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We consider measurement of the leading irrelevant scaling exponent γ�g , given by the slope of the beta
function, at the fixed point of SU(2) gauge theory with six or eight flavors. We use the running coupling
measured using the gradient flow method and perform the continuum extrapolation by interpolating the
measured beta function. We study also the dependence of the results on different discretization of the flow.
For the eight flavor theory we find γ�g ¼ 0.19ð8Þþ0.21

−0.09 . Applying the same analysis also for the six flavor

theory, we find γ�g ¼ 0.648ð97Þþ0.16
−0.1 consistently with the earlier analysis.

DOI: 10.1103/PhysRevD.98.054503

I. INTRODUCTION

One of the basic goals of beyond standard model lattice
gauge theory is to establish the existence of the slope of
beta-functions at the infrared fixed point (IRFP) of gauge
theories with sufficiently large number of flavors and to
determine its properties. For recent reviews see [1–3].
A much studied case is SU(2) gauge theory with

fermions in the fundamental representation [4–9]. While
the upper edge of the conformal window is robust, as the
asymptotic freedom is lost at Nf ¼ 11, a consistent picture
of the extent of the conformal window has only recently
emerged: simulations of the 8 flavor theory have shown the
existence of a fixed point [9] and similarly the 6 flavor case
[10]. Theories with Nf ¼ 4 and Nf ¼ 2 are expected to
break chiral symmetry [6]. Another benchmark case, where
the existence of a fixed point has been established, is
SU(2) gauge theory with two Dirac fermions in the adjoint
representation [11–25].
In this paper we analyze further SU(2) gauge theory with

eight or six flavors in the fundamental representation. We
use the data generated in [9,10]. For this data the extensive
analysis of [9,10] demonstrated the existence of a fixed
point and we do not redo this analysis here. Rather, we
focus on the measurement of critical exponent γ�g, given by
the slope of the β-function at the IRFP. For the first time we

determine this scheme independent observable in the eight
flavor theory, while the earlier results on the six flavor
theory serve as a check on our methodology.
The slope of the β-function is directly measurable from

the step scaling function of the coupling. We obtain γ�g ¼
0.19ð8Þþ0.21

−0.09 in the eight flavor theory, and similar analysis
applied to the six flavor theory yields γ�g ¼ 0.648ð97Þþ0.16

−0.1 ,
consistent with the earlier analysis.
This paper is structured as follows:We first discuss briefly

the lattice implementation: in Sec. II, and themeasurement of
the coupling in Sec. III. Then we present our results on the
measurement of γ�g for the six and eight flavor theories in
Sec. IV. We end with conclusions and outlook in Sec. V.

II. LATTICE IMPLEMENTATION

We extend our analysis of the data generated in the
studies [9,10]. As the raw data and algorithmic details
about the model are available in these papers, the dis-
cussion here will be in a form of brief summary.
The lattice formulations uses HEX-smeared [26] clover

improved Wilson fermions together with gauge action that
mixes the smeared and unsmeared gauge actions with
mixing parameter cg ¼ 0.5:

S ¼ ð1 − cgÞSGðUÞ þ cgSGðVÞ þ SFðVÞ þ cSWδSSWðVÞ;

where the V and U are the smeared and unsmeared gauge
fields respectively. This mixing of the smeared and
unsmeared gauge actions helps to avoid the unphysical
bulk phase transition within the interesting region of the
parameter space [27] enabling simulations at larger cou-
plings. In the fermion action, we set the Sheikholeslami-
Wohlert coefficient to the tree-level value cSW ¼ 1, which

*viljami.leino@helsinki.fi
†kari.rummukainen@helsinki.fi
‡kimmo.i.tuominen@helsinki.fi

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 054503 (2018)

2470-0010=2018=98(5)=054503(9) 054503-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.054503&domain=pdf&date_stamp=2018-09-04
https://doi.org/10.1103/PhysRevD.98.054503
https://doi.org/10.1103/PhysRevD.98.054503
https://doi.org/10.1103/PhysRevD.98.054503
https://doi.org/10.1103/PhysRevD.98.054503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


is the standard choice for smeared clover fermions
[20,26,28]. In earlier studies [6,29] we have verified that
this value is very close to the true nonperturbatively fixed
cSW coefficient and cancels most of the OðaÞ errors.
We use Dirichlet boundary conditions at the temporal

boundaries x0 ¼ 0, L, as in the Schrödinger functional
method [30–33], by setting fermion fields to zero and
gauge link matrices to unity U ¼ V ¼ 1. The spatial
boundaries are periodic. These boundary conditions allow
us to tune the fermion mass to zero. In practice, the hopping
parameter κcðβLÞ is tuned at lattices of size 244, so that the
absolute value of fermion mass determined via axial ward
identity is less than 10−5. This critical hopping parameter
κcðβLÞ is then used on all the lattice sizes.
The simulations are run using the hybrid Monte Carlo

algorithm with 2nd order Omelyan integrator [34,35] and
chronological initial values for the fermion matrix inver-
sions [36]. We reach acceptance rate that is larger than 85%.
For the analysis considered in this paper, we use lattices
of volumes ðL=aÞ4 ¼ 104; 124; 164; 184; 204; 244; 304; 324,
where the L ¼ 18, 30 are only used for Nf ¼ 6 results and
L ¼ 32 is only available in the Nf ¼ 8 analysis. The
difference in available lattice sizes between the two cases
is caused by the fact that we used step scaling step s ¼ 2 for
Nf ¼ 8 in [9] and s ¼ 3=2 for Nf ¼ 6 in [10]. The bare
couplings βL ≡ 4=g20 vary from 8 to 0.5 for Nf ¼ 6 and to
0.4 for Nf ¼ 8. For all combinations of L=a and βL, we
generate between ð5 − 100Þ · 103 trajectories.

III. GRADIENT FLOW COUPLING CONSTANT

The running coupling is defined by the Yang-Mills
gradient flow method [37–39]. In the lattice flow equation
the unsmeared lattice link variable U is evolved using the
tree-level improved Lüscher-Weisz pure gauge action.
The coupling at scale μ ¼ 1=

ffiffiffiffi
8t

p
[40] is defined via the

energy measurement as

g2GFðμÞ ¼ N −1t2hEðtÞijx0¼L=2;t¼1=8μ2 ; ð1Þ

where a is the lattice spacing. The renormalization factor
N has been calculated in Ref. [41] for the Schrödinger
functional boundary conditions so that g2GF matches
continuum M̄S coupling in the tree level of perturbation
theory. Since the Schrödinger functional boundary con-
ditions break the translation invariance in time direction,
we measure the coupling only at central time slice
x0 ¼ L=2. We measure the energy density EðtÞ using
both the clover and plaquette discretizations.
The flow time t at which the gradient flow coupling

is evaluated is arbitrary and defines the renormalization
scheme. However, it is useful to link the lattice and
renormalization scales with a dimensionless parameter ct
so that the relation μ−1 ¼ ctL ¼ ffiffiffiffi

8t
p

is satisfied [41,42]. In
Ref. [41] it is proposed, that for the Schrödinger functional

boundary conditions the choice ct ¼ 0.3–0.5 yields rea-
sonably small statistical variance and cutoff effects. For
both the eight [9] and six flavor cases [10] we did full
analysis within this range of ct and found universal
behavior compatible with the existence of a fixed point
independently of the value of ct. Since we know from these
previous studies [9,10] that the ct has a little effect on the
measurement of the scheme independent quantities, we use
the same choices for ct in this study as we reported our final
results in Refs. [9,10]. We choose ct ¼ 0.3 for the six flavor
theory and ct ¼ 0.4 for the eight flavor theory.
In the earlier studies [9,10], we reduced the Oða2Þ

discretization effects by using the τ0-correction method
[43], that modifies the Eq. (1) by measuring the energy
density at flow time Eðtþ τ0a2Þ. The τ0 was tuned by hand
to remove most order Oða2Þ effects. Since the discretiza-
tion effects grow with the coupling, we made the τ0
function of the gradient flow coupling g2GF; see [9,10]
for the details of this implementation.
In the present work we would like to investigate an

alternative method to reduce the Oða2Þ correction. In
Ref. [44] it is noted that as the different discretizations
have differentOða2Þ behavior, it is possible to combine two
discretizations so that the Oða2Þ effects cancel each other.
Combining the gradient flow coupling measurements done
with the plaquette and clover discretizations, we therefore
get

g2GF ¼ N −1t2½ð1 − XÞhECloverðtÞi þ XhEPlaqðtÞi�; ð2Þ

where mixing coefficient X can in principle be chosen
freely, but the perturbative results for periodic boundaries
from Refs. [45,46] suggest value of X ¼ 1.25 for our
choice of discretizations. We will investigate the depend-
ence of the results on the value of the mixing parameter X.
Since the τ0-correction was optimized for the whole data

and depended on the measured coupling, it naturally gives
more fine tuned correction. On the other hand, in this paper
we are interested only on the quantities at the IRFP so the
data does not have to be perfectly improved at small
couplings. Also, we will do bulk of our analysis with the
unimproved X ¼ 0 and then only use the parameter X to
study how the different discretizations affect the results.

IV. LEADING IRRELEVANT CRITICAL
EXPONENT

Since, based on earlier results of [9,10], we know that the
lattice configurations we have available for our analysis
imply the existence of a fixed point, we now turn to the
details of the analysis relevant for the present work. We will
use two different methods to extract the leading critical
exponent: First, we determine the slope of the beta function
directly from the results on the step scaling function in six
and eight flavor theory. Second, we apply the finite scaling
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method developed in Refs. [47–50]. The first method is
robust, while the second method is more uncertain as it can
be applied only in the vicinity of the fixed point whose
location must be known from the outset. Since we know the
location of the fixed point, the second method can be
applied, but it only serves as a consistency check of the
more robust results of the first method.

A. Step scaling method

The leading irrelevant exponent of the coupling γg is
defined as the slope of the β-function. On the lattice the
evolution of the coupling is measured with the step scaling
function

Σðg2; L=a; sÞ ¼ g2GFðg20; sL=aÞjg2GFðg20;L=aÞ¼g2 ; ð3Þ

σðg2; sÞ ¼ lim
L=a→∞

Σðg2; L=a; sÞ: ð4Þ

In the vicinity of the IRFP, where β-function is small, the
step scaling function, β-function and γ�g can be related as
follows:

βðgÞ ¼ μ
dg
dμ

≈ γ�gðg − g�Þ ð5Þ

≈β̄ðgÞ≡ g
2 lnðsÞ

�
1 −

σðg2; sÞ
g2

�
: ð6Þ

Here g� is the coupling at the IRFP. InRef. [10]we calculated
the step scaling function for Nf ¼ 6 by interpolating the
measured couplings with 9th order polynomial, which led to
continuum extrapolation shown in Fig. 1 for ct ¼ 0.3. In this
case the final form of the function near the fixed point was
smooth enough that we managed to measure the leading
irrelevant exponent γ�g ¼ 0.648ð97Þþ0.16

−0.1 , where the first set
of errors implies the statistical errors with the parameters
used in Ref. [10], and the second set of errors gives the

variance between all measured discretizations. When the
values of ct were varied, the γ�g measurements remained
consistent with each other, within the errors, indicating the
scheme independence of this quantity. In Fig. 1 we also
present the perturbative MS results up to 5-loop level [51].
Only the 2-loop result is scheme independent and rest of the
curves are shown as a reference. As the 5-loop MS does not
feature an IRFP and evolves mostly outside the figure, we
will not plot it in any future figures.
However, we can also directly interpolate the finite

volume β̄ðgÞ-function (6) [where σðg2; sÞ is substituted
with Σðg2; L=a; sÞ], instead of the measured couplings.
Similar ideas have previously been implemented in
Refs. [24,25,52]. Not only does this make the continuum
limit smoother around the fixed point, but allows to limit
the fit to a region near the IRFP. We show three different fits
in Fig. 2 for ct ¼ 0.3 and X ¼ 0, which corresponds to the

FIG. 1. The continuum extrapolated β-function of the six flavor
theory. The gradient flow coupling has been measured with ct ¼
0.3 and clover discretization. The τ0 improvement has been used
to reduce the Oða2Þ errors.

FIG. 2. From top to bottom: The Nf ¼ 6 linear, quadratic, and
quartic fits to associated ranges of data with X ¼ 0 and ct ¼ 0.3.
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unimproved clover measurements in [10]. We use three
different polynomial fit functions: linear, quadratic, and
quartic, and for each fit choose the number of points that
minimizes the χ2=d:o:f. While Fig. 2 shows the X ¼ 0 -
case, we do similar fits for−1.5 ≤ X ≤ 1. Depending on the
value of X the χ2=d:o:f value varies between 0.5 and 2.5.
In Fig. 3 we show the continuum limit of β̄ðg�Þ at

different values of the mixing parameter X, assuming
discretization errorsOðða=LÞ2Þ. The top and bottom panels
correspond, respectively, to the values gGF ¼ 3 and gGF ≈
g� ≈ 3.8 of the coupling. For gGF ¼ 3 the χ2=d:o:f varies
between 0.5 and 2 depending on the X and for the gGF ¼
3.8 the χ2=d:o:f varies between 2 and 4 depending on the X.
From the figure we can see that the continuum limit

remains stable with respect to the variations of the param-
eter X. At weaker coupling the values below X ¼ −0.5 have
reduced a2-effects, while near the fixed point the depend-
ence on X becomes less pronounced.
In Fig. 4 we show the location of the IRFP as a function of

the mixing parameter X and for different fits. The existence
and the location of the IRFP inNf ¼ 6 theory agreeswith our
previous measurement [10], g2� ¼ 14.5ð3Þþ0.41

−1.38 , within the
error bounds indicating the variance between different
discretizations shown with the dotted horizontal lines in
the figure and corresponding to the second set of errors in
the numerical result quoted above. While all the chosen
interpolations agreewith the previous measurement, we note

that the linear fit seems to have stronger X dependence than
higher order polynomials. This is most likely caused by the
sparsity of the points around the fixed point. Since the
quadratic fit seems to give most consistent results with
previous measurement, has small X dependence, and has
smaller errors than quartic fit, we choose it as ourmain result.
As the X dependence seems to be small, we will use X ¼ 0
as our default choice.
For the γ�g measurement, we reproduce the value of γ�

obtained in the original analysis in [10]. Similarly, the
results of γ�g measurements are shown in Fig. 5. Using the
quadratic fit with X ¼ 0 we get γ�g ¼ 0.66ð4Þþ0.25

−0.13 , where
the second set of errors include the variance in both X and
between different interpolation functions. This is in agree-
ment with the result γ�g ¼ 0.648ð97Þþ0.16

−0.1 obtained earlier
in [10].
In Ref. [9] we measured the running coupling forNf ¼ 8

by interpolating the couplings with rational ansatz, where

FIG. 3. The continuum limit of the β-function at g ¼ 3 (top)
and in the vicinity of the IRFP g� ¼ 3.8 (bottom); in six flavor
theory, for different choices of the discretization mixing param-
eter X using the quadratic fit.

FIG. 4. Location of the IRFP as a function of the mixing
parameter X at for linear (circles), quadratic (triangles) and
quartic (squares) fits. The black lines show the reported result
from [10] with its statistical errors, and the gray dotted lines show
the variance between different discretizations in [10].

FIG. 5. The scaling exponent γ�g for the six flavor theory with
linear (circles), quadratic (triangles), and quartic (squares) fits to
different ranges of data in the vicinity of IRFP. The black lines
show the reported result from [10] with its statistical errors, and
the gray dotted lines show the variance between different
discretizations in [10]. The orange dashed line shows the scheme
independent large-Nf perturbative result [53,54].
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the numerator was 7th order polynomial and the denom-
inator a 1st order polynomial, and then taking the con-
tinuum limit. This continuum limit, together with the raw
τ0-corrected data, is shown in the Fig. 6. The interpolation
function was chosen by extensive statistical tests to give
best fit to the whole data. While we were sure to check the
existence of the IRFP within the reported errors, the chosen
fit function develops a curvature at the fixed point, which
renders a reliable measurement of γ�g impossible. Again, we
show the M̄S results up to 5-loop order, but will drop the
5-loop curve from future figures, as the theory does not
have an IRFP at this level of loop expansion.
On the basis of the results in six flavor theory, we now

directly interpolate the raw β-function instead of the raw
couplings also in the Nf ¼ 8 case. Again we perform the
linear, quadratic, and quartic fits for the regions of data
where these fit ansatz give the best χ2=d:o:f. These fits,
together with their continuum limits, are shown in Fig. 7.
Similarly as in the six flavor case studied above, in Fig. 8

we show the continuum limit of β̄ðg�Þ near the IRFP g� ∼
2.8 at different mixing parameters X, assuming discretiza-
tion errors Oðða=LÞ2Þ in the eight flavor theory. From the
figure we can see that the continuum limit remains stable
with respect to the variations of the parameter X, but clearly
values around X ∼ −0.5 have reduced a2-effects as the
slope is small. On the other hand, we do not observe good
scaling with the value X ¼ 1.25 as suggested by perturba-
tion theory [46]. The quality of the fit is very good near the
IRFP, as χ2=d:o:f varies between 0.1 and 0.5 depending on
the mixing parameter X.
In Fig. 9 we show the location of the IRFP as a function

of the mixing parameter X and for different fits. Compared
with the earlier analysis [9], g2� ¼ 8.24ð59Þþ0.97

−1.64 , the exist-
ence and location of the IRFP does not change when the
methods discussed in this paper are implemented: all
interpolation functions give results consistent with the
bounds given by the variance between different discretiza-
tions and shown by the dashed lines in the figure and

FIG. 6. The continuum extrapolated β-function of the eight
flavor theory. The gradient flow coupling has been measured with
ct ¼ 0.4 and clover discretization. The τ0 improvement has been
used to reduce the Oða2Þ errors.

FIG. 7. From top to bottom: The Nf ¼ 8 linear, quadratic, and
quartic fits to associated ranges of data with X ¼ 0 and ct ¼ 0.4.

FIG. 8. The continuum limit of the β-function at the IRFP in
eight flavor theory, for different choices of the discretization
mixing parameter X using the quadratic fit.
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corresponding to the second set of errors in the numerical
result quoted above. All the interpolation functions have
very small X dependencies, and therefore we again choose
the X ¼ 0 as our reference value.
Similarly, the results for the γ�g measurement are shown

in Fig 10. The upper panel shows the results for different
fits at ct ¼ 0.4. The scheme independent large-Nf pertur-
bative 4-loop result γ� ≈ 0.25 [53,54] is shown by the
dashed black line.1 We observe large errors in the result
from the linear interpolation. This error is caused by the
slight curve at the fixed point evident in Fig. 7. Because of
these large errors, we quote the quadratic fit as our main
result and measure γ�g ¼ 0.19ð8Þþ0.21

−0.09 , with the first set of
errors being the statistical errors of quadratic fit and the
second set of errors give the variance between different
choices of parameter X and interpolation functions. In order
to check the scheme independence of this results, we show
in the lower panel of the Fig. 7 the result for different values
of scheme parameter ct for the quadratic fit and X ¼ 0. We
measure γ�g ¼ 0.16ð4Þ for the ct ¼ 0.45 case and γ�g ¼
0.2ð1Þ for the ct ¼ 0.35 case. Overall, all the fits when the
X is between −0.5 and 0.5 are in agreement with each other
and the scheme independent result.

B. Finite-size scaling method

The results obtained in the previous subsection rely on
the a2-scaling of the lattice observables. Near the IRFP this
scaling can be modified by nontrivial scaling exponents. If
these scaling exponents remain small near the infrared fixed
point, we can assume that the power counting argument
holds and cutoff effects dominated by dimension 6 oper-
ators decrease with the power of lattice spacing a. This can
modify the a2-scaling, which relies on Symanzik improve-
ments around the Gaussian UV fixed point. Since we
checked our continuum limit with multiple different a2

scalings (by varying X), and since the results hold between
discretizations and varying ct, we argue that the scaling
violation is small and the continuum limit is robust.
In order to check the consistency of the a2-scaling in the

continuum limit, we also measure the leading irrelevant
exponent using a finite-size scaling method developed in
Refs. [47–50]. In the close proximity of the IRFP, by
integrating the β-function, we obtain a scaling relation
between lattices of size Lref and L [49]:

g2GFðβ; LÞ − g2� ¼ ½g2GFðβ; LrefÞ − g2��
�
Lref

L

�
γ�g
: ð7Þ

This equation relies on the evolution of the coupling
towards the fixed point as the lattice size is increased from
Lref to L. Hence, it cannot be used exactly at the IRFP
where there is no evolution and g2GF − g� ∼ 0.
Again, we start with the analysis of Nf ¼ 6 theory. We

applied this method in Ref. [10] for the Nf ¼ 6 model and
obtained the fit presented in Fig. 11. The figure shows the L
dependence of the fit to function (7) and the final
measurement of γ�g in six flavor theory for two different
values of Lref=a ¼ 18 and 20. We use a polynomial
interpolation to the τ0-corrected measurements and choose
the IRFP to be at the measured value g2� ¼ 14.5ð3Þþ0.41

−1.38 .
The lattice sizes are varied between Lref and 30. The dashed

FIG. 9. Location of the IRFP in Nf ¼ 8 theory at different
mixing parameter X and different fit ansatz. The black lines
correspond to the statistical errors and the gray lines give the
variance between discretizations from [9].

FIG. 10. γ�g for the eight flavor theory, measured at different
values of X for top: different fit ansatz and for bottom: different
values of ct with quadratic fit. The dashed line shows the scheme
independent large-Nf perturbative result γ�g ≈ 0.25.

1The 5 loop result γ� ≈ 0.243 is almost indistinguishable from
the 4-loop one.
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lines around the shaded bands show the variation of the
result when g2� is varied within its statistical errors.
Since the method breaks down at the fixed point, where

g2GF − g� ∼ 0, we quote the maximum value as the most
probable γ�g measurement with this method. This is not
reliable measurement of γ�g, but offers a consistency check
for our earlier result from the slope of the β-function.
Furthermore, this method assumes vanishing discretiza-

tion artifacts and thus it can only be used in the region of
parameter space that is close to continuum (i.e., large L)
and where the lattice artifacts are small. In order to check
the dependence on the lattice artifacts, we redo the fit to
Eq. (7) with different values of the mixing parameter X.
We take the maximum value to be the most probable
measurement of the γ�g and show our results in the Fig. 12.
Here the open symbols show the maximum value of γ�g at
each X obtained with the finite size scaling method. We
observe that this method is indeed sensitive to the a2-
effects. Not only does the measurement of γ�g depend on the
value of X, but we cannot even get a nonzero result with
unimproved data X > 0.1. The measurements in the region
X < −0.5, with small a2-scaling, we get results that agree
with the τ0-corrected result in Fig. 11. Overall, for X <
−0.5 this analysis yields results consistent with the earlier
analysis [10] and also with the theoretical scheme inde-
pendent result [54].

Finally, we show similar results for the Nf ¼ 8 theory.
Since this method is very sensitive on a2-effects and the τ0-
correction most consistently improves the data for the full
range of measured couplings, we will do the fit to Eq. (7)
using the results from [9] with τ0-correction, ct ¼ 0.4,
Lref=a ¼ 16 and β between 0.4 and 0.7. This fit is shown
in Fig. 13.
In Fig. 14 we show the value of γ�g obtained by the finite

size scaling method in the eight flavor theory. In the figure
the horizontal red lines correspond to the value γ�g ¼
0.28ð12Þ obtained from the slope of the β-function at
the fixed point and the black line corresponds to the scheme
independent result γ�g ¼ 0.25. To obtain the finite size
scaling result we use Lref ¼ 16 or 20 and vary the lattice
sizes between Lref and 32. Rational interpolation of the
τ0-corrected measurements is used and the measured fixed
point value g2� ¼ 8.24ð59Þþ0.97

−1.64 . We observe that with
Lref=a ¼ 16 this method gives results consistent with the
earlier measurement with the slope of the β-function, while
the Lref=a ¼ 18 gives a result slightly smaller.
Again, we check the dependence on a2-effects by redoing

the analysiswithout the τ0-correction and varying themixing
parameterX. TheX-dependence of γ�g is shown inFig. 15.We
observe that for the eight flavor case, the a2 dependence is
even stronger than for the six flavor case, which renders this

FIG. 11. Top: Fit to function (7) for measured couplings
gGFðβL; LÞ with τ0-correction at βL ¼ 0.55…0.8 using
Lref=a ¼ 18. Bottom: The γ�g with the finite size scaling method
for Nf ¼ 6. The red lines indicate the result from the slope of the
β-function, γ�g ¼ 0.648ð97Þþ0.16

−0.1 .

FIG. 12. The dependence on X of the maximum value of γ�g
obtained with the finite scaling method. Lref=a ¼ 16.

FIG. 13. Fit to function (7) for measured couplings g2GF with τ0-
correction at β ¼ 0.4…0.7 at ct ¼ 0.4 using Lref=a ¼ 16.
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method unreliable. With the mixing parameter within X ¼
−0.2… − 1.5 we observe results consistent with the γ�g
measured from the slope of β-function.

V. CONCLUSIONS AND OUTLOOK

We have studied the properties of the IRFP of SU(2)
lattice gauge theory with 6 or 8 fermions in the fundamental
representation. The existence of IRFP in these theories has

been established in earlier work [9,10], and in this paper we
focused on determination of the leading irrelevant critical
exponent, γ�g in these two theories. For the first time, we
obtain in the eight flavor theory the result γ�g ¼ 0.19ð8Þþ0.21

−0.09 .
This result is compatible with the scheme independent large
Nf perturbative result ≈0.243 obtained in [53,54]. For a
detailed comparisonof the scheme independent large-Nf and
M̄S results we refer the reader to Table I. We also studied the
robustness of the results with respect to different interpola-
tions used in the analysis.
Furthermore, we have shown that the methodology we

have applied here is consistent with the earlier analysis of
the six-flavor theory. In this paper we obtained the result
γ�g ¼ 0.66ð4Þþ0.25

−0.13 using a quadratic fit to the β-function
near the IRFP. This result was shown to be very stable with
respect to the discretization mixing parameter in the
definition of the gradient flow. The result is also consistent
with the earlier result γ�g ¼ 0.648ð97Þþ0.16

−0.1 in [10] and
hence also with the analytic results of [53,54]. Again,
the perturbative results are presented in Table I.
Our results indicate the emergence of a consistent picture

of strong coupling features of SU(2) gauge theory inside
the conformal window.

ACKNOWLEDGMENTS

This work is supported by the Academy of Finland
Grants No. 308791 and No. 310130. V. L. acknowledges
support from the Jenny and Antti Wihuri foundation.

[1] C. Pica, Proc. Sci. LATTICE2016 (2016) 015 [arXiv:1701
.07782].

[2] D. Nogradi and A. Patella, Int. J. Mod. Phys. A 31, 1643003
(2016).

[3] T. DeGrand, Rev. Mod. Phys. 88, 015001 (2016).
[4] H. Ohki, T. Aoyama, E. Itou, M. Kurachi, C. J. D. Lin, H.

Matsufuru, T. Onogi, E. Shintani, and T. Yamazaki, Proc.
Sci. LATTICE2010 (2010) 066 [arXiv:1011.0373].

[5] F. Bursa, L. Del Debbio, L. Keegan, C. Pica, and T. Pickup,
Phys. Lett. B 696, 374 (2011).

[6] T. Karavirta, J. Rantaharju, K. Rummukainen, and K.
Tuominen, J. High Energy Phys. 05 (2012) 003.

[7] M. Hayakawa, K. I. Ishikawa, S. Takeda, M. Tomii, and N.
Yamada, Phys. Rev. D 88, 094506 (2013).

[8] T. Appelquist, R. Brower, M. Buchoff, M. Cheng, G.
Fleming, J. Kiskis, M. Lin, E. Neil, J. Osborn, C. Rebbi
et al., Phys. Rev. Lett. 112, 111601 (2014).

[9] V. Leino, J. Rantaharju, T. Rantalaiho, K. Rummukainen,
J. M. Suorsa, and K. Tuominen, Phys. Rev. D 95, 114516
(2017).

FIG. 14. The γ�g with the finite size scaling method for Nf ¼ 8.
The red lines indicate the result from the slope, γ�g ¼ 0.28ð12Þ,
and the black line shows the scheme invariant estimate.

FIG. 15. The dependence on X of the maximum value of γ�g
obtained with the finite scaling method. Lref=a ¼ 16.

TABLE I. Perturbative values for γ�g at 2- to 5-loop level,
denoted with γ2…γ5. The subscript RS refers to the scheme
independent large Nf calculation by Ryttov and Shrock [53,54],
and the results without RS are M̄S results by Herzog et al. [51].
At 5-loop level the M̄S result does not have an IRFP.

Nf γ2;RS γ3;RS γ4;RS γ5;RS γ2 γ3 γ4

6 0.499 0.957 0.734 0.6515 6.06 1.62 0.974
8 0.180 0.279 0.250 0.243 0.4 0.3181 0.2997

LEINO, RUMMUKAINEN, and TUOMINEN PHYS. REV. D 98, 054503 (2018)

054503-8

http://arXiv.org/abs/1701.07782
http://arXiv.org/abs/1701.07782
https://doi.org/10.1142/S0217751X1643003X
https://doi.org/10.1142/S0217751X1643003X
https://doi.org/10.1103/RevModPhys.88.015001
http://arXiv.org/abs/1011.0373
https://doi.org/10.1016/j.physletb.2010.12.050
https://doi.org/10.1007/JHEP05(2012)003
https://doi.org/10.1103/PhysRevD.88.094506
https://doi.org/10.1103/PhysRevLett.112.111601
https://doi.org/10.1103/PhysRevD.95.114516
https://doi.org/10.1103/PhysRevD.95.114516


[10] V. Leino, K. Rummukainen, J. M. Suorsa, K. Tuominen,
and S. Tähtinen, Phys. Rev. D97, 114501 (2018).

[11] A. J. Hietanen, J. Rantaharju, K. Rummukainen, and K.
Tuominen, J. High Energy Phys. 05 (2009) 025.

[12] A. J. Hietanen, K. Rummukainen, and K. Tuominen, Phys.
Rev. D 80, 094504 (2009).

[13] L. Del Debbio, A. Patella, and C. Pica, Phys. Rev. D 81,
094503 (2010).

[14] S. Catterall, J. Giedt, F. Sannino, and J. Schneible, J. High
Energy Phys. 11 (2008) 009.

[15] F. Bursa, L. Del Debbio, L. Keegan, C. Pica, and T. Pickup,
Phys. Rev. D 81, 014505 (2010).

[16] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,
Phys. Rev. D 80, 074507 (2009).

[17] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,
Phys. Rev. D 82, 014510 (2010).

[18] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,
Phys. Rev. D 82, 014509 (2010).

[19] F. Bursa, L. Del Debbio, D. Henty, E. Kerrane, B. Lucini, A.
Patella, C. Pica, T. Pickup, and A. Rago, Phys. Rev. D 84,
034506 (2011).

[20] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 83,
074507 (2011).

[21] A. Patella, Phys. Rev. D 86, 025006 (2012).
[22] J. Giedt and E. Weinberg, Phys. Rev. D 85, 097503 (2012).
[23] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,

Phys. Rev. D 93, 054505 (2016).
[24] J. Rantaharju, T. Rantalaiho, K. Rummukainen, and K.

Tuominen, Phys. Rev. D 93, 094509 (2016).
[25] J. Rantaharju, Phys. Rev. D 93, 094516 (2016).
[26] S. Capitani, S. Durr, and C. Hoelbling, J. High Energy Phys.

11 (2006) 028.
[27] T. DeGrand, Y. Shamir, and B. Svetitsky, Proc. Sci.

LATTICE2011 (2011) 060 [arXiv:1110.6845].
[28] Y. Shamir, B. Svetitsky, and E. Yurkovsky, Phys. Rev. D 83,

097502 (2011).
[29] T. Karavirta, A. Mykkanen, J. Rantaharju, K. Rummukainen,

and K. Tuominen, J. High Energy Phys. 06 (2011) 061.
[30] M. Luscher, R. Narayanan, P. Weisz, and U. Wolff, Nucl.

Phys. B384, 168 (1992).
[31] M. Luscher, R. Narayanan, R. Sommer, U. Wolff, and P.

Weisz, Nucl. Phys. B, Proc. Suppl. 30, 139 (1993).
[32] M. Luscher, R. Sommer, P. Weisz, and U.Wolff, Nucl. Phys.

B413, 481 (1994).

[33] M. Della Morte, R. Frezzotti, J. Heitger, J. Rolf, R.
Sommer, and U. Wolff (ALPHA), Nucl. Phys. B713, 378
(2005).

[34] I. P. Omelyan, I. M. Mryglod, and R. Folk, Comput. Phys.
Commun. 151, 272 (2003).

[35] T. Takaishi and P. de Forcrand, Phys. Rev. E 73, 036706
(2006).

[36] R. C. Brower, T. Ivanenko, A. R. Levi, and K. N. Orginos,
Nucl. Phys. B484, 353 (1997).

[37] R. Narayanan and H. Neuberger, J. High Energy Phys. 03
(2006) 064.

[38] M. Luscher, Commun. Math. Phys. 293, 899 (2010).
[39] A. Ramos, Proc. Sci. LATTICE2014 (2015) 017 [arXiv:

1506.00118].
[40] M. Lüscher, J. High Energy Phys. 08 (2010) 071; 03 (2014)

092(E).
[41] P. Fritzsch and A. Ramos, J. High Energy Phys. 10 (2013)

008.
[42] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,

J. High Energy Phys. 11 (2012) 007.
[43] A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and D.

Schaich, J. High Energy Phys. 05 (2014) 137.
[44] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and

C. H. Wong, J. High Energy Phys. 06 (2015) 019.
[45] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and

C. H. Wong, J. High Energy Phys. 09 (2014) 018.
[46] N. Kamata and S. Sasaki, Phys. Rev. D 95, 054501 (2017).
[47] T. Appelquist, G. T. Fleming, and E. T. Neil, Phys. Rev. D

79, 076010 (2009).
[48] T. DeGrand and A. Hasenfratz, Phys. Rev. D 80, 034506

(2009).
[49] C. J. D. Lin, K. Ogawa, and A. Ramos, J. High Energy Phys.

12 (2015) 103.
[50] A. Hasenfratz and D. Schaich, J. High Energy Phys. 02

(2018) 132.
[51] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.

Vogt, J. High Energy Phys. 02 (2017) 090.
[52] M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint,

and R. Sommer (ALPHA), Phys. Rev. D 95, 014507
(2017).

[53] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 105004
(2017).

[54] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 085012
(2017).

SLOPE OF THE BETA FUNCTION AT THE FIXED POINT … PHYS. REV. D 98, 054503 (2018)

054503-9

https://doi.org/10.1103/PhysRevD.97.114501
https://doi.org/10.1088/1126-6708/2009/05/025
https://doi.org/10.1103/PhysRevD.80.094504
https://doi.org/10.1103/PhysRevD.80.094504
https://doi.org/10.1103/PhysRevD.81.094503
https://doi.org/10.1103/PhysRevD.81.094503
https://doi.org/10.1088/1126-6708/2008/11/009
https://doi.org/10.1088/1126-6708/2008/11/009
https://doi.org/10.1103/PhysRevD.81.014505
https://doi.org/10.1103/PhysRevD.80.074507
https://doi.org/10.1103/PhysRevD.82.014510
https://doi.org/10.1103/PhysRevD.82.014509
https://doi.org/10.1103/PhysRevD.84.034506
https://doi.org/10.1103/PhysRevD.84.034506
https://doi.org/10.1103/PhysRevD.83.074507
https://doi.org/10.1103/PhysRevD.83.074507
https://doi.org/10.1103/PhysRevD.86.025006
https://doi.org/10.1103/PhysRevD.85.097503
https://doi.org/10.1103/PhysRevD.93.054505
https://doi.org/10.1103/PhysRevD.93.094509
https://doi.org/10.1103/PhysRevD.93.094516
https://doi.org/10.1088/1126-6708/2006/11/028
https://doi.org/10.1088/1126-6708/2006/11/028
http://arXiv.org/abs/1110.6845
https://doi.org/10.1103/PhysRevD.83.097502
https://doi.org/10.1103/PhysRevD.83.097502
https://doi.org/10.1007/JHEP06(2011)061
https://doi.org/10.1016/0550-3213(92)90466-O
https://doi.org/10.1016/0550-3213(92)90466-O
https://doi.org/10.1016/0920-5632(93)90183-7
https://doi.org/10.1016/0550-3213(94)90629-7
https://doi.org/10.1016/0550-3213(94)90629-7
https://doi.org/10.1016/j.nuclphysb.2005.02.013
https://doi.org/10.1016/j.nuclphysb.2005.02.013
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1103/PhysRevE.73.036706
https://doi.org/10.1103/PhysRevE.73.036706
https://doi.org/10.1016/S0550-3213(96)00579-2
https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.1007/s00220-009-0953-7
http://arXiv.org/abs/1506.00118
http://arXiv.org/abs/1506.00118
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP10(2013)008
https://doi.org/10.1007/JHEP10(2013)008
https://doi.org/10.1007/JHEP11(2012)007
https://doi.org/10.1007/JHEP05(2014)137
https://doi.org/10.1007/JHEP06(2015)019
https://doi.org/10.1007/JHEP09(2014)018
https://doi.org/10.1103/PhysRevD.95.054501
https://doi.org/10.1103/PhysRevD.79.076010
https://doi.org/10.1103/PhysRevD.79.076010
https://doi.org/10.1103/PhysRevD.80.034506
https://doi.org/10.1103/PhysRevD.80.034506
https://doi.org/10.1007/JHEP12(2015)103
https://doi.org/10.1007/JHEP12(2015)103
https://doi.org/10.1007/JHEP02(2018)132
https://doi.org/10.1007/JHEP02(2018)132
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1103/PhysRevD.95.014507
https://doi.org/10.1103/PhysRevD.95.014507
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.95.085012
https://doi.org/10.1103/PhysRevD.95.085012

