PHYSICAL REVIEW D 98, 063011 (2018)

A semicoherent glitch-robust continuous-gravitational-wave search method

G. Ashton,"*" R. Prix,' and D.I. Jones®
'Max Planck Institut fiir Gravitationsphysik (Albert Einstein Institut) and Leibniz Universitdt Hannover,
30161 Hannover, Germany
*Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University,
VIC 3800 Melbourne, Australia
*Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

® (Received 14 May 2018; published 20 September 2018)

Isolated nonaxisymmetric rotating neutron stars producing continuous-gravitational-wave signals may
undergo occasional spin-up events known as glitches. If unmodeled by a search, these glitches can result in
continuous wave signals being missed or misidentified as detector artifacts. We outline a semicoherent
glitch-robust search method that allows identification of continuous wave signal candidates that contain
glitches and inferences about the model parameters. We demonstrate how this can be applied to the follow-
up of candidates found by wide-parameter space searches. We find that a Markov chain Monte Carlo
method outperforms a grid-based method in speed and accuracy.
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I. INTRODUCTION

Continuous-gravitational-wave (CW) searches for
rotating neutron stars typically assume an underlying
signal model (a template) for the signal observed in the
detector and then perform a matched-filter analysis (see,
e.g., Abbott et al. [1,2]). These templates assume that the
phase evolution of the source is well modeled by a spin
frequency and several frequency derivatives. On the
contrary, observations of pulsars demonstrate that neutron
stars are subject to low frequency timing noise [3] and can
also undergo sudden spontaneous increases in their
rotation frequency and frequency derivatives known as
“glitches” [4,5]. While the former effect is unlikely to
have a substantial negative impact for searches of data
lasting less than a year [6,7], typical glitches seen in the
pulsar population may adversely affect current and
ongoing CW searches. In Ashton et al. [8], we provided
a statistical analysis of pulsar glitches and demonstrated
that for a fully coherent matched-filter analysis, a glitch
can cause a substantial relative loss of signal-to-noise
ratio (SNR). Moreover, semicoherent searches (in which
the data are segmented, searched coherently, and then
recombined; for a review, see Prix [9]) will suffer smaller
relative losses of SNR by comparison. However, during
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the follow-up process,' a glitching candidate’s SNR will
not increase as expected, potentially resulting in dismissal
of the candidate.

The current generation of CW searches do not model
the effect of glitches. For targeted searches of known
pulsars this is not problematic, as regular monitoring
from electromagnetic telescopes can be used to identify
glitches, analyze the pre- and postglitch periods inde-
pendently, and then incoherently combine the results
(see, e.g., Abbott et al. [10]). In this paper, we are instead
concerned with providing methods for identifying glitches
in candidates found by wide-parameter space searches in
which no prior information about the source’s rotational
properties are known (e.g., directed searches for signals
from supernova remnants or all-sky searches). In particu-
lar, we introduce a glitch-robust detection statistic in
which the template also models the size and epoch of one
or more glitches. This can be used in a wide variety of
searches to ensure they are robust to glitching signals.

Standard wide-parameter space CW searches (by which
we mean those using a non-glitch-robust detection statistic)
are already computationally constrained, so adding addi-
tional parameters will increase the computational load and
also reduce the significance of results due to the increased
number of trials. Also, wide-parameter space searches
typically begin with a semicoherent stage, which, as pre-
viously mentioned, is more robust to glitches (provided the

'A “follow-up” refers to the process whereby a candidate from
a semicoherent search is subjected to a series of searches, each of
which increases the coherence time until the candidate is (or is
not) detected with a fully coherent search.
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coherence time is sufficiently short [8]). As such, we do not
consider it wise to modify the initial semicoherent search
strategies to include glitches. Instead, the semicoherent setup
should be chosen with a sufficiently short coherent time to
make it robust to typical glitches; then during the follow-up
and vetting of candidates, the glitch-robust statistic can be
used in conjuction with the usual follow-up to guard against
dismissal of glitching signals.

We begin in Sec. II by defining a glitch-robust detection
statistic. Then in Sec. IIl we give a discussion and
comparison of how the statistic could be applied in a
grid-based or Markov-chain-Monte-Carlo-based (MCMC-
based) search for CW candidates. In Sec. IV we discuss
how to perform a model selection between glitching and
nonglitching signals. Since most glitching candidates will
initially be identified by a standard-CW search, in Sec. V
we discuss how glitching signals might manifest in such
searches and what simple steps can be taken to identify
them. We conclude with an overall discussion in Sec. VI.

II. SEMICOHERENT GLITCH-ROBUST
DETECTION

In this section, we introduce the glitch-robust detection
statistic, an adaptation of the semicoherent JF-statistic for
glitching signals. We begin by defining the standard-CW
JF -statistic and then describe the glitch-robust modification.

For an isolated CW signal, the gravitational wave signal
template, A(t), has two sets of parameters: the amplitude
parameters A = {hg,cost,y, ¢y}, consisting of the CW
amplitude h,, inclination angle 7, polarization angle v, and
initial phase ¢o, and the phase-evolution parameters

={Q.f.f....}, con51st1ng of the sky location €, gravi-
ta’nonal wave frequency f, and higher-order frequency
derivatives f*) (cf. Prix [9] for a general review). One key
component of defining A(¢) is the source-frame phase
evolution, which for a standard-CW signal can be written as
(e.g., see Jaranowski et al. [11])

o(1) = 2ﬂ§§ £ (’(; tffi))v , (1)

where 7, is a reference time, f*) is the kth frequency
derivative, and s,,,, is the number of spin-downs included
in the template.

In this work, we model the ¢th glitch by 6ff , the
permanent increment in the kth frequency derivative at an
epoch #%. For a source with N ¢ glitches, the glitching source
phase evolution is then

’In this work, we deal exclusively with the gravitational wave
frequency f. In general, the relation between this and the
rotational frequency of the star v depends on the source
mechanism producing gravitational waves; e.g., for a nonaxi-
symmetric rotating star, f = 2v.

Smax t _ tg

(1) —i—ZHZHt—Zg Zéff

where H(¢) is the unit step function. This is analogous to the
method used in pulsar timing [12], except that we do not
model any exponentially decaying components. This omis-
sion is for simplicity. It is left for future work to understand
the expected magnitude of the effect (given typical obser-
vations for the magnitude and time scales of relaxation) and
include it in the glitching phase evolution model.

We refer to {f(¥)} as the set of the frequency and its

. (2)

derivatives up to sy, {{6 f;k)}} as the set of all glitch
magnitudes for all glitches, and {¢}} as the set of all glitch
epochs.

The fully coherent F-statistic, used by many wide-
parameter space searches as a ranking statistic, is the
log-likelihood ratio for signal vs Gaussian noise, margin-
alized over the amplitude parameters [11,13,14]. Using
only data spanning times [¢*, #°] from the full set of data x,

we write the fully coherent statistic as 2F (x;A, %, 1°).
Often, wide-parameter space searches use a semicoherent
approach in which the total data span 7 of x is divided into
N contiguous segments. Defining {#,} as the set of start
times for each segment, the semicoherent J-statistic is

X T
=; (x;k, tf,tf+ﬁ>. (3)

Ideally, a glitch-robust statistic would modify the
standard-CW fully coherent F-statistic with the glitching
source phase evolution, Eq. (2), resulting in a fully coherent
glitch-robust detection statistic.

However, we propose instead the following pragmatic
approach: let us use a semicoherent detection statistic with
the glitch epochs 75 partitioning the segments. Then
defining 2F (x; A, {6ff }.15.15.,) as the fully coherent
detection statistic calculated between the /th and (/ + 1)th

glitches, and assuming the source phase model of Eq. (2),
we can define a glitch-robust semicoherent F-statistic:

N,

sk o () =S 2F

=0

{5ff F1500).
4)

For convenience, we also define tg and ti, 1 to coincide

with the start and end time of the data used.

In this semicoherent detection statistic there are N, + 1
contiguous segments, which is implied by the size of {73},
with the first glitch occurring at 75_,.

This pragmatic method leverages readily available and
tested code. However, this approach is potentially subopti-
mal compared to a fully coherent glitch-robust detection
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statistic. By using the semicoherent statistic over glitches,
we allow for independent amplitude parameters A in each
interglitch segment. For two of the amplitude parameters, the
phase and amplitude, such an effect is plausible. For the
phase, such a jump would predominantly refer to the way
the pre- and postglitch signals are stitched together at the
time at which the glitch is taken to occur (rather than any
physical phase jump, where the actual azimuthal angle
changes). A sudden change in signal amplitude is perfectly
possible at the glitch, but without knowing more about the
true underlying mechanism for glitches we cannot be sure.
On the other hand, a sudden jump in the inclination and
polarization angle seems unlikely since these give the ori-
entation of the spin axis. It is difficult to see how this could
change without an external injection of angular momentum,
which is completely implausible.

In principle one could build a coherent glitch-robust
statistic by allowing only a phase and/or amplitude jump in
each glitch and keeping the inclination and polarization
angles fixed. Here, we opt instead to allow them to vary.
This will result in a small loss of sensitivity, but we gain
such that we can use existing and well-tested codes such as
XLALCOMPUTEFSTAT() [15] to compute the F-statistic.

III. GLITCH-ROBUST SEARCHES AND
PARAMETER ESTIMATION

A search using the glitch-robust statistic [i.e., Eq. (4)]
could be implemented in any number of ways. Indeed, it
could be added to any standard-CW wide-parameter space
search. However, these searches (see, e.g., the recent all-sky
searches in the LIGO O1 data of Abbott ez al. [1,2]) already
demand massive computing efforts, and adding (at least)
two additional search parameters %, §f would decrease the
sensitivity to standard signals. As previously discussed, it is
therefore suggested not to modify these initial searches, but
to run them as standard searches while ensuring a semi-
coherent search, with a sufficiently short coherence time
(cf. Ashton et al. [8]) to ensure robustness to glitches.
Candidates identified by such searches can therefore be
standard signals, glitch signals, or not signals. In this
section, we investigate how a glitch-robust search can be
applied in the follow-up of the candidates to determine if
there is evidence that they are glitching signals.

We assume a candidate has been identified by a standard-
CW search with some uncertainty on its phase-evolution
parameters A. We first discuss the prior ranges for the
phase-evolution and glitch parameters. We then introduce
the necessary tools to quantify the size of a given prior
parameter space before comparing grid- and MCMC-based
glitch-robust search methods.

A. Glitch-parameter priors

For the standard-CW phase-evolution parameters A, the
prior (in the absence of other information) is chosen as

uniform over the parameter space of interest; for a glitch-
robust follow-up these will primarily be determined by the
candidate uncertainty. In addition, the glitch-robust search
requires priors on the glitch epochs #5, the magnitude of the

frequency jumps 6f, and spin-down jumps & f;k), and the
number of glitches N,.

For the number of glitches, a prior could be formed using
the glitch rate observed in the pulsar population. However,
dynamically searching over the number of glitches, which
determines the total number of parameters, can be difficult.
For MCMC-based searches, this would require a reversible-
jump MCMC algorithm [16]. Instead, we suggest searching
over the number of glitches by hand, namely, perform
the search for different numbers of glitches and compare
the results. We will discuss in Sec. IV how to quantify this
comparison.

For the glitch epochs 7%, a uniform prior over the data
duration makes intuitive sense; we also assert that t§ <
5., ¥ ¢.Inthis work we pragmatically bound 75 between
0.1 and 0.9 of the fractional data duration. This avoids
boundary issues where there is insufficient data to calculate
the F-statistic in the first or last segment and also reduces
the parameter space to the region of primary interest, e.g.,
where a glitch will cause the maximum loss of detection
statistic [8].

Choosing a prior for the jump sizes {{§ f(fk)}} is more
difficult. Clearly it should be informed by the glitches seen
in the pulsar population and one option is to use fits to the
observed set of glitches in the pulsar population (e.g., see
Fuentes et al. [5] and Ashton et al. [8]). However, these
may be affected by observational biases since sources
detected by all-sky or directed searches may be quite
different from the known pulsar population. A simple option

is to use a uniform prior on {5f )(/pk)} between a minimum and

maximum value. For o f;o), one approach is to set the
minimum at zero (excluding antiglitches where 8 < 0;
cf. Archibald et al. [17]) and the maximum at twice the
maximum observed glitches in the pulsar population
(~5x 1073 Hz; see, e.g., Livingstone et al. [18], the
largest glitch in the Jodrell Bank glitch catalog Espinoza
et al. [4] http://www.jb.man.ac.uk/pulsar/glitches.html).
Similar approaches can be devised for higher-order spin-
down components.

B. The metric and the size of parameter space

In setting up any search, it is useful to have a metric to
understand distances in the parameter space. Given a
detection statistic d(0) measured at some set of parameters
0, we first define a mismatch

d(6°) — d(6* + A9)
4(6°)

u(6°, A0%)

0.1, (5
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the fractional loss of detection statistic between the exact
signal parameters 6°, and some other point in the parameter
space 6° + Af.

For small mismatches, one may expand and approximate
the full mismatch by the metric mismatch

1(65, AGy) = g;;AO'ADY € [0, 0), (6)

where g;; is referred to as the “metric” and AO' are the
components of Af.

As discussed in the next section, the metric is useful in
bounding the maximum loss of detection statistic when
setting up grid-based searches. However, one should note
that the metric mismatch is only a good approximation up
to u 2 0.3-0.5 [19-21]. Another useful application of the
metric is in calculating N'*, the approximate number of
unit-mismatch templates covering the given parameter
space [22], which can be understood as a proxy for the
size of that parameter space.

Calculation of N* requires the ability to calculate the
metric. The metric for the glitch-robust detection statistic
defined in Eq. (4) has not yet been calculated (future
searches may require this metric in, e.g., a grid-based
glitch-robust directed search). Nevertheless, it is still useful
to calculate N* using the fully coherent standard detection
statistic over the standard signal parameters, i.e., { f*)} and
Q. This can be used as a lower bound on the full N'* for the
full parameter space, including the glitch parameters.

C. Grid-based glitch-robust search

Grid-based (or template-bank) searches compute the
detection statistic over a number of prespecified points in
parameter space with the grid of points covering the prior
range. The grid spacing is selected to minimize both the
maximum loss of detection statistic, bounded at some level,
and the computing cost (i.e., to avoid oversampling the
space). This spacing is determined using the metric; for the
fully coherent and semicoherent JF-statistic, see Wette and
Prix [20] and Wette [21], respectively. However, as pre-
viously discussed, we do not have the metric for the glitch-
robust detection statistic. So, while we can apply the usual
relations to any standard phase-evolution parameters used
in the search and they should approximately hold, there is no
simple way to determine the spacings in {¢5} and {{5f®*)}}
that guarantee a bound on the maximum mismatch.

In the absence of the relevant parameter space metric, we
will employ a naive method here, simply dividing the full
range of each search parameter into M steps. As such, the
total number of grid points is M to the power of the number
of search dimensions. This choice is not optimal (as would
be the case if one were to derive and use the relevant
metric), but captures many of the salient features of a grid-
based search.

As an example of the grid-based method, we simulate a
glitching signal in Gaussian noise with the properties given

TABLE I.  Simulated signal and noise properties used in Figs. 1
and 2. S, is the noise floor of the detector at the simulated signal
frequency while RA and DEC give the right ascension and
declination of the simulated signal. In the table and figures we use

the shorthand f = f(.

T=50d VS, =1x10"22/Hz
hog=5x10"% cost = 0.5

f, =30 Hz fy=—1x10"10 Hz/s
5fy =5x107° Hz £ =25d

RA = 83.6292 deg DEC = 22.0144 deg

TABLE II.  Priors used for the search parameters. The subscript
s indicates the simulation values given in Table I and ¢ is defined
from the start of the observation span. For the uncertainty in f and
f , the number of fully coherent unit-mismatch templates is
N* =1000.

Uniform prior range

f~f £40x107° Hz
f~f, +1.8x107'2 Hz/s
8f ~[0,5x 1075 Hz
& ~ [5,45] days

in Table 1. Note that the glitch occurs in frequency alone,
ie., 8f) =0 for k > 0. We then perform a grid-based

search over {f, f ,18,8f} with M = 20; in this search the
sky location, €, is fixed to that of the simulated value.
The prior ranges are given in Table II. In Fig. 1, we plot the
semicoherent glitch-robust F-statistic in a grid-corner plot.
This plot, as with the corner plots used in MCMC
parameter estimation, displays the marginalized detection
statistic for all one- and two-dimensional combinations.

The grid spacing in this instance is sufficiently fine to
provide reasonably good parameter estimation. For detec-
tion purposes it may even suffice to have sparser template
coverage in the glitch time (where the signal appears quite
wide compared to the prior range). At a fixed computing
cost, this would allow for denser coverage in other
parameters where the signal is narrower compared to the
prior range.

D. MCMC-based glitch-robust search

MCMC-based standard-CW searches have already been
used with success [23-26]. Recently we demonstrated [22]
that this success relies on the size of the parameter space
being sufficiently small, as quantified by A'*. Namely, it was
found that typically A* < 1000 is a good guideline, but this
can depend on the exact MCMC setup. For too-large
parameter spaces, the MCMC algorithm tends to fail to
converge to the signal peak in a reasonable amount of time.

For the follow-up of candidates from wide-parameter
space searches, the size of the phase-evolution parameter
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FIG. 1. Grid-corner plot showing various marginalizations of

the glitch-robust semicoherent F -statistic computed using a grid-
based search over the prior ranges in Table II. Solid lines indicate
the simulated signal parameters.

space (i.e., the candidate uncertainty) is well constrained
(or this can be ensured by performing a refinement step).
It is not possible to calculate A/* for a glitch-robust
detection statistic without the metric. However, in practice,
we find that for a typical glitch size and rates seen in the
pulsar population [5,22] and typical observing spans, a
MCMC-based glitch-robust search is effective at converg-
ing on simulated signals. For longer observing spans (or if
allowing for larger glitches than those observed in the
pulsar population), further work will need to be carried out
to ensure the method is robust.

The advantage of a MCMC-based approach, instead of a
grid-based one, is that there is no requirement to predeter-
mine the grid points. In effect, the ensemble MCMC
sampler adapts to the topology of the maxima during the
burn-in phase (for a more detailed overview of MCMC-
based CW search methods, see Ashton and Prix [22]).

To illustrate the results of a MCMC search, we run it on
the same data set used to produce Fig. 1 (simulation
properties are given in Table I) with the same uniform
priors, as given in Table II. In Fig. 2 we plot the resulting
corner plot.

MCMC searches produce samples from the posterior,
which, if the signal is successfully identified, usually
occupies only a small fraction of the prior range. As a
result, a MCMC search does not produce a posterior over
the whole prior range, but only over the region of interest.
As a consequence of this the range shown in Fig. 1 is much
larger than that of Fig. 2: the latter shows the range of the
posterior peak only, while the former shows the entire prior

F- 5
/5
0.0
S

of —dfs
[uHz/s]

85— 18
[d]

0.0 0.8 —0.25 0.00 0.25 0.50-0.15 0.00
?

—0.8

—0.250.00 0.25 0.50 —0.8 0.0 0.8
51 8, 5~ 18
(b g

—0.15 0.00 0,1.5 7041['; 0.00
f=1 f=1
[1H7] [pHz/s|

FIG. 2. Corner plot showing various marginalizations of the
exponential of the glitch-robust semicoherent F-statistic com-
puted using a MCMC-based search. Solid lines indicate the
simulated signal parameters while dashed lines (on the one-
dimensional histograms) indicate 1-o quantiles. The figure was
generated using the CORNER [27] package.

range. Moreover, we note that in Fig. 1 for the grid-based
search we plot the F-statistic, corresponding to the
(marginalized) log-likelihood ratio. On the other hand, in
Fig. 2 for the MCMC-based search, we plot the estimated
posterior. In this instance, where we use uniform priors, the
posterior is proportional to the likelihood and therefore
corresponds to the exponential of the F-statistic. This is
why the peak looks much narrower compared to Fig. 1
while showing in principle the same likelihood function.

E. Comparing grid- and MCMC-based searches

In order to provide a simple comparison between grid-
and MCMC-based searches, we run a Monte Carlo study.
We produce 500 data sets containing a simulated signal with
a single glitch in Gaussian noise. Such a signal, perfectly
matched, has a predicted 2F of approximately 330. The
noise, amplitude, and standard phase evolution parameters
are given in Table I, except that we jitter the frequency and
spin-down, picking their value uniformly from within the
inner half of the prior region given in Table II. We also select
the glitch epoch from the distribution given in this table.
Meanwhile, for the glitch magnitude, we sample from the
observed pulsar population distribution [8]; while the aim of
the section is to compare search methods, this choice of
simulation distribution allows us to also verify that the naive
priors are robust to a more astrophysically motivated
population distribution.
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FIG. 3. Comparison of the relative maximum 2F found by each

method compared to Z/j:inject, the value calculated at the simulated

signal parameters A,;. All timings were performed on an Intel
Core i7-7820HQ CPU @ 2.90 GHz processor.

Varying the required computation time (for the grid-
based search, by varying the number of grid points, and for
the MCMC-based search, by varying the number of steps
taken), in Fig. 3 we plot the relative difference between the
recovered maximum 2F (for each method) and 2F e =

2F (M), the statistic measured at the simulated signal
parameters A,. Due to the presence of noise, the actual

maximum 27 will typically not occur at the signal
parameters A, but be slightly offset and we therefore

generally expect the maximum recovered 2F > ﬁinject,
provided the search method manages to localize the

maximum 27 well enough.

From this figure, it is evident that at the same run-time,
the MCMC-based search outperforms the grid-based
search, with the majority of points finding a larger detection
statistic than 23:inject. This is to be expected since the
MCMC search is operating optimally (i.e., the size of
parameter space is sufficiently small). As such, the MCMC
quickly converges to the maximum, while a grid-based
search spends most of the computing time calculating the
detection statistic for points not near to the signal peak. For
added context, Figs. 1 and 2 both have an approximate run-
time of 90s; for the grid-based search, the peak is only
sampled a handful of times, yet almost all of the MCMC
samples (by design) come from the peak.

IV. GLITCHING VS STANDARD-CW
BAYES FACTOR

We now discuss how to quantify whether a signal is
glitching and how many glitches best explain the data. We
do this using a Bayes factor, the ratio of likelihoods for data
x under two hypotheses. If Hy implies that the data contain
only Gaussian noise, while Hg implies that they contain a
CW signal in addition to noise, then

P(x[Hs)

Pl|Hy)” @)

Bgn(x) =
It can be shown [13,14,22] that the signal vs noise Bayes
factor at fixed phase-evolution parameters A is

70 Nﬁ'(x'?»N)
Bsn(x; A N) = (5— | "™, (8)

max

where F (x; A, N) is the N-segment semicoherent  -statistic
defined in Eq. (3) and p,,,, is an arbitrary upper cutoff on the
prior range in signal strength [14].

Similarly, defining Hyg as the glitching-signal hypoth-
esis, we see that the targeted (in the sense that it depends
on the model parameter) glitching-signal vs noise Bayes
factor is

Bysn(x: &, ({61011 {EE).N,)
_ < 70 )Ng+1ej—‘(x;)»,{{&f;")}}.{li}), (9)

por
pmax

where the exponent is the glitch-robust semicoherent
JF-statistic, defined in Eq. (4).

After marginalizing the targeted Bayes factor we get the
signal vs noise Bayes factor; i.e., for the standard search,

BS/N(x;N) :/BS/N(x;)WN)P(MHS)d)W (10)

while for the semicoherent glitch-robust search,

By (x: Ny) = / By (x:h ({5fP)). {1,

k
x PO {{8f ) (15} IMs)
k
x dnd{{of}}a{is}. (11)
The arbitrary prior cutoff p,,, makes it difficult to
interpret either of these Bayes factors by themselves:

one can tune the Bayes factor by arbitrary changes in
the prior. However, if we define

BgS/N(xs Ng)
Bs/N(x,N = Ng + 1) ’

BgS/S(vag) (12)

the glitching-CW vs standard-CW Bayes factor, then the
arbitrary prior cutoff cancels and we are left with an
interpretable Bayes factor for whether the signal is glitch-
ing or not.

Calculation of the Bayes factor can be done by either a
grid-based (using numerical integration of a dense sam-
pling of the posterior) or MCMC-based method (using
thermodynamic integration [28]). In the future, we intend to
extend the functionality to include nested sampling [29],
which will improve the robustness of the evidence calcu-
lation (see, e.g., Ref. [30] for a comparison).
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FIG. 4. Monte Carlo study of the Bgs(x,N, = 1) Bayes
factor as a function of the simulated glitch magnitude. A dashed
vertical line indicates the value of Eq. (13) for the 50-day duration
used in this study.

To understand the behavior of B,g/s(x, N, ) as a function
of the glitch magnitude, we run a Monte Carlo study,
simulating 100 data sets (for each 6f) with a glitching
signal in Gaussian noise. We use the parameters given in
Table I, except of, which we vary systematically over a
relevant domain. For each data set, we run a glitch-robust
semicoherent MCMC search with N, = 1, along with a
semicoherent MCMC search with N = 2, and calculate the
resulting Bayes factor. The MCMC parameters are chosen
such that the log Bayes factors are estimated to within a few
percent. In Fig. 4 we plot the mean and standard deviation
calculated over all data sets. We see that for small glitches,
the Bayes factor prefers the standard signal hypothesis.
But, once glitches are sufficiently large, the glitching-signal
hypothesis is preferred.

To determine the preferred number of glitches,
B,s/s(x. N,) can be calculated for different N, and inter-
preted as a posterior over N,. Large numbers of glitches,
210, say, may be difficult to handle and require some
tuning of the MCMC sampler.

Figure 4 illustrates that the glitch-robust search (as a
function of the glitch size) plateaus above a certain
minimum glitch size. An approximate way to characterize
this size is to use the averaged (over glitch time) single-
glitch metric mismatch expressions derived by Ashton et al.
[8]. Note that this is the metric for a standard CW search of
a glitching signal and not the metric for the glitch-robust
statistic introduced in Sec. II. For example, for a fully
coherent search at a fixed sky location over frequency and
spin-down, the minimum average metric mismatch is given
by i = (zT§f)?/630. Setting the metric mismatch to unity
and inverting gives

oy =0 (1)

a rough order-of-magnitude estimate of the glitch size for
which a standard-CW search would be sufficiently affected
by the glitch that the glitch hypothesis will be preferred.
Similar results can be derived for jumps in higher-order
frequency spin-downs using the corresponding components
of the glitch metric.

In Fig. 4, we plot the value of Eq. (13), given the 50-day
duration of data used. Notably, this agrees with the point
at which the Bayes factor begins to plateau.

The Bayes factor discussed in this section can be used
to answer the question, Is this more like a glitching or
nonglitching CW signal?, for Gaussian background noise.
However, for the advanced era detectors, the data are
known to be contaminated by transient artifacts. To reliably
estimate the false alarm rate under these conditions, a
Monte Carlo study should be performed in which standard
CW signals are simulated and added to the background
noise. A false alarm rate of falsely identifying a standard
CW signal as a glitching signal can then be calculated.

V. IDENTIFYING GLITCHING SIGNAL
IN STANDARD SEARCHES

In order to identify when a signal candidate from a
standard-CW semicoherent search might best be followed
up using a glitch-robust method, we now discuss the
behavior of glitching signals in a standard-CW search.

A. Multiple modes

One indicator of a glitching signal in a standard-CW
search is the existence of multiple peaks in the detection
statistic resulting from the template matching different parts
of the signals. How exactly this behavior manifests depends
on the magnitude and size of the glitches, the data span, and
the search setup.

Considering a signal which undergoes a single glitch with
ajump {5f%)}, we can identify two limiting cases depending
on whether the glitch size is smaller or larger than a critical

glitch size 57X if 50 <« 5f%Y, the effect of the glitch is

negligible within the search setup; if instead, 51X > &f £k>,
the signal can be thought of as two transient CWs, and we will
find two distinct peaks in the detection statistic correspond-
ing to the pre- and postglitch signal parameters. Between

these two extremes, when 6f%) ~ §f £k>, the resulting struc-
ture in the detection statistic can be quite complicated. If
required, the critical glitch size can be estimated from the
single-glitch metric mismatches derived in Ashton et al. [8].

In order to illustrate this intermediate case, in Fig. 5 we
show a standard-CW fully coherent grid search over
frequency and spin-down for a simulated glitching signal.
The simulation properties are given in Table I, except that
we set 5f = 2.4 x 107 Hz and 6f = —6.9 x 10~1* Hz/s.
As the reference time and glitch time coincide, for the fully
coherent search, the preglitch frequency and derivative are
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FIG. 5. The fully coherent 2F computed over a grid in f and f
for the simulated glitching signal.
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FIG. 6. Illustration of the frequency sliding window, a useful
diagnostic tool for identifying glitching signals. In this example, a
10-day window is slid in increments of 1 day.

fs» fs» while the postglitch frequency and derivative are
fs+6f, fs +0 f . Two distinct signal patterns can be
observed centered on the locations of the pre- and post-
glitch signals, but the maximum does not coincide with
either.

Having multiple peaks in the frequency and its deriva-
tives might be expected, but we typically also find multiple
peaks in the sky position, even though the sky position of
the source does not vary over a glitch. This is because by
allowing the sky position to vary, the standard template fit
to the glitching signal can be improved; this can happen in
multiple ways, resulting in multiple peaks, and will in
general result in biases in the recovered sky position.

B. Sliding windows

A sliding window can be another simple, but powerful
diagnostic test for a glitching signal. Fixing all other values
to those of the maximum posterior estimate (or a set of
parameters sufficiently close to the peak), the detection
statistic is computed for a range of frequencies in an
overlapping sliding time window over the total data span.
One could also do this for the frequency derivative (or any
other parameter). Stacking the results together into a color
plot, if the signal is sufficiently strong, the glitch can easily
be discerned from the change in frequency. We provide
an example in Fig. 6 using the same data set used to
produce Fig. 5.

VI. DISCUSSION

We have described a semicoherent glitch-robust detec-
tion statistic for use in evaluating if candidates found in
wide-parameter space searches are glitching signals. This
simple method adapts standard search routines, using a
signal model that includes glitches as a set of instantaneous
changes in the frequency and higher-order spin-downs at a
set of glitch epochs.

Comparing grid- and MCMC-based search methods, we
find that the MCMC-based search is a superior method for
performing glitch-robust searches of candidates from wide-
parameter space searches. For the same computing cost it is
able to better identify the maximum and perform parameter
estimation vital to interpretation. MCMC-based glitch-
robust searches are, for a suitable candidate uncertainty
level, computationally cheap to run and provide parameter
estimation and evidence estimates. Moreover, a MCMC-
based method does not require a prespecified grid template.
We therefore recommend that such glitch-robust MCMC-
based methods be used in the follow-up of candidates
identified in wide-parameter searches.

The methods introduced in this paper have been imple-
mented in the package PYFSTAT [31]. Source code along
with all examples in this work can be found at https://gitlab
.aei.uni-hannover.de/GregAshton/PyFstat.
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