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Recently the Belle collaboration has discovered a narrow S ¼ −3 baryon, the Ωð2012Þ. We explore the
possibility that the Ωð2012Þ is a Ξð1530ÞK̄ molecule, where the binding mechanism is the coupled channel
dynamics with the Ωη channel. The characteristic signature of a molecular Ωð2012Þ will be its decay into
the three body channel ΞπK̄, for which we expect a partial decay width of 2–3 MeV. The partial decay
width into the ΞK̄ channel should lie in the range of 1–11 MeV, a figure compatible with experiment and
which we have deduced from the assumption that the coupling involved in this decay is of natural size.
For comparison purposes the decay of a purely compact Ωð2012Þ into the ΞK̄ and ΞπK̄ channels is of
the same order of magnitude as and one order of magnitude smaller than in the molecular scenario,
respectively. This comparison indicates that the current experimental information is insufficient to
distinguish between a compact and a molecular Ωð2012Þ and further experiments will be required to
determine its nature. A molecular Ωð2012Þ will also imply the existence of two- and three-body molecular
partners. The two-body partners comprise two Λ hyperons located at 1740 and 1950 MeV respectively, the
first of which might correspond to the Λð1800Þwhile the second to the Λð2000Þ or the Λð2050Þ. The three-
body partners include a Ξð1530ÞKK̄ and a Ξð1530ÞηK̄ molecule, with masses of M ¼ 2385–2445 MeV
andM ¼ 2434–2503 MeV respectively. We might be tempted to identify the first with the Ξð2370Þ and the
latter with the Ωð2470Þ listed in the PDG.

DOI: 10.1103/PhysRevD.98.054009

The discovery of the Ωð1673Þ baryon [1] confirmed the
SU(3)-flavor symmetry of Gell-Mann [2] and Ne’eman [3]
as the ordering principle of baryon spectroscopy. After
five decades the Ωð1673Þ remains to be the only four star
S ¼ −3 baryon resonance. Only other three S ¼ −3 baryons
are listed in the PDG [4], the three star Ωð2250Þ and the
two-starΩð2380Þ and Ωð2470Þ. Recently the Belle collabo-
ration discovered a new addition to the family, a narrow Ω
baryon with a mass M ¼ 2012.4� 0.7� 0.6 and a width
Γ ¼ 6.4

+2.5
−2.0 � 1.6 [5].

The most prosaic explanation for the nature of the new
Ωð2012Þ baryon is that of a decuplet 3

2

−
compact state, as

indicated by the Belle collaboration itself [5] and predicted
for instance in the Isgur-Karl model at 2020 MeV [6].
Recent theoretical works have explored this idea further
from the point of view of the chiral quark model [7], QCD
sum rules [8] and SU(3) flavor symmetry [9], in all cases
suggesting the quantum numbers JP ¼ 3

2

−
. As a matter of

fact the existence of a 3
2

− Ω baryon in the 2.0–2.1 GeV
region was already expected from the quark model [10],
largeNc [11], the Skyrme model [12], and lattice QCD [13].
Here we consider the possibility that the Ωð2012Þ is

molecular instead of fundamental, as proposed in Ref. [9].
Molecular hadrons are a prolific theoretical concept, which
indeed explain the properties of a few hadrons that do no fit
into the quark model, see Refs. [14–16] for recent reviews.
But there are a few drawbacks to this idea too: for instance
there is no uniform description of hadronic molecules, a
few of the approaches are phenomenological and lack a
clear connection with QCD and what constitute a molecular
state is sometimes a nebulous concept. In this regard it is
important to work in detail, if possible, how the theoretical
description of a specific molecule relates to other molecular
candidates, whether their internal dynamics can be related
to the low energy manifestations of QCD (for instance,
chiral symmetry) and how the predictions for fundamental
and compound hadrons differ.
Here by a compoundΩð2012Þwe refer to a hadron in the

line of the Λð1405Þ or Ds0ð2317Þ, which are suspected to
beNK̄ [17–19] andDK [20,21] molecules respectively (the
list of possible molecular candidates is long and growing,
see Ref. [14] for instance). Analogously to the two previous
examples, the mechanism responsible for the binding of the
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Ωð2012Þ will be the Weinberg-Tomozawa (WT) interaction
between a baryon and a pseudo Nambu-Goldstone boson.
The difference lies in the requirement of coupled channel
dynamics: besides the Ξð1530ÞK̄, which is a natural
molecular explanation for the Ωð2012Þ [9], the Ωη channel
will also be involved. In fact the WT interaction in the
Ξð1530ÞK̄-Ωη system is [22,23]

V ¼ −
ωþ ω0

2f2

�
0 3

3 0

�
; ð1Þ

with ω and ω0 the incoming and outgoing energies of
the pseudo Nambu-Goldstone bosons and where we are
taking the normalization f ¼ fπ ¼ 132 MeV. This inter-
action is attractive and particularly strong in the eigen-
channel

1ffiffiffi
2

p ½jΞð1530ÞK̄i þ jΩηi�; ð2Þ

where its strength indeed matches that of the NK̄
interaction generating the Λð1405Þ and surpasses that of
the DK potential that gives rise to the Ds0ð2317Þ. The
Ξð1530ÞK̄-Ωη interaction is known to be able to generate a
pole [22,23]. The difference with the NK̄ and DK cases
is however that we are dealing with a coupled channel
problem: the interaction happens in the nondiagonal
channels where there is a gap of 192 MeV between the
channels. This requires us to check whether such a bound
state can arise naturally from the leading order WT
interaction without forcing an unnaturally large cutoff.
For that we first introduce a cutoff by multiplying the
potential by a regulator function depending on each of
the external momenta

V → Vg

�
p0

Λ

�
g

�
p
Λ

�
; ð3Þ

with p and p0 the incoming and outgoing momenta of the
mesons, where we simply choose a Gaussian regulator
gðxÞ ¼ e

−x2n with n ¼ 2. If we include this potential into a
dynamical equation,1 it turns out that for generating a pole

at 2012 MeVa cutoff ofΛ ¼ 721 MeV is needed. This is to
be compared with theΛð1405Þ andDs0ð2317Þ poles, which
require a cutoff of Λ ¼ 571 MeV and Λ ¼ 823 MeV
respectively.2 The bottom-line is that the cutoff for repro-
ducing the Ωð2012Þ pole is sensible. From this we can
argue that the existence of a Ξð1530ÞK̄-Ωη molecule is
consistent with the natural expectations derived from
other similar molecules. Indeed this molecule has been
previously predicted to be at 2141 − 38i MeV [22] and
1786 MeV [23], where the different location will corre-
spond a lower and higher cut-off in the regularization we
are using here, respectively. In the absence of experimental
information about the location of a candidate Ω� pole, the
previous predictions are completely plausible.
Yet this by itself is not enough to decide whether the

Ωð2012Þ is really compatible with the molecular hypoth-
esis. For this it is also necessary to compute its decays, if
possible with theoretical uncertainties. We consider the
decays into ΞπK̄ and ΞK̄ via the mechanisms shown in
Fig. 1. For the theoretical uncertainties we will modify the
WT interaction as follows

V ¼ −
ωþ ω0

2f2
cðΛÞg

�
p0

Λ

�
g

�
p
Λ

��
0 3

3 0

�
; ð4Þ

that is, we will consider that the coupling runs with the
cutoff, instead of being fixed. We then determine cðΛÞ from
the condition of reproducing the Ωð2012Þ pole. The cutoff
will vary in the Λ ¼ 0.5–1.0 GeV window, which com-
prises the privileged cutoff for which cðΛÞ ¼ 1, i.e.,
Λ ¼ 721 MeV. The cutoff window is wide enough as to
accommodate the changes of this privileged cutoff owing to
subleading order corrections to the baryon-meson inter-
action. Finally we will interpret the variation of the results
with the cutoff as the uncertainty of our calculations.

(a) (b)

FIG. 1. Feynman diagrams involved in the decays of a molecular
Ωð2012Þ: (a) represents the three body decay into ΞπK̄, which is
the characteristic signature of a molecular Ωð2012Þ, while (b) rep-
resents the two body decay into ΞK̄, which happens via a short-
range operator.

1Here we will follow the formalism of Refs. [24,25] for the
two- and three-body integral equations (latter we will show three-
body results). For the two-body system, the eigenvalue equation
we are using is

ϕiðpÞ ¼
Z

d3q
ð2πÞ3

mi

ωiðqÞ
hpjVijjqiϕjðqÞ
Ei −

q2

2Mi
− ϵiðqÞ

;

where i ¼ 1, 2 refers to theΞð1530ÞK̄ andΩη channels,mi ¼ mK ,
mη and Mi ¼ MΞ� , MΩ are the pseudo Goldstone-Boson and
Baryon masses, Ei the energy with respect to the i-channel
threshold, ωiðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2
p

and ϵiðqÞ ¼ ωiðqÞ −mi. That is,
we will treat the baryons as nonrelativistic and the pseudo Nambu-
Goldstone bosons as relativistic. The dynamical equation in the
two-body sector will be equivalent to the Kadyshevsky equation
[26], except for the detail of the nonrelativistic baryon.

2If we consider fK instead of fπ for the strength of the
Weinberg-Tomozawa, the cutoff at which the Ωð2012Þ binds will
be 890 MeV instead, to be compared with 762 MeV for the
Λð1405Þ and 1042 MeV for the Ds0ð2317Þ. Other subleading
order corrections will modify the cutoff too, likely within the
range of the previous estimates.
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The most defining feature of a molecular Ωð2012Þ will
be the three body decay Ωð2012Þ → ΞπK̄, see Fig. 1. The
partial width of this process can indeed be directly deduced
from: (i) the decayΞð1530Þ → ΞπwhereΓ ≃ 9–10 MeV [4]
and (ii) thewave function of theΩð2012Þ, which determines
the coupling to theΞð1530ÞK̄ channel. Concrete calculations
yield a partial decay width of

ΓðΩ� → ΞπK̄Þ ≃ 2–3 MeV; ð5Þ

where Ω� refers to the Ωð2012Þ. This width is smaller than
that of the Ξð1530Þ in the same channel as a consequence of
the existence of an Ωη component in the wave function and
that the antikaon takes out momentum of the pion, further
reducing the partial decay width. The details of the calcu-
lation are analogous to those of theXð3872Þ → DD̄π partial
decay width in the molecular description of the Xð3872Þ,
which is deduced from the D� → Dπ amplitude [27]. The
only difference with the work of Ref. [27] is that here we do
not include ΞK̄ rescattering effects, as the ΞK̄ WT term
vanishes. Subleading order corrections to the Ξð1530ÞK̄-Ωη
potential will have a moderate impact in the ΞπK̄ decay
width: there will be a diagonal term in the potential that will
change the probability of the Ξð1530ÞK̄ component in the
wave function. However taking into account the large
uncertainty of the lowest order result, the inclusion of
subleading effects is probably not justified. Finally if the
Ωð2012Þ is a compact state, the three bodyΞπK̄ decaywidth
is probably of the order of 50–100 KeV. This figure, which
we have deduced from phase space, the angular momentum
of the final three body state and the size of the decay coupling
as estimated from naive dimensional analysis [28], is
remarkably smaller than in the molecular scenario.
Yet the decay that is experimentally known isΩð2012Þ →

ΞK̄, which for a molecular Ωð2012Þ happen via the
mechanism depicted in the right panel of Fig. 1. The short-
range potential involved in this decay is a Ξð1530ÞK̄ → ΞK̄
vertex of the type

hΞK̄ðp⃗0ÞjVjΞ�K̄ðp⃗Þi ¼ CDS⃗ · q⃗ Σ⃗ ·q⃗; ð6Þ

where Ξ� refers to the Ξð1530Þ, Σ⃗ stands for the spin-3
2

matrices of the Ξ�, S⃗ are spin-3
2
to -1

2
transition matrices

and q⃗ ¼ p⃗0 − p⃗ is the momentum transfer.3 The size of
the coupling can be estimated from naive dimensional
analysis [28]

CD ∼
1

f2Λχ
; ð7Þ

with f the pion decay constant and Λχ ∼ 1 GeV the chiral
symmetry breaking scale. This gives us

ΓðΩ� → ΞK̄Þ ∼ 2–11 MeV ð1–5 MeVÞ; ð8Þ

for f ¼ fπ (f ¼ fK ≃ 160 MeV). The details of the calcu-
lation are not presented here, but they are again analogous to
the decay of the theoretical Xð4012Þ molecule into DD̄,
which were presented in Ref. [31] (the only difference is
that the decay mechanism in this case is a contact-range
operator, instead of one pion exchange).
A few things are worth noticing: the diagram leading to

the ΞK̄ decay is linearly divergent, which partly explains
the spread of the width in the Λ ¼ 0.5–1.0 GeV range.
This is not crucial for the previous estimation, which is
there to give a sense of whether the molecular hypothesis is
compatible with experiment. But from the point of view of
an effective field theory description the interpretation is as
follows [32,33]: (i) the coupling CD is actually a running
coupling with scales as the inverse of the cutoff and (ii) as a
consequence of this scaling the previous contribution is
enhanced with respect to naive dimensional analysis.
Notice too that there are also long-range contributions to
the two-body decay: if we consider the original three body
decay, there is the possibility that the pion rescatters with
the antikaon with the latter absorption of the pion by the
final Ξ cascade, i.e., a triangle diagram. However this
contribution is strongly divergent and cannot be evaluated
without the inclusion of higher order counterterms.
This is to be compared with a compact, nonmolecular

Ωð2012Þ, in which case the Ωð2012Þ will belong to a
decuplet with a Δ isobar partner. As a consequence, the
Ω� → ΞK̄ decay width can be related to the Δ� → Nπ
decay width. The concrete relation can be worked out easily
from SUð3Þ-flavor symmetry[34]

ΓðΩ� → ΞK̄Þ ¼ 2
MΔ�

MΩ�

�
pK

pπ

�
2l+1

ΓðΔ� → NπÞ; ð9Þ

where the factor 2 is a consequence of the different SUð3Þ
Clebsch-Gordan coefficients, MΩ� , MΔ� are the masses of
the baryons involved and pK and pπ are the decay momenta
of the antikaon and pion respectively. If we assume the
quantum numbers of the Ωð2012Þ to be JP ¼ 1

2

−
, 3
2

+
and 3

2

−
,

then it will belong to the same decuplet as the Δð1620Þ,
Δð1600Þ, and Δð1700Þ respectively. Now we can make
predictions for the partial decay width to ΞK̄, which can be
consulted in Table I. From this the only identification that is
within the experimental limits for the width is the JP ¼ 3

2

−
,

for which the partial decay width is 5–14 MeV. This range
is on average broader than, but still compatible with, the
experimental value. From this comparison the compact and

3The matrix element can be equivalently written in terms of
S⃗ · q⃗ σ⃗ ·q⃗, where σ are the Pauli matrices for the final Ξ baryon.
Explicit expressions for the S⃗ matrices can be found in
Refs. [29,30]. We have chosen the momentum transfer instead
of the antikaon initial and final momenta for convenience: they
are equivalent however, as these dependencies can be inter-
changed by means of the equations of motion.
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molecular hadron hypotheses are equivalent in what
regards the total decay width. Besides, the theoretical
calculation of the Ω� → ΞK̄ decay width is subjected to
large uncertainties independently of whether the Ωð2012Þ
is a three quark or a molecular state. For a three quark Ω� it
is worth noticing that flavour symmetry is not expected
to work as well for excited baryons as it does for the
fundamental ones, particularly regarding masses (yet from
Ref. [34], where flavor symmetry relations were success-
fully applied to excited baryons, SU(3)-flavour seems to
work well enough for our purposes). For a molecular Ω�

the estimate for the ΞK̄ decay width hinges on dimensional
analysis estimations, which can be perfectly off by a
numerical factor of order one (explaining, for instance,
the smaller partial decay width obtained in Ref. [35]). The
admixture of the compact and molecular components cannot
be ruled out either, as this might be already happening to itsΔ
isobar partner: the 3

2

− Δð1700Þ can indeed be reproduced from
the chiral interaction among the Δπ-ΣK-Δη baryon-meson

channels [22]. Other example is the 1
2

−
octet, which can be

viewed as dynamically generated [36] comprising the
Nð1535Þ, Λð1670Þ, Σð1620Þ, and Ξð1620Þ, or as a standard
SU(3) octet [37] comprising Nð1535Þ, Λð1670Þ, Σð1570Þ,
and Ξð1620Þ, though in this case there is a mismatch about
which Σ� baryon completes the multiplet.
A molecular Ωð2012Þ also implies the existence of

partner states that share the same binding mechanism.
The ΞK and Ξ�K WT terms are strong in the I ¼ 0 channel

V ¼ −3
ωþ ω0

2f2
cðΛÞg

�
p0

Λ

�
g

�
p
Λ

�
; ð10Þ

which probably implies the existence of ΞK and Ξ�K
bound states with the quantum numbers of a Λ baryon
(I ¼ 0, S ¼ −1). We find two states located at 1740 and
1950 MeV with quantum numbers 1

2

−
and 3

2

−
respectively,

see Table II for details. The previous calculations assume
that the same cutoff can be used for the Ξ and Ξ� cascades.
They also ignore the Σπ and Σ�π channels: they are
expected to move the location of the poles, giving them
a finite width in the process. If the experience with the
Λð1405Þ is of any help, where the location of the pole
moves from 1427 MeV to 1428 − 17i MeV after the
inclusion of the Σπ channel [19], we will expect moderate
correction at most in the location of the previous two Λ
baryons.
In addition, the existence of both Ξ�K̄ and Ξ�K mole-

cules suggest the existence of a Ξ�KK̄ bound state, which
can be computed for instance with the formalism of
Refs. [24,25]. For this type of three body calculation we
have to take into account the Ξ�K̄ and Ξ�K WT interaction
in the I ¼ 1 channel, which is one third of that in the I ¼ 0

case. The strength of the KK̄ interaction in the isoscalar
channel is determined from the condition of reproducing
the f0ð980Þ pole, which is thought to be molecular [38],

TABLE I. Estimations of the partial decay width (in MeV) of
the Ωð2012Þ into ΞK̄ in the molecular and quark state scenarios.
The notation Ω� and Ξ� refer to the Ωð2012Þ and Ξð1530Þ,
respectively. For a molecular Ω� the decay is mediated via a
contact-range Ξ�K̄ − ΞK̄ interaction, which size is estimated
from naive dimensional analysis. For a compact Ω� the calcu-
lation of this partial decay width can be obtained from SU(3)-
flavour symmetry, but it requires in the first place to identify the
Ω� as the member of a known multiplet.

Nature JP Δ� ΓðΔ� → NπÞ ΓðΩ� → ΞK̄Þ
Ξ�K̄-Ωη 3

2

− � � � � � � 2–11 (1–5)
sss 1

2

− Δð1620Þ 25–49 30–60
sss 3

2

+ Δð1600Þ 16–81 13–65
sss 3

2

− Δð1700Þ 20–60 5–14

TABLE II. Predicted two- and three-body molecular partners of the Ωð2012Þ as a Ξ�K̄-Ωη bound state. We
indicate their particle content, their isospin, spin and parity, the relative strength of the WT term (for the two-body
case), the binding energy and mass (MeV), plus the prospective candidates among experimentally known baryons
in the PDG [4]. The relative strength of the WT interaction is defined such that V ¼ CWTðωþ ω0Þ=2f2
cðΛÞgðp0=ΛÞgðp=ΛÞ, where we always use the same regulator. The bands in the binding energies and masses
are a consequence of the cutoff variation in the range Λ ¼ 0.5–1.0 GeV and are interpreted as the theoretical
uncertainty of the calculations. The binding energy of the three body bound states is calculated with respect to the
three body thresholds Ξ�K̄K and Ξ�K̄η, respectively.

Molecule I(JP) CWT B M Candidate

Ξ�K̄-Ωη 0ð3
2

−Þ �
0 −3
−3 0

�
16 2012 Ωð2012Þ

ΞK 0ð1
2

−Þ −3 69–73 1739–1743 Λð1800Þ
Ξ�K 0ð3

2

−Þ −3 77–80 1948–1951 Λð2000Þ, Λð2050Þ
Ξ�K̄K-ΩηK 1

2
(3
2

+
) � � � 78–138 2385–2445 Ξð2370Þ, Ξð2500Þ

Ξ�K̄η-Ωηη 0ð3
2

+Þ � � � 57–126 2434–2503 Ωð2470Þ
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while in the isovector channel we set it to one third of the
strength in the isoscalar channel as expected for a WT
term.4 From this the position of the Ξ�KK̄ three-body
bound state is about 2385–2445 MeV, where the spread
reflects the cutoff variation. Notice however that we did not
include widths in the calculation: this molecule will have
a sizable width from the KK̄ → ππ transition. This three
body exotic Ξ� might be identified with the Ξð2370Þ or
maybe with the Ξð2500Þ that are included in the PDG [4],
but of which little is known. Other possible three body
partner is a Ξ�K̄η-Ωηη bound state, which binds owing to
the coupled channel dynamics of the Ωð2012Þ. If we
assume the η to be noninteracting (which greatly simplify
the calculations) the location of this state is about 2434–
2503 MeV. We might identify this Ω� with the Ωð2470Þ of
the PDG. The results for the molecular partners of the
Ωð2012Þ are summarized in Table II. However the 3

2

+ Ξ�

and Ω� excited baryons we predict in Table II are not
necessarily a signature of a molecular Ωð2012Þ: the
diagonal and nondiagonal WT interactions of a compact
Ωð2012Þ with the kaon and the η are strong enough as to
generate these 3

2

+ Ξ� and Ω� states.
To summarize, the molecular hypothesis for theΩð2012Þ

is compatible with the experimentally known information
about this baryon and might be able to explain a fewΛ�, Ξ�,
and Ω� baryons listed in the PDG. The comparison of
the molecular and compact baryon scenarios indicates that
the total decay width is roughly identical in both cases, the
only difference being that a molecular Ωð2012Þ is expected
to have a sizable branching ratio into ΞπK̄ of the order

of 30–50%. This branching ratio is at least one order of
magnitude smaller for a compact Ωð2012Þ, which indicates
that this is the experimental quantity to look for if
we want to determine the nature of this baryon (a point
which has been stressed in the recent literature, see
Refs. [9,35,39,40]). Other defining feature is what partner
states are to be expected in each case. A compact Ωð2012Þ
belongs to the 3

2

−
decuplet, which probably comprises the

Δð1700Þ and two other Σ and Ξ baryons that have not been
detected yet with masses of MΣ ¼ 1805� 40 and MΞ ¼
1910� 40 MeV respectively [9]. This decuplet pattern is
mostly a consequence of SU(3) flavor symmetry rather than
of the nature of the baryons and it is also dynamically
reproduced by chiral interactions [22]. Maybe the defining
difference is that a molecular Ωð2012Þ will have additional
partners that are dictated by the sign and strength of the
Weinberg-Tomozawa interaction. In the two-body sector
(baryon-meson) these partners comprise two Λ hyperons, a
JP ¼ 1

2

−
one with a mass of 1740 MeV and another with

JP ¼ 3
2

−
at 1950 MeV, which might be identified with the

Λð1800Þ and maybe the Λð2000Þ or Λð2050Þ respectively.
In the three-body sector (baryon-meson-meson) we find a
JP ¼ 3

2

+ Ξð2400Þ cascade and a 3
2

+ Ωð2470Þ baryon, which
we are tempted to identify with the Ξð2370Þ and Ωð2470Þ
listed in the PDG. Finally, we stress that the current
experimental information about the Ωð2012Þ is insufficient
to distinguish between the compact and molecular hypoth-
eses. Future experiments, in particular regarding the Ω� →
ΞK̄π partial decay width, will be necessary to determine its
nature.
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