
 

Curvature of the pseudocritical line in QCD:
Taylor expansion matches analytic continuation
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We determine the curvature of the pseudocritical line of Nf ¼ 2þ 1 QCD with physical quark masses
via Taylor expansion in the quark chemical potentials. We adopt a discretization based on stout improved
staggered fermions and the tree level Symanzik gauge action; the location of the pseudocritical temperature
is based on chiral symmetry restoration. Simulations are performed on lattices with different temporal
extent (Nt ¼ 6, 8, 10), leading to a continuum extrapolated curvature κ ¼ 0.0145ð25Þ, which is in very
good agreement with the continuum extrapolation obtained via analytic continuation and the same
discretization, κ ¼ 0.0135ð20Þ. This result eliminates the possible tension emerging when comparing
analytic continuation with earlier results obtained via Taylor expansion.
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I. INTRODUCTION

The exploration of the QCD phase diagram is a subject
of continuous experimental and theoretical investigation.
One of the main issues is represented by the determination
of the pseudocritical line in the T − μB plane separating the
low-T phase, characterized by color confinement and chiral
symmetry breaking, from the high-T phase where the so-
called quark-gluon plasma (QGP) is thought to be realized.
Lattice QCD simulations at nonzero μB are still hindered by
the well-known sign problem; however, various methods
are already effective to circumvent the problem at least for
small μB, where the pseudocritical line can be approxi-
mated at the lowest order in a Taylor expansion in μ2B,

TcðμBÞ
Tc

¼ 1 − κ

�
μB
Tc

�
2

þOðμ4BÞ: ð1Þ

The curvature κ of the pseudocritical line has been deter-
mined on the lattice both by analytic continuation [1–12],

exploiting results obtained at imaginary chemical potentials,
and by Taylor expansion [13–16], i.e., by suitable combi-
nations of expectation values determined at zero chemical
potential. The pseudocritical line for small values of μB has
been investigated also by continuum approaches to theQCD
phase diagram (see, e.g., Refs. [17–21]).
Recently, various lattice investigations have led to a

determination of κ by analytic continuation for QCD with
physical or almost physical quark masses [22–26]. In
particular, Refs. [24,25] have provided continuum extrapo-
lated values for κ which are, respectively, κ ¼ 0.0135ð20Þ
and κ ¼ 0.0149ð21Þ. The two studies adopted a similar
discretization (stout improved staggered fermions and the
tree level Symanzik gauge action) and slightly different
setups for the quark chemical potentials: in Ref. [25], the
strangeness neutrality condition reproduced in the heavy-
ion experimental environment was enforced explicitly by
tuning the strange quark chemical potentialμs appropriately;
in Ref. [24], instead, μs was set to zerowhile checking at the
same time that its influence on κ is negligible (see also
Ref. [27]). Results obtained by analytic continuation but
adopting a different lattice discretization (HISQ staggered
fermions) have led to similar results [22,26].
Such results are typically larger than earlier results obtained

via Taylor expansion [28,29], reporting κ ∼ 0.006. In par-
ticular, Ref. [29] reported a continuumextrapolated value κ ¼
0.0066ð20Þ adopting the same discretization and the same
observables (chiral condensate) as in Refs. [23,24], i.e., a
value which is more than two standard deviations away from
the result from analytic continuation. As discussed in
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Ref. [23], only a small part of this discrepancy can be
accounted for by the different prescriptions used to determine
the dependence of Tc on μB, so that a tension remains.
The agreement between results obtained by the two

methods is a necessary requirement in order to state that
one has a full control over all systematics involved in
analytic continuation and in Taylor expansion. Therefore,
the importance of clarifying any possible tension cannot be
overestimated; indeed, efforts in this direction are already
in progress, for instance by adopting the HISQ staggered
discretization [27].
In this study, we present a new continuum extrapolation

for the curvature obtained via Taylor expansion, consider-
ing the same stout staggered discretization adopted in
Refs. [24,29]. In particular, we consider different prescrip-
tions to determine κ via Taylor expansion and the analysis
of the renormalized condensate: for fixed Nt ¼ 6, we show
that they provide consistent results; then, exploiting sim-
ulations on different values of Nt (Nt ¼ 6, 8, 10), we are
able to provide results extrapolated to the continuum limit
which is in full agreement with that obtained by analytic
continuation.
The paper is organized as follows. In Sec. II, we provide

the details regarding the lattice discretization adopted in
this study, the various prescriptions to determine κ that we
have explored and the observables involved in such a
prescription. In Sec. III, we illustrate our numerical results
and, finally, in Sec. IV, we discuss our conclusions.

II. NUMERICAL METHODS

As in our previous studies, Refs. [23,24], we have
considered a rooted stout staggered discretization of the
Nf ¼ 2þ 1 QCD partition function:

Z ¼
Z

DUe−SYM

Y
f¼u;d;s

det ðMf
st½U; μf;I�Þ1=4; ð2Þ

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
; ð3Þ

ðMf
stÞi;j ¼ amfδi;j þ

X4
ν¼1

ηi;ν
2

h
eaμfδν;4Uð2Þ

i;ν δi;j−ν̂

− e−aμfδν;4Uð2Þ†
i−ν̂;νδi;jþν̂

i
; ð4Þ

where SYM is the tree level Symanzik improved gauge
action [30,31], written in terms of the original link variables
through traces of n ×m rectangular loops,Wn×m

i;μν , while the

fermion matrix ðMf
stÞi;j is built up in terms of the two times

stout-smeared [32] links Uð2Þ
i;ν , with an isotropic smearing

parameter ρ ¼ 0.15; finally, the rooting procedure is used
to remove the residual fourth degeneracy of staggered
fermions (see Ref. [33] for a discussion of possible related

systematics.). Note that the quark chemical potentials are
treated as external sources, and are set to zero in the
simulations.
The quark mass spectrum has been chosen so as to have

two degenerate light quarks, mu ¼ md ≡ml. Standard
thermal boundary conditions in the temporal direction have
been set for bosonic and fermionic degrees of freedom. The
temperature of the system, T ¼ 1=ðNtaÞ, has been
changed, for fixed Nt, by changing the lattice spacing a
while staying on a line of constant physics [34,35],
corresponding to a pseudo-Goldstone pion mass mπ ≃
135 MeV and a strange-to-light mass ratioms=ml ¼ 28.15.

A. Physical observables used to locate Tc
and their renormalization

As in Refs. [23,24], the determination of the pseudoc-
ritical temperature Tc will be based on chiral symmetry
restoration, which is the leading phenomenon in the
presence of light quark masses. In particular, we will
consider the light quark condensate,

hψ̄ψil ¼
T
V
∂ logZ
∂ml

¼ hūui þ hd̄di; ð5Þ

where

hψ̄ψif ¼
T
V
∂ logZ
∂mf

; ð6Þ

and V is the spatial volume. The light quark condensate is
affected by additive and multiplicative renormalizations
and, as in Refs. [23,24], we consider two different
renormalization prescriptions. The first one is

hψ̄ψir1ðTÞ≡
½hψ̄ψil − 2ml

ms
hs̄si�ðTÞ

½hψ̄ψil − 2ml
ms

hs̄si�ðT ¼ 0Þ ; ð7Þ

and has been introduced in Ref. [36]: the leading additive
renormalization, which is linear in the quark mass, cancels
in the difference with the strange condensate (even if
possible additive logarithmic divergences could still be
present), while the multiplicative renormalization, being
independent of T, drops out by normalizing with respect to
quantities measured at T ¼ 0 and at the same UV cutoff.
The second definition, introduced in Ref. [29], exploits
T ¼ 0 quantities to perform the additive renormalization
and the value of the bare quark mass to take care of
multiplicative ones:

hψ̄ψir2 ¼
ml

m4
π
ðhψ̄ψil − hψ̄ψilðT ¼ 0ÞÞ: ð8Þ

The location of Tc is usually defined, in terms of the
renormalized light condensate, as the point of maximum
slope, i.e., the point where hψ̄ψir has an inflection point as
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a function of T and the absolute value of ∂hψ̄ψir=∂T
reaches a maximum. Alternatively, one can look at the peak
of the chiral susceptibility, i.e., the maximum of χψ̄ψ≡
∂hψ̄ψir=∂ml. Studies exploiting analytic continuation have
considered both definitions and then monitored the behav-
ior of Tc as a function of the imaginary baryon chemical
potential in order to determine κ. In our case, the deter-
mination of κ will be based on the matching of derivatives
with respect to T and μB computed at μB ¼ 0; the main
error source will be the statistical one, which is larger and
larger as one considers observables representing higher-
order derivatives. For this reason, we will limit ourselves to
the analysis of the renormalized chiral condensate, which is
the lowest derivative, while starting from a second-order
derivative like the chiral susceptibility would be much more
difficult.

B. Possible definitions of κ via Taylor expansion

The most natural extension to finite μB of the prescrip-
tion to locate Tc in terms of hψ̄ψir is to still look for an
inflection point, i.e., a point where ∂2hψ̄ψir=∂T2 ¼ 0.
In order to understand how Tc will move, at the lowest
order in μB, following this prescription, we need to consider
a Taylor expansion of hψ̄ψirðTÞ

hψ̄ψirðT; μBÞ ¼ AðTÞ þ BðTÞμ2B þOðμ4BÞ ð9Þ

where

AðTÞ≡ hψ̄ψirðT; 0Þ

BðTÞ≡ ∂hψ̄ψir
∂ðμ2BÞ ðT; 0Þ: ð10Þ

The prescription is then to require

0 ¼ ∂2hψ̄ψir
∂T2

ðT; μBÞ ¼ A00ðTÞ þ B00ðTÞμ2B
¼ A00ðTcÞ þ A000ðTcÞtþ ðB00ðTcÞ þ B000ðTcÞtÞμ2B; ð11Þ

where the quantities A00, B00, A000 and B000 represent second-
and third-order derivatives of AðTÞ and BðTÞ with respect
to T, t≡ T − Tc, and we have performed a lowest-order
Taylor expansion around the pseudocritical temperature at
μB ¼ 0, Tc. Solving Eq. (11) for t, one obtains

t ¼ −B00ðTcÞ
A000ðTcÞ þ B000ðTcÞμ2B

μ2B ¼ −
B00ðTcÞ
A000ðTcÞ

μ2B þOðμ4BÞ;

ð12Þ

and, finally, following the definition of κ in Eq. (1), one
obtains

κ ¼ B00ðTcÞ
A000ðTcÞ

Tc

¼
∂2
∂T2

�∂hψ̄ψirðT;μBÞ
∂ðμ2BÞ

���
μB¼0

�
jT¼Tc

∂3
∂T3 hψ̄ψirðT; 0ÞjT¼Tc

Tc: ð13Þ

From a practical point of view, Eq. (13) means that one
needs to evaluate both the renormalized condensate and its
μ2B derivative as a function of T around Tc, and that must be
done with enough precision so that, after a suitable
interpolation, one is able to compute numerically their
third- and second-order derivatives with respect to T at Tc.
As we shall see, the program above has to face the low

statistical accuracy attainable with reasonable statistics, in
particular when evaluating the μ2B-derivative and especially
on the lattices with higher values ofNt, which are necessary
to take the continuum extrapolation. For this reason,
alternative prescriptions for κ have been adopted in the
literature. For instance, in Ref. [29], the pseudocritical
temperature at finite μB is defined as the temperature where
the renormalized condensate attains the same value as at Tc
for μB ¼ 0, i.e.:

hψ̄ψirðT; μ2BÞjT¼Tcðμ2BÞ ≡ hψ̄ψirðTc; 0Þ: ð14Þ

Then, by definition, the differential dhψ̄ψi must vanish
along the curve TcðμBÞ,

dhψ̄ψir ¼ ∂hψ̄ψir
∂T

����
μB¼0

dT þ ∂hψ̄ψir
∂ðμ2BÞ

����
μB¼0

dðμ2BÞ ¼ 0;

ð15Þ

so that one obtains

κ ¼ −Tc
dTc

dðμ2BÞ
¼ Tc

∂hψ̄ψir
∂ðμ2BÞ jμB¼0;T¼Tc

∂hψ̄ψir
∂T jμB¼0;T¼Tc

: ð16Þ

The advantage of the expression in Eq. (16) with respect to
that in Eq. (13) is twofold: one needs to estimate just the
first derivative of the renormalized condensate at Tc, which
is more precise and stable against the choice of the
interpolating function than the third one, and one does
not need to know the dependence of ∂hψ̄ψir=∂ðμ2BÞ on T,
but just its value at Tc. However, the prescription is
debatable, since there is no strict reason that the condensate
should stay constant in value at Tc. However, numerical
studies at imaginary chemical potential [23] have shown
that it gives results for Tc which are compatible, within
errors, with those obtained by looking at the inflection
point.
In the following we will consider both definitions, and

refer to them as κ1, Eq. (16), and κ2, Eq. (13). As we shall
see, a detailed comparison between the two definitions will
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be possible only on Nt ¼ 6 lattices, where they will give
compatible results, while on lattices with larger Nt the
statistical errors attained for κ2 will make it practically
useless, so that our present continuum extrapolation will be
based on κ1 alone. Yet, κ1 is exactly the prescription
adopted in Ref. [29], so that a strict comparison will be
possible with the results reported there.
Notice that other prescriptions can be found in the

literature, which will not be explored in this study. For
instance, the determination reported in Ref. [28] (see also
Refs. [27,37,38]) assumes a behavior for the pseudocritical
temperature which is dictated by the critical scaling around
the possible second-order point in the Oð4Þ universality
class located at ml ¼ 0.

C. Observables needed to determine κ and setup
of chemical potentials

Apart from the renormalized chiral condensate, which
has been already defined above, the other quantity needed
for our study is its derivative with respect to μ2B. Looking at
Eqs. (7) and (8), one realizes that such a derivative is
trivially obtained combining the derivatives of the finite
temperature flavor condensates with respect to μ2B, since
zero temperature quantities are independent of μB around
μB ¼ 0. Therefore, we need to compute

∂hψ̄ψif
∂ðμ2BÞ

����
μB¼0

¼ 1

T2

∂hψ̄ψif
∂ððμBT Þ2Þ

����
μB¼0

¼ 1

T2

1

2

∂2hψ̄ψif
∂ðμBT Þ2

����
μB¼0

¼ 1

T2

1

2
ðhðn2 þ n0Þψ̄ψfi − hn2 þ n0ihψ̄ψfi

þh2nψ̄ψ 0
f þ ψ̄ψ 00

fiÞ; ð17Þ

where the relevant operators entering previous expression
are defined as

ψ̄ψf ¼ T
V
1

4
Tr½M−1

f �;

ψ̄ψ 0
f ¼ T

V
1

4
Tr½−M−1

f M0
fM

−1
f �;

ψ̄ψ 00
f ¼ T

V
1

4
Tr½2M−1

f M0
fM

−1
f M0

fM
−1
f −M−1

f M00
fM

−1
f �;

n ¼
X
f¼uds

1

4
Tr½M−1

f M0
f�;

n0 ¼
X
f¼uds

1

4
Tr½M−1

f M00
f −M−1

f M0
fM

−1
f M0

f�; ð18Þ

while M0
f and M00

f represent first and second derivatives of
the fermion matrix, defined in Eq. (4), with respect to μB,
computed at μB ¼ 0.

The way in which such derivatives, M0
f and M00

f, are
actually taken depends on the quark flavor f and specifies
our setup of quark chemical potentials. In particular, as in
Refs. [23,24,29], we set μu ¼ μd ¼ μl ¼ μB=3 and μs ¼ 0.
Therefore, for the strange flavor, we have M0

s ¼ M00
s ¼ 0,

so that ψ̄ψ 0
s and ψ̄ψ 00

s trivially vanish. Instead, for f ¼ u, d,
considering Eq. (4) and taking into account that
∂=∂μB ¼ ð1=3Þ∂=∂μl, we have

M0
fi;j

¼ ηi;4
6

½Uð2Þ
i;4 δi;j−4̂ þUð2Þ†

i−4̂;4δi;jþ4̂�; ð19Þ

M00
fi;j

¼ ηi;4
18

½Uð2Þ
i;4 δi;j−4̂ − Uð2Þ†

i−4̂;4δi;jþ4̂�: ð20Þ

All traces appearing in Eq. (18) have been computed, as
usual, by multiple noisy estimators, paying attention not to
combine the same random vectors when estimating the
product of traces in order to avoid cross-correlations.

III. NUMERICAL RESULTS

We performed numerical simulations on four different
lattices, with dimensions 163 × 6, 243 × 6, 323 × 8 and
403 × 10, and adopting the bare parameters reported in
Table I in order to stay on a line of constant physics. The
scale determination is affected by an overall systematic
error of the order of 2%–3% [34,35]; however, this is
not relevant to our final results, which are based on
the determination of dimensionless ratios of quantities
measured at the critical temperature. We have adopted
the standard rational hybrid Monte Carlo algorithm
[39–41] implemented in two different codes, one running
on standard clusters (NISSA), the other on GPUs
(OpenStaPLE [42,43]) and developed in OpenACC starting
from previous GPU implementations [44].
A total of ≈20–30 K and ≈6 K molecular dynamics

trajectories have been generated, for each value of β,
respectively, on the two coarsest lattices and on the Nt ¼ 8
lattice. On the Nt ¼ 10 lattice, the derivative of the chiral
condensate has been measured exploiting a dedicated high-
statistics simulation performed at the critical temperature
and consisting of ≈100 K trajectories, while for the values
of the chiral condensate around Tc we have relied on results
obtained in Ref. [24]. Also for the values of the chiral
condensate at zero temperature, which are needed to obtain
renormalized quantities, we have used results obtained in
previous studies [23,24]. Finally, all traces needed in our
computations [see Eq. (18)] have been estimated, respec-
tively, for the Nt ¼ 6, 8, 10 lattices, every 10, 20 and 50
trajectories by means of noisy estimators, adopting 256,
512 and 512 random vectors for each flavor and for each
configuration.
Numerical results obtained on Nt ¼ 6, 8 for the chiral

condensate and for its derivative with respect to μ2B are
reported, for both renormalization procedures, respectively,
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in Figs. 1–4. As for the derivative, we report in all cases
the dimensionless combination T2

cB ¼ T2
c∂hψ̄ψir=∂ðμ2BÞ.

Statistical errors have been estimated by a jackknife
analysis.
Reported results have been fitted in order to obtain the

quantities A0, A000, B and B00 computed at the pseudocritical
temperature needed to determine κ, where derivatives are
taken with respect to the temperature [see Eqs. (13)
and (16)]:

κ1 ¼
1

Tc

T2
cB
A0 ; κ2 ¼

1

Tc

T2
cB00

A000 : ð21Þ

In order to estimate the systematic uncertainty related to the
choice of the fitting function, we have tried differentAnsätze
which are summarized in Table II. In particular, for the
renormalized condensate we have adopted an arctangent,
A ¼ P1 þ P2atanðP3ðT − TcÞÞ, a hyperbolic tangent and a
cubic polynomial, while for its μ2B derivative we have

considered a Lorentzian function T2
cB ¼ P1

P2
2
þðT−P3Þ2, a

parabola and a cubic spline. All best-fit results for A0,
A000, T2

cB and T2
cB00 evaluated at Tc are reported in Tables III

and IV: reported errors include the systematic one related to
the choice of the fit range. Results obtained for the
pseudocritical temperature Tc are instead reported in
Table V.
In principle, the uncertainty in the determination of Tc

should contribute to the error given for A0, A000, B and B00
computed at Tc; however, this contribution turns out to be

TABLE I. List of the bare quark masses and lattice spacings
used in our simulations. Bare parameters have been chosen so as
to stay on a line of constant physics with a physical value of the
pseudo-Goldstone pion mass, interpolating results reported in
Refs. [34,35]. The strange-to-light mass ratio has been fixed to
ms=ml ¼ 28.15.

β ms a ðfmÞ Lattice

3.49 0.132 0.2556 Nt ¼ 6
3.51 0.121 0.2425 Nt ¼ 6
3.52 0.116 0.2361 Nt ¼ 6
3.525 0.113 50 0.232 97 Nt ¼ 6
3.53 0.111 0.2297 Nt ¼ 6
3.535 0.108 73 0.226 63 Nt ¼ 6
3.54 0.106 43 0.2235 Nt ¼ 6
3.545 0.104 19 0.220 39 Nt ¼ 6
3.55 0.102 00 0.2173 Nt ¼ 6
3.555 0.099 864 0.214 24 Nt ¼ 6
3.56 0.097 79 0.2112 Nt ¼ 6
3.565 0.095 750 0.208 20 Nt ¼ 6
3.57 0.093 78 0.2052 Nt ¼ 6
3.58 0.089 98 0.1994 Nt ¼ 6
3.60 0.082 96 0.1881 Nt ¼ 6, 8
3.62 0.076 68 0.1773 Nt ¼ 8
3.63 0.073 81 0.1722 Nt ¼ 8
3.635 0.072 40 0.1697 Nt ¼ 8
3.64 0.071 10 0.1672 Nt ¼ 8
3.645 0.069 78 0.1648 Nt ¼ 8
3.655 0.067 31 0.1601 Nt ¼ 8
3.66 0.066 15 0.1579 Nt ¼ 8
3.665 0.065 00 0.1557 Nt ¼ 8
3.67 0.063 90 0.1535 Nt ¼ 8
3.675 0.062 84 0.1514 Nt ¼ 8
3.68 0.061 79 0.1493 Nt ¼ 8
3.69 0.059 82 0.1453 Nt ¼ 8
3.71 0.056 24 0.1379 Nt ¼ 8
3.74 0.051 68 0.1280 Nt ¼ 10

FIG. 1. Renormalized chiral condensate hψ̄ψ r1i for Nt ¼ 6 and
Nt ¼ 8 lattices.
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negligible in most cases, apart from the 403 × 10 (and in
particular for B) where it is marginally appreciable because
of the larger uncertainty on Tc. For the determinations of Tc
and A0 on the Nt ¼ 10 lattice, we reused the data already
obtained in Ref. [24], while B has been obtained from the
single dedicated simulation performed at T ≃ Tc. Results
for A0 and B are reported. respectively, in Tables VI and
VII; the estimate for the error on BðTcÞ stemming from the
uncertainty on Tc has been based on the data available for B
as a function of T on the 243 × 6 lattice.

As it can be appreciated from Tables III and IV, the
systematic uncertainties related to the choice of the fitting
function are in a few cases comparable or larger than
statistical errors. For this reason, in order to obtain our final
estimates for κ1 and κ2, which are based on Eq. (21) and are
reported in Table VIII, we have considered the dispersion
of values corresponding to all possible combinations of
different fitting functions, and added it, when appreciable,
to the statistical error. As one can see, present statistics are
not enough to reach reliable estimates of B00 on lattices with

FIG. 2. Renormalized chiral condensate hψ̄ψ r2i for Nt ¼ 6 and
Nt ¼ 8 lattices.

FIG. 3. First derivative with respect to μ2B of hψ̄ψr1i for Nt ¼ 6
and Nt ¼ 8 lattices.
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Nt > 6, where they are affected by errors of the order
of 50%.

A. Discussion of results on Nt = 6 lattices: Finite size
effects and comparison between κ1 and κ2

Results obtained on Nt ¼ 6 for different spatial sizes
permit us to make an assessment of the relevance of finite

FIG. 4. First derivative with respect to μ2B of hψ̄ψr2i for Nt ¼ 6
and Nt ¼ 8 lattices.

TABLE II. Summary of the symbols used in the following
tables to describe the Ansatz for the fitting function.

Symbol Fit function

A Atan
T Tanh
C Cubic

L Lorentzian
P Parabola
S Spline

TABLE III. Values obtained for A0ðTcÞ and A000ðTcÞ on
lattices with Nt ¼ 6 and 8. Indexes r1 and r2 refer to the two
different definitions of the renormalized condensate. Derivatives
have been take with respect to the physical temperature, therefore
they are reported in MeV−1 and MeV−3 units, respectively, for A0
and A000.

163 × 6
Fit A0ðTcÞr1 A000ðTcÞr1 A0ðTcÞr2 A000ðTcÞr2
A −0.0261ð3Þ 2.56ð29Þ × 10−4 −0.01100ð14Þ 1.07ð12Þ × 10−4

T −0.0258ð3Þ 2.06ð24Þ × 10−4 −0.01086ð12Þ 0.87ð11Þ × 10−4

C −0.0255ð3Þ 1.59ð22Þ × 10−4 −0.01075ð13Þ 0.67ð09Þ × 10−4

243 × 6
Fit A0ðTcÞr1 A000ðTcÞr1 A0ðTcÞr2 A000ðTcÞr2
A −0.0269ð3Þ 2.85ð27Þ × 10−4 −0.01136ð11Þ 1.20ð11Þ × 10−4

T −0.0265ð3Þ 2.27ð25Þ × 10−4 −0.01116ð11Þ 0.96ð10Þ × 10−4

C −0.0265ð3Þ 1.86ð27Þ × 10−4 −0.01115ð15Þ 0.78ð10Þ × 10−4

323 × 8
Fit A0ðTcÞr1 A000ðTcÞr1 A0ðTcÞr2 A000ðTcÞr2
A −0.0226ð5Þ 1.72ð30Þ × 10−4 −0.00993ð21Þ 0.87ð15Þ × 10−4

T −0.0225ð4Þ 1.50ð26Þ × 10−4 −0.00983ð21Þ 0.74ð14Þ × 10−4

C −0.0219ð6Þ 1.07ð26Þ × 10−4 −0.00957ð28Þ 0.51ð14Þ × 10−4

TABLE IV. Values obtained for T2
cBðTcÞ and T2

cB00ðTcÞ on
lattices with Nt ¼ 6 and 8. Indexes r1 and r2 refer to the two
different definitions of the renormalized condensate. T2

cBðTcÞ is
dimensionless while T2

cB00ðTcÞ is given in MeV−2 units.

163 × 6
Fit T2

cBðTcÞr1 T2
cB00ðTcÞr1 T2

cBðTcÞr2 T2
cB00ðTcÞr2

L 0.0461(9) −5.8ð7Þ × 10−4 0.0195(4) −2.50ð29Þ × 10−4

P 0.0448(9) −3.5ð5Þ × 10−4 0.0189(4) −1.46ð21Þ × 10−4

S 0.0455(9) −4.7ð4Þ × 10−4 0.0192(4) −1.97ð16Þ × 10−4

243 × 6
Fit T2

cBðTcÞr1 T2
cB00ðTcÞr1 T2

cBðTcÞr2 T2
cB00ðTcÞr2

L 0.0487(16) −5.0ð8Þ × 10−4 0.0206(7) −2.1ð3Þ × 10−4

P 0.0479(17) −3.9ð8Þ × 10−4 0.0202(7) −1.7ð4Þ × 10−4

S 0.0485(17) −4.9ð8Þ × 10−4 0.0205(7) −2.0ð3Þ × 10−4

323 × 8
Fit T2

cBðTcÞr1 T2
cB00ðTcÞr1 T2

cBðTcÞr2 T2
cB00ðTcÞr2

L 0.044(5) −3.2ð1.8Þ × 10−4 0.0187(21) −1.3ð7Þ × 10−4

P 0.041(4) −1.6ð0.9Þ × 10−4 0.0172(18) −0.7ð4Þ × 10−4

S 0.042(6) −2.9ð2.1Þ × 10−4 0.0175(25) −1.2ð9Þ × 10−4
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size effects. For a closer comparison, in Fig. 5 we plot
together results obtained for T2

cB on the different volumes.
A mild dependence on the spatial volume is visible for
some quantities, like for instance the pseudocritical temper-
ature. However, results obtained for κ on the 163 × 6 and
243 × 6 lattices are in perfect agreement within errors, thus
confirming the small sensitivity of κ to finite size effects
already observed in studies exploiting analytic continu-
ation [23].
Regarding the comparison between κ1 and κ2, one

observes a slight tendency for κ2 to be larger than κ1;
however, this is not significant within errors, which are of
the order of 30% for κ2; therefore, the two determinations

are compatible within our present level of accuracy. Finally,
no significant difference is observed between determina-
tions obtained with the two different renormalization
prescriptions for the chiral condensate.

B. Continuum extrapolation of κ1 and comparison
with analytic continuation

A continuum extrapolation is presently possible only for
κ1, for which results are available for three different lattice
spacings, corresponding toNt ¼ 6, 8 and 10, while for κ2 we
can just say that no appreciable variations are observable
going from Nt ¼ 6 to Nt ¼ 8; however, errors for Nt ¼ 8
are too large to make this statement of any significance.
Assuming corrections linear in a2, κ1ða2Þ ¼ κcont1 þ
Oða2Þ, and since T ¼ 1

Nta
, an extrapolation to the continuum

limit for κ1 can be obtained by a best fit of the function

κðNtÞ ¼ κcont þ A
1

N2
t
: ð22Þ

The values of κ1 obtained on the 243 × 6, 323 × 8 and
403 × 10 lattices are reported in Fig. 6, where are

TABLE V. Values obtained for the critical temperature from the
fits. Reported errors take into account the systematic uncertainty
related to the choice of the fitting function and range, but not the
overall uncertainty on the determination of the physical scale,
which is of the order of 2%–3% [34,35]. Values reported for the
403 × 10 lattice are based on results reported in Ref. [24].

Lattice Tcðψ̄ψ r1Þ Tcðψ̄ψ r2Þ
163 × 6 148.5(3) 148.6(3)
243 × 6 149.1(2) 149.2(2)
323 × 8 154.4(4) 154.7(4)
403 × 10 154.7(1.6) 154.4(1.6)

TABLE VI. Values obtained for A0ðTcÞ on the 403 × 10 lattice,
based on results obtained in Ref. [24]. Units and conventions are
as in Table III.

Fit A0ðTcÞr1 A0ðTcÞr2
A −0.0231ð09Þ −0.0093ð4Þ
T −0.0226ð11Þ −0.0091ð4Þ
C −0.0215ð12Þ −0.0089ð5Þ

TABLE VII. Values obtained for T2
cBðTcÞ on the 403 × 10

lattice. The second error refers to the uncertainty in the deter-
mination of the pseudocritical temperature at μB ¼ 0.

T2
cBðTcÞr1 T2

cBðTcÞr2
0.052(6)(2) 0.0217(25)(10)

TABLE VIII. Curvature coefficient κ obtained for different
definitions and lattice sizes.

Lattice κ1ðψ̄ψr1Þ κ2ðψ̄ψr1Þ κ1ðψ̄ψ r2Þ κ2ðψ̄ψ r2Þ
163 × 6 0.0119(4) 0.016(5) 0.0119(4) 0.016(5)
243 × 6 0.0122(4) 0.015(4) 0.0122(4) 0.015(4)
323 × 8 0.0126(14) 0.014(9) 0.0121(13) 0.012(8)
403 × 10 0.0146(19) � � � 0.0154(21) � � �

FIG. 5. First derivative with respect to μ2B of the renormalized
condensate: comparison between the results obtained on the 163

and the 243 lattices for the two different definitions. Data points
have been slightly shifted horizontally to improve readability.
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also illustrated the results of the continuum extrapo-
lation, which gives back κcont1 ðψ̄ψ r1Þ ¼ 0.0147ð22Þ and
κcont1 ðψ̄ψ r2Þ ¼ 0.0144ð26Þ, with a reduced chi-squared,
respectively, 0.42 and 1.38.
As a final estimate, we quote the average value

κ1 ¼ 0.0145ð25Þ, which is in very good agreement within
errors with previous results obtained via analytic continu-
ation, in particular κ ¼ 0.0135ð20Þ from Ref. [24] where
the same discretization and numerical setup of chemical
potentials have been adopted.
Apart from the continuum limit, a direct comparison

with analytic continuation can be made separately for the
different lattice sizes and for the different definitions of κ.
This is possible in particular exploiting the results reported
in Ref. [23], where values of both κ1 and κ2 have been
reported for 163 × 6, 243 × 6 and 323 × 8 lattices and for
both renormalizations of the chiral condensate. An inspec-
tion of Table IX, where results from this work and from
Ref. [23]1 are reported together for lattices where both are
available, reveals some tension (at the level of three
standard deviations) between Taylor expansion and analytic
continuation on the coarsest lattices and for κ1, which tends
to disappear on the finer lattices, also because of the larger
statistical errors.
It is interesting that even the tension observed on Nt ¼ 6

lattices for κ1 disappears as soon as one can correctly
estimate systematic errors connected to the truncation of
the fitting polynomial in analytic continuation: just for
Nt ¼ 6 that was not possible in Ref. [23], because of the
limited amount of chemical potentials available for that

particular case. For this reason, we have performed an
additional dedicated study for the 243 × 6 lattice, based on
new simulations at imaginary chemical potential, to inves-
tigate the issue more in deep. Results are reported in the
Appendix and show a very good agreement between Taylor
expansion and analytic continuation even on coarse lattices,
where a very high precision can be achieved in the
determination of κ1 in both cases.

IV. DISCUSSION AND CONCLUSIONS

Recently, many numerical investigations have been
carried out to determine the curvature κ of the pseudoc-
ritical line in the QCD phase diagram departing from the
μB ¼ 0 axis. Estimates obtained by the Taylor expansion
technique have been generally lower than those obtained by
analytic continuation; however, since the transition is a
crossover, care is needed when comparing results obtained
by studying different observables.
In this work, the curvature of the pseudocritical line

has been studied for Nf ¼ 2þ 1 QCD, via Taylor
expansion and through numerical simulations performed
using the tree-level Symanzik gauge action and the stout-
smeared staggered fermion action. This is the same dis-
cretization adopted in Refs. [23,24,29]; moreover, we have
adopted the same observables and definitions of κ inves-
tigated in those previous studies, in order to make the
comparison closer.
In particular, the location of the phase transition has been

determined from the inflection point of the chiral con-
densate and using two renormalization prescriptions,
ψ̄ψ r1 and ψ̄ψ r2, defined, respectively, in Eqs. (7) and
(8). The curvature coefficient has been calculated using
two different definitions: the first one, κ1, adopted in
Ref. [29], assumes that the value of the renormalized
condensate stays constant at the critical temperature as
the baryon chemical potential is switched on. The second
one, κ2, which is the same adopted in Refs. [23,24], looks at
how the actual inflection point of the condensate moves as a
function of μB: it is preferable because it is does not rely on
particular assumptions; however, it involves the computa-
tion of higher-order derivatives, leading to larger numerical
uncertainties.

FIG. 6. Values obtained for κ1 on different values of Nt and
continuum extrapolation.

TABLE IX. Comparison of results obtained for different
definitions of κ in this work with those reported in Ref. [23]
via analytic continuation.

Work Lattice κ1ðψ̄ψ r1Þ κ2ðψ̄ψr1Þ κ1ðψ̄ψr2Þ κ2ðψ̄ψr2Þ
This 163 × 6 0.0119(4) 0.016(5) 0.0119(4) 0.016(5)
Work 243 × 6 0.0122(4) 0.015(4) 0.0122(4) 0.015(4)

323 × 8 0.0126(14) 0.014(9) 0.0121(13) 0.012(8)

[23] 163 × 6 0.0136(3) 0.0133(4) 0.0124(3) 0.0133(5)
243 × 6 0.0139(3) 0.0150(7) 0.0140(3) 0.0152(7)
323 × 8 0.0136(3) 0.0142(7) 0.0131(3) 0.0135(7)

1Notice that the result reported from Ref. [23] for κ1ðψ̄ψr2Þ on
the 243 × 6 is different from what actually appearing in Table IX
of Ref. [23], where 0.0147(3) is reported, instead of 0.0140(3),
because of a typo. The number reported here has been checked by
fitting directly the pseudocritical temperatures appearing in
Table VI of Ref. [23].
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Our main results can be summarized as follows:
(1) No statistically significant effect due to the renorm-

alization prescription has been observed and finite
size effects have been found to be negligible. The
values obtained for κ2 are generally higher than the
values obtained for κ1; however, the difference is
well within statistical errors, therefore the two
determinations are compatible with our present level
of accuracy.

(2) The values obtained for κ2 are compatible with those
obtained in Ref. [23] via analytic continuation;
however, present statistics are not enough to deter-
mine a reliable estimate for κ2 via Taylor expansion
on finer lattices and to perform an extrapolation to
the continuum. Overall, no discrepancy is observed
between the results obtained by Taylor expansion
and those obtained by analytic continuation also
for κ1: a possible tension present on the coarsest
lattice disappears when the systematics of analytic
continuation are properly taken into account (see
Appendix).

(3) The final continuum extrapolation that we have given
for κ1 is κcont ¼ 0.0145ð25Þ, which is in agreement
with results from analytic continuation [22,23,25]. In
Fig. 7 we report a summary of the most recent
determinations of κ obtained for QCD at or close
to the physical point: the possible tension between
analytic continuation and earlier results obtained via
Taylor expansion seems to disappear, leaving place to
a convergence of the two methods. The preliminary
results obtained in Ref. [45] via Taylor expansion

with HISQ fermions (κ ∼ 0.0120ð20Þ) point to a
similar conclusion.

Regarding the tension (slightly above 2σ) between our
present results and the results reported in Ref. [29], where
the same discretization, observables and definition of κ1
were adopted, a possible explanation could be in the
different way adopted to take the continuum limit. In
our study, for each Nt, we have determined κ1 at the
corresponding pseudocritical temperature found at μB ¼ 0,
and then we have extrapolated those values to the Nt → ∞
limit. In Ref. [29], instead, the definition of κ1 has been first
extended to a wide range of temperatures around Tc, still
based on monitoring how points (temperatures) where the
renormalized condensate assumes a fixed value change as a
function of μB; then a continuum extrapolation has been
performed over the whole range, thereafter taking the value
of this extrapolated function at Tc.
Two final considerations are in order. First, while a

proper extrapolation to the continuum limit for κ2 is
probably out of reach with current computational resources,
more statistics would allow us to improve the results and
make a closer comparison at least on Nt ¼ 6 lattices.
Second, it must be stressed that the convergence towards
a common continuum extrapolated value of κ, which is
indicated by recent determinations from analytic continu-
ation and Taylor expansion, is still limited to results
obtained only from staggered fermion simulations. It would
be important, in the future, to have confirmations also from
studies adopting different fermion discretizations.
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APPENDIX: DETAILED COMPARISON IN A
SPECIFIC CASE

This Appendix is dedicated to a more detailed compari-
son between analytic continuation and Taylor expansion on
the 243 × 6 lattice, where a tension (at the level of three
standard deviations) emerges for κ1 between the results of
the present study and those reported in Ref. [23] (see
Table IX).
A possible cause of this tension could be the uncorrect

estimate of systematic effects. One of the major sources of
systematic errors in analytic continuation is related to the
truncation of the polynomial used to fit the observed
dependence of Tc on the imaginary light quark chemical
potential, μl ¼ iμl;I . For small values of the chemical
potential, Tcðμl;IÞ is expected to be a purely quadratic
function of μl;I, while higher order corrections are expected
to show up at larger chemical potentials,

FIG. 7. Curvature coefficient κ: comparison with previous
determinations. From the left to the right: estimate by this work,
Refs. [29,27,28,23,22,25]. Bars marked with circles and triangles
indicate that estimates have been obtained, respectively, by
Taylor expansion and analytic continuation. More precisely,
the red, magenta, blue, cyan and green colors indicate that the
estimate has been obtained, respectively, by Taylor expansion þ
chiral condensate, Taylor expansion þ chiral susceptibility,
analytic continuationþ chiral condensate, analytic continuationþ
chiral susceptibility and analytic continuationþ combined analy-
sis of various observables.
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Tcðμl;IÞ ¼ Tcð0Þð1þ 9κ1μ̂
2 þ c4μ̂4 þOðμ̂6ÞÞ; ðA1Þ

where2 μ̂≡ μl;I=Tcðμl;IÞ. A correct estimate of κ1 requires
us to have higher-order corrections under control; however,
in order to do so, one needs a sufficient number of
determinations of Tcðμl;IÞ: that was the case in
Refs. [23,24] only for Nt ≥ 8 lattices (see in particular
the discussion about systematic effects reported in
Ref. [24]) but not for Nt ¼ 6, where only two values of
the imaginary chemical potential (apart from μl;I ¼ 0) were
explored, so that a fit with c4 ≠ 0 was not possible.
In Fig. 8, we report a set of determinations of Tc for

different values of μ̂ obtained on the 243 × 6 lattice and
adopting the same criterion to locate Tc used to define κ1,
i.e., looking at the temperature for which the renormalized
chiral condensate (we have considered in particular hψ̄ψir2)
achieves the same value found at Tcð0Þ. The black circles
reported for the largest values of the chemical potential
(μ̂=π ¼ 0.24 and 0.275) are those already present (apart
from μ̂ ¼ 0) in Ref. [23]; the additional determinations at
intermediate values of μ̂ are the result of new numerical
simulations that we have performed to improve the com-
parison with Taylor expansion for this particular lattice.
If one tries a best fit according to Eq. (A1) using only the

original data of Ref. [23], one is forced to set c4 ¼ 0 (i.e., to
neglect quartic corrections) in order to have at least one
degree of freedom for the best fit: nevertheless, the
quadratic fit is good with a reasonable χ̃2 ∼ 1, leading to
the unlucky illusion that quartic terms can indeed be
neglected and yielding the value κ1 ¼ 0.0140ð3Þ already
reported in Table IX).

However, when one considers the whole set of data
reported in Fig. 8, a purely quadratic fit works badly
(χ2=d:o:f: ≃ 20=6) and the need to restrict the fit to a range
of smaller chemical potentials, or rather to include quartic
corrections, emerges clearly. In particular, a purely quad-
ratic fit works well only when considering μ̂ ≤ 0.155,
yielding κ1 ¼ 0.0121ð5Þ with χ2=d:o:f: ≃ 1.4=2, while a
fit to the whole set of data including quartic corrections
leads to κ1 ¼ 0.0120ð5Þ with χ2=d:o:f: ≃ 3.5=5. In both
cases, the agreement with the Taylor expansion result,
κ1 ¼ 0.0122ð4Þ, is fully recovered.
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