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In this paper, the temperature dependence of the SUð3Þ gluodynamics bulk viscosity is studied within
lattice simulations. To carry out this study, we measure the correlation function of the trace of the energy-
momentum tensor for a set of temperatures within the range T=Tc ∈ ð0.9; 1.5Þ. To extract the bulk viscosity
from the correlation function, we apply the Backus-Gilbert method and the Tikhonov regularization
method. We show that the ratio ζ=s is small in the region T=Tc ≥ 1.1–1.2, and in the vicinity of the
transition T=Tc ≤ 1.1–1.2 it quickly rises. Our results are in agreement with previous lattice studies and in a
reasonable agreement with other phenomenological approaches. Obtained values of the bulk viscosity
are significantly larger than perturbative results, which confirms that quark-gluon plasma is a strongly
correlated system.
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I. INTRODUCTION

Hydrodynamics is believed to describe the time evolu-
tion of quark-gluon plasma (QGP) created in heavy ion
collision experiments (such experiments are carried out at
the RHIC and LHC and planned in the future at the FAIR
and NICA). The basic object in hydrodynamics is the
energy-momentum tensor built as an expansion in gradients
[1,2]. The leading order of this expansion describes an ideal
fluid. The next-to-leading order includes dissipation and
can be parametrized by two coefficients: shear and bulk
viscosities. Trying to describe the particle yield in heavy
ion collisions, one can determine the shear and bulk
viscosities of QGP [3]. In particular, the typical value of
the shear-viscosity-to-entropy-density ratio extracted from
the hydrodynamic studies is η=s ¼ ð1–2.5Þ × 1=4π [4].
It is therefore important to calculate these observables

based on our theoretical knowledge of the system. Since
QGP is a strongly correlated system, one of the main ways
to carry out the first principles study of its properties is the

lattice simulation of QCD. Despite considerable success in
lattice study of QGP, lattice calculations of the shear and
bulk viscosities still remain challenging problems requiring
huge statistics. For this reason, nowadays it is not feasible
to calculate viscosities in QCD with dynamical quarks.
In the following, we are going to address viscosities in
gluodynamics.
Lattice calculations of the gluodynamics shear viscosity

were carried out in [5–12]. They are in agreement with
each other and with the experimental data [4] within
the uncertainties. The lattice results are also close to
η=s ¼ 1=4π obtained within the N ¼ 4 supersymmetric
Yang-Mills theory at strong coupling [13]. For many years,
there was a disagreement between the lattice results and the
perturbative calculations [14,15]. However, recent calcu-
lations in the next-to-leading order [16] give much smaller
values of the shear viscosity, which are consistent with the
lattice data. It is also worth mentioning the paper [17],
where the authors determined the value of the shear
viscosity using the diagrammatic representation (their
results are also very small and close to the lattice and
the experimental data).
Another important transport coefficient is the QGP bulk

viscosity ζ. There are only a few rather old papers devoted
to the lattice calculation of the bulk viscosity [6,18]. Taking
into account the rapid improvement of supercomputers and
theoretical developments, it is reasonable to conduct an up-
to-date study of the bulk viscosity.
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Let us now consider what is known about the bulk
viscosity. One can expect that at a very large temperature
the results of perturbative calculation are applicable. It
gives a very small value ζ=s ∼ 0.02α2s for Nf ¼ 0 [19].
Unfortunately, this result cannot be applied for temper-
atures of ∼ a few × the critical temperature Tc, which is of
interest in heavy ion collision experiments. The bulk
viscosity in this region was studied in [20,21]. The authors
applied the low energy theorems of QCD and derived the
formula relating the spectral function of the energy-
momentum tensor trace correlator to the energy density
and pressure of hot matter. Using a physically motivated
ansatz of the spectral function, the authors found ζ. At the
critical temperature, the bulk viscosity has a peak with the
height ζ=s ∼ 1. For temperatures T > Tc, the bulk viscosity
quickly drops, becoming very small ζ=s < 0.1 already for
T > 1.1Tc. There are a lot of phenomenological studies of
the bulk viscosity [22–29] confirming the existence of a
peak at the critical temperature.
In this paper, we study the temperature dependence of

the bulk viscosity in SUð3Þ gluodynamics within lattice
simulation. We calculate the correlation functions of the
energy-momentum tensor trace for the set of temperatures.
To extract the spectral function and the bulk viscosity from
the correlator, we use two model-independent estimation
techniques: the Backus-Gilbert method [30,31] and the
Tikhonov regularization approach [32].
This paper is organized as follows. In the next section,

we describe the details of the lattice measurements of the
correlation functions under study. The results of this
measurement are presented in Sec. III. In the last section,
we discuss our results and draw the conclusion.

II. DETAILS OF THE CALCULATION

Bulk viscosity is related to the Euclidean correlation
function of the trace of the energy-momentum tensor:

CðτÞ ¼ T−5
Z

d3xhθð0Þθðτ;xÞi; ð1Þ

where θ ¼ βðgÞ
2g Fa

μνFa
μν, βðgÞ is the β function of gluody-

namics, and T is the temperature. The correlator (1) can be
expressed in terms of the spectral function ρðωÞ via the
integral equation

CðτÞ ¼ T−5
Z

∞

0

ρðωÞ coshωðβ=2 − τÞ
sinhωβ=2

dω: ð2Þ

The spectral function contains valuable information
about medium properties. In particular, one can find the
bulk viscosity if the spectral function is known [33]

ζ ¼ π

9
lim
ω→0

dρðωÞ
dω

: ð3Þ

The lattice calculation of bulk viscosity can be divided
into two parts. First, one measures the correlation function
CðτÞ with sufficient accuracy. Second, one determines the
spectral function ρðωÞ from CðτÞ. Although the first step is
very complicated, sufficient accuracy can be achieved due
to the multilevel algorithm [34]. The second step is the
well-known ill-posed problem which is difficult to solve.
The important properties of the spectral function are

positivity ρðωÞ ≥ 0;ω > 0, and oddness ρð−ωÞ ¼ −ρðωÞ.
It is also important that at the leading order approximation
in the strong coupling constant, the spectral function can be
written as

ρLOðωÞ ¼ dA

�
11αsNc

3ð4πÞ2
�

2 ω4

tanhðω=4TÞ ; ð4Þ

where dA ¼ N2
c − 1 ¼ 8 for the SUð3Þ gluodynamics.

We expect that due to the asymptotic freedom, the leading
order expression (4) is a good approximation for the
spectral function at large frequency. To account for the
discretization errors in the temporal direction instead of (4),
we are going to use the tree level lattice expression ρlatðωÞ
calculated within the approximation: Lt is fixed and
Ls → ∞ [35]. The resulting expression for ρlatðωÞ is
cumbersome; for this reason, we do not show it here.
At small frequencies the spectral function is in the

hydrodynamic regime. The first order hydrodynamic
behavior for the spectral function reads

ρhðωÞ ¼
9

π
ζω: ð5Þ

In the numerical simulation, we use the Wilson gauge
action for the SUð3Þ gluodynamics. For Fμν, the clover
discretization scheme is used. Similar to the shear viscosity,
the bulk viscosity is presented as the viscosity-to-entropy-
density ratio ζ=s. For homogeneous systems, the entropy
density s can be expressed as s ¼ ϵþp

T , where ϵ is the energy
density and p is the pressure. These thermodynamic
quantities were measured with the method described in [36].
The energy-momentum tensor in the continuum theory

is a set of the Noether currents which are related to the
Lorentz invariance of the action. In the lattice formulation
of the field theory, continuum rotational invariance does not
exist, and the renormalization of the energy-momentum
tensor is required. For the trace of the energy-momentum
tensor, the renormalization is multiplicative. The renorm-
alization factors depend on the discretization scheme [37].
For the plaquette-based discretization scheme, the renorm-
alization is defined by the β function [37]. Using the
renormalization factors for the plaquette-based discretiza-
tion of θ, one can easily find the renormalization factors for
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the clover discretization by fitting the expectation value of
the trace anomaly: ZðplaqÞhθðplaqÞi ¼ ZðclovÞhθðclovÞi.

III. NUMERICAL RESULTS

A. Correlation functions and their properties

Wemeasured the correlation functionsCðτÞ on the lattice
16 × 323 with the parameters listed in Table I.
The two-level algorithm allowed us to decrease signifi-

cantly the statistical errors. For each temperature, we made
∼500 sweeps with fixed boundary conditions and then
averaged over ∼104 boundary conditions. With these
statistics, we reached relative errors of 2%–3% at the
middle point τT ¼ 1=2 for all temperatures. For other
values of Euclidean time τ, the relative errors are even
smaller. In Fig. 1, we show the correlation functions (1) for
the temperatures T=Tc ¼ 0.90, 1.10, 1.35, 1.5.
In order to estimate the finite volume effects, we

measured the correlation functions (1) on the larger lattice
16 × 483 for the temperatures T=Tc ¼ 0.9, 0.975, 1.0, 1.05,
1.5. We found that for the temperatures T=Tc ¼ 0.9, 0.975,
the deviations of the correlators measured on two lattices
are less than 2σ. For the temperatures T=Tc ¼ 1.05, 1.5, the
deviations are less than σ. For the temperature T=Tc ¼ 1.0,
the deviation of the correlators in the middle point vicinity
is as large as 4σ. The deviations for other points are smaller.
Thus, we expect finite volume effects to be small for all
temperatures except T ¼ Tc. Finite volume effects for the
temperature T ¼ Tc might be important.

B. Calculation of the bulk viscosity
using the Backus-Gilbert method

In this section, we determine the ratio ζ=s using
the Backus-Gilbert (BG) method [30,31]. This is a

model-independent approach estimating the spectral
function.1 Instead of ρðωÞ, one reconstructs the estimator
ρ̄ðω̄Þ expressed as

ρ̄ðω̄Þ ¼ fðω̄Þ
Z

∞

0

dωδðω̄;ωÞ ρðωÞ
fðωÞ ; ð6Þ

where the fðxÞ is an arbitrary function, and the δðω̄;ωÞ is
called the resolution function. This function has a peak
around ω̄ and normalized as

R
∞
0 dωδðω̄;ωÞ ¼ 1. The BG

resolution function is taken in the form

δðω̄;ωÞ ¼
X
i

qiðω̄ÞKðxi;ωÞ: ð7Þ

For this resolution function, the estimator is a linear
combination of the correlation function values

ρ̄ðω̄Þ ¼ fðω̄Þ
X
i

qiðω̄ÞCðτiÞ: ð8Þ

For a better approximation of ρðωÞ with the estimator
ρ̄ðω̄Þ, one needs to minimize the width of δðω̄;ωÞ.
However, a very narrow peak might build an estimator
fitting the points themselves but not the physics (generality)
they present. This means that any method of this kind
should be regularized.
Within the Backus-Gilbert method, one minimizes

the Backus-Gilbert functional HðρðωÞÞ ¼ λAðρðωÞÞ þ
ð1 − λÞBðρðωÞÞ. The term A represents the width of the
resolution function (the second moment of distribution):
A ¼ R∞

0 dωδðω̄;ωÞðω − ω̄Þ2. In principle, it could be any
other function with the same meaning. The advantage of the
second moment is that it is quadratic in ω and ω̄, making
analytical minimization possible. The term BðρðωÞÞ ¼
Var½ρðωÞ� punishes ρðωÞ for being too dependent on the
data and regularizes ρ̄ðω̄Þ. In terms of the covariance matrix
and q functions, it reads Bðq⃗Þ ¼ q⃗T Ŝ q⃗.
If λ is close to 1, the resolution function has the smallest

width. However, the BG method with λ ∼ 1 leads to large
uncertainties. The result becomes very dependent on the
data, and the spectral function turns out to be noisy and
unstable. Statistical uncertainties are reduced at the expense
of increasing the width of the resolution function through
the decreasing of λ.

TABLE I. The set of parameters used in the calculation of CðτÞ.
T=Tc 0.90 0.925 0.950 0.975 1.00 1.05 1.10 1.15 1.19 1.275 1.35 1.425 1.50

β 6.491 6.512 6.532 6.552 6.575 6.61 6.647 6.682 6.712 6.765 6.811 6.855 6.897

FIG. 1. The correlation function CðτÞ as a function of Euclidean
time τ for the temperatures T=Tc ¼ 0.90, 1.10, 1.35, 1.5.

1In [11] the BG method was used to study the shear viscosity,
and in [38] it was applied to calculate the conductivity of
graphene. In [39,40] the BG method was used to study hadron
properties at nonzero temperature.
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The minimization of H gives

qiðωÞ ¼
P

jW
−1
ij ðω̄ÞRðxjÞP

kjRðxkÞW−1
kj ðω̄ÞRðxjÞ

; ð9Þ

Wijðω̄Þ ¼ λ

Z
∞

0

dωKðxi;ωÞðω− ω̄Þ2Kðxj;ωÞ þ ð1− λÞSij;

ð10Þ

RðxiÞ ¼
Z

∞

0

dωKðxi;ωÞ: ð11Þ

In [11] it was seen that the BG method should be
modified to study the shear viscosity. The estimator of the
spectral function (6) is the convolution of the real spectral
function ρðωÞ and the resolution function δðω; ω̄Þ, which
has an ultraviolet tail. The ultraviolet behavior of ρðωÞ is
∼ω4, and it is convolved with the tail of the resolution
function. For this reason, the shear viscosity calculated
within the BG method acquires a large ultraviolet contri-
bution which is nonphysical. To get rid of this problem, it
was proposed to determine the ultraviolet tail of the spectral
function and then subtract it from the estimator. Then, the
result is the convolution of only the infrared part of the real
spectral function and the resolution function.

To subtract the ultraviolet tail, we applied the approach
proposed in [11]. The spectral function at large frequency is
determined using the rescaling function

fðxÞ ¼ fuvðxÞ ¼ α2sðxÞ
ρlatðxÞ

ðtanh ðx=4TÞÞ2 : ð12Þ

We used the running coupling constant αs at one-loop
level with Λ ¼ 237 MeV [41]. In the Backus-Gilbert
method, one reconstructs the ratio ρðωÞ=fuvðωÞ which is
divergent at ω ¼ Λ. To get rid of this divergence, we
assume that αðωÞ ¼ αð1 GeVÞ for ω ≤ 1 GeV. The result
is not sensitive to the modification of the αs running since
we study the large-frequency behavior of ρðωÞ, which is
not affected by this modification.
Finally, one has to fix the value of λ. In the BG method, a

larger λ leads to larger uncertainties of the calculation.
On the other hand, a small λ increases the width of the
resolution function, and one needs to find a compromise
between these two tendencies. We found that this com-
promise is satisfied at λ ¼ 0.01 for our study of the
ultraviolet properties of the spectral function. For the
infrared study (see below), we used λ ¼ 0.1.
Within the BGmethod with (12), we reconstruct the ratio

ρ̄ðω̄Þ=fuvðω̄Þ. In Fig. 2, we plot the reconstructed ratios for

FIG. 2. The ratio ρ̄ðω̄Þ=fuvðω̄Þ reconstructed within the BG method as a function of ω̄a for the temperatures T=Tc ¼ 0.9, 1.0,
1.275, 1.5.
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a few temperatures. We see that at large frequencies, the
ratio ρ̄ðω̄Þ=fuvðω̄Þ reaches the plateau. The role of the
α2sðωÞ factor in (12) should be emphasized: If it were not
for the running coupling, the ratio ρ̄ðω̄Þ=fuvðω̄Þ would not
have a plateau. This means that the function ρlat itself does
not catch the essential behavior at large frequencies and the
account of α2sðωÞ is necessary.
We conclude that at large frequencies the spectral

function behaves as ρðωÞ ¼ AfuvðxÞ. Based on this find-
ing, we propose the following form of the ultraviolet
spectral function

ρuvðωÞ ¼ Aα2sðωÞρlatðωÞθðω − ω0Þ; ð13Þ

where A is the value of ρ̄ðω̄Þ=fuvðω̄Þ on the plateau. In the
calculation, we determine the value and the uncertainties
of A from the plateau in the region ω̄a ∈ ð1.5; 3Þ. Another
parameter of the ultraviolet tail is the ω0 frequency
threshold from which the spectral function is given by
the ultraviolet form (13). This parameter will discussed
below.
Having determined the ultraviolet behavior of the spec-

tral function, we proceed to the calculation of the bulk
viscosity. In order to calculate the ζ, we found the estimator
for ρðωÞ=ω at ω̄ ¼ 0. We calculate it using the BG method
with fðxÞ ¼ x.
The resolution function for the temperature T=Tc ¼ 1.05

is shown in Fig. 3 (solid line). The resolution functions
at the other temperatures are close to that for the
T=Tc ¼ 1.05. It is seen that the width of the resolution
function is ∼4T. Thus, the spectral function ρðωÞ=ω is
averaged over the region ∼4T.
With the resolution function, we calculate the estimator

for ρðωÞ=ω. Then we subtract the ultraviolet contribution
given by the convolution of the spectral function (13) and
the resolution function. The threshold parameter ω0 cannot
be determined within the BG analysis. To account for its
uncertainty, we vary ω0 within the region ω0=Tc ∈ ð5; 10Þ

ðω0 ∼ ð1.4; 2.8Þ GeVÞ. We believe that this region is
sufficiently safe to estimate the uncertainty due to the
unknown value of ω0.
Our results for the ratios ζ=T3 and ζ=s are shown in

Fig. 4. The uncertainties shown in Fig. 4 are due to
statistical errors and the uncertainties in the A and ω0.

C. Calculation of the bulk viscosity using
the Tikhonov regularization

Finally, we consider another approach to the bulk vis-
cosity estimation called the Tikhonov regularization (TR)2

[32]. The TR method allows us to make the resolution
function narrower as compared to the BG method. In the
calculation with the TR, we follow the formulas (11). The
difference of the TR as compared to the BG method is in
the regularization of the Wij matrix. In the BG method, one
adds the covariance matrix λSij to the matrix ð1 − λÞWij.
In the TR method, the matrix Wij is regularized as follows.
Let us consider the singular value decomposition of theW−1:
W−1 ¼ VDUT , where D¼diagðσ−11 ;σ−12 ;…;σ−1n Þ. We sub-
stitute the matrix D by the matrix D̃¼diagððσ1þγÞ−1;
ðσ2þγÞ−1;…;ðσnþγÞ−1Þ, where the γ is the regularization
parameter of the TR method. The TR method thus smoothly
cuts off small singular values σ, making the results more
stable.
The application of the TR method is the same as the

application of the BG but with the Wij regularized in the
other way. We first choose the regularization parameter
γ ¼ 0.1, which is a compromise between the width of the
resolution function and the uncertainty of the calculation.
The resolution function in this case is shown in Fig. 3, and
it has the width ∼3T which is smaller than in the BG
method. We then calculate the estimator with fðxÞ ¼ x and
subtract the ultraviolet tail. The ultraviolet spectral function
was taken in the form (13) with A and ω0 from the BG
method. In Fig. 4 we plot our results.

IV. DISCUSSION AND CONCLUSION

In this paper, the temperature dependence of the bulk
viscosity in gluodynamics was studied within lattice
simulation. To carry out this study, we measured the
correlation functions of the energy-momentum tensor trace
for a set of temperatures in the range T=Tc ∈ ð0.9; 1.5Þ.
To extract the bulk viscosity from the correlation function,
we applied the Backus-Gilbert method and the Tikhonov
regularization method. The results obtained within both
approaches are shown in Fig. 4. We also studied the finite
volume effects and found that they are small for all
temperatures except the T ¼ Tc. Finite volume effects
for T ¼ Tc might be important.

FIG. 3. The resolution functions δð0;ωÞ at T=Tc ¼ 1.05 for the
λ ¼ 0.1 Backus-Gilbert method and for the γ ¼ 0.1 Tikhonov
regularization.

2The TR method was recently applied to study of the metal-
insulator phase transition in the Hubbard model [42].
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Let us now consider the results obtained in this paper.
From Fig. 4, we see that the ratio ζ=s is small in the region
T=Tc ≥ 1.1–1.2, and in the vicinity of the transition
T=Tc ≤ 1.1–1.2 it quickly rises. This behavior is in agree-
ment with a lot of phenomenological studies (see, for
instance, [20,23,28]).
Below the critical temperature, ζ=s continues to rise. It is

in disagreement with some phenomenological studies of
QCD [26,29]. This discrepancy might be explained as
follows. In our study, we convolute the spectral function
with the resolution function which has the width ∼ð3–4ÞTc.
Below the critical temperature there is the scalar glueball
contribution to the spectral function which might alter our
result. One might also find another explanation for this
discrepancy. It is known that the confinement/deconfine-
ment phase transition in the SUð3Þ gluodynamics is of the
first order, while this transition in QCD is a crossover. The
rise of the ζ=s below the critical point might be assigned to

the rapid decrease of the entropy density s below the
transition in the gluodynamics. A better understanding
of this discrepancy requires additional study of the
bulk viscosity and the spectral function of the energy-
momentum tensor both from the lattice side and in these
phenomenological models.
In order to compare our results with the results of

other approaches, in Fig. 5 we plot the ratios ζ=s for
T=Tc ≥ 1 calculated in our paper and in other studies.
In particular, the blue circles and the red triangles
represent the results obtained in this paper within the
Backus-Gilbert method and the Tikhonov regulariza-
tion, correspondingly.
The black circles and the yellow squares represent the

lattice results obtained in [6] and [18], correspondingly. It is
seen that our results are in agreement with the previous
lattice studies of the bulk viscosity.
The blue band represents the perturbative results

obtained in [19]. The uncertainty in this band is due to
the variation of the scale in the region μ ∈ ð2πT; 4πTÞ. It is
seen that out results dramatically disagree with the pertur-
bative results, which once again confirms that QGP is a
strongly correlated system.
The results of [20] are represented with the violet

diamonds. It is interesting to notice that the rise of ζ=s
in [20] starts at T=Tc ∼ 1.1, which agrees with our results.
Finally, let us consider the following question. The

perturbative calculations of the ζ revealed the following
relation between the bulk viscosity, the shear viscosity η,
and the speed of sound vs: ζ=η ∝ ð1 − 3v2sÞ2. On the other
hand, a similar ratio in the AdS=CFT is predicted to be
ζ=η ∝ ð1 − 3v2sÞ [43,44]. In addition, it was argued that
there is an inequality ζ=η ≥ 2=3ð1 − 3v2sÞ, which is valid
for QGP [44].
To check these assumptions, in Fig. 6 we plot our

results obtained within the Tikhonov regularization3 in

FIG. 4. The ratios ζ=T3 and ζ=s calculated within the Backus-Gilbert and the Tikhonov regularization methods as functions of the
temperature.

FIG. 5. The ratio ζ=s calculated in this paper and other studies:
The results obtained in this paper are within the Backus-Gilbert
method and the Tikhonov regularization, the lattice results
obtained in [6,18], perturbative results obtained in [19], and
the results of [20]. 3One can plot the similar picture for the Backus-Gilbert results.
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the region T=Tc ∈ ð1.05; 1.425Þ as a function of the
speed of sound in the gluodynamics calculated in [45].
The viscosity η was taken from our paper [11]. If the
temperature at which ζ is calculated is not present in [11],

we take the average of the closest points. We fit our data
with the linear and the quadratic fits. We also plot the line
ζ=η ¼ 2=3ð1 − 3v2sÞ. Unfortunately, the uncertainty of the
calculation is rather large, andone cannot distinguish between
these two hypotheses.

ACKNOWLEDGMENTS

V. V. B. acknowledges the support from the BASIS
Foundation. N. Yu. A. acknowledges the support from the
BASIS Foundation and the FAIR-Russia Research Center.
The work of A. Yu. K. was supported by the FAIR-Russia
Research Center and Russian Foundation for Basic
Research (RFBR) Grants No. 18-32-00071 and No. 18-
02-01107. This work has been carried out using computing
resources of the federal collective usage center Complex
for Simulation and Data Processing for Mega-science
Facilities at National Research Center (NRC) “Kurchatov
Institute” (Ministry Subvention under Agreement
No. RFMEFI62117X0016). In addition, we used the super-
computer of the Institute for Theoretical and Experimental
Physics.

[1] D. T. Son, Acta Phys. Pol. B 39, 3173 (2008).
[2] P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010).
[3] S. Ryu, J.-F. Paquet, C. Shen, G. Denicol, B. Schenke, S.

Jeon, and C. Gale, Phys. Rev. C 97, 034910 (2018).
[4] H. Song, Nucl. Phys. A904-905, 114c (2013).
[5] F. Karsch and H.W. Wyld, Phys. Rev. D 35, 2518 (1987).
[6] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305

(2005).
[7] H. B. Meyer, Phys. Rev. D 76, 101701 (2007).
[8] H. B. Meyer, Nucl. Phys. A830, 641C (2009).
[9] S. W. Mages, S. Borsányi, Z. Fodor, A. Schäfer, and K.

Szabó, Proc. Sci. LATTICE2014 (2015) 232.
[10] N. Yu. Astrakhantsev, V. V. Braguta, and A. Yu. Kotov,

J. High Energy Phys. 09 (2015) 082.
[11] N. Astrakhantsev, V. Braguta, and A. Kotov, J. High Energy

Phys. 04 (2017) 101.
[12] Sz. Borsányi, Z. Fodor, M. Giordano, S. D. Katz, A. Pasztor,

C. Ratti, A. Schaefer, K. K. Szabo, and B. C. Toth, Phys.
Rev. D 98, 014512 (2018).

[13] G. Policastro, D. T. Son, and A. O. Starinets, Phys. Rev.
Lett. 87, 081601 (2001).

[14] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy
Phys. 11 (2000) 001.

[15] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy
Phys. 05 (2003) 051.

[16] J. Ghiglieri, G. D. Moore, and D. Teaney, J. High Energy
Phys. 03 (2018) 179.

[17] N. Christiansen, M. Haas, J. M. Pawlowski, and N.
Strodthoff, Phys. Rev. Lett. 115, 112002 (2015).

[18] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).
[19] P. B. Arnold, C. Dogan, and G. D. Moore, Phys. Rev. D 74,

085021 (2006).
[20] D. Kharzeev and K. Tuchin, J. High Energy Phys. 09 (2008)

093.
[21] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663,

217 (2008).
[22] J. P. Prasanth and V. M. Bannur, Physica (Amsterdam)

498A, 10 (2018).
[23] K. Saha, S. Ghosh, S. Upadhaya, and S. Maity, Phys. Rev. D

97, 116020 (2018).
[24] A. Harutyunyan and A. Sedrakian, Phys. Rev. D 96, 034006

(2017).
[25] S. Samanta, S. Ghosh, and B. Mohanty, J. Phys. G 45,

075101 (2018).
[26] P. Singha, A. Abhishek, G. Kadam, S. Ghosh, and H.

Mishra, arXiv:1705.03084.
[27] V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L.

Bratkovskaya, and W. Cassing, Phys. Rev. C 87, 064903
(2013).

[28] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, and H.
Berrehrah, Phys. Rev. C 88, 045204 (2013).

[29] H. Berrehrah, E. Bratkovskaya, T. Steinert, and W. Cassing,
Int. J. Mod. Phys. E 25, 1642003 (2016).

[30] G. Backus and F. Gilbert, Geophys. J. Int. 16, 169
(1968).

[31] G. Backus and F. Gilbert, Phil. Trans. R. Soc. A 266, 123
(1970).

[32] A. N. Tikhonov, Sov. Math. Dokl. 4, 1035 (1963).

FIG. 6. The ratio ζ=η as a function the velocity of sound. The
orange line corresponds to the best linear fit; the red line shows
the best quadratic fit. The black line represents the lower bound of
the ratio ζ=η imposed by the AdS=CFT calculations.

TEMPERATURE DEPENDENCE OF THE BULK VISCOSITY … PHYS. REV. D 98, 054515 (2018)

054515-7

https://doi.org/10.1142/S0218301310014613
https://doi.org/10.1103/PhysRevC.97.034910
https://doi.org/10.1016/j.nuclphysa.2013.01.052
https://doi.org/10.1103/PhysRevD.35.2518
https://doi.org/10.1103/PhysRevLett.94.072305
https://doi.org/10.1103/PhysRevLett.94.072305
https://doi.org/10.1103/PhysRevD.76.101701
https://doi.org/10.1016/j.nuclphysa.2009.09.053
https://doi.org/10.22323/1.214.0232 
https://doi.org/10.1007/JHEP09(2015)082
https://doi.org/10.1007/JHEP04(2017)101
https://doi.org/10.1007/JHEP04(2017)101
https://doi.org/10.1103/PhysRevD.98.014512
https://doi.org/10.1103/PhysRevD.98.014512
https://doi.org/10.1103/PhysRevLett.87.081601
https://doi.org/10.1103/PhysRevLett.87.081601
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1007/JHEP03(2018)179
https://doi.org/10.1007/JHEP03(2018)179
https://doi.org/10.1103/PhysRevLett.115.112002
https://doi.org/10.1103/PhysRevLett.100.162001
https://doi.org/10.1103/PhysRevD.74.085021
https://doi.org/10.1103/PhysRevD.74.085021
https://doi.org/10.1088/1126-6708/2008/09/093
https://doi.org/10.1088/1126-6708/2008/09/093
https://doi.org/10.1016/j.physletb.2008.01.080
https://doi.org/10.1016/j.physletb.2008.01.080
https://doi.org/10.1103/PhysRevD.97.116020
https://doi.org/10.1103/PhysRevD.97.116020
https://doi.org/10.1103/PhysRevD.96.034006
https://doi.org/10.1103/PhysRevD.96.034006
https://doi.org/10.1088/1361-6471/aac621
https://doi.org/10.1088/1361-6471/aac621
http://arXiv.org/abs/1705.03084
https://doi.org/10.1103/PhysRevC.87.064903
https://doi.org/10.1103/PhysRevC.87.064903
https://doi.org/10.1103/PhysRevC.88.045204
https://doi.org/10.1142/S0218301316420039
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1098/rsta.1970.0005
https://doi.org/10.1098/rsta.1970.0005


[33] S. Jeon and L. G. Yaffe, Phys. Rev. D 53, 5799
(1996).

[34] H. B. Meyer, J. High Energy Phys. 01 (2003) 048.
[35] H. B. Meyer, J. High Energy Phys. 06 (2009) 077.
[36] J. Engels, F. Karsch, and T. Scheideler, Nucl. Phys. B564,

303 (2000).
[37] H. B. Meyer and J. W. Negele, Phys. Rev. D 77, 037501

(2008).
[38] D. L. Boyda, V. V. Braguta, M. I. Katsnelson, and M. V.

Ulybyshev, Phys. Rev. B 94, 085421 (2016).
[39] B. B. Brandt, A. Francis, B. Jäger, and H. B. Meyer, Phys.

Rev. D 93, 054510 (2016).

[40] B. B. Brandt, A. Francis, H. B. Meyer, and D. Robaina,
Phys. Rev. D 92, 094510 (2015).

[41] S. Capitani, M. Lüscher, R. Sommer, and H. Wittig, Nucl.
Phys. B544, 669 (1999); B582, 762(E) (2000).

[42] M. V. Ulybyshev, C. Winterowd, and S. Zafeiropoulos, EPJ
Web Conf. 175, 03008 (2018).

[43] P. Benincasa, A. Buchel, and A. O. Starinets, Nucl. Phys.
B733, 160 (2006).

[44] A. Buchel, Phys. Lett. B 663, 286 (2008).
[45] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,

M. Lutgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

ASTRAKHANTSEV, BRAGUTA, and KOTOV PHYS. REV. D 98, 054515 (2018)

054515-8

https://doi.org/10.1103/PhysRevD.53.5799
https://doi.org/10.1103/PhysRevD.53.5799
https://doi.org/10.1088/1126-6708/2003/01/048
https://doi.org/10.1088/1126-6708/2009/06/077
https://doi.org/10.1016/S0550-3213(99)00522-2
https://doi.org/10.1016/S0550-3213(99)00522-2
https://doi.org/10.1103/PhysRevD.77.037501
https://doi.org/10.1103/PhysRevD.77.037501
https://doi.org/10.1103/PhysRevB.94.085421
https://doi.org/10.1103/PhysRevD.93.054510
https://doi.org/10.1103/PhysRevD.93.054510
https://doi.org/10.1103/PhysRevD.92.094510
https://doi.org/10.1016/S0550-3213(98)00857-8
https://doi.org/10.1016/S0550-3213(98)00857-8
https://doi.org/10.1016/S0550-3213(00)00163-2
https://doi.org/10.1051/epjconf/201817503008
https://doi.org/10.1051/epjconf/201817503008
https://doi.org/10.1016/j.nuclphysb.2005.11.005
https://doi.org/10.1016/j.nuclphysb.2005.11.005
https://doi.org/10.1016/j.physletb.2008.03.069
https://doi.org/10.1016/0550-3213(96)00170-8
https://doi.org/10.1016/0550-3213(96)00170-8

