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Gravitons possess a Berry curvature due to their helicity. We derive the semiclassical equations of
motion for gravitons taking into account the Berry curvature. We show that this quantum correction leads to
the splitting of the trajectories of right- and left-handed gravitational waves in curved space, and that this
correction can be understood as a topological phenomenon. This is the spin Hall effect (SHE) of
gravitational waves. We find that the SHE of gravitational waves is twice as large as that of light. Possible
future observations of the SHE of gravitational waves can potentially test the quantum nature of gravitons
beyond the classical general relativity.
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I. INTRODUCTION

One of the important predictions in Einstein’s theory of
general relativity is the gravitational lensing, the deflection of
light rays in a gravitational field around a massive object.
However, the classical gravitational lensing of light in curved
space receives a modification, expressible in terms of Berry
curvature, due to the helicity of photons [1].1 In particular,
such a quantum correction leads to the splitting of the
trajectories of right- and left-handed circularly polarized
light. In the context of optics, a closely related effect of light is
known in an optically inhomogeneous medium and is called
the optical Magnus effect or spin Hall effect of light [7–10].
In this paper, we show that gravitational waves exhibit

the quantum spin Hall effect similarly to light, and that the
effect is twice as large as that of light. Our result shows that,
although the trajectories of both light and gravitational
wave in the curved space are null geodesic and are
degenerate classically in the geometric-optics limit, this
degeneracy is resolved quantum mechanically by their
helical nature.
For this purpose, we first show that gravitons possess a

Berry curvature due to their helicity, and derive the semi-
classical equations of motion for gravitons taking into
account the Berry curvature.We then show that the quantum
correction to the gravitational lensing of gravitational waves

in curved space is expressed by the Berry curvature, and
hence, it can be understood as a topological phenomenon.
Our work demonstrates the importance of the notions of
Berry curvature and topology even in the gravitational
physics, which have been mostly investigated in the context
of condensed matter physics [11] and have just recently
been applied in high-energy physics [12–14] and astro-
physics [15].

II. SPIN HALL EFFECT OF LIGHT IN GRAVITY

We first illustrate the spin Hall effect (SHE) of light in a
gravitational field.2 To keep the relativistic and quantum
mechanical nature apparent, we will explicitly write ℏ and c
in this section.
Let us first recall the classical gravitational lensing of

light in a gravitational potential ϕðxÞ. Consider the case in a
weak gravitational field, where the metric is given by

ds2 ¼
�
1þ 2ϕ

c2

�
c2dt2 −

�
1 −

2ϕ

c2

�
ðdxÞ2: ð1Þ

Here, we assume ϕ is static and satisfies jϕj=c2 ≪ 1.
Because the light propagates along a null geodesic,
ds2 ¼ 0, the coordinate velocity of light is given by

c0 ≡ jdxj
dt

¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϕ

c2

1 − 2ϕ
c2

vuut ≈ c

�
1þ 2ϕ

c2

�
: ð2Þ

It has been known that the null geodesic equation in the
static and weak gravitational potential is equivalent to the
geometric-optical equation of light rays in a medium with
refractive index nðxÞ that varies depending on ϕðxÞ [16].
Equation (2) shows that the refractive index is given by

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The deflection of massless spinning particles in a gravita-
tional field was previously studied in Refs. [2–4] and that of
circularly polarized light around rotating massive objects in
Refs. [5,6] in different contexts. Except for Ref. [1], however,
the spin Hall effect of light in curved space in terms of Berry
curvature has not been discussed.

2A similar result was obtained in Ref. [1] in a different way.
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n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ϕ

c2

1þ 2ϕ
c2

vuut ≈ 1 −
2ϕ

c2
: ð3Þ

For ϕ < 0, c0 < c and n > 1. This feature, despite being
applicable to generic solutions of Maxwell’s equations in
curved space (see, e.g., Ref. [17] and references therein),
allows us, in particular, to describe the effects of weak
gravity using purely the language of the geometric optics. In
the following, we will consider the action of photons in the
geometric-optics limitwhere thewavelength of light ismuch
smaller than the radius of curvature of the background
gravity.
We now note that the equations of motion for light in

curved space are also affected by the helicity. In the
semiclassical regime, the helical nature of photons can
be expressed by the Berry connection or Berry curvature
[7–9,18]. The action for right- and left-handed circularly
polarized light in the weak gravity is given by

Iγ ¼
Z

dtðp · _x − aγp · _p − ϵpÞ: ð4Þ

Here, aγp is the Berry connection of photons, which is
related to the Berry curvature Ωγ

p via

Ωγ
p ≡ ∇p × aγp ¼ λ

p̂
p2

; ð5Þ

where p̂≡ p=jpj, p≡ jpj, and λ is the helicity of photons
(λ ¼ �ℏ for right- and left-handed photons, respectively).
As we explained above, the effect of the static gravitational
potential is accounted for by the refractive index (3), which
modifies the energy dispersion of photons as

ϵp ¼ pc0 ¼ pc
n
; ð6Þ

where c0 and n are given by Eqs. (2) and (3).
The semiclassical equations of motion for the wave

packet of light are obtained from the action (4) as3

_x ¼ c
n
p̂þ _p ×Ωγ

p; ð7Þ

_p ¼ −
2p
c
∇ϕ: ð8Þ

In the context of the geometric optics, the second term in
Eq. (7) is called the optical Magnus effect [7,8]. On the
other hand, Eq. (8) represents the (classical) gravitational
lensing effect in the gravitational potential ϕ. Inserting
Eq. (8) into Eq. (7), we have

_x ¼ c
n
p̂ −

2λ

c
∇ϕ ×

p̂
p
: ð9Þ

The second term represents the quantum spin Hall effect of
light induced by the background curved geometry. The
trajectory of light is shifted in the direction perpendicular to
both ∇ϕ and the classical trajectory p̂, and in particular, the
trajectories of right- and left-handed circularly polarized
light are separated. This effect originates from the interplay
between general relativity and the helical nature of right- or
left-handed photons.
As an example, consider the Newtonian potential at a

distance r from a point mass M:

ϕðrÞ ¼ −
GM
r

; ð10Þ

whereG is the universal gravitational constant. In this case,
Eq. (9) reduces to

_x ¼ c
n
p̂ −

2λGM
c

r̂
r2

×
p̂
p
: ð11Þ

Equation (11) shows that the SHE becomes larger as M
increases and as p decreases (for fixed r). Thus, the SHE
becomes particularly relevant for electromagnetic waves
with long wavelength aroundmassive astrophysical objects.
It is straightforward to get the generic kinetic theory

for photons in the weak gravitational field. By inserting
Eqs. (8) and (9) into the kinetic equation,

∂fλ
∂t þ _x ·

∂fλ
∂x þ _p ·

∂fλ
∂p ¼ C½fλ�; ð12Þ

where fλ ¼ fλðt; x; pÞ is the distribution function of pho-
tons with helicity λ and C½fλ� is the collision term, we get

∂fλ
∂t þ

�
c
n
p̂−

2λ

c
∇ϕ×

p̂
p

�
·
∂fλ
∂x −

2p
c
∇ϕ ·

∂fλ
∂p ¼C½fλ�: ð13Þ

This equation describes the time evolution of right- and
left-handed photons for any given (weak and static)
gravitational field ϕ.

III. SPIN HALL EFFECT OF
GRAVITATIONAL WAVES

In this section, we consider the SHE of gravitational
waves in the semiclassical regime. At the classical level, the
gravitational wave travels along a null geodesic, and hence,
the propagation of the gravitational wave in curved space is
described by the same geometric-optical equation as the
case of light [21]. We will show that gravitons possess a
Berry curvature in the semiclassical regime, leading to the
SHE of gravitons in curved space, similarly to that of
photons above.

3For a system in a rotation ω, we have the additional Coriolis
force 2jpj_x × ω in Eq. (8) in a rotation frame, which, combined
with the Berry curvature correction in Eq. (7), leads to the
“photonic chiral vortical effect” [18] (see also Refs. [19,20] for
other derivations).
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A. Generalized Weyl equation with any helicity

Let us briefly review the generalized Weyl equation for
massless fields with any spin [22,23], and then we apply it
to spin-2 gravitons. In the following, we use the natural
units ℏ ¼ c ¼ 1 for simplicity, unless stated otherwise.
We first recall the representation of the Poincaré

algebra for massless fields. The Poincaré symmetry con-
sists of the space-time translations generated by the energy-
momentum vector pμ and the Lorentz transformations
generated by Mμν. In 3þ 1 space-time dimensions, there
are two Casimir operators that commute with pμ and Mμν:
p2 ¼ pμpμ and W2 ¼ WμWμ, where Wμ is the Pauli-
Lubanski vector defined by

Wμ ¼ −
1

2
ϵμναβpνMαβ: ð14Þ

Because the contribution of the orbital angular momentum
vanishes due to the antisymmetry with pν, Eq. (14) can also
be rewritten as

Wμ ¼−
1

2
ϵμναβpνSαβ ¼−pνS̃

μν; S̃μν≡1

2
ϵμναβSαβ; ð15Þ

where Sμν is the spin tensor, whose components are Sij ¼
ϵijkSk and S0i ¼ iSi with Si being the spin vector.
Let us now introduce the (2jλj þ 1)-component massless

field ψ with helicity λ, which satisfies the equation

Wμψ ¼ λpμψ ; ð16Þ

according to Wigner’s result [24]. Using Eq. (15), this
equation can be written as

ðS̃μνpν þ λpμÞψ ¼ 0: ð17Þ

The temporal (μ ¼ 0) and spatial (μ ¼ i) components of
this equation are given by

ðS · p − λp0Þψ ¼ 0; ð18Þ

ðSp0 þ iS × p − λpÞψ ¼ 0; ð19Þ

respectively. Equation (18) is the generalized Weyl equa-
tion for massless field with helicity λ, and Eq. (19) is the
subsidiary condition [22,23]. The generalized Weyl
Hamiltonian corresponding to the wave equation (18) is

H ¼ 1

λ
S · p: ð20Þ

Note that three components of Eq. (19) are not inde-
pendent. To see this, we first eliminate p0 in Eq. (19) using
Eq. (18) to get

�
1

λ
SðS · pÞ þ iS × p − λp

�
ψ ¼ 0: ð21Þ

It is then easy to check that the inner product of the left-
hand side of Eq. (21) with S vanishes, meaning that only
one of three components in Eq. (21) is independent.
Without loss of generality, we take the z-component of
Eq. (21),

�
1

λ
SzðS · pÞ þ iðSxpy − SypxÞ − λpz

�
ψ ¼ 0; ð22Þ

as the subsidiary condition to Eq. (18).
In particular, for gravitons with λ ¼ 2, a matrix repre-

sentation of S is

Sx ¼

0
BBBBBBBBB@

0 1 0 0 0

1 0
ffiffi
3
2

q
0 0

0
ffiffi
3
2

q
0

ffiffi
3
2

q
0

0 0
ffiffi
3
2

q
0 1

0 0 0 1 0

1
CCCCCCCCCA
; Sy ¼ i

0
BBBBBBBBB@

0 −1 0 0 0

1 0 −
ffiffi
3
2

q
0 0

0
ffiffi
3
2

q
0 −

ffiffi
3
2

q
0

0 0
ffiffi
3
2

q
0 −1

0 0 0 1 0

1
CCCCCCCCCA
; ð23Þ

and Sz ¼ diagð2; 1; 0;−1;−2Þ.

B. Path integral formulation of gravitons in flat space

Once the wave equation (18) for gravitons is obtained,
the semiclassical equations of motion for gravitons taking
into account the Berry curvature can be derived in a way
analogous to Ref. [13] for chiral fermions. The important
difference in our case is, however, the additional constraint

(22), which selects out the physical degrees of freedom of
gravitons with helicity �2, similarly to the situation of
photons with helicity �1 [18].
Let us consider the path integral quantization for the

Hamiltonian (20) for λ ¼ 2:

Z ¼
Z

DxDpPeiI; I ¼
Z

dtðp · _x −HÞ; ð24Þ
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where P denotes the path-ordered product of the matrices
expð−iHΔtÞ over the path in the phase space. The
eigenvalues of H are given by �jpj, � 1

2
jpj, and 0, and

H can be diagonalized using a unitary matrix Vp as

V†
pHVp ¼ jpjΓ; Γ≡ 1

2
Sz: ð25Þ

The eigenstates of the eigenvalues −jpj and − 1
2
jpj have the

negative energies and are not physical. Also, one can check
that the eigenstates of the eigenvalues 0 and 1

2
jpj are

forbidden by the subsidiary condition (22). Therefore,
we have only one physical eigenstate with the eigenvalue
jpj, which corresponds to helicity λ ¼ 2.
Following the procedure in Refs. [13,18], we diagonalize

the matrix in the exponential factor of the path integral (24)
at each point of the trajectory as

� � � exp
�
−
i
2
S · p2Δt

�
exp

�
−
i
2
S · p1Δt

�
� � �

¼ � � �Vp2 expð−ijp2jΓΔtÞV†
p2Vp1 expð−ijp1jΓΔtÞV†

p1 � � �
¼ � � �Vp2 expð−ijp2jΓΔtÞ expð−iâGp · _pΔtÞ
× expð−ijp1jΓΔtÞV†

p1 � � � ; ð26Þ
where âGp ≡ iV†

p∇pVp. In deriving the last equation above,
we used

V†
p2Vp1 ≈ expð−iâGp · ΔpÞ ¼ expð−iâGp · _pΔtÞ ð27Þ

for sufficiently small Δp≡ p2 − p1.
Taking the semiclassical limit where off-diagonal com-

ponents of âGp are ignored,4 we obtain the semiclassical
action for gravitons in the flat space:

IG ¼
Z

dtðp · _x − aGp · _p − ϵpÞ; ð28Þ

where ϵp ¼ jpj is the energy dispersion and aGp ≡ ½âp�11 is
the Berry connection in momentum space that originates
from the helicity of gravitons. From the definition of aGp
above, one finds the Berry curvature of gravitons as

ΩG
p ≡ ∇p × aGp ¼ λ

p̂
jpj2 ; ð29Þ

where λ is the helicity of gravitons. This corresponds to the
fictitious magnetic field of the magnetic monopole with
charge,

k ¼ 1

4π

Z
ΩG

p · dS ¼ λ: ð30Þ

Note that Eq. (30) is a general relation connecting the
helicity λ to the topological charge k, which is applicable

not only to gravitons, but also to photons and chiral
fermions: k ¼ �2 for gravitons with λ ¼ �2 (as shown
here), k ¼ �1 for photons with λ ¼ �1 [18], and k ¼ � 1

2

for chiral fermions with λ ¼ � 1
2
[12–14]. This extended

universal relation is one of our main results.

C. Semiclassical equations of motion for
gravitons in curved space

In the weak and static gravitational potential ϕðxÞ, the
energy dispersion of gravitons is modified as Eq. (6) in the
same way as photons, where n is the “refractive index” of
space in Eq. (3). In this case, the action of the graviton is
given by Eq. (28) with ϵp being replaced by Eq. (6). Then,
the semiclassical equations of motion for gravitons become

_x ¼ c
n
p̂þ _p ×ΩG

p ; ð31Þ

_p ¼ −
2p
c
∇ϕ: ð32Þ

The second term on the right-hand side of Eq. (31) is the
“Lorentz force” in momentum space, which may be
regarded as the gravitational Magnus effect.
From the two equations above, we obtain Eq. (9) with

helicity λ ¼ �2. The second term of this equation is the
SHE of the gravitational wave, which is twice as large as
that of light because of the difference of helicity. This
means that, although the trajectory of the gravitational
wave in curved space is classically the same as that of light
in the geometric-optics limit, this degeneracy of trajectories
is lifted by the quantum effects. Although this quantum
correction looks qualitatively similar to the spin-curvature
coupling appearing in the Mathisson-Papapetrou-Dixon
equations [25–27] (see also Refs. [2–4]), our result clarifies
its topological nature for the first time, to the best of our
knowledge. In particular, it reveals the universality of
topological phenomena between gravitons, photons, and
chiral fermions [12–14] through the relation (30), in
background gravitational or electromagnetic fields.
Similarly to the case of photons, the kinetic equation for

gravitons in the weak gravity is given by Eq. (13) with
fλ ¼ fλðt; x; pÞ being replaced by the distribution function
of gravitons.

IV. DISCUSSIONS

In this paper, we derived the quantum correction to the
gravitational lensing of gravitational waves in curved
space. In particular, this correction causes the splitting of
the trajectories of right- and left-handed circularly polarized
gravitational waves.
To quantify the SHE in gravity, consider an electro-

magnetic wave or a gravitational wave passing at a distance
r (≫ Rs) from a Schwarzschild black hole with mass M as
an example, where Rs¼ 2GM=c2 is the Schwarzschild

4This approximation is justified when j_pj ≪ jpj2 [13,18]. This
condition is indeed satisfied for the semiclassical regime of
gravitons in the weak background gravitational field ϕ.
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radius.5 From Eq. (11), the relative magnitude of the local
shift due to the SHE, compared with the classical trajectory,
is written as

A ¼ njλj
2πℏ

�
Rs

r

�
2
�
l
Rs

�
; ð33Þ

where l is the wavelength. This relation shows that the
SHE becomes more relevant as l becomes larger, as long as
the semiclassical approximation is valid. For example, for a
black hole with solar massM ¼ M⊙, the relative magnitude
is A ∼ 10−3 for r ∼ 5Rs and l ∼ 300 m.

It does not seem feasible to observe the SHE both for
electromagnetic and gravitational waves by the current
detectors. However, possible future observations of the
SHE of gravitational waves, in particular, could test the
quantum nature of gravitons beyond the classical general
relativity.
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