the antiquark in a color
singlet vanishes. At large r, ΔVðrÞ → 0, and hðrÞ∼
1 − ΔVðrÞ=ð2TÞ.
The setup discussed in this subsection is very close to

that used in lattice QCD calculations of the potential, or free
energy, of a heavy quark-antiquark pair. In particular, we
may attempt a comparison with the recent results of
Ref. [8]. Since the potential calculated there is recon-
structed from the spectral function, it should contain, in
principle, the energy dependence that we have been
discussing. A comparison with the lattice results shows
that, as is the case with the imaginary potential that we
calculate, the small r dependence is clearly different from
the behavior (∼ − r2 logðrÞ) expected in the absence of
energy dependence: there is a strong suppression at

FIG. 6. The function hðΔVT Þ vs r for different temperatures.

FIG. 7. Comparison of the imaginary potential (WðrÞ −Wð0Þ)
with and without energy dependence, at T ¼ 250 MeV.
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small distances which continues up to larger radii as the
temperature decreases. Unfortunately, a more quantitative
comparison between our computation and the lattice
simulations is difficult, since the Coulomb approximation
that we use is not accurate at large distance, and an
additional effect due to the string tension cannot be
excluded, as discussed in Ref. [8].
Finally, we return to the estimates of the rate of entropy

or free energy variations for which expressions were
derived in Sec. III. The explicit expression of ΓðrÞ in the
HTL approximation is given in Eq. (5.22). Using this
approximation we estimate that at T ¼ 250 MeV, and
using a0 ¼ 1

1200
MeV−1 for the Bohr radius, the time scale

that characterizes the changes in the entropy is around
12 fm=c. This is of the order of the typical total lifetime of
the fireball produced in heavy-ion collisions. This suggests
that the state of quarkonium will be substantially modified
but perhaps not fully thermalized. Note also that, according
to Fig. 7, the energy dependence reduces the rate by about a
factor of 3.

B. A simplified model of quarkonium evolution

We now move away from the static limit and consider a
more “realistic”model for the quarkonium. This is based on
the following assumptions:
(1) We neglect the quark-antiquark interaction in the

octet channel, i.e., we set Vo ¼ 0. This approxima-
tion would be justified in a large-Nc limit, and it was
used in the original derivation of the gluon-dissoci-
ation cross section [18]. Comparison with later
derivations shows that it remains a reasonable
approximation for Nc ¼ 3 [19,20].

(2) This implies in particular that the heavy particles
behave as free particles once they are in the octet
channel, and octet-to-octet transitions can be treated
in the high-temperature limit. In this case, the
corresponding equation of motion for the heavy
quarks will reduce to a Langevin-type equation.

(3) We assume that a single bound state exists in the
singlet channel. The survival probability of this
singlet bound state is entirely controlled by its
interaction with octet (continuum) states. In fact,
we also ignore continuum singlet states (these
represent only about 10% of the available continuum
states).

In summary the model that we consider consists in
one bound state, the singlet state, and a continuum of
free, octet, states. We want to see how our equations
describe the approach to equilibrium of this particular
system.
We start with elementary remarks concerning the

system when it is in thermal equilibrium with the
plasma. Recall that we ignore the center-of-mass motion.
We write the partition function of the relative motion as
follows:

Z ¼ ejEsj=T þ ΩðN2
c − 1Þ

Z
p
e−

p2

MT

¼ ejEsj=T þ ΩðN2
c − 1Þ
λ3T

; ð5:31Þ

where jEsj is the binding energy (Es < 0), Ω is the volume
of the plasma, and λT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π=MT
p

is the thermal wave-
length of the relative motion. At low temperature, the
bound state dominates, and Z ≈ ejEsj=T , while at high
temperature Z ≈ ΩðN2

c − 1Þ=λ3T . Clearly, there is a transi-
tion temperature Tc, of the order of jEsj, corresponding to
the situation where these two contributions are of the same
order of magnitude,

ejEsj=Tc ¼ ΩðN2
c − 1Þ
λ3Tc

: ð5:32Þ

Note that Tc has a (weak, logarithmic) dependence
on the volume, and would vanish in an infinite volume.
Let ps and po be the probabilities for the system to be
in the ground state or in a continuum state, respectively.
We have

ps
eq ¼

ejEsj=T

Z
; po

eq ¼
ΩðN2

c − 1Þ=λ3T
Z

: ð5:33Þ

Clearly, when T ≪ Tc, ps ≈ 1, while po ≈ 1when T ≫ Tc.
The time evolution of the probabilities are given by the

simplified system of equations

dps

dt
¼ g2CF

Z
p

�
po
p − pse−

Eop−E
s

T

�

×
Z
q
Δ>ðωo

p − Es; qÞjhsjSq·r̂jo; pij2; ð5:34Þ

and

∂po
p

∂t − γ∇pðppo
pÞ −

TγM
2

Δppo
p

¼ −
g2

2Nc

1

Ω

�
po
p − pse−

Eop−E
s

T

�

×
Z
q
Δ>ðωo

p − Es; qÞjhsjSq·r̂jo; pij2; ð5:35Þ

where Eo
p ¼ p2=M is the kinetic energy of the relative

motion. We assume that the medium is contained in a cubic
box of volume Ω. Computations are made for two different
volumes: Ω ¼ 1 fm3 and Ω ¼ 100 fm3 (these values cover
the orders of magnitude of the typical volumes of the
fireballs produced in a heavy-ion collision). This volume
factor affects the numerical results, and it has been made
explicit in Eq. (5.35). Thus, the plane wave in the equation
above is normalized so that hrjo; pi ¼ eir·p.
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The first equation expresses the change in the bound-
state population, with a loss term caused by the singlet-
to-octet transitions, while the gain term represents the
possible transitions of any of the continuum octet states
to the bound singlet. The second equation accounts in
addition for the Brownian motion of the particles in the
continuum. The specific form of the Langevin terms on
the left-hand side is taken from Ref. [13]. As a simple
consistency check of these equations, one may verify that

d
dt

�
ps þ ΩðN2

c − 1Þ
Z
p
po
p

�
¼ 0; ð5:36Þ

and that the steady-state solution is given by Eq. (5.33).
We have solved Eqs. (5.34) and (5.35), taking for γ the

value used in Ref. [14], but adapted to the bottomonium
mass, assuming that γ goes as the inverse of the mass,
that is, γ ¼ 0.060 fm−1. Other needed inputs are the
binding energy and the wave function of the singlet ground
state (that enters the computation of the matrix element
hsjSq·r̂jo; pi). We obtain these by solving the Schrödinger
equation with a screened potential10

Vs ¼ −CFαsð1=a0Þ
e−mDr

r
: ð5:37Þ

The results are shown in Table I. As can be seen in this
table, screening substantially reduces the binding energy.
Note that this reduction of the binding energy, together with
the corresponding modification of the singlet wave func-
tion, entail a substantial increase of the decay width at a
given temperature. This is of course in line with the energy
dependence of the rates that we analyzed in the previous
section. At T ¼ 400 MeV, the decay width is of the same
magnitude as the binding energy, suggesting that at this
temperature the singlet can hardly be considered as a bound
state anymore.

It is useful to introduce the following function, propor-
tional to the differential decay rate of a singlet into an octet
with momentum p:

fðpa0Þ ¼
g2CF

ð2πa0Þ3
e−

p2

M−Es

T

Z
q
Δ>

�
p2

M
−Es;q

�
jhsjSqjo;pij2:

ð5:38Þ

This function can be computed numerically once the singlet
wave function is known. We use the HTL approximation to
evaluate Δ>ðω;qÞ (see formulas in the previous subsec-
tion). The result of this computation at different temper-
atures is shown in Fig. 8. As one can see, the singlet state
decays preferentially into octets whose momentum is of the

FIG. 8. Differential decay width of the singlet bound state into
octets as a function of the octet momentum p, expressed in units
of the inverse of the Bohr radius a0 of the singlet. The top panel
illustrates the dependence on the temperature. The bottom panel
illustrates the effect of the energy dependence, at temperature
T ¼ 200 MeV [the curve labeled “without energy dependence”
corresponds to the function fðpa0Þ calculated by substituting
p2

M − Es → 0].

TABLE I. Table showing different parameters that are used in
our simulation at two different temperatures. Note that at T ¼ 0,
i.e., in the vacuum, the binding energy of the singlet state is
Es ¼ −372 MeV. The last column gives the decay width,
Γs→o ¼ a30

R
d3pfðpa0Þ, with f given in Eq. (5.38). The values

in parentheses are obtained by using for the evaluation of fðpa0Þ
the vacuum singlet bound-state energy and wave function.

T (MeV) Es (MeV) mD (MeV) αsð2πTÞ Γs→o (MeV)

200 −138.36 570.95 0.432 6.2 (1.9)
400 −51.57 955.15 0.302 39 (13)

10This is done with the algorithm of Ref. [22], using its
PYTHON implementation by Hector Martinez (https://github.com/
heedmane/schroepy).
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order of half the inverse of the Bohr radius. We can rewrite
the evolution equations of ps and po

p in terms of this
function f:

dps

dt
¼ a30

Z
d3p

�
e
p2

M−Es
1S

T po
p − ps

�
fðpa0Þ; ð5:39Þ

and

dpo
p

dt
− γ∇ðppo

pÞ −
TγM
2

Δ2po
p

¼ −
ð2πa0Þ3

ðN2
c − 1ÞΩ

�
e
p2

M−Es
1S

T po
p − ps

�
fðpa0Þ: ð5:40Þ

To solve these equations we use the same numerical
methods as in Sec. V D of Ref. [13]. The most relevant
difference compared to the case treated in Ref. [13] is that,
in the present case, the singlet bound state can decay into
octets with different momenta. To include this feature in our

simulation, we use a rejection sampling based on the
differential decay width to select the momentum.
The value of the survival probability of the singlet state,

ps, obtained by solving these equations is given in Table II,
for two different temperatures, two different interaction
times, and two different volumes. For comparison the value
of the equilibrium probability is indicated in the last column.
We see that at late times ps becomes very small: the

system is then completely dominated by the octets, the
more so the larger the volume. However, on time scales that
are typical of the lifetime of the plasma in a heavy-ion
collision, ∼5 fm=c a significant amount of singlets survive,
with the survival probability being essentially independent
of the volume. The reason for this is that the lifetime of the
singlet is independent of the volume while that of the octets
(which does depend on the volume) is much bigger than
5 fm=c whenever Ω ≫ a30 (as it happens in heavy-ion
collisions).
In order to get a feeling for the role of the Brownian

motion of the free quarks, we have repeated the calculations
dropping the Langevin terms on the left-hand side of
Eq. (5.40), i.e., keeping only the time derivative. We obtain
then the results listed in Table III. By comparing with
Table II, one sees that Brownian motion does not affect
much ps at small times. However it produces a momentum
broadening which, for small volumes, slows down the
disappearance of the singlet bound state (i.e., delays the
approach to equilibrium), as can be seen by comparing
the results obtained at 100 fm=c and Ω ¼ 1 fm with
(Table II) and without (Table III) Brownian motion.
Note that this effect is negligible in large volumes
(Ω ¼ 100 fm); this is because in large volumes, the decay
of octets into singlets is negligible.
We have also repeated the calculation, ignoring the

energy dependence of the imaginary potential [that is,

we set e
p2

M−Es
1S

T ¼ 1 and use Δ>ð0;qÞ in Eq. (5.38)]. The
results are given in Table IV, for the case T ¼ 200 MeV. As
can be seen from this table, the survival probability is
greatly reduced, and it eventually vanishes at large time: the
absence of an energetic penalty for the transition to an octet
state allows for a rapid occupation of the large continuum
phase space. This provides another indication of the
importance of the energy dependence of the rates.
As a final remark, we have evaluated the free energy,

internal energy and the entropy in equilibrium. These are
shown in Table V. In all cases, the free energy is dominated

TABLE III. ps as obtained by solving Eqs. (5.39) and (5.40)
without the Langevin-like term.

Ω ¼ 1 fm3 Ω ¼ 100 fm3

5 fm=c100 fm=c Eq. 5 fm=c100 fm=c Eq.

T ¼ 200 MeV 0.85 0.124 0.0814 0.85 0.0442 0.00089
T ¼ 400 MeV 0.40 0.0224 0.0175 0.38 0.001 0.00018

TABLE IV. ps as obtained by solving Eqs. (5.39) and (5.40)
ignoring the energy dependence of the imaginary part.

Ω ¼ 1 fm3 Ω ¼ 100 fm3

5 fm=c 100 fm=c 5 fm=c 100 fm=c

T ¼ 200 MeV 0.5631 0.0093 0.5596 0.001

TABLE V. Thermodynamic potentials at equilibrium for the discussed model.

Ω ¼ 1 fm3 Ω ¼ 100 fm3

F MeV E MeV TS MeV F MeV E MeV TS MeV

T ¼ 200 MeV −640.07 264.32 904.39 −1544.30 299.61 1843.91
T ¼ 400 MeV −1669.14 588.58 2257.72 −3504.21 599.88 4104.09

TABLE II. ps as obtained by solving Eqs. (5.39) and (5.40).

Ω ¼ 1 fm3 Ω ¼ 100 fm3

5 fm=c100 fm=c Eq. 5 fm=c100 fm=c Eq.

T ¼ 200 MeV 0.86 0.136 0.0814 0.85 0.0438 0.00089
T ¼ 400 MeV 0.39 0.0515 0.0175 0.36 0.0002 0.00018
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by the entropy, the more so the larger T and/or Ω. Note
that in the large-volume Ω limit the thermal energy E goes
to a constant, while F ∼ −TS goes to infinity but just
as −T logΩ.

VI. CONCLUSIONS

The equations for the reduced density matrix that we
have derived in this paper describe the evolution of a
quarkonium towards thermal equilibrium in both regimes
of high and moderate temperatures. The high-temperature
regime is that where the binding energies can be ignored.
Then the dynamics is well described by a Lindblad
equation and the approach to equilibrium is controlled
by the increase of the von Neumann entropy. In this regime,
binding forces can be treated perturbatively, and the effect
of the collisions is accounted for by a static imaginary
potential. In the regime of moderate temperature, binding
energies cannot be ignored, and it is convenient to use as a
reference basis, that of the eigenstates of the effective
heavy-quark Hamiltonian. The equation for the density
matrix then leads to rate equations describing transitions
between these eigenstates, and the approach to equilibrium
is accompanied by the decrease of the free energy. The
dynamics of continuum states remains dominated by
Brownian motion and is described by a Langevin equation.
In this regime of moderate temperature, the effect of
collisions is still captured by an imaginary potential, which
enters the determination of the collision rates. An important
feature of the imaginary potential is that it depends on the
energy: this is because as the energy of a transition
increases, the phase space of the space-like gluons that
cause this transition decreases. This energy dependence is
found to be numerically important and should be taken into
account in phenomenological studies. As we have empha-
sized, this effect is expected to be much more important for
QCD than it would be for QED. This is because the
absorption of a gluon by a quark-antiquark pair changes the
color state of the pair, and turns an attractive force into a
repulsive one, or vice versa.
The last section of the paper presented numerical studies

illustrating the main concepts discussed in the earlier
sections. The first example is that of an infinitely massive
quark-antiquark pair. This is close to the typical setup used
in lattice gauge calculations, and some comparison with
recent lattice results has been attempted. It would certainly
be worthwhile to extend such comparison and see whether
the strong suppression arising from the energy dependence
of the imaginary part of the potential at small separation can
be reproduced by lattice calculations. The second example
considered a simplified model of a quarkonium with a
single bound state in a singlet state, and continuum octet
states. Although this is an oversimplification of the realistic
situation, many interesting features emerge from this study,
that could be relevant in phenomenological studies. This
example illustrates in particular the interplay between

screening and collisions, and the importance of treating
both on the same footing, as we did in this paper.11

In this paper we have focused on a simple question,
namely, how a quarkonium approaches equilibrium when it
is in contact with a static quark-gluon plasma in thermal
equilibrium at temperature T. Although we have examined
only simplified models, the equations that we have derived
allow in principle for a quantitative answer to this question.
They should provide a consistent starting point for more
elaborate phenomenological work. The formalism devel-
oped in this paper should be well suited to the study of the
bottomonium, presumably to be found in the moderate-
temperature regime in heavy-ion collisions. The case of
charmonium is more intricate, and presumably calls for a
mix of techniques, in particular if one wishes to address
the issue of recombination. Then the approximations
developed in Ref. [13] may be useful.
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APPENDIX A: ELIMINATION OF THE
CENTER-OF-MASS COORDINATES

In this Appendix, we perform the Fourier transform of
our main equation, and eliminate the center-of-mass
coordinate.
In order to proceed with the Fourier transform, we note

that the correlator Δ<
−ðX;X0Þ defined in Eq. (2.30) depends

on the difference of times, τ ¼ t − t0, and a priori on four
coordinates. Because of translation invariance, it is in fact a
function of only three differences of coordinates. To make
this more explicit, we consider Δ<

−ðX;X0Þ as an operator in
the two-particle space, with matrix elements

hr1; r̄1jΔ<
−ðτ;X;X0Þjr2; r̄2i

¼ Δ<ðY þ y=2Þ þ Δ<ðY − y=2Þ − Δ<ðY þ rÞ
− Δ<ðY − rÞ

≡ Δ−ðτ;Y; y; rÞ; ðA1Þ

where

Ri ≡ ri þ r̄i
2

; si ≡ ri − r̄i; ði ¼ 1; 2Þ

Y ≡ R1 − R2; y≡ s1 − s2; r≡ s1 þ s2
2

: ðA2Þ

11The effect of the change in the binding energies on
the collision rates is taken into account in some recent phenom-
enological analyses, such as that based on the in-medium T
matrix [23].
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The coordinates Y and y play an important role in the
semiclassical approximation (see Ref. [13]). Thus, in the
large-mass limit, r1 ≈ r2 and r̄1 ≈ r̄2, Y → 0, y → 0 and r
becomes equal to the relative coordinate. It is convenient to
express the Fourier transforms in terms of these variables.
We have, for instance (with the shorthand notationR
q ¼

R d3q
ð2πÞ3 )

Δ<ðτ; r1 − r2Þ ¼
Z
q
eiq·ðr1−r2ÞΔ<ðτ; qÞ

¼
Z
q
eiq·Yeiq·y=2Δ<ðτ; qÞ; ðA3Þ

and for Δ<
−ðτ;Y; y; rÞ,

Δ−ðτ;Y; y; rÞ ¼ 2

Z
q
eiq·Y ½cosðq · y=2Þ − cosðq · rÞ�Δðτ; qÞ:

ðA4Þ

The variable q represents the momentum of the exchange
gluon. We can also take a Fourier transform with respect to
the time variable (q ¼ ðq0; qÞ)

Δðτ; qÞ ¼
Z
q0

e−iq0τΔðqÞ; ðA5Þ

and write (now with
R
q ¼

R d4q
ð2πÞ4)

Δ−ðτ;Y; y; rÞ ¼ 2

Z
q
Δ−ðq; y; rÞe−iq0τeiq·Y : ðA6Þ

We shall sometimes write, with a slight abuse of notation,
Δ−ðq; s1; s2Þ in place of Δ−ðq; y; rÞ. To summarize, we can
write hr1; r̄1jΔ<

�ðτ;X;X0Þjr2; r̄2i as

Δ<
�ðR1;R2;s1;s2;τÞ¼2

Z
d4q
ð2πÞ4Δ

<
�ðq;s1;s2Þe−iq0τþiq·ðR1−R2Þ;

ðA7Þ

where q ¼ ðq0;qÞ represents the exchanged gluon four-
momentum, and

Δ<
�ðq; s1; s2Þ

¼ Δ<ðqÞ
�
cos

�
qðs1 − s2Þ

2

�
� cos

�
qðs1 þ s2Þ

2

��
:

ðA8Þ

Similar relations hold for Δ>
�ðR1;R2; s1; s2; τÞ.

These relations allow us to perform the partial trace over
the center-of-mass coordinate, or equivalently over the
center-of-mass momentum. We illustrate the procedure
with the first term of Eq. (2.23), and more precisely the

first contribution to Eq. (2.28). Consider then the matrix
element

hR1; s1jPXUoðτÞPX0 ðτÞDsðt − τÞU†
s ðτÞjR2; s2iΔ>

−ðX;X0Þ
ðA9Þ

between localized states of the heavy quark-antiquark pair
(in a color-singlet state). Taking advantage of the fact that
the projectors are diagonal in coordinate space, we can
rewrite this as (omitting time variables to simplify the
writing)

Z
X0
2
;X̄2

hX1jUojX0
2ihX0

2jDsjX̄2ihX̄2jU†
s jX2iΔ>

−ðτ;X1;X0
2Þ

ðA10Þ

where Xi ¼ ðRi; siÞ. We note then that the evolution
operators factorize into a center-of-mass contribution
which depends only on the kinetic energy of the center
of mass, and a part related to the relative motion that
involves the potentials Vs or Vo. We set Us ¼ UcmŨs and
similarly for Uo. We have

hX1jUoðτÞjX0
2i ¼ hR1; s1jUcmŨojR0

2; s
0
2i

¼ hR1jUcmjR0
2ihs1jŨojs02i; ðA11Þ

where

hR1jUcmjR0
2i ¼

Z
P0
1

e−iτ
P02
1

4MeiP
0
1
·ðR1−R0

2
Þ; ðA12Þ

and Ũo acts on the relative coordinates, in the octet channel.
A simple calculation then yields for the matrix element
of Eq. (A9) between center-of-mass momentum states P1

and P2,Z
s0
2
;s00
2

hs1jŨojs02ihP1; s02jDsjP2; s002ihs002jŨ†
s js2i

× Δ>
−ðτ; q; s1; s02Þe−iτ

ðP1−qÞ2
4M eiτ

P2
2

4M; ðA13Þ

which can also be written as an operator equation in the
space of relative coordinates

Z
s0
PsŨoðτÞPs0 hP1jDsðt − τÞjP2iŨ†

s ðτÞ

× Δ>
−ðτ; q; s; s0Þe−iτ

ðP1−qÞ2−P22
4M : ðA14Þ

At this point we recall that

Δ>
−ðq; s; s0Þ ¼ 2 sin

q · s
2

sin
q · s0

2
Δ>ðqÞ; ðA15Þ
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so that the first contribution to LssðτÞDsðt − τÞ in Eq. (2.28)
finally reads

− g2CF

Z
t−t0

0

dτ
Z
q
e−iq0τΔ>ðqÞ

× Sq·ŝŨoðτÞSq·ŝŨ
†
s ðτÞhP1jDsðtÞjP2ie−iτ

ðP1−qÞ2−P22
4M ; ðA16Þ

where

Sq·s ≡ 2 sinðq · ŝ=2Þ; ðA17Þ

and ŝ is the relative coordinate operator.
At this point it is (almost) trivial to trace out the

center-of-mass d.o.f. This amounts to setting P1 ¼ P2

and integrating over P1. Note that the commutator in
Eq. (2.23) yields

hP1; s1j½HQ;Ds�jP2; s2i

¼ P2
1 − P2

2

4M
hP1; s1jDsjP2; s2i þ hP1; s1j½Hs; Ds�jP2; s2i:

ðA18Þ

The first term will not contribute when taking the trace
(with P1 ¼ P2). As for the second term, it yields
hs1j½Hs; D̃s�js2i.
To proceed further we need to analyze the phase factor in

Eq. (A16). This is the product of τ and the recoil energy

ΔErecoil ¼
ðP − qÞ2
4M

−
P2

4M
¼ 1

4M
ðq2 − 2P · qÞ; ðA19Þ

where we have set P1 ¼ P2 ¼ P. The quantity ΔErecoil is
the recoil energy of the heavy-quark system, after absorp-
tion or emission of a gluon with momentum q. The range of
the τ integration in Eq. (A16) is limited by the propagator
Δ>ðτ; qÞ to be of the order of the inverse Debye mass
mD ≲ T. On the other hand, the collisions of the heavy
particles with the light constituents of the plasma involve
the exchange of soft gluons, with jqj≲mD. It follows that
typically, qτ ∼ 1, and the recoil energy is a small fraction of
the Debye mass, τq2=M ≲ ðmD=MÞ. A similar estimate
holds for the term τP · q=M ≲ ðT=MÞ, where we have
assumed that P≲ T. (We consider pairs that are initially at
rest. If the center-of-mass momentum is high then we need
to consider “hot wind” effects, which is beyond the scope
of this paper [24,25].) Since we assume that both mD ≪ M
and T ≪ M, one can safely ignore the phase factor.
A similar reasoning can be made for all the contributions

to the main equations. We then obtain the equations that are
listed in the main text.

APPENDIX B: MULTIPLE-SCALE ANALYSIS

In this Appendix, we discuss the solution of Eq. (3.28)
within perturbation theory, paying particular attention to
the secular terms. We first rewrite Eq. (3.25) as follows:

dD
dt

þ i½H;D� ¼ ϵF ½D�; ðB1Þ

where F is a linear functional of D and ϵ is a small
parameter. We regard the right-hand side as a perturbation
and attempt to solve Eq. (B1) as an expansion in powers of
ϵ. That is, we write

DðtÞ ¼ D0ðtÞ þ ϵD1ðtÞ þ � � � ðB2Þ

and obtain

D0ðtÞ ¼ e−iHtD0ð0ÞeiHt; ðB3Þ

and

D1ðtÞ ¼
Z

t

0

dt0e−iHðt−t0ÞF ½D0ðt0Þ�eiHðt−t0Þ: ðB4Þ

The difficulty with this naive expansion is that the con-
dition ϵD1 ≪ D0 is not always satisfied. In particular, this
condition is violated at late times if the quantity

F S½D0ðtÞ� ¼ lim
T→∞

1

T

Z
T

0

dt0e−iHðt−t0ÞF ½D0ðt0Þ�eiHðt−t0Þ;

ðB5Þ

is not equal to zero. Let us then set

F ½D0ðtÞ� ¼ F S½D0ðtÞ� þ δF ½D0ðtÞ� ðB6Þ

so that

D1ðtÞ ¼ te−iHtF S½D0ð0Þ�eiHt

þ
Z

t

0

dt0e−iHðt−t0ÞδF ½D0ðt0Þ�eiHðt−t0Þ: ðB7Þ

This expression makes explicit the secular term, growing
linearly with time, at the origin of the breakdown of naive
perturbation theory.
The problem can be handled by multiple-scale analysis

(see e.g., Chapter 11 of Ref. [26]). One introduces a “slow”
time τ ¼ ϵt, and considersD as a function of t and τ, treated
(artificially) as independent variables. We have, as before,

Dðt; τÞ ¼ D0ðt; τÞ þ ϵD1ðt; τÞ þ � � � : ðB8Þ

The leading-order equation reads
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∂D0

∂t þ i½H;D0� ¼ 0; ðB9Þ

so that

D0ðt; τÞ ¼ e−iHtD0ð0; τÞeiHt: ðB10Þ

The next-to-leading-order equation involves the derivative
of D0ðt; τÞ with respect to τ, viz.

ϵ
∂D0

∂τ þ ϵ
∂D1

∂t þ iϵ½H;D1� ¼ ϵF ½D0ðt; τÞ�: ðB11Þ

We can now use ∂D0∂τ in order to cancel the secular
contribution of F ½D0ðt; τÞ�, that is, we demand that the
equation

dD0

dτ
¼ F S½D0ðt; τÞ� ðB12Þ

be satisfied. This fixes the τ dependence of D0ðt; τÞ. Then
we can solve for D1,

D1ðt; τÞ ¼
Z

t

0

dt0e−iHðt−t0ÞδF ½D0ðt0; τÞ�eiHðt−t0Þ: ðB13Þ

By construction,D1ðt; τÞ no longer contains a secular term,
and can be considered a genuine perturbative quantity. A
similar result could have been obtained by applying
renormalization-group techniques, as discussed recently
in Ref. [27].
The separation of the secular term requires the solution

of Eq. (B12). By projecting this equation on the

eigenvectors of the operator H, assuming that all energy
levels are discrete, we obtain

hnjF S½D0ðt; τÞ�jmi

¼ lim
T→∞

1

T

Z
T

0

dt0
X
n0m0

e−itðEn−EmÞeit0ðEn−En0−EmþEm0 Þ

× hnjF ½Pn0D0ð0; τÞPm0 �jmi: ðB14Þ

This is nonzero only if En − Em ¼ En0 − Em0 . Thus the
evolution described by Eq. (B12) only connects pairs of
states whose energy differences Emn ¼ Em − En are iden-
tical. It follows in particular that the evolution of the
populations of the various quarkonium states, i.e., of the
diagonal elements, for which Emn ¼ 0, decouples from that
of the nondiagonal ones (at leading order and assuming the
absence of degenerate states). One can also similarly
evaluate the matrix elements of D1ðt; τÞ. One gets

hnjD1ðt; τÞjmi ¼ −i
X
n0m0

e−itEnm − e−itEn0m0

En0m0 − Enm

× hnjδF ½hn0jD0ð0; τÞjm0i�jmi; ðB15Þ

where, by construction, En0m0 ≠ Enm. Assuming that the
particles are confined in a volume Ω ∼ L3, the lowest
values of the energy denominators are of order L−1. Thus, if
Γ denotes the leading-order decay rate, D1 will remain a
small perturbative correction as long as ΓL ≪ 1. In the
example treated in Sec V B, this condition is well satisfied
for Ω ¼ 1 fm3, but only marginally for Ω ¼ 100 fm3.
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