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Numerical data of the SU(3) gauge theory with Nf ¼ 8 fermions in the fundamental representation
suggest the existence of a large-mass regime, where the fermion mass is not small relative to the
confinement scale, but nevertheless the dilaton-pion low-energy theory is applicable thanks to the
parametric proximity of the conformal window. In this regime, the leading hyperscaling relations are
similar to those of a mass-deformed conformal theory, so that distinguishing infrared conformality from
confinement requires the study of subleading effects. Assuming that the Nf ¼ 8 theory confines, we
estimate how light the fermion mass should be to enter the small-mass regime, where the pions become
much lighter than the dilatonic scalar meson.
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I. INTRODUCTION

Asymptotically free gauge theories coupled to a large
number of fermions can have a very small beta function,
slowing down the running of the coupling over a wide
energy range, turning it into a “walking” coupling. In the
chiral limit, these theories exist in one of two phases.1 One
option is that the walking coupling eventually becomes
large enough to trigger confinement and chiral symmetry
breaking. The alternative is that the running of the coupling
comes to a halt, indicating the existence of an infrared
attractive fixed point. The deep infrared dynamics is then
scale-free, and characterized by power-law correlation
functions.
SUðNcÞ gauge theories with Nf Dirac fermions in the

fundamental representation have been the subject of exten-
sive lattice studies (for Nc ¼ 2, 3), and both types of
behavior are expected to occur, depending on the value of
Nf.

2 The so-called conformal window then occupies the
range N�

fðNcÞ ≤ Nf < 11Nc=2, where N�
fðNcÞ is defined

as the smallest number of flavors for which the massless
SUðNcÞ theory is infrared conformal.
When the running is very slow, it can be extremely

challenging to determine by numerical simulations whether
the massless theory is ultimately confining or infrared
conformal. Nevertheless, evidence is growing that walking
theories just below the conformal window exhibit a light
flavor-singlet scalar meson. In Ref. [7] we developed
a low-energy effective theory for such theories which
simultaneously accounts for the usual pions as well as for the
flavor-singlet scalar. Pions are the (pseudo) Nambu-
Goldstone bosons arising from the spontaneous breaking
of (approximate) chiral symmetry. By analogy, we attribute
the existence of the light flavor-singlet scalar, or “dilatonic
meson,” to the small explicit breaking of scale invariance by
the walking coupling at the scale where chiral symmetry
breaks spontaneously. This explicit breaking keeps getting
smaller as Nf approaches N�

fðNcÞ from below [7,8].
In order to turn the proximity of the conformal window

into a continuous parameter of the low-energy theory, we
invoked the Veneziano limit [9], where the number of
fundamental-representation flavors Nf tends to infinity in
proportion to the number of colors Nc ¼ N. One expects
this effective theory to be organized in terms of a systematic
power counting in

p2=Λ2 ∼m=Λ ∼ 1=N ∼ jnf − n�fj ∼ δ ≪ 1: ð1:1Þ

Here nf ¼ Nf=Nc, and
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1Recently a third phase was proposed in Ref. [1]. For an
attempt to apply our approach in the context of QCD, and
compare it with that of Ref. [1], see Ref. [2].

2For recent reviews, see Refs. [3–6].
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n�f ¼ lim
Nc→∞

N�
fðNcÞ
Nc

; ð1:2Þ

is the location of the sill of the conformal window in the
Veneziano limit. As usual,m is the fermion mass, and p2 is
a generic external momentum of order the pion mass
squared, while Λ characterizes the confinement scale of
the massless theory.
Numerical studies of walking theories reveal a physical

behavior which is qualitatively different from QCD not
only in the presence of the dilatonic meson, but also in
other important ways [10–12]. First attempts to describe
this behavior using the effective theory suggest, moreover,
that the ratio m=Λ may not be small in these simulations
[13,14]. The goal of this paper is to investigate this
possibility. We stress that our investigation is based on
the premise that the theories under consideration are
confining in the infrared; what it will take to confirm this
assumption is a question to which we will return below.
In Sec. II we identify a “large-mass regime,” and show

that, in this regime, the effective theory reproduces the
hyperscaling relations of a mass-deformed conformal
theory to leading order. We also show that this regime is
amenable to a systematic treatment thanks to the proximity
of the conformal sill, even though the ratiom=Λmay not be
small. The small parameter controlling this regime is
nf − n�f. In Sec. III we revisit the numerical data of the
SUð3Þ gauge theory with Nf ¼ 8 flavors [10,11,13,14].
Our conclusions are summarized in Sec. IV. The two
Appendices are devoted to technical details.

II. THE LARGE-MASS REGIME
OF THE EFFECTIVE THEORY

Since the publication of Ref. [7], we came to realize that
the construction of the tree-level Lagrangian and of the
associated classical solution are more involved.3 We revisit
these steps in Appendix A, which also includes a full list of
the technical assumptions needed for the construction. The
end result is the following tree-level Lagrangian

L ¼ Lπ þ Lτ þ Lm þ Ld; ð2:1Þ

where

Lπ ¼
f̂2π
4
e2τtrð∂μΣ†∂μΣÞ; ð2:2Þ

Lτ ¼
f̂2τ
2
e2τð∂μτÞ2; ð2:3Þ

Lm ¼ −
f̂2πB̂πm

2
eyτtrðΣþ Σ†Þ; ð2:4Þ

Ld ¼ f̂2τ B̂τe4τc1ðτ − 1=4Þ; ð2:5Þ

and γ� ¼ 3 − y is the fixed-point value of the mass
anomalous dimension at the sill of the conformal window
[7,15]. Lπ and Lτ are kinetic terms for the pions and for
the dilatonic meson, respectively, while LM and Ld are
the corresponding potential terms. The parameter c1 in
Eq. (2.5) is proportional to nf − n�f. Here ΣðxÞ ∈ SUðNfÞ
is the usual nonlinear field describing the pions, while τðxÞ
is a (dimensionless) effective field describing the dilatonic
meson. In order to bring the Lagrangian into this form, we
shifted the τ field by an amount Δtot ¼ Δþ Δ̃. Details on
the two shifts may be found in Appendix A. The hatted
low-energy constants are related to their counterparts
before the τ shifts [see Eq. (A1)] according to

f̂π;τ ¼ eΔtotfπ;τ; B̂π ¼ eðy−2ÞΔtotBπ; B̂τ ¼ e2ΔtotBτ:

ð2:6Þ

In Eq. (2.5), the presence of the factor τ − 1=4, with the
specific constant −1=4, is a result of the second τ shift,
which was done for convenience. With this choice, the
classical dilatonic-meson vacuum v ¼ hτi, which is a
function of the fermion mass, v ¼ vðmÞ, vanishes in the
massless limit,

vð0Þ ¼ 0: ð2:7Þ

We now begin our study of the large-mass regime. For
m > 0, the classical vacuum is the solution of the saddle-
point equation

ym
4c1M

¼ veð1þγ�Þv; ð2:8Þ

where

M ¼ f̂2τ B̂τ

f̂2πB̂πNf

: ð2:9Þ

Before we move on we need to clarify a technical point.
Recall that the mass term of the usual chiral Lagrangian
involves the product Bm, where B is a low-energy constant
akin to B̂π . Only the product Bm has an invariant meaning,
while the determination of B and m separately requires a
renormalization prescription. Similarly, Eq. (2.5) involves
the product B̂τc1, where, by analogy with the familiar chiral
case, B̂τ is a dimensionful low-energy constant that
characterizes the massless theory, while c1 is dimension-
less, and proportional to the small parameter nf − n�f. Once
again, only the product B̂τc1 has a well-defined value for a

3We thank R. Rattazzi for useful discussions of this issue.
Appendix A corrects a few technical statements made in Sec. IV
of Ref. [7].
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given theory, whereas B̂τ and c1 cannot be determined
separately.
It follows that the ratio m=ðc1MÞ, which occurs on the

left-hand side of Eq. (2.8), has a well-defined meaning,
because it can be expressed in terms of the products B̂πm
and B̂τc1. If we write m=ðc1MÞ ¼ ðm=ΛÞðΛ=ðc1MÞÞ, the
basic power counting (1.1) tells us that this ratio is of order
δ0. But, because m and nf − n�f are independent expansion
parameters, m=ðc1MÞ can still take small or large values.
In this paper we are interested in the regime where

m=ðc1MÞ ≫ 1; ð2:10Þ

which we will call the large-mass regime. As for the
individual expansion parameters, we will assume that
always nf − n�f ≪ 1, but we will leave the ratio m=Λ
unspecified,4 thereby exploring whether the effective
theory is still controlled by a systematic expansion when
m=Λ is not small. That the effective theory turns out to be
applicable under these circumstances is somewhat counter-
intuitive, since the usual chiral expansion is valid for small
m=Λ only. The key observation, which we discuss in detail
below, is that the loop expansion of the effective theory is
still governed by the small parameter nf − n�f also when
m=Λ is large. In fact, as usual, the requirement for a
consistent power counting is really that the loop-expansion
parameters, M2

π=ð4πFπÞ2 and M2
τ=ð4πFτÞ2, should be

small. Here Mπ (Mτ) is the mass of the pion (dilatonic
meson), while Fπ and Fτ are the corresponding decay
constants, all of which are functions of the input fermion
mass m. As we will see, the requirement that the loop-
expansion parameters be small turns out not to be the same
as m=Λ small.
When the left-hand side of Eq. (2.8) is large, the

dominant dependence on v on the right-hand side is
through the exponential factor. We may thus approximate
Eq. (2.8) by

ym
4c1M

∼ eð1þγ�Þv; ð2:11Þ

hence

evðmÞ ∼
�

ym
4c1M

� 1
1þγ�

: ð2:12Þ

Corrections to this approximate solution for vðmÞ are of
order log vðmÞ ∼ log logm, see Appendix B.5

Let us now examine how various physical quantities
scale with m in this large-mass regime. We begin with the

decay constants. Much like the relation between the
unhatted and hatted low-energy constants [Eq. (2.6)], for
a given m the physical decay constants are given at leading
order by

Fπ;τ ¼ evðmÞf̂π;τ: ð2:13Þ
The masses of non-Nambu-Goldstone hadrons are expected
to behave similarly. For example, the tree-level Lagrangian
for the nucleon is

LN ¼ N̄ð∂ þ eτmNÞN; ð2:14Þ
where mN is a low-energy constant. This form follows
from the behavior of the effective nucleon field under a
(classical) scale transformation: NðxÞ → λ3=2NðλxÞ. It fol-
lows that the nucleon mass is given by

MN ¼ evðmÞmN: ð2:15Þ

With Eq. (2.12), we see that the decay constants and the
nucleon mass all satisfy the familiar hyperscaling relation,

Fπ; Fτ;MN ∼m
1

1þγ� : ð2:16Þ

Turning to the Nambu-Goldstone sector, the pion mass is
given by [7]

M2
π ¼ 2B̂πmeð1−γ�Þv; ð2:17Þ

while the mass of the dilatonic meson is

M2
τ ¼ 4c1B̂τe2vð1þ ð1þ γ�ÞvÞ: ð2:18Þ

Using Eq. (2.12) it is easy to see that the Nambu-Goldstone
masses satisfy the same hyperscaling relation as well.
The Nambu-Goldstone boson masses remain parametri-

cally smaller than decay constants and other masses. In order
to see this, we reintroduce the dependence on c1. We find

M2
π;M2

τ ∼ c
−1þγ�
1þγ�
1 m

2
1þγ� ; ð2:19Þ

whereas for the other dimensionful quantities we find

F2
π; F2

τ ;M2
N ∼ c

− 2
1þγ�

1 m
2

1þγ� : ð2:20Þ

The mass-squared of the Nambu-Goldstone bosons is
smaller by a factor of order

c
−1þγ�
1þγ� þ 2

1þγ�
1 ¼ c1;

relative to the other dimensionful quantities. The loop-
expansion parameters are therefore parametrically of order
c1 as well.

4A possible definition of Λ and its determination from
numerical data are discussed in Sec. IV.

5Of course, in real fits to numerical data, one would use the
solution of Eq. (2.8).
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Let us examine the loop-expansion parameters in more
detail. Using the exact saddle-point equation (2.8) together
with Eq. (2.17) gives6

M2
π

ð4πFπÞ2
¼ 8B̂πM

ð4πf̂πÞ2y
c1v

∼
2B̂πM

ð4πf̂πÞ2
c1 log

m
c1M

; ð2:21Þ

where in the last line we used the approximate large-mass
solution (2.12). Similarly, for the dilatonic meson we find

M2
τ

ð4πFτÞ2
¼ 4B̂τ

ð4πf̂τÞ2
c1ð1þ ð1þ γ�ÞvÞ

∼
4B̂τ

ð4πf̂τÞ2
c1 log

m
c1M

: ð2:22Þ

We see that both loop-expansion parameters will be small
provided that

c1 log
m

c1M
≪ 1: ð2:23Þ

This new constraint sets the range of applicability of
the effective theory in the large-mass regime defined by
Eq. (2.10).
The next-to-leading and higher order terms in the

Lagrangian of the effective theory serve as counterterms
for the loop diagrams generated using lower-order vertices.
Therefore, these higher-order terms should follow the same
parametric dependence on m and nf − n�f (with the latter
represented here by c1) as the loop-expansion parameters
discussed above. Let us verify that this is indeed the case. In
ordinary chiral perturbation theory every operator takes the
form of

Q̃ ¼ Q̃ðΣ; m; ∂μÞ; ð2:24Þ
where, for simplicity, we have substituted χij ¼ mδij for
the usual chiral source. This operator is mapped into the
Lagrangian of the dilaton-pion effective theory as [7]

Q ¼ e4τQ̃ðΣ; e−ð1þγ�Þτm; e−τ∂μÞ: ð2:25Þ

It follows that every insertion of m in ordinary chiral
perturbation theory gets replaced in the dilaton-pion effec-
tive theory by an insertion of

me−ð1þγ�ÞvðmÞ; ð2:26Þ
where we recall that vðmÞ is the classical solution. For
m≲ c1M, vðmÞ is small, and the modification is

innocuous. The factor of e−ð1þγ�Þv is close to one, and
can be reexpanded in a power series inm. In the large-mass
regime, on the other hand, e−ð1þγ�Þv is much smaller than
one. Indeed, using once again the exact saddle-point
equation (2.8) gives

me−ð1þγ�Þv ¼ 4c1Mv
y

∼ c1M log
m

c1M
: ð2:27Þ

As expected, the parametric dependence of this expression
on m and on c1 is the same as in Eqs. (2.21) and (2.22).
In summary, while for the case of QCD, chiral pertur-

bation theory is an expansion in powers of m, we see that,
in the large-mass regime of the dilaton-pion effective
theory, the expansion in powers ofm is effectively replaced
by an expansion in powers of c1 logðm=ðc1MÞÞ. The range
of validity of the expansion is set by condition (2.23).
Beforewe continue let us recall that, if we keep decreasing

the fermion mass, we will eventually reach the small-mass
regime, where, by definition,m=ðc1MÞ ≪ 1. In this regime
the mass of the dilatonic meson freezes out. The dilatonic
meson decouples from the low-energy physics of the pions
(along with all other heavier hadrons), leaving the pions as
the only light degrees of freedom.The small-mass regime can
thus be described by ordinary chiral perturbation theory
as well.7

Since the dependence of condition (2.23) on m is only
logarithmic, the large-mass regime can extend over many
scales. It is therefore interesting to discuss how the
expansion parameters renormalize. The renormalization
of m is standard, but that of c1, of course, is not. As
explained in detail in Ref. [7], c1 originates from a single
insertion of the m-independent part of the trace anomaly.
As long asm is not large relative to the infrared scale of the
massless theory, Λ, one has

c1 ∼ β̃ðΛÞ ∼ nf − n�f; ð2:28Þ

where β̃ðμÞ¼ ð4αÞ−1∂α=∂ logμ, and αðμÞ ¼ g2ðμÞNc=ð4πÞ
is the renormalized ’t Hooft coupling. The first approximate
equality in Eq. (2.28) follows from matching correlation
functions of the microscopic and effective theories, while
the second represents a central dynamical assumption made
in Ref. [7]. In itself, αðΛÞmust be large for chiral symmetry
breaking to take place. The smallness of the beta function
comes from the proximity of the conformal window, which
is accounted for in the effective theory by the small
parameter nf − n�f. Now, when we consider the effective
theory at a different, and possibly much higher, renorm-
alization scale μ, the first approximately equality remains
valid, namely,

6There are also loop corrections that involve M2
π=ð4πFτÞ2,

which scales in the same way as M2
π=ð4πFπÞ2.

7Of course, the dilatonic meson is still much lighter than other
hadrons in this small-mass regime, and the full effective theory
(2.1) including the dilatonic meson can still be used.
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c1ðμÞ ∼ β̃ðμÞ: ð2:29Þ

But now we do not necessarily have that β̃ðμÞ ∼ nf − n�f.
As the coupling αðμÞ decreases with increasing μ, at first
the beta function grows (in absolute value), before it turns
around and approaches zero at the asymptotically free fixed
point. The reason for this growth is that, for small m, the
theory is near the infrared attractive fixed point at a
coupling α� at nf ¼ n�f, and α� is just a little larger than
the coupling αðΛÞ at which chiral symmetry breaks.8

This observation suggests that the breakdown of the
expansion in the large-mass regime might alternatively be
triggered by the logarithmic growth of c1 with the renorm-
alization scale μ, because in the large-mass regime we
should take μ ∼m. In fact, this does not happen. If the
logarithmic evolution has taken c1 from c1ðμ ¼ ΛÞ ≪ 1 to
c1ðμ ¼ mÞ ∼ 1, then, necessarily, logm=M must be large,
which, in turn, implies that c1 logðm=ðc1MÞÞ is large.
Hence, condition (2.23) has already been violated at a lower
scale, where c1 is still small. This implies that the break-
down of the expansion is always triggered by the failure of
condition (2.23), and that always c1 ≪ 1 in the regime of
validity of the effective theory.
For completeness, we note that the expansion would also

break down if m grows so much that αðμ ¼ mÞ has become
too weak to support any bound states in the first place.
Unfortunately, we are not aware of any simple criterion that
will tell us when this happens from within the effective
theory.
Finally, let us consider the dependence on Nc and Nf.

Recall that the decay constants scale as Fπ ∼
ffiffiffiffiffiffi
Nc

p
and

Fτ ∼ Nc, while the low-energy constants B̂π and B̂τ are
Oð1Þ in the Veneziano limit, from which it follows that M
is Oð1Þ in the Veneziano limit as well. The Nf dependence
at one loop was discussed in Ref. [14]. We now put it
together with the previous results, and, introducing the
notation ϵ ¼ c1 logðm=ðc1MÞÞ for brevity, we arrive at the
following estimates

δM2
π

M2
π
∼

M2
π

Nfð4πFπÞ2
∼

ϵ

NfNc
∼

ϵ

N2
; ð2:30Þ

δFπ

Fπ
∼

NfM2
π

ð4πFπÞ2
∼
Nf

Nc
ϵ ∼ ϵ; ð2:31Þ

δM2
τ

M2
τ
∼

N2
fM

2
π

ð4πFτÞ2
∼
N2

f

N2
c
ϵ ∼ ϵ: ð2:32Þ

This confirms that the one-loop corrections for these quan-
tities either stay finite or tend to zero in the Veneziano limit.9

We expect that higher-order loop corrections will exhibit
a similar behavior. For the concrete case of Nc ¼ 3 and
Nf ¼ 8 the ratio Nf=Nc is quite large, consistent with the
observation of Ref. [14] that the one-loop corrections
δFπ=Fπ and δM2

τ=M2
τ could be relatively large.

III. ANALYSIS OF Nf = 8 DATA

In order to test the physical picture presented in the
previous section, we use numerical results obtained for the
Nf ¼ 8, SU(3) gauge theory in Ref. [10],10 which used
staggered fermions at a single value of the bare coupling β.
The applicability of the dilaton-pion effective theory to
these data was previously considered in Refs. [13,14].
The hyperscaling relations discussed in the previous

section imply that the ratio M=Fπ should be roughly
independent of m for every hadron mass M (Mπ and Mτ

included). The approximate constancy of this ratio for
different hadrons is evident from Fig. 4 of Ref. [10].
In order to be more quantitative, we have used the value

y ¼ 2 (or, equivalently, γ� ¼ 1) extracted in Ref. [14].
Given this value, we can estimate the values of vðmÞ for a
given pair of masses mi and mj, using the values of the
nucleon mass at the same input masses reported in Fig. 1 of
Ref. [10], with the help of Eqs. (2.8) and (2.15). The results
are shown in Table I. It should be noted that the determi-
nation of v is very sensitive to the input value of y.
Changing y by as little as 3% can change the values of v by
up to 15%. Moreover, such a variation gets exponentially
magnified. For example, a downward change of 15% in the
value of vðm5Þ would reduce e2vðm5Þ by roughly a factor 3.
Next we estimated the hatted low-energy parameters,

employing the estimated values for vðmiÞ shown in the 4th
column of Table I, again using y ¼ 2. In Table II, aB̂π

and c1aB̂τ were computed using Eqs. (2.17) and (2.18),
respectively; c1aMwas computed using Eq. (2.8), and af̂π
was computed using Eq. (2.13). Finally, af̂τ was obtained
by combining the previous results with Eq. (2.9).
In theory, all the hatted parameters, as well as c1aM,

should be roughly independent of the input mass, because
the leading-order dependence of the corresponding physi-
cal parameters on evðmÞ, and thus m, has been removed. Of
all the quantities shown in Table II, the most stable one is
aB̂π . Other quantities show a varying degree of sensitivity
to the input mass used for their calculation. We believe that
this sensitivity is in part due to the large range of e2vðmÞ
values shown in the rightmost column of Table I, which, in

8For a heuristic discussion based on the two-loop beta function
and the gap equation, see Ref. [8]. The scenario we describe here
corresponds to theNf ¼ 12 theory in Fig. 1 therein, provided that
the critical coupling were a little smaller, say, g2c ¼ 9 (instead of
g2c ¼ π2), so that according to the model of Ref. [8] the Nf ¼ 12
theory would become walking and confining.

9The presence of an extra 1=Nf suppression in the second
expression in Eq. (2.30) appears to be a peculiarity of the one-loop
expression for δM2

π=M2
π.10An update of these results has appeared recently [16]. This

does not affect the estimates we make in this paper.
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turn, is very sensitive to the determination of y, as we have
already mentioned. We comment that while the data of
Ref. [10] for the scalar-meson mass have relatively large
statistical errors (they can be as large as 15%–20%), this is
not enough to explain the systematic differences in our
estimates of c1aB̂τ for different values ofm. It could be that
this variation is in part due to next-to-leading order effects,
which, as discussed in the previous section, could be
particularly large for the mass of the dilatonic meson.
We can now also estimate when the theory will enter the

small-mass regime of the effective theory, m=ðc1MÞ ≪ 1.
If we use the lightest fermion mass to estimate this ratio
from Table II, we obtain

m
c1M

¼ Oð100Þ; ð3:1Þ

which suggests that the fermion mass m would have to be
smaller by two orders of magnitude before we reach the
small-mass regime at the same bare coupling.
The results shown in Table II suggest the ratio B̂π=f̂π is

of order 103, which is much larger than in QCD. Since
B̂π ¼ −Σ̂0=f̂

2
π , where Σ̂0 is the condensate per flavor in the

chiral limit, this can be considered as a signal of condensate
enhancement.

IV. DISCUSSION AND CONCLUSION

We finally return to a question that we have postponed
until now, which is how to identify the confinement scale of
the massless theory. Considering first the case of QCD,
both the pion decay constant and the strange quark mass are
of order 100 MeV, and moreover, it is well known that
around the strange mass higher-order chiral corrections
become large, and chiral perturbation theory may start to
break down. We thus propose to identify Λ, the character-
istic scale of the massless theory, with f̂π=N

1=2
c . If we were

dealing with a QCD-like theory, the chiral expansion would
then start to break down for mN1=2

c =f̂π ∼ 1.
In a nearly conformal, but confining, theory we may use

the fact that c1 ∼ nf − n�f is parametrically small to identify
the following regions:

regionA∶ 0 ≤ m ≪ c1M;

regionB∶ m ∼ c1M;

regionC∶ c1M ≪ m ≪ f̂π=N
1=2
c ;

regionD∶ m ∼ f̂π=N
1=2
c ;

region E∶ f̂π=N
1=2
c ≪ m ≪ c1Me1=c1 : ð4:1Þ

In a QCD-like theory the scale c1M is not relevant, and
chiral perturbation theory is valid in the union of regions A,
B, and C. By contrast, in a near-conformal and confining
theory, the scale f̂π does not play any special role. This is a
surprising result, because, based on QCD experience, we
had assumed in Ref. [7] that m=Λ≡mN1=2

c =f̂π must be
small in order for the effective theory to apply.
What happens instead, is that the only relevant separation

is between the small-mass regime, region A, and the large-
mass regime, which corresponds to the union of regions C,
D, and E,11 as follows from conditions (2.10) and (2.23). In
the small-mass regime, the dilatonic meson decouples from
the pions, and the familiar chiral behavior is recovered.
Next comes the intermediate range m ∼ c1M. Here the
dilatonic meson might be as light as the pions, but hyper-
scaling relations have not set in yet. Beyond that we find the
large-mass regime, in which hadron masses and decay
constants depend to leading order on the fermion mass m

through m
1

1þγ� . This is recognized as the familiar hyper-
scaling relation of a mass-deformed conformal theory (see,
e.g., Ref. [17]), except that here it occurs in a confining and
chirally broken theory. The pions and the dilatonic meson
satisfy the same hyperscaling relation, but they remain
special in being much lighter than all other states. In the
large-mass regime, the familiar chiral expansion in
powers of m is replaced by an expansion in powers of

TABLE I. vðmÞ as a function ofm, using results for the nucleon
mass from Ref. [10], and assuming y ¼ 2. The 5th column gives
the value of vðm1Þ if the pair ðm1; miÞ is used to solve Eqs. (2.15)
and (2.8). For vðm1Þ in the 4th column we took the average of the
values obtained from the pairs ðm1; m2Þ, ðm1; m3Þ, and ðm1; m4Þ.
Except for the second column, we keep only two significant
digits. Statistical errors have been suppressed.

i am aMN vðmiÞ vðm1Þ e2vðmiÞ

1 0.00125 0.25 2.0 57
2 0.00223 0.32 2.4 2.3 120
3 0.00500 0.44 2.5 1.9 150
4 0.00750 0.52 2.6 1.9 180
5 0.00889 0.58 3.4 2.6 900

TABLE II. Values of the hatted low-energy constants, assuming
y ¼ 2. We compute af̂π using Eq. (2.13), with vðmiÞ from the 4th
column of Table I, while aB̂π and c1aB̂τ are computed using
Eqs. (2.17) and (2.18), respectively. c1aM is computed using
Eq. (2.8). af̂τ in the 5th column is computed from columns 4,6,7,
and 8, using Eq. (2.9).

i aMπ aMτ 102af̂π 102af̂τ aB̂π 106c1a2B̂τ 106c1aM

1 0.082 0.29 2.7 5.3
2 0.11 0.12 0.25 0.96 2.7 5.5 3.8
3 0.17 0.21 0.32 1.1 2.8 12 6.6
4 0.20 0.28 0.35 1.1 2.8 17 7.4
5 0.23 0.24 0.17 0.71 2.9 1.9 1.4

11Incidentally, the 8-flavor SU(3) gauge theory has
m=f̂π ∼Oð1Þ [10].
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c1 logðm=ðc1MÞÞ. The upper bound of the large-mass
regime stems from the logarithmic dependence on m of
the new expansion parameter. This logarithmic, instead of
linear, dependence on m is what allows the large-mass
regime to extend over many scales.
The 8-flavor SU(3) gauge theory is qualitatively different

from QCD in a number of ways. First, it contains a scalar
meson which is about as light as the pions in the range of
fermion masses currently probed by numerical simulations.
Second, in this mass range, its spectrum satisfies approxi-
mate hyperscaling relations which are characteristic of a
mass-deformed conformal theory.
In this paper we considered these results using the low-

energy effective theory for pions and a dilatonic meson
developed in Ref. [7]. We found that, even if the fermion
mass is not small relative to the characteristic infrared scaleΛ
of the massless theory, the effective theory can still provide a
systematic expansion thanks to the parametric proximity of
the conformal window, quantified by the smallness of the
expansion parameter nf − n�f. We found rough agreement
between the numerical results ofRef. [10] and the predictions
of the low-energy theory in this large-mass regime.
To date, there is fairly general consensus that the

massless 8-flavor SU(3) gauge theory is confining. How-
ever, the alternative scenario, that this theory is infrared
conformal, has not been ruled out. The existence of a mass
range where infrared conformal and confining theories both
exhibit similar hyperscaling relations to leading order
provides a possible explanation of why it can be so difficult
to distinguish between the two scenarios numerically. In
also means that, with currently accessible values of the
fermion mass, decisive conclusions cannot be reached
unless subleading effects will be incorporated in the
analysis. Under the hypothesis of a mass-deformed infrared
conformal theory, this amounts to the inclusion of (margin-
ally) irrelevant operators in the scaling analysis (see, e.g.,
Ref. [18]). The alternative hypothesis amounts to being in
the large-mass regime of the dilaton-pion effective theory,
which is the subject of this paper. Here, subleading effects
include corrections to the approximate classical solution
(2.12), which are discussed in Appendix B, as well as the
usual next-to-leading and higher order loop corrections. Of
course, besides the subleading effects of the continuum
low-energy theory, discretization effects should be taken
into account as well.
One could in principle show that the 8-flavor SU(3)

gauge theory is confining by reaching the small-mass
region of the effective theory [region A of Eq. (4.1)],
where the pion mass exhibits its usual chiral behavior,
while the masses of all other hadrons, including the
dilatonic meson, are nonzero, and independent of the
fermion mass to leading order. However, we estimated
that in order to reach this regime at the value of the bare
coupling used in Ref. [10], the fermion mass would have to
be smaller at least by two orders of magnitude.

The SU(3) gauge theory with Nf ¼ 2 Dirac fermions in
the sextet representation is, strictly speaking, not within the
scope of the effective theory, since a Veneziano limit cannot
be taken for matter fields in two-index representations.
Nevertheless, we speculated in Ref. [7] that the effective
theory might be applicable under the assumption that
Nf − N�

f is small, where N�
f is the (non-integer) value

where the (non-local) SU(3) gauge theory with N�
f sextet

fermions enters the conformal window. The predictions of
(this version of) the effective theory were compared with
numerical data in Ref. [12], and the emerging physical
picture, including both the general overall agreement, and
the need to sort out many issues in more detail, is rather
similar to the case of Nf ¼ 8 fundamental flavors.
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APPENDIX A: REVISITING
THE CLASSICAL SOLUTION

Before we use the freedom to shift the τ field, the
leading-order Lagrangian is

L̃ ¼ L̃π þ L̃τ þ L̃m þ L̃d; ðA1Þ

where

L̃π ¼
f2π
4
VπðτÞe2τtrð∂μΣ†∂μΣÞ; ðA2Þ

L̃τ ¼
f2τ
2
VτðτÞe2τð∂μτÞ2; ðA3Þ

L̃m ¼ −
f2πBπ

2
VMðτÞeyτtrðχ†Σþ Σ†χÞ; ðA4Þ

L̃d ¼ f2τBτe4τVdðτÞ: ðA5Þ

Each potential Vπ , Vτ, VM and Vd has a double expansion
in powers of τ and of nf − n�f. According to the power-
counting arguments of Ref. [7], the power of nf − n�f
cannot be smaller than the power of τ. In particular,

Vd ¼
X∞
n¼0

X∞
k¼n

c̃nkτnðnf − n�fÞk: ðA6Þ
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With the power counting in place, we still have the problem
that for a generic potential VdðτÞ we anticipate the expect-
ation value of the dilatonic meson to behave as

hτi ¼ Oð1=ðnf − n�fÞÞ: ðA7Þ

Therefore, a priori we do not know what is theOð1Þ part of
each potential. In this Appendix, we consider this issue in
more detail.
In the massless limit, the classical potential of the

dilatonic meson is

VclðτÞ ¼ f2τBτUðτÞ; ðA8aÞ

UðτÞ ¼ VdðτÞe4τ: ðA8bÞ

We begin by reorganizing the expansion of Vd as

Vd ¼
X∞
m¼0

ðnf − n�fÞmVmðxÞ;

VmðxÞ ¼
X∞
n¼0

c̃n;nþmðnf − n�fÞnτn ¼
X∞
n¼0

c̃n;nþmxn; ðA9Þ

where we have introduced the variable

x ¼ ðnf − n�fÞτ: ðA10Þ

When we are dealing with the classical solution, for which
τ ¼ Oð1=ðnf − n�fÞÞ, we have that x ¼ Oð1Þ, and thus
Eq. (A9) gives the relevant expansion of Vd in powers of
nf − n�f. Each VmðxÞ is then some Oð1Þ function of its
argument.
Following Ref. [19], we now make the assumption that

there exists an x0 such that

V0ðx0Þ ¼ 0: ðA11Þ

For simplicity, we make some further technical assump-
tions as well. First, we assume that, in Eq. (A8b), the
exponential e4τ dominates over VdðτÞ for τ → �∞. This
implies that UðτÞ → 0 for τ → −∞. In addition, we assume
that VdðτÞ is positive for τ → ∞, so that UðτÞ → þ∞ for
τ → þ∞. Finally, we assume that the zero of V0 is unique,
which in turn implies that the unique saddle point found
below is the global minimum of UðτÞ.
We will now demonstrate the existence of a stable

classical solution. To this end, we shift the dilatonic meson
field as

τ → τ þ Δ; Δ ¼ x0
nf − n�f

: ðA12Þ

The shift entails several rearrangements in the tree-level
Lagrangian. The low-energy constants are redefined

according to fπ;τ → eΔfπ;τ, Bπ → eðy−2ÞΔBπ , and Bτ →
e2ΔBτ. Notice that these redefinitions depend on nf, and
thus they have to be taken into account when comparing
theories with different nf. The τ shift also gives rise to a
rearrangement of the expansions of the potentials. In
terms of the x variable, the shift takes the simple form
x → xþ x0. Considering the expansion of Vd in Eq. (A9),
in effect the shift implies that we are now expanding around
x ¼ 0, instead of around x ¼ x0 (a similar statement applies
to the other potentials). Explicitly, we have

VmðxÞ≡ Vorig
m ðxþ x0Þ≡

X∞
n¼0

cmnxn; ðA13Þ

where Vorig
m denotes the original form of VmðxÞ before

the shift.
From now on we assume that the shift (A12) has been

carried out. Equation (A11) thus takes the simple form

V0ð0Þ ¼ 0: ðA14Þ

In terms of the new expansion coefficients introduced in
Eq. (A13), this implies c00 ¼ 0.
Let us now find the classical solution x̃. As we will

see, the classical solution satisfies x̃ ¼ Oðnf − n�fÞ.
Moreover, the classical solution is stable, namely, it
admits an expansion in powers of nf − n�f. Assuming self-
consistently that x̃ ¼ Oðnf − n�fÞ we have, neglecting
terms of Oððnf − n�fÞ2Þ as we go,

U0ðτÞ ¼ ½4V0ðxÞ þ ðnf − n�fÞðV 0
0ðxÞ þ 4V1ðxÞÞ�e4τ

¼ ½4c01xþ ðnf − n�fÞðc01 þ 4c10Þ�e4τ; ðA15Þ

where a prime denotes differentiation with respect to the
argument. To this order the classical solution is therefore

x̃ ¼ ðnf − n�fÞx̃1; x̃1 ¼ −
c01 þ 4c10

4c01
: ðA16Þ

The generalization to higher orders is straightforward.
The shift has removed the large, Oð1=ðnf − n�fÞÞ com-

ponent of the τ field. The leading-order classical solution
after the shift is hτi ¼ x̃1, which is Oð1Þ. Likewise, the
quantum field is Oð1Þ, as always in perturbation theory.
Thus, no inverse powers of nf − n�f are hidden in the τ field
any more, and we may truncate each potential according to
the explicit power of nf − n�f which should be kept at a
given order of the low-energy expansion. In particular, we
may truncate Vπ , Vτ and VM to their leading-order constant
value, which in turn we normalize to unity.
As for Vd, it is convenient to do a second, Oð1Þ shift of

the τ field. After the shift (A12), UðτÞ is given at order
nf − n�f by
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UðτÞ ¼ ðnf − n�fÞðc01τ þ c10Þe4τ: ðA17Þ

The second shift is τ → τ þ Δ̃ with

Δ̃ ¼ −
1

4
−
c10
c01

: ðA18Þ

This gives rise to

UðτÞ ¼ ðnf − n�fÞc01ðτ − 1=4Þe4ðτþΔ̃Þ; ðA19Þ

and so at this order the classical solution is hτi ¼ 0,
equivalently x̃1 ¼ 0. The resulting tree-level Lagrangian
is given by Eqs. (2.1) through (2.5), where in Eq. (2.5)
c1 ¼ ðnf − n�fÞc01.
The analysis in this Appendix has so far been carried out

while invoking the Veneziano limit, N → ∞. This analysis
carries over to 0 < 1=N ≪ 1, provided we make a further,
technically reasonable assumption that the only inverse
small parameter occurring in the classical solution is
1=ðnf − n�fÞ, see Eq. (A7). Instead of Eq. (A9), Vd now
admits the expansion

Vd ¼
X∞
m;k¼0

ðnf − n�fÞmN−kVmkðxÞ; ðA20Þ

where the VmkðxÞ are Oð1Þ functions of their argument,
and, after performing the large shift of Eq. (A12), we have
V00ð0Þ ¼ 0, generalizing Eq. (A14). It is then straightfor-
ward to check that the classical solution remains stable, and
admits a double expansion in powers of both ðnf − n�fÞ
and 1=N.

APPENDIX B: LARGE-MASS EXPANSION
OF THE CLASSICAL SOLUTION

In this Appendix we work out corrections to the
approximate classical solution v0ðmÞ in the large-mass

regime. We show that the exact classical solution vðmÞ
admits an expansion in inverse powers of v0 ∼ logm, with
coefficients that are polynomials in log v0 ∼ log logm.
We start from the solution of the approximate equa-

tion (2.12), namely,

v0 ¼
1

1þ γ�
log

ym
4c1M

: ðB1Þ

Writing v ¼ v0 þ v1 þ � � �, and substituting this into the
exact saddle-point equation (2.8), the next correction v1
satisfies

eð1þγ�Þv0 ¼ eð1þγ�Þðv0þv1Þþlog v0 ; ðB2Þ

hence

v1 ¼ −
log v0
1þ γ�

: ðB3Þ

It follows that

ev0þv1 ¼ ev0v−ð1þγ�Þ
0 : ðB4Þ

Note that v1 does not tend to zero for m → ∞, but, as
expected, v1=v0 ∼ log v0=v0. Proceeding to the next cor-
rection and using Eq. (B3) gives

v2 ¼
log v0

ð1þ γ�Þ2v0
: ðB5Þ

The last correction we calculate is

v3 ¼
log2 v0 − 2 log v0
2ð1þ γ�Þ3v20

: ðB6Þ

The corrections v2; v3;…, tend to zero for v0 → ∞.
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