
 

Zilch vortical effect

M. N. Chernodub,1,2 Alberto Cortijo,3 and Karl Landsteiner4
1Institut Denis Poisson UMR 7013, Université de Tours, 37200 Tours, France
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We study the question of whether a helicity-transporting current is generated in a rotating photon gas at
finite temperature. One problem is that there is no gauge-invariant local notion of helicity or helicity
current. We circumvent this by studying not only the optical helicity current but also the gauge-invariant
“zilch” current. In order to avoid problems of causality, we quantize the system on a cylinder of finite radius
and then discuss the limit of infinite radius. We find that net helicity and zilch currents are only generated in
the case of the finite radius and are due to duality-violating boundary conditions. A universal result exists
for the current density on the axes of rotation in the high-temperature limit. To lowest order in the angular
velocity, it takes a form similar to the well-known temperature dependence of the chiral vortical effect for
chiral fermions. We briefly discuss possible relations to gravitational anomalies.
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I. INTRODUCTION

The quantum field theory of chiral fermions predicts a
number of exotic transport phenomena such as the gen-
eration of a current in a magnetic field or under rotation.
These are known as chiral magnetic and chiral vortical
effects (see Refs. [1,2] for recent reviews). Both effects are
related to the presence of chiral anomalies. In particular, the
chiral vortical effect (CVE) is present at finite temperature
and can be understood as a signal of (possibly global)
mixed gravitational anomalies [3–11].
From the outset it should be emphasized that in a

relativistic theory rotation cannot be implemented by
simply introducing a constant angular velocity in a thermal
ensemble [12]. In infinite space there appears necessarily
a region in which the tangential velocity would exceed
the speed of light. There are two remedies to this. In a
hydrodynamic setup one can consider either localized
vortices in the fluid or, alternatively, one can restrict the
ensemble to a finite space-time region in which no super-
luminal velocities arise. In infinite space the CVE can be
computed by studying an ensemble of rotating fermions
and concentrating on the region at the center of rotation

[12]. Alternatively one can study an ensemble confined
within the boundaries of a rotating cylinder [13–18].
Recently, the question has arisen of if and how a similar

effect for ensembles of rotating photons could be made
possible [19–21]. In part, this question can be motivated by
the relation of the CVE to the mixed gravitational anoma-
lies as well as by the interesting results on the existence of
a similar anomaly for photons [22,23]. At first sight, in
the case of photons the notion of chirality could naturally
be replaced by the concept of helicity. It turns out, however,
that the definition of a photonic helicity current analogous
to a fermionic chiral (or axial) current is much more subtle.
A standard way of defining a photonic helicity current is the
so-called magnetic helicity, which in covariant notation can
be written as

Jμmh ¼ ϵμνρλAνFρλ: ð1Þ

The drawback of this way of defining helicity is that the
current (1) is neither conserved (since ∂μJ

μ
mh ¼ F̃μνFμν

with F̃μν ¼ 1
2
ϵμνρλFρλ) nor gauge invariant. The first incon-

venience can be remedied by also defining the so-called
“optical helicity” [24]

Jμh ¼
1

2
ϵμνρλðAνFρλ − CνF̃ρλÞ; ð2Þ

where Cμ is a dual gauge potential defined via the relation
F̃μν ¼ ∂μCν − ∂νCμ. This current is conserved, ∂μJ

μ
h ¼ 0,
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but now there is a new inconvenience: the original Aμ and
dual Cμ gauge fields are not locally related to each other.
As long as one does not insist on a Lorentz-invariant
Lagrangian formulation of Maxwell’s equations that might
not be considered a fundamental problem. However the
optical helicity is still not gauge invariant and now there are
even two gauge symmetries since C0

μ ¼ Cμ þ ∂μθ and Cμ

are physically equivalent dual gauge potentials. A gauge-
invariant global helicity charge Q ¼ R

d3xJ0h can still be
defined, but there is no covariant expression for the helicity
density which could be local in terms of the original Aμ and
dual Cμ potential and gauge invariant with respect to both
the original and dual gauge transformations.
Fortunately, there are other candidates for physically

meaningful measures of helicity. Quite some time ago
Lipkin pointed out that the free Maxwell theory allows for
an additional conserved quantity [25] and soon afterwards
Kibble noticed that due to the fact that it is a noninteracting
theory there is, in fact, an infinite number of such conserved
charges [26]. Following the nomenclature introduced by
Lipkin these charges are known as “zilches.” For mono-
chromatic light, there is a relation between Lipkin’s original
zilch and the optical helicity [27], although they are
quantities with different properties: while the optical
helicity is the generator of the electric-magnetic duality
transformations [28], the zilch generates a more complex
transformation, involving extra derivatives [29].
The zilches are (classically) conserved quantities which,

except for the optical helicity, have unusual dimensions.
We will consider here only the original zilch introduced by
Lipkin, a conserved current of dimension five. While a
physical interpretation of the zilch remained obscure for a
long time, recently it was shown that the zilch measures the
asymmetry in the interaction of the electromagnetic field
with small chiral molecules [30] similarly to the effects of
the optical helicity on chiral and magnetoelectric media
[31,32] and Weyl semimetals [33]. We therefore take the
zilch as a legitimate local measure of the helicity of light.
In order to study the possible realization of a version of

the chiral vortical effect for photons we will quantize
Maxwell theory on a finite cylinder of radius R and
consider an ensemble with a finite fixed angular velocity
such that jΩRj < 1. We calculate the thermal averages for
the optical helicity current and zilch current along the
direction of rotation and study the infinite-space limit
R → ∞. It turns out that this infinite-space limit is—in
contrast to the fermionic case—ill defined even if one
concentrates on the current at the center of rotation. For
finite radius and jΩRj < 1 the ensemble is well defined but
the appearance of a nonvanishing total current depends
very sensitively on the boundary conditions.
We will study three types of boundary conditions: a

perfect electric conducting boundary, a perfect magnetic
conducting boundary and duality-invariant unbounded
space. Our finding is that the integrated helicity and zilch

currents vanish exactly in the duality-invariant case whereas
only one type of polarization leads to a nonvanishing net
current in the other two cases. More precisely, the Dirichlet
boundary conditions on the photon wave functions lead to
exactly vanishing net current and only Neumann boundary
conditions give rise to a net current. However, the perfect
conducting and dual conducting boundary conditions break
the electric-magnetic duality and therefore introduce a source
of helicity or zilch on the boundary. We interpret the net
current therefore not as an intrinsic chiral vortical effect but
as a result of the symmetry-breaking boundary conditions.
This work is organized as follows. In Sec. II we introduce

our notation, the (non-Lorentz-covariant) versions of helicity
and zilch and associated currents. Then we quantize the
Maxwell field in the Coulomb gauge on a cylinder of radius
R. In Sec. III we study the helicity, zilch and energy currents.
We show that the net currents integrated over a cross section
of the cylinder vanish for the Dirichlet boundary conditions
on radial functions of photons. We numerically evaluate the
thermal current distributions for different temperatures and
angular velocities. Finally, we study the infinite-space limit
and show that in this limit the current at the axis of rotation is
a mathematically ill-defined quantity. Indeed, if one tries to
evaluate it by an analytic continuation (using inversion
relations for polylogarithms) then one finds a complex result.
While a truncation to lowest order in angular velocity does
give a finite expression it does not coincide with the results
previously reported in the literature for the photonic CVE.
In any case, the physical significance of such a finite

result for the photonic CVE is questionable since the
resulting integrals for the thermal averages are mathemati-
cally well defined only in the strict case jΩj þ ϵ ¼ 1=R
with ϵ > 0. This requirement means that the zero-rotation
limit, Ω → 0, should precede the infinite-volume limit
R → ∞. We emphasize that this requirement sets a stronger
constraint for the rotating photons as compared to the case
for fermions, because it arises from the essential property of
bosons that the Bose-Einstein distribution function can take
negative values for effectively negative energies, signaling
a possible instability towards condensation of low-energy
modes. Despite the difficulties with the calculation in
the unbounded domain we find numerically that the
high-temperature limit of the central current density in
the bounded domain does converge to the result in the
unbounded domain at linear order in the angular velocity.
We present our conclusions in Sec. IV. Some of our

conventions for vector analysis and useful properties of
the Bessel functions are given in the Appendices.

II. PHOTONS IN A NONROTATING CYLINDER

We consider a thermalized photon gas at a fixed temper-
ature T in an infinitely long straight cylindrical volume
(often called a “waveguide” in the literature). The cylinder
has a fixed finite radius R and may rotate around its
symmetry axis with constant angular velocity Ω. For the
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sake of simplicity we work in vacuum with permittivity
ε ¼ 1 and permeability μ ¼ 1. We also set the speed of light
and the reduced Planck constant to unity, c ¼ ℏ ¼ 1.

A. System of equations

1. Maxwell’s equations

The electromagnetic fields are described by Maxwell’s
equations,

∇ · E ¼ 0; ð3aÞ

∇ · B ¼ 0; ð3bÞ

∇ × B −
∂E
∂t ¼ 0; ð3cÞ

∇ × Eþ ∂B
∂t ¼ 0; ð3dÞ

where the magnetic field B and the electric field E are
related to the gauge potential Aμ ¼ ðϕ;AÞ as follows:

B ¼ ∇ × A; E ¼ −∇ϕ −
∂A
∂t : ð4Þ

To solve these equations inside a cylinder it is natural to
introduce cylindrical coordinates with the radius ρ, the
azimuthal angle φ, the height z, and the time coordinate t
(in the laboratory reference frame). Certain useful formulas
of vector calculus in the cylindrical system of coordinates
are summarized in Appendix A.
Given the geometry of the problem and the linearity of

Maxwell’s equations the solutions can be described in the
complexified form

Gðρ;φ; z; tÞ ¼ e−iωtþimφþikzzGðρÞ; ð5Þ

where G ¼ E;B;A are the positive-frequency solutions for
the electromagnetic fields with energy ω ≥ 0, momentum
kz along the z axis, and quantized angular number m ∈ Z,
corresponding to the eigenvalue of angular momentum
about the z axis. In Eq. (5) the radial functions GðρÞ are
determined by Maxwell’s equations (A3) and by the
boundary conditions that will be specified below.

2. Boundary conditions

The spectrum of solutions of Maxwell’s equations (A3)
depends on the type of boundary conditions at the edge of
the cylinder at a fixed radial coordinate ρ ¼ R. We will
consider three kinds of boundary conditions, corresponding
to a boundary made of (i) a perfect electric conductor (an
ideal metal), (ii) its “dual” analogue, a perfect magnetic
conductor and finally (iii) duality-invariant “natural” boun-
dary conditions in infinite space.

We will study an ensemble of rotating photons in a fixed
laboratory frame. That means we should have energy and
angular momentum as conserved charges to which we can
couple corresponding Lagrange multipliers, the temper-
ature T and the angular velocity Ω to define a grand
canonical ensemble.
For the Maxwell field the energy and momentum

conservation take the form

∂ϵ
∂t þ ∇ · P ¼ 0;

∂Pl

∂t þ∇mσ
m
l ¼ 0; ð6Þ

where the energy, momentum density (Poynting vector)
and stress tensor are, respectively,

ϵ ¼ 1

2
ðE2 þ B2Þ; ð7Þ

P ¼ E × B; ð8Þ

σml ¼ −EmEl − BmBl þ
1

2
gmlðE2 þ B2Þ: ð9Þ

Here A · B≡P
3
l¼1 AlBl is the scalar product and l, m ¼ 1,

2, 3 are the spatial indices.
In cylindrical geometry the globally conserved quantities

are the energy ϵ, the momentum along the cylinder axis Pz
and the z component of the angular momentum Lz≡
ðρ × PÞz ¼ ρPφ. Because we require the boundary of the
cylinder to respect the conservation of these quantities,
Eq. (6) implies that these quantities are conserved provided
both the radial component of the Pointing vector (8) and the
radial components of the photon stress tensor (9) vanish at
ρ ¼ R:

PρðRÞ ¼ EφðRÞBzðRÞ − EzðRÞBφðRÞ ¼ 0;

σρφðRÞ ¼ −EρðRÞEφðRÞ − BρðRÞBφðRÞ ¼ 0;

σρzðRÞ ¼ −EρðRÞEzðRÞ − BρðRÞBzðRÞ ¼ 0: ð10Þ

Therefore one may distinguish three types of boundary
conditions.

(i) Ideal electric conductor: An external electromag-
netic field generates dissipationless electric currents
in an ideal electric conductor that lead to a vanishing
normal component (with respect to the surface
element ∂S of the conductor) of the external mag-
netic field B⊥ and two tangential components Ek of
the electric field at the surface boundary:

B⊥jx∈S ¼ 0; Ekjx∈S ¼ 0: ð11Þ

In cylindrical coordinates the boundary conditions
imposed by the perfect electric conductor (11) have
the following form:
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BρðRÞ ¼ EzðRÞ ¼ EφðRÞ ¼ 0: ð12Þ
These conditions ensure conservation of energy as
well as the z components of momentum and angular
momentum (10).

(ii) Ideal magnetic conductor as a dual analogue of the
ideal electric conductor: Instead of electric currents,
a perfect magnetic conductor hosts dissipationless
magnetic currents.1 The magnetic boundary condi-
tions are therefore dual to the electric ones (11):

E⊥jx∈S ¼ 0; Bkjx∈S ¼ 0: ð13Þ

The magnetic conductor (13) imposes the follow-
ing conditions on the electromagnetic fields which
ensure the physical constraints (10):

EρðRÞ ¼ BzðRÞ ¼ BφðRÞ ¼ 0: ð14Þ

One can readily observe that the perfect electric
conductor or perfect magnetic conductor impose
the conditions (12) and (14), which are mutually
“dual” to each other. These boundary conditions will
impose either Dirichlet or Neumann boundary con-
ditions on a scalar radial function of the photon field
depending on its polarization. The electromagnetic
duality transformation

E → −B; B → E; ð15Þ
exchanges the boundary conditions between the two
possible polarizations.

(iii) Unbounded flat space: This is the limit R → ∞. We
impose “natural” boundary conditions by requiring
that the fields and their products be integrable with
the measure

R∞
0 ρdρ. These fields can be represented

by a Fourier-Bessel integral. In principle, the basis of
eigenfunctions for both previously considered boun-
dary conditions can also be used for the unbounded
flat space. However it turns out that it is slightly
more convenient to introduce in this case an explic-
itly helicity-preserving basis in terms of left- and
right-circularly polarized photon wave functions.

B. Solutions

1. Quantization and normalization of
electromagnetic fields

It is convenient to characterize the photon solutions in
the interior of the cylinder by transverse electric and
transverse magnetic polarization modes. The transverse
electric (TE) mode possesses the electric field which is

always perpendicular to the axis of the cylinder, ETE
z ¼ 0.

In the transverse magnetic (TM) mode it is the magnetic
field that is perpendicular to the cylinder’s axis, BTE

z ¼ 0.
For the quantization of the gauge field it is convenient to

choose the Coulomb gauge, where the temporal component
of the gauge field is zero and the spatial part of the gauge
field has zero divergence:

A0ðxÞ ¼ 0; ∇ · AðxÞ ¼ 0: ð16Þ

Then the photon operator is given by

ÂμðxÞ ¼
X
J;λ

ϵðλÞJffiffiffiffiffiffiffiffi
2ωJ

p ðAðλÞ
J ðxÞâðλÞJ þAðλÞ;�

J ðxÞâðλÞ†J Þ; ð17Þ

where λ ¼ TE, TM is the polarization of the photon field
and J is a collective notation for other quantum numbers
which will be defined below.
In Eq. (17) the operators âðλÞJ and âðλÞ†J annihilate and,

respectively, create a photon with polarization λ, quantum

number J, and wave function AðλÞ
J;μ. These operators obey

the standard set of bosonic commutation relations:h
âðλÞJ ; âðλ

0Þ†
J0

i
¼ δλλ0δJJ0 ; ð18aÞ

h
âðλÞJ ; âðλ

0Þ
J0

i
¼

h
âðλÞ†J ; âðλ

0Þ†
J0

i
¼ 0; ð18bÞ

where δJJ0 is an identity in the phase space of quantum
numbers J with the natural propertyX

J

δJJ0 ¼ 1 for any J0: ð19Þ

The photonic vacuum state is annihilated by the oper-

ators âðλÞJ for all λ and J:

âðλÞJ j0i ¼ 0: ð20Þ
The photon wave functions with a definite polarization λ

AðλÞ
J ¼ ϵðλÞJ AðλÞ

J ; ð21Þ
are defined by the orthonormal vectors

ϵðλÞJ · ϵðλ
0Þ

J ¼ δλλ0 ; λ ¼ TE; TM; ð22Þ
for each fixed quantum number J. For a fixed polarization
λ, the expansion coefficients of the photon operator (17) are
orthonormalized according to the conditionZ

d3xAðλÞ�
J ðxÞAðλÞ

J0 ðxÞ ¼ δJJ0 : ð23Þ

In our conventions there are no sums over repeated indices
[e.g., over the cumulative index J in Eq. (21)] unless
explicitly indicated.

1The perfect-magnetic boundary conditions can be viewed as
the electromagnetic analogue of the boundary conditions for a
gluonic field in the MIT bag model for hadrons in QCD.
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2. Explicit solutions at finite radius

The (positive-frequency) expansion coefficients of the
photon operator (17) may be represented as follows:

AðλÞðρ;φ; z; tÞ ¼ e−iωtþikzzþimφAðλÞðρÞ; ð24Þ

where

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

q
; ð25Þ

is the frequency of the mode, kz is the momentum along the
axis of the cylinder and m ∈ Z is the quantum angular
momentum associated with the angular rotations about the
z axis. The quantization of the transverse (radial) momen-
tum k⊥ > 0 in Eq. (25) depends on the boundary conditions
at the edge of the cylinder.
In cylindrical coordinates, A≡ ðAρ; Aφ; AzÞT , the radial

part of the wave function (24) is given, for the TE and TM
polarizations, respectively, as

ATEðρÞ ¼

0
BB@

mfTEðρÞ
iρ

∂fTEðρÞ∂ρ
0

1
CCA; ð26aÞ

ATMðρÞ ¼

0
BBB@

kz
iω

∂fTMðρÞ∂ρ
mkz
ω

fTMðρÞ
ρ

− k2⊥
ω fTMðρÞ

1
CCCA; ð26bÞ

where the scalar radial functions fλ ¼ fλðρÞ obey the
following differential equation (λ ¼ TE, TM):

1

ρ

∂
∂ρ

�
ρ
∂fλ
∂ρ

�
−
m2

ρ2
fλ þ k2⊥fλ ¼ 0: ð27Þ

The normalized solutions of Eq. (27) are proportional to the
Bessel functions of the first kind:

fλ ¼ CλJmðk⊥ρÞ; λ ¼ TE; TM; ð28Þ

where Cλ are the normalization constants to be defined
below.
In the Coulomb gauge the operators of electric and

magnetic fields are given by a series similar to Eq. (17)
where the expansion coefficients can be determined with
the help of Eq. (4). The electric-field modes are propor-
tional to the corresponding gauge field modes (26),

EðλÞ ¼ −∂tA
ðλÞ ¼ iωAðλÞ; ð29Þ

while the magnetic-field modes BðλÞ ¼ ∇ ×AðλÞ for the
λ ¼ TE, TM polarizations are

BTEðρÞ ¼

0
BB@

−ikz
∂fTEðρÞ∂ρ

mkz
fTEðρÞ

ρ

−k2⊥fTEðρÞ

1
CCA; ð30aÞ

BTMðρÞ ¼

0
BB@

−imω fTMðρÞ
ρ

ω ∂fTMðρÞ∂ρ
0

1
CCA: ð30bÞ

The cylinder made of an ideal electric conductor or a
magnetic conductor imposes, respectively, the boundary
conditions (12) or (14) on electromagnetic fields of the
modes. These constraints can be rewritten as conditions on
the radial functions of the corresponding electromagnetic
modes:

∂fTEðρÞ
∂ρ

����
ρ¼R

¼ fTMðRÞ ¼ 0; b ¼ E; ð31aÞ

∂fTMðρÞ
∂ρ

����
ρ¼R

¼ fTEðRÞ ¼ 0; b ¼ M: ð31bÞ

For shortness, we call the boundary conditions correspond-
ing to the perfect metal (12) and the perfect magnetic
conductor (14) the “electric” (b ¼ E) and “magnetic”
(b ¼ M) conditions, respectively. The duality of the electric
and magnetic boundary conditions with respect to the TE
and TM modes is clearly seen in Eq. (31).
The explicit form of the solutions (28) indicates that

the boundary conditions (31) impose the following
quantization of the radial momentum k⊥ for the photon
polarizations λ:

J0mðk⊥RÞ ¼ 0;

�
λ

b

�
¼

�
TE

E

�
;

�
TM

M

�
; ð32Þ

Jmðk⊥RÞ ¼ 0;

�
λ

b

�
¼

�
TE

M

�
;

�
TM

E

�
; ð33Þ

where the prime indicates a derivative of the Bessel
function with respect to its argument. Thus the walls of
the cylinder made of a perfect electric (b ¼ E) or magnetic
(b ¼ M) conductor quantize the transverse momentum k⊥
of the TE and TM photon modes differently:

kTE⊥ ¼ κ0ml

R
; kTM⊥ ¼ κml

R
; b ¼ E; ð34aÞ

kTE⊥ ¼ κml

R
; kTM⊥ ¼ κ0ml

R
; b ¼ M; ð34bÞ

where κml and κ0ml (with m ∈ Z) correspond to the lth
positive root (with l ¼ 1; 2;… ∈ N) of the Bessel function
JmðxÞ and its derivative J0mðxÞ, respectively,

JmðκmlÞ ¼ 0; J0mðκ0mlÞ ¼ 0: ð35Þ
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According to Eq. (25) the corresponding frequencies ω of
the electromagnetic modes are

ωJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

ðκ0mlÞ2
R2

r
;

�
λ

b

�
¼

�
TE

E

�
;

�
TM

M

�
;

ð36aÞ

ωJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

ðκmlÞ2
R2

r
;

�
λ

b

�
¼

�
TE

M

�
;

�
TM

E

�
:

ð36bÞ
In a cylinder the photonic modes of a definite polarization λ
are labeled by the collective quantum number (37),

J ¼ fkz;m; lg; kz ∈ R; m ∈ Z; l ∈ N: ð37Þ
An integration over all three momenta k in a phase space of
plane waves in an unrestricted space is reduced, in the
cylinder, to the sum over the collective quantum number J:Z

d3k
ð2πÞ3 ↔

X
J

¼ 1

πR2

Z
dkz
2π

X
m∈Z

X∞
l¼1

: ð38Þ

This sums appears, for example, in Eq. (17).
According to Eq. (19) the identity in the phase space of

the modes with a given polarization λ is as follows:

δJJ0 ¼ 2π2R2δðkz − k0zÞδmm0δll0 : ð39Þ
An explicit calculation of the orthonormalization

condition (23),Z
R

0

dρρf2TEðρÞ ¼
Z

R

0

dρρf2TMðρÞ ¼
R2

2k2⊥
; ð40Þ

gives us the coefficients Cb
λ

CE
TE ¼ CM

TM ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ0mlÞ2 −m2

q
jJmðκ0mlÞj

; ð41aÞ

CM
TE ¼ CE

TM ¼ R
κmljJmþ1ðκmlÞj

; ð41bÞ

in the radial functions (28) of the photon polarization
modes λ ¼ TE, TM obeying the b ¼ E, M boundary
conditions. Here we used the integral orthogonality rela-
tions of the Bessel functions (B4) and (B5), as well as the
recurrence relations (B1). Notice that κ0ml > jmj.
The TM and TE modes are always orthogonal to each

other,Z
R

0

dρρATE
J ðρÞ ·ATM

J ðρÞ ∝ ½mfTEðρÞfTMðρÞ�
����R
0

≡ 0;

ð42Þ

due to the boundary conditions (31) and the fact that
mJmð0Þ≡ 0 for all m ∈ Z.
The conserved charges of interest in this basis are the

total energy and the angular momentum which are eigen-
values of the Hamiltonian and the angular momentum
operators. In our normalization the normal-ordered expres-
sions of these operators are, respectively,

H ¼
Z

d3x
1

2
∶ðE2 þ B2Þ ≔

X
J;λ

ωðλÞ
J âðλÞ†J âðλÞJ ; ð43Þ

Lφ ¼
Z

d3x∶Pφ ≔
X
J;λ

mâðλÞ†J âðλÞJ : ð44Þ

3. Modes in an unbounded space with R → ∞
As a final point in this section we will discuss the limit of

an unbounded space R → ∞. First let us note that without
imposing any boundary conditions we have

∇ ×AðTE;TMÞ
J ¼ ωAðTM;TEÞ

J : ð45Þ

We can therefore introduce eigenvectors of the curl
operator

A�
J ¼ ATE

J �ATM
J ð46Þ

with the eigenvalues

∇ ×A�
J ¼ �ωA�

J : ð47Þ

In terms of electric and magnetic fields these modes fulfill
the relations

B�
J ¼ ∓iE�

J ; ð48Þ

which show that these modes correspond to left- and right-
circularly polarized electromagnetic fields. The gauge
potential can now be quantized in this basis as follows:

A ¼
X
J

ffiffiffi
2

p
ffiffiffiffiffiffi
ωJ

p ðAðþÞ
J αðþÞ

J þAð−Þ�
J αð−Þ†J Þ: ð49Þ

Similarly to the finite-radius cases, the radial scalar
functions fλ are still proportional to the Bessel function
(28). However the radial momentum k⊥ is not quantized in
the absence of the boundaries. The wave functions are still
normalized according to the condition

Z
d3xAðλÞ�

mk ðxÞAðλ0Þ
m0;k0 ðxÞ ¼ δλλ0δJJ0 ð50Þ

with the collective quantum number J ¼ ðm; k; k⊥Þ and

CHERNODUB, CORTIJO, and LANDSTEINER PHYS. REV. D 98, 065016 (2018)

065016-6



δJJ0 ¼ 4π2δmm0δðkz − k0zÞ
δðk⊥ − k0⊥Þ

k⊥
; ð51Þ

X
J

¼
Z þ∞

−∞

dkz
2π

X
m∈Z

Z
∞

0

k⊥dk⊥
2π

: ð52Þ

The normalization constant in this unbounded case is
C ¼ 1ffiffi

2
p

k⊥
. Since the wave functions for both circular

polarizations obey the same boundary conditions (see
below), the normalization constant is the same for both
polarizations. The complex field E ¼ Eþ iB is then
just E ¼ ∇ ×A.
Quantization is achieved by

½αðλÞ†J ; αðμÞK � ¼ δJKδ
λμ: ð53Þ

The wave functions form an orthonormal systemZ
d3xAðλÞ�

K ·AðμÞ
L ¼ δK;Lδ

λ;μ: ð54Þ

We note that E� iB are eigenvectors of the duality trans-
formation ðE;BÞ → ðB;−EÞ with eigenvalues �i. The
Hamiltonian isH ¼ 1

2
E · E†. Both polarization modes have

the same frequencies. Therefore the Hamiltonian is

H ¼
X
J

ωJðαðþÞ†
J αðþÞ

J þ αð−Þ†J αð−ÞJ Þ; ð55Þ

with ω2
J ¼ k2z þ k2⊥ as in Eq. (25). The projection of the

angular momentum on the z axis can be computed from the
expression of the Poynting vector P ¼ i

2
E × E† as

Lφ ¼
X
J

mðαðþÞ†
J αðþÞ

J þ αð−Þ†J αð−ÞJ Þ: ð56Þ

C. Helicity and zilch

Back in the 1960s Lipkin found a new conserved charge
for the free Maxwell theory which he called the “zilch”
[25]. Soon afterwards Kibble pointed out that there are
infinitely many such zilch currents [26].
The basic observation is the following: if ðE;BÞ and

ðH;GÞ are doublets of fields obeying the free Maxwell’s
equations

∇ · E ¼ ∇ · B ¼ ∇ ·H ¼ ∇ · G ¼ 0; ð57Þ

∇ × B −
∂E
∂t ¼ ∇ × Eþ ∂B

∂t ¼ 0; ð58Þ

∇ ×H −
∂G
∂t ¼ ∇ × Gþ ∂H

∂t ¼ 0; ð59Þ

then the expressions

ζ ¼ H · Bþ G · E
2

; ð60Þ

Jζ ¼ −
H × Eþ G × B

2
; ð61Þ

fulfill the conservation law

∂ζ
∂t þ∇ · Jζ ¼ 0: ð62Þ

If we identify H → A with the vector potential and
G → Cwith the dual vector potential in the Coulomb gauge
∇ · A ¼ ∇ · C ¼ 0, then

B ¼ ∇ × A ¼ ∂C
∂t ; ð63Þ

E ¼ −
∂A
∂t ¼ ∇ × C: ð64Þ

The conserved charge (60) in this case is the optical
helicity. The inconvenience with these definitions is that
they do depend on the gauge choice. The vector and dual
vector potential define a zilch current only in the Coulomb
gauge (16)!
Lipkin's original zilch is gauge-invariant and local. It can

be defined by taking

H ¼ ∇ × B; ð65Þ

G ¼ ∇ × E: ð66Þ

If one allows for nonlocal expressions one can define the
k-zilch currents by taking

Hs ¼ Δ−s∇ × B; ð67Þ

Gs ¼ Δ−s∇ × E; ð68Þ

where Δ is the Laplace operator. If one uses the Coulomb
gauge (16) then the 1-zilch (s ¼ 1) becomes local in terms
of the vector potentials A, C and it coincides with the
“optical helicity” given in a relativistic form in Eq. (2). The
1-zilch is also unique in the sense that it is the only one of
the s-zilches that has the correct dimension of a conserved
current, i.e., three. In contrast Lipkin’s gauge-invariant
local zilch current, the 0-zilch, has dimension five, and is
often associated with “the optical chirality flow” [34,35].
For the finite-radius case, the perfect electric (12) and

magnetic (14) conductor boundary conditions do not
respect the zilch. The helicity (or zilch) influx
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Jh · n≡ Jh;rðRÞ
¼ ðEφAz − EzAφ þ CφBz − CzBφÞjρ¼R; ð69Þ

does not vanish identically at the boundary.
In the helicity eigenstate basis in the unbounded domain

the helicity and the zilch can be expressed by the complex
fields

h ¼ 1

4
ðA† · E þA · E†Þ; ð70Þ

ζ ¼ 1

4
ðG† · E þ E · G†Þ: ð71Þ

The normal-ordered integrated total charges (helicities and
zilches) are, respectively,

Qh ¼
Z

d3x∶h ≔
X
J

ðαðþÞ†
J αðþÞ

J − αð−Þ†J αð−ÞJ Þ; ð72Þ

Qζ ¼
Z

d3x∶ζ ≔
X
J

ω2
JðαðþÞ†

J αðþÞ
J − αð−Þ†J αð−ÞJ Þ: ð73Þ

As expected, helicity in the Coulomb gauge counts the
number of right-circularly polarized photons minus the
number of left-circularly polarized photons. The gauge-
invariant zilch charge weights these numbers with the
squares of the frequencies and is therefore a good gauge-
invariant observable and local measure of helicity [30].
The expressions of the helicity and zilch currents in

terms of the complex fields are

Jh ¼
i
4
ðA × E† −A† × EÞ; ð74Þ

Jζ ¼
i
4
ðE × G† − E† × GÞ: ð75Þ

D. Unbounded domain

We will now study the problem of the generation of the
helicity and zilch currents at the center of rotation in an
unbounded domain. The analogous problem for chiral
fermions is known to give a well-defined expression that
coincides to lowest order in the angular momentum with
the predictions from anomaly-induced transport theory—
the chiral vortical effect. It also predicts terms of higher
order in Ω but their status is somewhat less clear. We will
follow the strategy that worked for chiral fermions as
closely as possible.
The thermal expectation value of the helicity current in

the unbounded domain is formally

hJzhðρÞi∞T;Ω ¼
Z

∞

Ωþ

dk⊥
2π

Z
∞

−∞

dk
2π

X
m

nBðω −mΩ; TÞ

× 2m

�
1þ k2

ω2

�
Jmðk⊥ρÞJ0mðk⊥ρÞ

ρ
: ð76Þ

where nBðε; TÞ ¼ ½expðε=TÞ − 1�−1 is the occupation num-
ber and the eigenenergy ω is given in Eq. (25). Both photon
polarizations contribute the same amount to the current
(76). Since the current (76) should be understood as the
limit R → ∞ of the finite-radius theory there is in principle
a lower limit on the k⊥ integration. At any finite radius we
have ΩR < 1 and k⊥ ¼ κml

R with κml > m. Therefore we
always have k⊥ > Ω in Eq. (76).
One observation is that the total current also vanishes in

the unbounded domain. Indeed we integrate the current
(76) over the (infinite) cross section of the cylinder as in
Eq. (104) and then use the identity (100) to show that the
contribution of every eigenmode fJðρÞ ¼ Jmðk⊥ρÞ is
proportional to J2mðk⊥RÞ which vanishes in the infinite-
volume limit R → ∞.
If we concentrate on the other hand on the center of

rotation ρ ¼ 0 we find that only the modes with m ¼ �1
contribute. We can also change the integration variable
from k⊥ to ω to find

hJzhð0Þi∞T;Ω ¼ 1

8π2

Z
∞

Ωþ
dω

Z
ω

−ω
dk

�
ωþ k2

ω

�

×

�
1

eðω−ΩÞ=T − 1
−

1

eðωþΩÞ=T − 1

�
: ð77Þ

We can now expand the integral to lowest order in powers
of Ω=T and find

hJzhð0Þi∞T;Ω ¼ 4T2Ω
3π2

Z
∞

0

dx
x

ex − 1
¼ 2T2

9
Ω: ð78Þ

One can also try to proceed by ignoring the lower bound
on the integration over the frequency ω in the first integral
in Eq. (77). This leads to

hJzhð0Þi∞;ðformalÞ
T;Ω ¼ T3

3π2

Z
∞

0

dxx2

×

�
1

ex−Ω=T − 1
−

1

exþΩ=T − 1

�
: ð79Þ

In order to evaluate this we can use the integral represen-
tation of the polylogarithms together with the Jonquière
inversion relation
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LinðzÞ ¼
1

ΓðnÞ
Z

∞

0

tn−1

et=z − 1
;

LinðzÞ þ ð−1ÞnLinð1=zÞ ¼ −
ð2πiÞ2
n!

Bn

�
1

2
� lnð−zÞ

2πi

�
:

Here BnðxÞ is the nth Bernoulli polynomial and the sign is
chosen according to z ∉ ½0; 1� or z ∉ �1;∞�. This leads to
the following formal expression:

hJzhð0Þi∞;ðformalÞ
T;Ω ¼ 2T2

9
Ω� i

T
3π

Ω2 −
1

9π2
Ω3; ð80Þ

which is clearly unphysical beyond the leading order in the
angular momentum Ω. The reason is that the integrand in
Eq. (77) always has at least one pole at frequency ω ¼ jΩj.
The analogous integrals for fermions are well defined since
the Fermi-Dirac distribution does not present a singularity.
However even in the fermionic case the higher-order terms
do not seem to be universal [7].
The same considerations hold for the zilch current as

well. The only difference is an additional insertion of ω2

under the integral in Eq. (76). We only quote the infinite-
volume result for the on-axis zilch current obtained to linear
order in Ω:

hJzζð0Þi∞T;Ω ¼ 8π2T4

45
Ω: ð81Þ

III. Rotations

We will study the rotating ensemble in a vacuum defined
with respect to a fixed laboratory frame. In this case
rotation is implemented by defining the statistical operator

ρ ¼ 1

Z
e−βðH−ΩLφÞ; ð82Þ

where β ¼ 1=T is the inverse temperature, Ω is the angular
frequency corresponding to a uniform rotation with angular
velocity Ω ¼ Ωez about the z axis, H is the Hamiltonian
(55) and Lφ is the projection of the angular momentum
operator on the rotation axis (56). Without losing generality
we assume that the cylinder rotates counterclockwise with
Ω ≥ 0.
Rotating ensembles of relativistic field theories are noto-

riously ill-defined whenever the tangential velocity at radius
ρ exceeds the speed of light. A well-defined ensemble is
therefore possible only as long as RΩ < 1, where the speed
of light c ¼ 1 in our conventions. This makes it immediately
clear that the unbounded domain with a constant angular
velocity does not give rise to a consistent statistical ensemble.
As noted however long ago by Vilenkin, in the case of
fermions it is possible to extract meaningful results for the
statistical average of the current at the center of rotation.

As wewill discuss in detail, for photons even this property is
not realized beyond the lowest order in Ω.
In principle one can study the ensemble both in a

corotating and in a laboratory (nonrotating) frame and
define two different vacua. A nonrotating vacuum has been
considered by Vilenkin [12] while the rotating vacuum has
been studied by Iyer [36]. One may show that both
approaches are equivalent provided the system is bounded
in such a way that the velocity of the rigidly rotating body
does not exceed the speed of light so that causality is
respected. Technically, the nonrotating (Vilenkin) vacuum
is equivalent to the rotating (Iyer) vacuum if the energy of
each eigenmode in the laboratory frame ε and in the
corotating frame ε̃ satisfy the relation εε̃ > 0. This relation
always holds when causality is respected. Causality is
violated in a rigidly rotating unbounded space, in which
εε̃ < 0 for certain modes and, consequently, the nonrotat-
ing and rotating vacua are not equivalent [13]. The
unbounded rotating systems may have several pathologies
related to instabilities and the rotation-induced Unruh effect
[37,38]. Further discussions, in particular on the difference
between fermionic and bosonic states, may be found in
Ref. [13].
The thermal expectation value of an operator O for a

uniformly rotating ensemble is

hÔðxÞiT;Ω ¼
X
J;λ

nBðT;Ω; J; λÞhÔðxÞiJ; ð83Þ

where hÔðxÞiJ ≡ hJjOjJi corresponds to the value of the
operator O for a photon in the state characterized by the
polarization λ and the kinetic quantum numbers J (37), and

nBðT;Ω; J; λÞ ¼
1

eðω
ðλÞ
J −mΩÞ=T − 1

ð84Þ

is the Bose-Einstein distribution function at nonzero
temperature T and angular velocity Ω.
In order to calculate the expectation values of the normal-

ordered operators of interest we collect the mode expan-
sions of the different fields

A ¼
X
J;λ

1ffiffiffiffiffiffiffiffiffiffi
2ωðλÞ

J

q ðAðλÞ
J âðλÞJ þAðλÞ;�

J âðλÞ†J Þ; ð85Þ

C ¼
X
J;λ

iffiffiffiffiffiffiffiffiffiffi
2ωðλÞ

J

q ðÃðλÞ
J âðλÞJ − ÃðλÞ;�

J âðλÞ†J Þ; ð86Þ

E ¼
X
J;λ

i
ffiffiffiffiffiffiffiffi
ωðλÞ
J

q
ffiffiffi
2

p ðAðλÞ
J âðλÞJ −AðλÞ;�

J âðλÞ†J Þ; ð87Þ

B ¼
X
J;λ

ffiffiffiffiffiffiffiffi
ωðλÞ
J

q
ffiffiffi
2

p ðÃðλÞ
J âðλÞJ þ ÃðλÞ;�

J âðλÞ†J Þ; ð88Þ
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H ¼
X
J;λ

ðωðλÞ
J Þ3=2ffiffiffi
2

p ðAðλÞ
J âðλÞJ −AðλÞ;�

J âðλÞ†J Þ; ð89Þ

G ¼
X
J;λ

iðωðλÞ
J Þ3=2ffiffiffi
2

p ðÃðλÞ
J âðλÞJ þ ÃðλÞ;�

J âðλÞ†J Þ; ð90Þ

where the dual wave functions Ã are defined via the

relation ∇ ×AðλÞ
J ¼ ωÃðλÞ

J .
Now we can compute the thermal averages of the

following normal-ordered operators:

optical helicity∶ J0h ¼
1

2
∶ðA · Bþ C · EÞ∶; ð91Þ

Jh ¼
1

2
∶ðE × Aþ C × BÞ∶; ð92Þ

zilch∶ J0ζ ¼
1

2
∶ðH · Bþ G · EÞ∶; ð93Þ

Jζ ¼
1

2
∶ðE ×H þ G × BÞ∶; ð94Þ

Poynting vector∶ Jϵ ≕E × B∶: ð95Þ

We note that all of these expressions are duality invariant:
ðE;BÞ → ð−B;EÞ, ðC;AÞ → ð−A;CÞ etc. They are normal
ordered (with creation operators placed on the left) and we
only need the one-particle expectation values to evaluate
the thermal averages.
It is worth mentioning that we quantize the gauge field

Aμ in the Coulomb gauge (16) formulated in the laboratory
frame. This gauge condition is not satisfied by the fields in
the corotating frame A0

μ which are related to the ones in the
laboratory frame by the linear transformation A0 ¼ A and
A0
0 ¼ A0 −ΩρAφ. The spatial part of the Coulomb gauge is

thus respected by the corotating gauge fields, ∇0 · A0 ¼ 0,
while the temporal component of the gauge field in the
corotating frame is nonzero, A0

0 ≠ 0, for both TE and TM
photon polarizations (26). However, since all observables
of interest are formulated in the laboratory frame, and the
vacua for both the laboratory and rotating frames are the
same, the quantization should be done in the Coulomb
gauge (16) with respect to the gauge fields in the laboratory
frame. Moreover, the uniform rotation affects the expect-
ation values of the observables in the laboratory frame
via the Bose-Einstein distribution function (84), which
depends on the photon energy spectrum in the corotating
frame, ω0

J ¼ ωJ −mΩ. Since the latter is a gauge-
independent quantity, the choice of the gauge in the
corotating frame has no effect on the expectation values
of the observables.
The optical helicity, zilch and their currents have the

single-particle expectation values

hJjJ0h;ζjJi ¼ 2kmðωJÞ1−2s
fJf0J
ρ

; ð96Þ

hJjJh;ζjJi ¼

0
B@

0

kk2⊥ðωJÞ−2sfJf0J
mðωJÞ2−2sð1þ k2

ω2
J
Þ fJf0Jρ

1
CA ð97Þ

where s ¼ 1 for the optical helicity and s ¼ 0 for the zilch.
We note that these quantities fulfill the Ward identity

ωhJjJ0h;ζjJi −
m
ρ
hJjJφh;ζjJi − khJjJzh;ζjJi ¼ 0; ð98Þ

associated with the zilch conservation (62) and with a
similar conservation relation for the helicity.
The expectation value of the Poynting vector is

hJjJ⃗ϵjJi ¼

0
B@

0

m
ρ k

2⊥f2J
kðm2

ρ2
f2J þ f0J

2Þ

1
CA: ð99Þ

For simplicity of notation we have suppressed the polari-
zation index in the above. The expressions are formally the
same for both polarizations.
Since the energy ωJ is an even function of the momen-

tum in the z direction, kz, all thermal expectation values
of expressions linear in kz vanish upon integration. The
linearity in kz immediately tells us that h ¼ ζ ¼ Jzϵ ¼ Jφh ¼
Jφζ ¼ 0 in addition to the obvious absence of the radial
currents Jρϵ ¼ Jρh ¼ Jρζ ¼ 0.
Furthermore, from the identity

2m
Z

R

0

ρdρ
ff0

ρ
¼ mfðRÞ2; ð100Þ

it follows that only those modes that obey the Neumann
boundary conditions on the radial photon functions fJ give
us a nonzero net helicity and zilch currents! The corre-
spondence between the boundary conditions on the radial
photon functions, the photon polarizations and the type of
boundary conditions can be found in Eq. (31).
In the general case, the thermal expectation values cannot

be evaluated analytically and therefore we proceed to their
numerical evaluation. For the numerical summation it is
convenient to write the energy and angular momentum
densities as follows:

R4ϵ ¼ 1

π2
X
m;l;λ

Z
∞

0

dq
νðλÞJ

e
ν
ðλÞ
J

−mRΩ
RT − 1

; ð101Þ

R3Lφ ¼ 1

π2
X
m;l;λ

Z
∞

0

dq
m

e
ν
ðλÞ
J

−mRΩ
RT − 1

: ð102Þ

In order to adapt these quantities for a numerical evaluation
we used a shorthand notation νðλÞJ ≡ RωðλÞ

J for the dimen-
sionless energy, characterized by the cumulative index J of

CHERNODUB, CORTIJO, and LANDSTEINER PHYS. REV. D 98, 065016 (2018)

065016-10



Eq. (37) and by the polarization λ ¼ TE=TM according to
the type of boundary condition (36).
In Fig. 1 we show the appropriately normalized energy

(101), angular momentum (102) and moment of inertia

IðΩ; TÞ ¼ LφðΩ; TÞ
Ω

; ð103Þ

as functions of the angular frequency Ω for various fixed
temperatures T.
The components of the total helicity and zilch currents

along the axis of rotation, given by integration over local
currents (97) over the cross section of the cylinder,

Jz;tots ¼
Z

R

0

ρdρ
Z

2π

0

dφJsðρ;φÞ; ð104Þ

are as follows:

Jz;tots R2−2s ¼ 1

π

X
m;l

Z
∞

0

dq
1þ q2

ðνðλÞJ Þ2

ðκ0mlÞ2 −m2

mðνðλÞJ Þ2−2s

e
ν
ðλÞ
J

−mRΩ
RT − 1

; ð105Þ

where s ¼ 1 corresponds to the helicity and s ¼ 0 to the
zilch currents (also denoted, respectively, as s ¼ h and
s ¼ ζ below). In Eq. (105) we chose the polarization λ
taking into account the fact [Eq. (100)] that only the modes
with the Neumann boundary conditions on the radial
photon functions fJðρÞ may contribute.
In Fig. 2 we show the total helicity and zilch currents

(105) which are increasing functions of both temperature
and angular momentum. Its important to remember that the
total currents, contrary to the infinite-volume expression,
are nonvanishing only because of the Neumann boundary
condition imposed on radial photon functions. The net flux
of helicity and zilch is therefore interpreted as an effect of
the duality-breaking boundary conditions. Qualitatively
both quantities exhibit increasing flux with increasing
angular velocity.

FIG. 1. The energy (101) and angular momentum (102)
densities as functions of the dimensionless tangential velocity
at the boundaryRΩ. We restrict ourselves to relatively low angular
velocities RΩ < 0.5 to facilitate numerical evaluation. The plots
show that the behavior of the dimensionless quantities ϵ=T4 (top)
and L=ðRT3Þ (bottom) for a temperature range from TR ¼ 0.25
up to TR ¼ 2.5 in steps of δðTRÞ ¼ 0.25. As it can be seen from
the plots, both of these dimensionless quantities collapse on a
universal high-temperature curve. The arrow in the upper plot
marks the Stefan-Boltzmann value ϵ ¼ T4π2

15
. At temperature

TR ¼ 2.5 the system is already within 3% of this value at zero
rotation. The inset in the lower figure shows the moment of inertia
(103) with the corresponding Stefan-Boltzmann value.

FIG. 2. The total helicity (s ¼ 1) and zilch (s ¼ 0) currents
(105) as functions of the dimensionless tangential velocity at the
boundary RΩ. The plots show the behavior of the dimensionless
quantities Jz;toth =ðRT2Þ and Jz;totζ =ðRT4Þ for the same temperature
range as in Fig. 1. The insets show the currents divided by the
frequency Ω.
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It is well seen in Fig. 2 that in the limit of small
angular frequencies, Ω → 0, both the total helicity
and the total zilch currents (105) exhibit a linear depend-
ence on Ω:

Jz;tots ¼ CsðTÞT4−2sΩþOðΩ2Þ: ð106Þ

In Fig. 3 we show the dimensionless coefficients
Cs as functions of temperature T. Both quantities vanish
exponentially in the limit of small temperatures T → 0,
while in the limit of high temperature they approach the
values

ChðT → ∞Þ ≈ 0.65; CζðT → ∞Þ ≈ 5.42; ð107Þ

respectively.
Finally using the series expansion of the Bessel func-

tions, JmðxÞ ¼ ðx=2Þm þOðxmþ2Þ, it follows that the
helicity and zilch current densities at the axes of rotation
ρ ¼ 0 receive only contributions from the angular momenta
m ¼ �1:

Jzsð0ÞR2−2s ¼ 1

π2
X
l;λ

Z
∞

0

dqðνðλÞJ Þð2−2sÞ
�
1þ q2

ðνðλÞJ Þ2
�

· C2
λ

�
κλ1;l
2R

�2
"

1

e
ν
ðλÞ
J

−RΩ
RT − 1

−
1

e
ν
ðλÞ
J

þRΩ
RT − 1

#
;

ð108Þ

where again s ¼ 1 and s ¼ 0 correspond to the helicity and
the zilch, respectively. The m ¼ �1 eigen-numbers κλ1;l ≡
κλ−1;l for both polarizations λ ¼ TE=TM can be read off
from Eqs. (34) and (35), and the normalization coefficients
Cλ are given in Eq. (41).
The helicity and zilch currents (108) at the axis of

rotation ρ ¼ 0 are shown in Fig. 4 as functions of temper-
ature T. We plot these currents in the limit of slow rotations
Ω → 0 and normalize them to the corresponding results
obtained in the unbounded domain (78) and (81), to be
discussed in the next section. The high-temperature limit
approaches the value of the linear truncation in Ω in the
unbounded domain. Its interesting that this convergence is
faster for the zilch current than for the helicity current. The
insets show the exponential onset of the currents for small
temperatures.

FIG. 3. The dimensionless strengths of the helicity (s ¼ 1)
and zilch (s ¼ 0) currents (106) in the limit of small
angular frequencies Ω → 0 as functions of temperature T.
The insets show the exponential onset of both currents at
small temperatures.

FIG. 4. Values of the helicity (s ¼ 1) and zilch (s ¼ 0) current
densities (108) at the axes of rotation ρ ¼ 0 for very low angular
velocities. The results are plotted as functions of TR and as
fractions of the result in the unbounded domain (78) and (81)
respectively. The insets show the currents at small temperatures.
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IV. DISCUSSION AND CONCLUSION

We have studied helicity and zilch photonic currents in
the free Maxwell theory induced by rotation in a bounded
cylindrical domain. An important role is played by the
conditions imposed on photons at the boundary of the
cylinder. We have chosen two types of boundary conditions
corresponding to perfect electric and perfect magnetic
conductors as both of these conditions guarantee that the
influx of energy and angular momentum vanishes at the
boundary. The values of the helicity and zilch photonic
currents for both types of boundaries are the same because
these boundary conditions are exchanged under a discrete
electric-magnetic duality transformation while all expres-
sions of interest are duality invariant.
In searching for an analogue of the well-known CVE of

chiral fermions we studied the current densities at the axis
of rotation. A universal value can reasonably be expected
to arise only in the high-temperature limit in which the
boundary conditions play no role for the physics of photons
at the center of rotation. Indeed we found that in the high-
temperature limit the result for small angular velocity
converges to the result obtained to linear order in Ω in
the unbounded domain. However, a direct calculation in
the unbounded domain is plagued with the difficulty
that the integrals over the Bose-Einstein distributions are
well defined only for sufficiently small angular velocities,
Ω < 1=R. This fact means that the angular velocity has to
go to zero faster than 1=R. Consequently, the formal result
for the helicity current at the axis of rotation, obtained in the
unbounded domain (80), does not seem to be physically
meaningful as this procedure gives a complex value for the
expectation value of a Hermitian operator.
On the contrary, a truncation of the expression for the

current to lowest order in Ω in an unbounded domain
provides us with the still meaningful physical result (78)
because it exactly corresponds to a value towhich the central
current densities converge in thehigh-temperature limit in the
bounded domain. In this sense (the leading-order truncation
of the high-temperature limit) one can indeed speak of a
chiral vortical effect for photons in an unbounded domain.
It is worth comparing our numerical result for the central

helicity current (78) to the existing derivations of the
photonic CVE in the literature [19–21]. We note that the
authors of Refs. [19,21] considered the magnetic helicity
current [with the results, in our notation, Jzh ¼ T2Ω=6 and
Jzh ¼ ðϵμ − 1ÞT2Ω=12, respectively] and only the authors
of Ref. [20] studied a semiclassical evaluation of the optical
helicity current (which gives Jzh ¼ T2Ω=3). Notice that the
factor of 2 difference in the expressions for the helicity
currents in Refs. [19,20] comes from the different defi-
nitions used for the currents, while they both differ from the
helicity current of Ref. [21] which is zero in vacuum
ϵ ¼ μ ¼ 1. In any case, our value for the helicity current
(78) differs from the results obtained in all of these works.

The disagreement with the literature is probably not
surprising since the helicity current is not a gauge-invariant
quantity and, therefore, it cannot be considered a good
physical observable. On the other hand Lipkin’s zilch
current is a local and gauge-invariant quantity. The zilch
current at the axis of the rotating cylinder in the high-
temperature limit is given in Eq. (81). It would be
interesting to evaluate the expectation value of the central
zilch current via Kubo formulas or in a semiclassical
treatment to compare to our result (81).
Summarizing, we have found the zilch vortical effect

(ZVE) which generates the helicity and zilch currents along
the axis of rotation of a hot gas of photons. We have
calculated these currents in a wide domain of temperatures
and angular frequencies (Figs. 2 and 4) in a causality-
preserving setup. For a photon gas in a fixed-size cavity,
the currents vanish exponentially in the limit of low
temperature. At high temperature and low angular fre-
quency of rotation, the currents at the axis of rotation are
given by Eqs. (78) and (81) while the total currents are
estimated in Eqs. (106) and (107).
Both the helicity and zilch currents show qualitatively

similar behavior. They constitute a part of an infinite tower of
conserved charges (zilches) of free electromagnetic field.
Thus, in a general sense, theZVE is responsible for an infinite
tower of anomalous transport effects in a rotating photon gas.
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APPENDIX A: CYLINDRICAL COORDINATES

In cylindrical coordinates a vector

a ¼ aρeρ þ aφeφ þ azez; ðA1Þ

is represented via the orthonormalized basis vectors of the
cylindrical system

ZILCH VORTICAL EFFECT PHYS. REV. D 98, 065016 (2018)

065016-13



eρ ¼

0
B@

cosφ

sinφ

0

1
CA; eφ ¼

0
B@

− sinφ

cosφ

0

1
CA; ez ¼

0
B@

0

0

1

1
CA;

ðA2Þ
where φ is the azimuthal angle in the ðx; yÞ plane, and is
related to the Cartesian coordinates as follows:

x ¼ ρ cosφ; y ¼ ρ sinφ: ðA3Þ
The basic operations of the vector calculus are as

follows.
The scalar product:

a · b ¼ aρbρ þ aφbφ þ azbz: ðA4Þ

The vector product:

ða × bÞρ ¼ ðaφbz − bφazÞ; ðA5Þ
ða × bÞφ ¼ ðazbρ − bzaρÞ; ðA6Þ

ða × bÞz ¼ ðaρbφ − bρaφÞ: ðA7Þ

The curl (rotor) operation:

ð∇ × aÞρ ¼
1

ρ

∂az
∂φ −

∂aφ
∂z ; ðA8Þ

ð∇ × aÞφ ¼ ∂aρ
∂z −

∂az
∂ρ ; ðA9Þ

ð∇ × aÞz ¼
1

ρ

∂ðρaφÞ
∂ρ −

1

ρ

∂aρ
∂φ : ðA10Þ

The divergence:

∇ · a ¼ 1

ρ

∂ðρaρÞ
∂ρ þ 1

ρ

∂aφ
∂φ þ ∂az

∂z : ðA11Þ

The gradient:

∇f ¼ ∂f
∂ρ eρ þ

1

ρ

∂f
∂φ eφ þ

∂f
∂z ez: ðA12Þ

The Laplacian:

Δf ¼ 1

ρ

∂
∂ρ

�
ρ
∂f
∂ρ

�
þ 1

ρ2
∂2f
∂φ2

þ ∂2f
∂z2 : ðA13Þ

APPENDIX B: SOME PROPERTIES OF
BESSEL FUNCTIONS

The Bessel functions satisfy the following recurrence
relations:

Jm−1ðxÞ þ Jmþ1ðxÞ ¼
2m
x

JmðxÞ; ðB1aÞ

Jm−1ðxÞ − Jmþ1ðxÞ ¼ 2J0mðxÞ: ðB1bÞ

For arbitrary parameters a and b one getsZ
1

0

dxxJmðaxÞJmðbxÞ

¼ bJmðaÞJm−1ðbÞ − aJmðbÞJm−1ðaÞ
a2 − b2

; ðB2Þ
Z

1

0

dxx2JmðaxÞJ0mðaxÞ ¼
1

2a
Jm−1ðaÞJmþ1ðaÞ: ðB3Þ

If a ¼ κml and b ¼ κml0 are zeros of the Bessel function,
JmðκmlÞ ¼ Jmðκml0 Þ ¼ 0, thenZ

1

0

dxxJmðκmlxÞJmðκml0xÞ ¼
δll0

2
J2mþ1ðκmlÞ: ðB4Þ

If a ¼ κ0ml and b ¼ κ0ml0 are zeros of a derivative of the
Bessel function, J0mðκ0mlÞ ¼ J0mðκ0ml0 Þ ¼ 0, thenZ

1

0

dxxJmðκ0mlxÞJmðκ0ml0xÞ ¼
δll0

2
½J2mðκ0mlÞ − J2mþ1ðκ0mlÞ�:

ðB5Þ
For real positive k and k0 one getsZ
∞

0

dρρ

�
m2

ρ2
JmðkρÞJmðk0ρÞ þ kk0J0mðkρÞJ0mðk0ρÞ

�

≡ k2
Z

∞

0

dρρJmðkρÞJmðk0ρÞ ¼ kδðk − k0Þ: ðB6Þ

Finally we note that for large index the asymptotic
expansions of the zeros are

κm1 ¼ mþ 1.8558m1=3 þOðm−2=3Þ; ðB7Þ
κ0m1 ∼mþ 0.8086m1=3 þOðm−2=3Þ: ðB8Þ

This makes the divergence of the thermodynamic partition
function for ΩR > 1 explicit.

CHERNODUB, CORTIJO, and LANDSTEINER PHYS. REV. D 98, 065016 (2018)

065016-14



[1] D. E. Kharzeev, The chiral magnetic effect and anomaly-
induced transport, Prog. Part. Nucl. Phys. 75, 133
(2014).

[2] K. Landsteiner, Notes on anomaly induced transport, Acta
Phys. Pol. B 47, 2617 (2016).

[3] K. Landsteiner, E. Megias, and F. Pena-Benitez, Gravita-
tional Anomaly and Transport, Phys. Rev. Lett. 107, 021601
(2011).

[4] K. Landsteiner, E. Megias, L. Melgar, and F. Pena-Benitez,
Holographic gravitational anomaly and chiral vortical
effect, J. High Energy Phys. 09 (2011) 121.

[5] K. Jensen, R. Loganayagam, and A. Yarom, Thermody-
namics, gravitational anomalies and cones, J. High Energy
Phys. 02 (2013) 088.

[6] K. Jensen, R. Loganayagam, and A. Yarom, Chern-Simons
terms from thermal circles and anomalies, J. High Energy
Phys. 05 (2014) 110.

[7] M. Stone and J. Y. Kim, Mixed anomalies: Chiral vortical
effect and the Sommerfeld expansion, Phys. Rev. D 98,
025012 (2018).

[8] S. Golkar and S. Sethi, Global anomalies and effective field
theory, J. High Energy Phys. 05 (2016) 105.

[9] S. D. Chowdhury and J. R. David, Anomalous transport at
weak coupling, J. High Energy Phys. 11 (2015) 048.

[10] S. D. Chowdhury and J. R. David, Global gravitational
anomalies and transport, J. High Energy Phys. 12 (2016) 116.

[11] P. Glorioso, H. Liu, and S. Rajagopal, Global anomalies,
discrete symmetries, and hydrodynamic effective actions,
arXiv:1710.03768.

[12] A. Vilenkin, Quantum field theory at finite temperature in a
rotating system, Phys. Rev. D 21, 2260 (1980).

[13] V. E. Ambruş and E. Winstanley, Rotating quantum states,
Phys. Lett. B 734, 296 (2014).

[14] V. E. Ambrus and E. Winstanley, Rotating fermions
inside a cylindrical boundary, Phys. Rev. D 93, 104014
(2016).

[15] M. N. Chernodub and S. Gongyo, Interacting fermions in
rotation: Chiral symmetry restoration, moment of inertia and
thermodynamics, J. High Energy Phys. 01 (2017) 136.

[16] M. N. Chernodub and S. Gongyo, Effects of rotation and
boundaries on chiral symmetry breaking of relativistic
fermions, Phys. Rev. D 95, 096006 (2017).

[17] M. N. Chernodub and S. Gongyo, Edge states and thermo-
dynamics of rotating relativistic fermions under magnetic
field, Phys. Rev. D 96, 096014 (2017).

[18] S. Ebihara, K. Fukushima, and K. Mameda, Boundary
effects and gapped dispersion in rotating fermionic matter,
Phys. Lett. B 764, 94 (2017).

[19] A. Avkhadiev and A. V. Sadofyev, Chiral vortical effect for
bosons, Phys. Rev. D 96, 045015 (2017).

[20] N. Yamamoto, Photonic chiral vortical effect, Phys. Rev. D
96, 051902 (2017).

[21] V. A. Zyuzin, Landau levels for an electromagnetic wave,
Phys. Rev. A 96, 043830 (2017).

[22] A. D. Dolgov, I. B. Khriplovich, A. I. Vainshtein, and V. I.
Zakharov, Photonic chiral current and its anomaly in a
gravitational field, Nucl. Phys. B315, 138 (1989).

[23] I. Agullo, A. del Rio, and J. Navarro-Salas, Electromagnetic
Duality Anomaly in Curved Spacetimes, Phys. Rev. Lett.
118, 111301 (2017).

[24] M. G. Calkin, An invariance property of the free electro-
magnetic field, Am. J. Phys. 33, 958 (1965).

[25] H. Lipkin, Existence of a new conservation law in electro-
magnetic theory, J. Math. Phys. 5, 696 (1964).

[26] T. W. B. Kibble, Conservation laws for free fields, J. Math.
Phys. 6, 1022 (1965).

[27] T. G. Philbin, Lipkin’s conservation law, Noether theorem,
and the relation to optical helicity, Phys. Rev. A 87, 043843
(2013).

[28] S. Deser and C. Teitelboim, Duality transformations of
Abelian and non-Abelian gauge fields, Phys. Rev. D 13,
1592 (1976).

[29] R. P. Cameron and S. M. Barnett, Electric-magnetic sym-
metry and Noether theorem, New J. Phys. 14, 123019
(2012).

[30] Y. Tang and A. E. Cohen, Optical Chirality and Its
Interaction with Matter, Phys. Rev. Lett. 104, 163901
(2010).

[31] K. Y. Bliokh, Y. S. Kivshar, and F. Nori, Magnetoelectric
Effects in Local Light-Matter Interactions, Phys. Rev. Lett.
113, 033601 (2014).

[32] F. Alpeggiani, K. Y. Bliokh, F. Nori, and L. Kuipers,
Electromagnetic Helicity in Complex Media, Phys. Rev.
Lett. 120, 243605 (2018).

[33] M. Elbistan, Optical helicity and Hertz vectors, Phys. Lett.
A 382, 1897 (2018).

[34] M. Elbistan, P. A. Horvathy, and P.-M. Zhang, Duality and
helicity: The photon wave function approach, Phys. Lett. A
381, 2375 (2017).

[35] R. P. Cameron, S. M. Barnett, and A. M. Yao, Optical
helicity, optical spin and related quantities in electromag-
netic theory, New J. Phys. 14, 053050 (2012).

[36] B. R. Iyer, Dirac field theory in rotating coordinates, Phys.
Rev. D 26, 1900 (1982).

[37] O. Levin, Y. Peleg, and A. Peres, Unruh effect for circular
motion in a cavity, J. Phys. A 26, 3001 (1993); V. A.
De Lorenci and N. F. Svaiter, A rotating quantum vacuum,
Found. Phys. 29, 1233 (1999).

[38] P. C. W. Davies, T. Dray, and C. A. Manogue, The rotating
quantum vacuum, Phys. Rev. D 53, 4382 (1996).

ZILCH VORTICAL EFFECT PHYS. REV. D 98, 065016 (2018)

065016-15

https://doi.org/10.1016/j.ppnp.2014.01.002
https://doi.org/10.1016/j.ppnp.2014.01.002
https://doi.org/10.5506/APhysPolB.47.2617
https://doi.org/10.5506/APhysPolB.47.2617
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1007/JHEP09(2011)121
https://doi.org/10.1007/JHEP02(2013)088
https://doi.org/10.1007/JHEP02(2013)088
https://doi.org/10.1007/JHEP05(2014)110
https://doi.org/10.1007/JHEP05(2014)110
https://doi.org/10.1103/PhysRevD.98.025012
https://doi.org/10.1103/PhysRevD.98.025012
https://doi.org/10.1007/JHEP05(2016)105
https://doi.org/10.1007/JHEP11(2015)048
https://doi.org/10.1007/JHEP12(2016)116
http://arXiv.org/abs/1710.03768
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/j.physletb.2014.05.031
https://doi.org/10.1103/PhysRevD.93.104014
https://doi.org/10.1103/PhysRevD.93.104014
https://doi.org/10.1007/JHEP01(2017)136
https://doi.org/10.1103/PhysRevD.95.096006
https://doi.org/10.1103/PhysRevD.96.096014
https://doi.org/10.1016/j.physletb.2016.11.010
https://doi.org/10.1103/PhysRevD.96.045015
https://doi.org/10.1103/PhysRevD.96.051902
https://doi.org/10.1103/PhysRevD.96.051902
https://doi.org/10.1103/PhysRevA.96.043830
https://doi.org/10.1016/0550-3213(89)90451-3
https://doi.org/10.1103/PhysRevLett.118.111301
https://doi.org/10.1103/PhysRevLett.118.111301
https://doi.org/10.1119/1.1971089
https://doi.org/10.1063/1.1704165
https://doi.org/10.1063/1.1704363
https://doi.org/10.1063/1.1704363
https://doi.org/10.1103/PhysRevA.87.043843
https://doi.org/10.1103/PhysRevA.87.043843
https://doi.org/10.1103/PhysRevD.13.1592
https://doi.org/10.1103/PhysRevD.13.1592
https://doi.org/10.1088/1367-2630/14/12/123019
https://doi.org/10.1088/1367-2630/14/12/123019
https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1103/PhysRevLett.120.243605
https://doi.org/10.1103/PhysRevLett.120.243605
https://doi.org/10.1016/j.physleta.2018.05.012
https://doi.org/10.1016/j.physleta.2018.05.012
https://doi.org/10.1016/j.physleta.2017.05.042
https://doi.org/10.1016/j.physleta.2017.05.042
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1103/PhysRevD.26.1900
https://doi.org/10.1103/PhysRevD.26.1900
https://doi.org/10.1088/0305-4470/26/12/035
https://doi.org/10.1023/A:1018807714794
https://doi.org/10.1103/PhysRevD.53.4382

