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We present a deep neural network representation of the AdS=CFT correspondence, and demonstrate the
emergence of the bulk metric function via the learning process for given data sets of response in boundary
quantum field theories. The emergent radial direction of the bulk is identified with the depth of the layers,
and the network itself is interpreted as a bulk geometry. Our network provides a data-driven holographic
modeling of strongly coupled systems. With a scalar ϕ4 theory with unknown mass and coupling, in
unknown curved spacetime with a black hole horizon, we demonstrate that our deep learning (DL)
framework can determine the systems that fit given response data. First, we show that, from boundary data
generated by the anti–de Sitter (AdS) Schwarzschild spacetime, our network can reproduce the metric.
Second, we demonstrate that our network with experimental data as an input can determine the bulk metric,
the mass and the quadratic coupling of the holographic model. As an example we use the experimental data
of the magnetic response of the strongly correlated material Sm0.6Sr0.4MnO3. This AdS=DL correspon-
dence not only enables gravitational modeling of strongly correlated systems, but also sheds light on a
hidden mechanism of the emerging space in both AdS and DL.
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I. INTRODUCTION

The AdS=CFT correspondence [1–3], a renowned
holographic relation between d-dimensional quantum
field theories (QFTs) and (dþ 1)-dimensional gravity,
has been frequently applied to strongly coupled QFTs
including QCD and condensed matter systems. For phe-
nomenology, the holographic modelings were successful
only for a restricted class of systems in which symmetries
are manifest, mainly because the mechanism of how the
holography works is still unknown. For a given quantum
system, we do not know whether its gravity dual exists and
how we can construct a holographic model.
Suppose one is given experimental data of the linear/

nonlinear response of a quantum system under some
external field: can one model it holographically, i.e., can
one solve the inverse problem? In this paper we employ

deep learning (DL) [4–6], an active subject of computa-
tional science, to provide a data-driven holographic gravity
modeling of strongly coupled quantum systems. In conven-
tional holographic modeling, a chosen gravity metric
calculates QFT observables, which are then compared with
experimental data. In our novel DL method, experimental
data calculates a suitable bulk metric function [7], which
will be used to predict other observables.
Our strategy is simple: we provide a deep neural

network representation of a scalar field equation in (dþ 1)-
dimensional curved spacetime. The discretized holographic
(“AdS radial”) direction is the deep layers; see Fig. 1.
The weights of the neural network to be trained are
identified with a metric component of the curved space-
time. The input response data is at the AdS boundary, and
the output binomial data is the black hole horizon con-
dition. Therefore, successful machine learning results in a
concrete metric of a holographic model of the system
measured by the experiment [11]. We call this implemen-
tation of the holographic model into the deep neural
network the AdS=DL correspondence.
We check that the holographic DL modeling works

nicely with the popular anti–de Sitter (AdS) Schwarzschild
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metric, by showing that the metric is successfully learned
and reproduced by the DL framework. Then we proceed to
use experimental data of the magnetic response of
Sm0.6Sr0.4MnO3 which is known to have strong quantum
fluctuations, and demonstrate the emergence of a bulk
metric via the AdS=DL correspondence.
Our study gives a first concrete implementation of the

AdS=CFT correspondence into deep neural networks. We
show the emergence of a smooth geometry from given
experimental data, which opens a possibility to reveal the
mystery of the emergent geometry in the AdS=CFT
correspondence with the help of the active research in
DL. A similarity between the AdS=CFT correspondence
and DL was discussed recently [12,13], and it can be
discussed using tensor networks and the AdS=MERA
correspondence [17,18].
Let us briefly review a standard deep neural network. It

consists of layers (see Fig. 1), and between adjacent layers a
linear transformation xi → Wijxj and a nonlinear trans-
formation known as an activation function, xi → φðxiÞ are
successively performed. The final layer is for summarizing
all the components of the vector. So the output of the neural
network is

yðxð1ÞÞ ¼ fiφðWðN−1Þ
ij φðWðN−2Þ

jk � � �φðWð1Þ
lm xð1Þm ÞÞÞ: ð1Þ

In the learning process, the variables of the network

ðfi;WðnÞ
ij Þ for n ¼ 1; 2;…; N − 1 are updated by a gradient

descent method with a given loss function of the L1-norm
error,

E≡X
data

jyðx̄ð1ÞÞ − ȳj þ EregðWÞ: ð2Þ

Here the sum is over the whole set of pairs fðx̄ð1Þ; ȳÞg of the
input data x̄ð1Þ and the output data ȳ. The regularization Ereg

is introduced to require the expected properties of the
weights [64].

II. NEURAL NETWORK OF SCALAR
FIELD IN AdS

Let us embed the scalar field theory into a deep neural
network. A scalar field theory in a (dþ 1)-dimensional
curved spacetime is written as

S ¼
Z

ddþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
−
1

2
ð∂μϕÞ2 −

1

2
m2ϕ2 − VðϕÞ

�
:

ð3Þ

For simplicity we consider the field configuration to
depend only on η (the holographic direction). Here the
generic metric is given by

ds2 ¼ −fðηÞdt2 þ dη2 þ gðηÞðdx21 þ � � � þ dx2d−1Þ ð4Þ

with the asymptotic AdS boundary condition f ≈ g ≈
exp½2η=L�ðη ≈∞Þ with the AdS radius L, and another
boundary condition at the black hole horizon, f ≈ η2;
g ≈ constant ðη ≈ 0Þ. The classical equation of motion
for ϕðηÞ is

∂ηπ þ hðηÞπ −m2ϕ −
δV½ϕ�
δϕ

¼ 0; π ≡ ∂ηϕ; ð5Þ

where we have defined π so that the equations become first
order in derivatives. The metric dependence is combined as
hðηÞ≡ ∂η log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðηÞgðηÞd−1

p
. Discretizing the radial η

direction, the equations are rewritten as

ϕðηþ ΔηÞ ¼ ϕðηÞ þ ΔηπðηÞ;

πðηþ ΔηÞ ¼ πðηÞ − Δη
�
hðηÞπðηÞ −m2ϕðηÞ − δVðϕÞ

δϕðηÞ
�
:

ð6Þ

We regard these equations as a propagation equation on a
neural network, from the boundary η ¼ ∞ where the input
data ðϕð∞Þ; πð∞ÞÞ is given, to the black hole horizon
η ¼ 0 for the output data; see Fig. 2. The N layers of the
deep neural network are a discretized radial direction η
which is the emergent space in AdS, ηðnÞ≡ðN−nþ1ÞΔη.
The input data xð1Þi of the neural network is a two-
dimensional real vector ðϕð∞Þ; πð∞ÞÞT. So the linear
algebra part of the neural network (the solid lines in
Fig. 1) is automatically provided by

FIG. 1. The AdS=CFT correspondence and DL. Top: A typical
view of the AdS=CFT correspondence. The CFT at a finite
temperature lives at a boundary of asymptotically AdS spacetime
with a black hole horizon at the other end. Bottom: A typical deep
learning neural network.
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WðnÞ ¼
�

1 Δη
Δηm2 1 − ΔηhðηðnÞÞ

�
: ð7Þ

The activation function at each layer reproducing Eq. (6) is

�φðx1Þ ¼ x1;

φðx2Þ ¼ x2 þ Δη δVðx1Þ
δx1

:
ð8Þ

The definitions (7) and (8) bring the scalar field system in
curved geometry (3) into the form of the neural network
(1) [65].

III. RESPONSE AND INPUT/OUTPUT DATA

In the AdS=CFT correspondence, asymptotically AdS
spacetime provides a boundary condition of the scalar field
corresponding to the response data of the QFT. With the
AdS radius L, asymptotically hðηÞ ≈ d=L. The external
field value J (the coefficient of a non-normalizable mode of
ϕ) and its response hOi (that of a normalizable mode) in the
QFT are [66], in units of L ¼ 1, a linear map

ϕðηiniÞ ¼ J exp½−Δ−ηini� þ hOi exp½−Δþηini�
Δþ − Δ−

;

πðηiniÞ ¼ −JΔ− exp½−Δ−ηini� − hOiΔþ exp½−Δþηini�
Δþ − Δ−

;

ð9Þ

with Δ� ≡ ðd=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=4þm2L2

p
(Δþ is the conformal

dimension of the QFToperatorO corresponding to the bulk
scalar ϕ). The value η ¼ ηini ≈∞ is the regularized cutoff
of the asymptotic AdS spacetime. We use Eq. (9) to convert
the response data of the QFT to the input data of the neural
network.
The input data at η ¼ ηini propagates in the neural

network toward η ¼ 0 (the horizon). If the input data is
positive, the output at the final layer should satisfy the
boundary condition of the black hole horizon (see e.g.,
Ref. [67]),

0 ¼ F≡
�
2

η
π −m2ϕ −

δVðϕÞ
δϕ

�
η¼ηfin

: ð10Þ

Here η ¼ ηfin ≈ 0 is the horizon cutoff. Our final layer is
defined by the map F, and the output data is y ¼ 0 for

positive-answer response data ðJ; hOiÞ. In the limit
ηfin → 0, the condition (10) is equivalent to πðη ¼ 0Þ ¼ 0.
With this definition of the network and the training data,

we can make the deep neural network learn the metric
component function hðηÞ, the parameter m and the inter-
action V½ϕ�. The training is with a loss function E given by
Eq. (2) [68]. Experiments provide only positive-answer
data fðJ; hOiÞ; y ¼ 0g, while for the training we also need
negative-answer data: fðJ; hOiÞ; y ¼ 1g. It is easy to
generate false-response data ðJ; hOiÞ, and we assign the
output y ¼ 1 to them. To make the final output of the neural
network be binary, we use the function tanh jFj (or its
variant) for the final layer rather than just F, because
tanh jFj provides ≈1 for any negative input.

IV. LEARNING TEST: AdS SCHWARZSCHILD
BLACK HOLE

To check whether this neural network can learn the bulk
metric, we first demonstrate a learning test. We will see that
with data generated by a known AdS Schwarzschild metric,
our neural network can learn and reproduce the metric [69].
We work here with d ¼ 3 in units L ¼ 1. The metric is

hðηÞ ¼ 3 cothð3ηÞ ð11Þ

and we discretize the η direction by N ¼ 10 layers with
ηini ¼ 1 and ηfin ¼ 0.1. We fix for simplicity m2 ¼ −1 and
V½ϕ� ¼ λ

4
ϕ4 with λ ¼ 1. Then we generate positive-answer

data with the neural network with the discretized Eq. (11),
by collecting randomly generated ðϕðηini; πðηiniÞÞ giving
jFj < ϵwhere ϵ ¼ 0.1 is a cutoff. The negative-answer data
are similarly generated under the criterion jFj > ϵ. We
collect 1000 positive and 1000 negative data points; see
Fig. 3. Since we are interested in the smooth continuum
limit of hðηÞ, and the horizon boundary condition

hðηÞ ≈ 1=ηðη ≈ 0Þ, we introduce the regularization Eð1Þ
reg ≡

creg
P

N−1
n¼1 ðηðnÞÞ4ðhðηðnþ1ÞÞ − hðηðnÞÞÞ2 ∝

R
dηðh0ðηÞη2Þ2,

with creg ¼ 10−3.

FIG. 2. The simplest deep neural network reproducing the
homogeneous scalar field equation in a curved spacetime.
Weights W are shown by solid lines explicitly, while the
activation is not.

φ

∏

FIG. 3. The data generated by the discretized AdS Schwarzs-
child metric (11). Blue points are positive data (y ¼ 0) and the
green points are negative data (y ¼ 1).
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We use the Python deep learning library PYTORCH to
implement our network [70]. The initial metric is randomly
chosen. By setting the batch size to 10, we find that after
100 epochs of the training our deep neural network
successfully learned hðηÞ and it coincides with Eq. (11);
see Fig. 4(b) [71]. The statistical analysis with 50 learned
metrics [Fig. 4(c)] shows that the asymptotic AdS region is
almost perfectly learned. The near-horizon region has
≈30% systematic error, and this amount is also expected
for the following analysis with experimental data.

V. EMERGENT METRIC FROM EXPERIMENTS

Since we have checked that the AdS Schwarzschild
metric is successfully reproduced, we shall apply the deep
neural network to learn the bulk geometry for a given set of
experimental data. We use experimental data of the
magnetization curve (the magnetization M½μB=Mn� vs the
external magnetic fieldH [Tesla]) for the three-dimensional
material Sm0.6Sr0.4MnO3 which is known to have a strong
quantum fluctuation [72]; see Fig. 5. We employ a set of
data at temperature 155 K which is slightly above the
critical temperature, since it exhibits a deviation from the
linear M-H curve suggesting a strong correlation. To form
positive data we add random noise around the experimental
data, and also generate negative data positioned away from
the positive data [73].
The same neural network is used, except that we add a

new zeroth layer to relate the experimental data with ðϕ; πÞ,
motivated by Eq. (9):

ϕðηiniÞ ¼ αH þ βM;

πðηiniÞ ¼ −Δ−αH − ΔþβM: ð12Þ

We introduce the normalization parameters α and β to
relate ðH;MÞ to the bulk ϕ, and the asymptotic AdS
radius d=hð∞Þ≡ L is included in Δ� ¼ ðd=2Þð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2=hð∞Þ2

p
Þ. In our numerical code we intro-

duce a dimensionful parameter Lunit with which all
the parameters are measured in units Lunit ¼ 1. We add

another regularization term Ereg ¼ Eð1Þ
reg þ Eð2Þ

reg with Eð2Þ
reg ≡

cð2ÞregðhðηðNÞÞ − 1=ηðNÞÞ2 which forces hðηðNÞÞ, the metric
value near the horizon, to match the standard horizon
behavior 1=η; see Appendix D for details. We chose

FIG. 4. Before the learning (a) and after the learning (b). (a-1) The ðϕ; πÞ plot at the first epoch. Blue and green dots are positive data.
Orange and green dots are data judged as “positive” by using the initial trial metric. (a-2) The orange line is the initial trial metric
(randomly generated), while the blue line is the discretized AdS Schwarzschild metric (11). (b-1) The ðϕ; πÞ plot after training for 100
epochs. (b-2) The learned metric (orange line) almost coincides with the original AdS Schwarzschild metric, which means that our
neural network successfully learned the bulk metric. (c) Statistical analysis of 50 learned metrics.

FIG. 5. Left: Experimental data of magnetization (M) versus
magnetic field (H) for the material Sm0.6Sr0.4MnO3. The figure is
taken from Ref. [72]. Right: Positive (blue) and negative (orange)
data sets generated by the experimental data at the temperature
155 K, with random noise added.
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N ¼ 10 and cð2Þreg ¼ 10−4. In the machine-learning pro-
cedure, m and λ, and α and β are trained, as well as the
metric function hðηÞ.
We stop the training when the loss becomes smaller than

0.02, and collect 13 successful cases. The emergent metric
function hðηÞ obtained by the machine-learning procedure
is shown in Fig. 6. It approaches a constant at the boundary,
meaning that it is a proper asymptotically AdS spacetime.
The obtained (dimensionless) parameters for the scalar field
are m2L2 ¼ 5.6� 2.5, λ=L ¼ 0.61� 0.22 [74]. In this
manner, a holographic model is determined numerically
from the experimental data, by the DL framework.

VI. SUMMARY AND OUTLOOK

We created a bridge between two major subjects about
hidden dimensions: the AdS=CFT correspondence and DL.
We initiated a data-driven holographic modeling of quan-
tum systems by formulating the gravity dual on a deep
neural network. We showed that with an appropriate choice
of the sparse network and input/output data the AdS=DL
correspondence is properly formulated, and standard
machine learning works nicely for the automatic emergence
of the bulk gravity for given response data of the boundary
quantum systems.
Our method was not to construct more accurate holo-

graphic models, but rather to solve an inverse problem. It
will help model builders, since conventionally a sense of
choice of metric has been necessary. Once a metric is
inversely learned from data, it can be used to predict other
observables. As any model building requires fitting of
experimental data, our method surely reduces efforts to find
a better model. Since holographic modeling is currently
used in many subjects, we believe our method has a wide
range of applications in physics.
How can our study shed light on the mystery of the

emergent spacetime in the AdS=CFT correspondence? A
continuum limit of deep neural networks can accommodate
arbitrarily nonlocal systems as the network basically
includes all-to-all interlayer connections. So, the emer-
gence of the new spatial dimension would need a reduction

of the full DL parameter space. A criterion to find a
properly sparse neural network which can accommodate
local bulk theories is missing, and the question is similar to
the AdS=CFT correspondence where the criteria for QFT to
have a gravity dual are still missing. At the same time, our
work suggests that the bulk emergence could be a more
generic phenomenon. For further exploration of the
AdS=DL correspondence, we plan to formulate a “holo-
graphic autoencoder,” motivated by the similarity between
DL autoencoders and continuous MERA at finite temper-
ature [75,76], and also the thermofield formulation of the
AdS=CFT correspondence [77,78]. The characterization of
black hole horizons in DL may be a key to understanding
the bulk emergence.
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APPENDIX A: HAMILTONIAN SYSTEMS
REALIZED BY A DEEP NEURAL NETWORK

Here we show that a restricted class of Hamiltonian
systems can be realized by a deep neural network with a
local activation function [79]. We consider a generic
Hamiltonian Hðp; qÞ and its Hamilton equation, and look
for a deep neural network representation (1) representing
the time evolution by Hðp; qÞ. The time direction is
discretized to form the layers. (For our AdS=CFT exam-
ples, the radial evolution corresponds to the time direction
of the Hamiltonian which we consider here.)

FIG. 6. Left: The result of machine learning for fitting the experimental data. Blue and green dots are positive experimental data.
Orange and green dots are data judged as “positive” by using the learned metric (center). The total loss after the training is 0.0096. Right:
Statistical average of the 13 learned metrics that have a loss less than 0.02.
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Let us first try the following generic neural network and
identify the time translation t → tþ Δt with the interlayer
propagation:

qðtþ ΔtÞ ¼ φ1ðW11qðtÞ þW12pðtÞÞ;
pðtþ ΔtÞ ¼ φ2ðW12qðtÞ þW22pðtÞÞ: ðA1Þ

This consists of successive actions of a linear W trans-
formation and a local φ nonlinear transformation. The
relevant part of the network is shown in the left panel of

Fig. 7. The units xðnÞ1 and xðnÞ2 are directly identified with the
canonical variables qðtÞ and pðtÞ, and t ¼ nΔt. We want to
represent the Hamiltonian equations in the form (A1). It
turns out that it is impossible except for free Hamiltonians.
In order for Eq. (A1) to be consistent at Δt ¼ 0, we need

to require

W11 ¼ 1þOðΔtÞ; W22 ¼ 1þOðΔtÞ;
W12 ¼ OðΔtÞ; W21 ¼ OðΔtÞ; φðxÞ ¼ xþOðΔtÞ:

ðA2Þ
So use the ansatz

Wij ¼ δij þ wijΔt; φiðxÞ ¼ xþ giðxÞΔt; ðA3Þ
where wij ði; j ¼ 1; 2Þ are constant parameters and giðxÞ
(i ¼ 1, 2) are nonlinear functions. Substituting these into
the original Eq. (A1) and taking the limit Δt → 0, we
obtain

_q ¼ w11qþ w12pþ g1ðqÞ; _p ¼ w21qþ w22pþ g2ðpÞ:
ðA4Þ

In order for these equations to be Hamiltonian equations,
we need to require a symplectic structure

∂
∂q ðw11qþ w12pþ g1ðqÞÞ

þ ∂
∂p ðw21qþ w22pþ g2ðpÞÞ ¼ 0: ðA5Þ

However, this equation does not allow any nonlinear
activation function giðxÞ. So, we conclude that a simple
identification of the units of the neural network with the
canonical variables allows only linear Hamiltonian equa-
tions, and thus free Hamiltonians.
In order for a deep neural network representation to

allow generic nonlinear Hamiltonian equations, we need to
improve our identification of the units with the canonical
variables, and also the identification of the layer propaga-
tion with the time translation. Let us instead try

xiðtþ ΔtÞ ¼ W̃ijφjðWjkxkðtÞÞ: ðA6Þ
The difference from Eq. (A1) is twofold: first, we define i, j,
k ¼ 0, 1, 2, 3 with x1 ¼ q and x2 ¼ p, meaning that we have
additional units x0 and x3; second,we considermultiplication
by a linear W̃. So, in total, this consists of successive actions of
a linearW transformation, a nonlinear local φ transformation
and a linear W̃ transformation, and we interpret this set as a
time translationΔt. Sincewepile up these sets asmany layers,
the last W̃ at t and the nextW at tþ Δt are combined into a
single linear transformation WtþΔtW̃t, so the standard form
(1) of the deep neural network is kept.
We arrange the following sparse weights and local

activation functions:

W ¼

0
BBB@

0 0 v 0

0 1þ w11Δt w12Δt 0

0 w21Δt 1þ w22Δt 0

0 u 0 0

1
CCCA; W̃ ¼

0
BBB@

0 0 0 0

λ1 1 0 0

0 0 1 λ2

0 0 0 0

1
CCCA;

0
BBB@

φ0ðx0Þ
φ1ðx1Þ
φ2ðx2Þ
φ3ðx3Þ

1
CCCA ¼

0
BBB@

fðx0ÞΔt
1

1

gðx3ÞΔt

1
CCCA; ðA7Þ

FIG. 7. Left: A naive identification of the canonical variables q, p and the units, and of the time translation with the interlayer
propagation. Right: An improved neural network whose continuum limit provides a nonlinear Hamiltonian system.
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where u; v; wij (i, j ¼ 1, 2) are constant weights, and φiðxiÞ are local activation functions. The network is shown in the right
panel of Fig. 7. Using this definition of the time translation, we arrive at

_q ¼ w11qþ w12pþ λ1fðvpÞ; _p ¼ w11qþ w12pþ λ2gðuqÞ: ðA8Þ

Then the symplectic constraint means w11 þ w22 ¼ 0, and the Hamiltonian is given by

H ¼ w11pqþ 1

2
w12p2 −

1

2
w21q2 þ

λ1
v
FðvpÞ − λ2

u
GðuqÞ ðA9Þ

where F0ðx0Þ ¼ fðx0Þ and G0ðx3Þ ¼ gðx3Þ. This is the
generic form of the nonlinear Hamiltonians which admit
a deep neural network representation. Our scalar field
equation in the curved geometry (5) is within this category.
For example, choosing

w11 ¼ w21 ¼ 0; w12 ¼ 1=m; λ1 ¼ 0;

λ2 ¼ 1; u ¼ 1; ðA10Þ

gives the popular Hamiltonian for a nonrelativistic particle
moving in a potential,

H ¼ 1

2m
p2 − GðqÞ: ðA11Þ

A more involved identification of the time translation and
the layer propagation may be able to accommodate

Hamiltonians which are not of the form (A9). We leave
a generic argument of this for future investigations [80].

APPENDIX B: ERROR FUNCTION OF
THE AdS SCALAR SYSTEM

For λ ¼ 0, we can obtain an explicit expression for the
error function (loss function) for the machine-learning
procedure in our AdS scalar field system. The scalar field
equation (5) can be formally solved as a path-ordered form

�
πðηÞ
ϕðηÞ

�
¼ P exp

�Z
ηini

η
dη̃

�
hðη̃Þ −m2

−1 0

���
πðηiniÞ
ϕðηiniÞ

�
:

ðB1Þ

So, in the continuum limit of the discretized neural net-
work, the output is provided as

tanh jπð0Þj ¼ tanh

�
ð1 0ÞP exp

�Z
∞

0

dη̃

�
hðη̃Þ −m2

−1 0

���
πð∞Þ
ϕð∞Þ

��
: ðB2Þ

Then the error function (2) is provided as

E½hðηÞ� ¼
X

fπð∞Þ;ϕð∞Þg positive

�
tanh

�
ð1 0ÞP exp

�Z
∞

0

dη̃

�
hðη̃Þ −m2

−1 0

���
πð∞Þ
ϕð∞Þ

���
2

þ
X

fπð∞Þ;ϕð∞Þg negative

�
tanh

�
ð1 0ÞP exp

�Z
∞

0

dη̃

�
hðη̃Þ −m2

−1 0

���
πð∞Þ
ϕð∞Þ

��
− 1

�
2

: ðB3Þ

The learning process is equivalent to the following gradient
flow equation with a fictitious time variable τ:

∂hðη; τÞ
∂τ ¼ ∂E½hðη; τÞ�

∂hðη; τÞ : ðB4Þ

For the training of our numerical experiment using the
experimental data, we have chosen the initial configuration
of hðηÞ as a constant (which corresponds to a pure AdS
metric). For a constant hðηÞ ¼ h, the error function can be
explicitly evaluated with

πð0Þ ¼ 1

λþ − λ−
ðλþðπðηiniÞ − λ−ϕðηiniÞÞe−λþηini

þ λ−ð−πðηiniÞ þ λþϕðηiniÞÞe−λ−ηiniÞ ðB5Þ

where λ� ≡ 1
2
ð−h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4m2

p
Þ is the eigenvalue of the

matrix which is path-ordered. Using this expression, we
find that at the initial epoch of the training the function hðηÞ
is updated by the addition of a function of the form
exp½ðλþ − λ−Þη� and of the form exp½−ðλþ − λ−Þη�. This
means that the update is effective in two regions: near the
black hole horizon η ≈ 0 and near the AdS boundary η ≈∞.
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Normally in deep learning the update is effective near the
output layer because any back propagation could be sup-
pressed by the factor of the activation function. However
our example above shows that the update near the input
layer is also updated. The reason for this difference is that
in the example above we assumed λ ¼ 0 to solve the error
function explicitly, and this means that the activation
function is trivial. In our numerical simulations where
λ ≠ 0, the back propagation is expected to be suppressed
near the input layer.

APPENDIX C: BLACK HOLE METRIC AND
COORDINATE SYSTEMS

Here we summarize the properties of the bulk metric and
the coordinate frame which we prefer to use in the main text.
The four-dimensional AdS Schwarzschild black hole

metric is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2

L2

X2
i¼1

dx2i ;

fðrÞ≡ r2

L2

�
1 −

r30
r3

�
ðC1Þ

where L is the AdS radius, and r ¼ r0 is the location of the
black hole horizon. r ¼ ∞ corresponds to the AdS boun-
dary. To put this in the form of Eq. (4), we make the
coordinate transformation

r ¼ r0

�
cosh

3η

2L

�
2=3

: ðC2Þ

With this coordinate η, the metric is given by

ds2 ¼ −fðηÞdt2 þ dη2 þ gðηÞ
X2
i¼1

dx2i ;

fðηÞ≡ r20
L2

�
cosh

3η

2L

�
−2=3

�
sinh

3η

2L

�
2

;

gðηÞ≡ r20
L2

�
cosh

3η

2L

�
4=3

: ðC3Þ

The AdS boundary is located at η ¼ ∞while the black hole
horizon resides at η ¼ 0. The function hðηÞ appearing in the
scalar field equation (5) is

hðηÞ≡ ∂η log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðηÞgðηÞd−1

q
¼ 3

L
coth

3η

L
: ðC4Þ

The r0 dependence, and hence the temperature dependence,
disappears because our scalar field equation (5) assumes
time independence and xi independence. This hðηÞ is
basically the invariant volume of the spacetime, and is
important in the sense that a certain tensor component of
the vacuum Einstein equation coming from

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
Rþ 6

L2

�
ðC5Þ

results in the closed form

−
9

L2
þ ∂ηhðηÞ þ hðηÞ2 ¼ 0: ðC6Þ

It can be shown that the ansatz (C1) leads to a unique metric
solution for the vacuum Einstein equations, and the
solution is given by Eq. (C4) up to a constant shift of η.
Generically, whatever the temperature is, and whatever the
matter energy-momentum tensor is, the metric function
hðηÞ behaves as hðηÞ ≈ 1=η near the horizon η ≈ 0, and
goes to a constant (proportional to the AdS radius L) at the
AdS boundary η ≈∞.
One may try to impose some physical condition on hðηÞ.

In fact, the right-hand side of Eq. (C6) is a linear
combination of the energy-momentum tensor, and gener-
ally we expect that the energy-momentum tensor is subject
to various energy conditions, which may constrain the η
evolution of hðηÞ. Unfortunately it turns out that a suitable
energy condition for constraining hðηÞ is not available, to
our knowledge. So, nonmonotonic functions in η are
allowed as a learned metric.

APPENDIX D: DETAILS ABOUT OUR CODING
FOR THE MACHINE-LEARNING PROCEDURE

1. Comments on the regularization

Before getting into the detailed presentation of the coding,
let us make some comments on the effect of the regulari-
zation Ereg and the statistical analysis of the learning trials.
First, we discuss the meaning of Ereg in Eq. (2). In the

first numerical experiment for the reproduction of the AdS
Schwarzschild black hole metric we took

Eð1Þ
reg ≡ 3 × 10−3

XN−1

n¼1

ðηðnÞÞ4ðhðηðnþ1ÞÞ − hðηðnÞÞÞ2

∝
Z

dηðh0ðηÞη2Þ2: ðD1Þ

This regularization term works as a selection of the metrics
which are smooth. We are interested in the metric with
which we can take a continuum limit, so a smooth hðηÞ is
better for our physical interpretation. Without Ereg, the
learned metrics are far from the AdS Schwarzschild metric:
see Fig. 8 for an example of the learned metric without Ereg.
Note that the example in Fig. 8 achieves an accuracy that is
of the same order as that of the learned metric with Ereg. So,
in effect, this regularization term does not spoil the learning
process, but actually picks up the metrics which are
smooth, among the learned metrics achieving the same
accuracy.
Second, we discuss how the learned metric shown in

Fig. 4 is generic, for the case of the first numerical
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experiment. We have collected results of 50 trials of the
machine-learning procedure, and the statistical analysis is
presented in Fig. 4(c). It is shown that the metric in the
asymptotic region is quite nicely learned, and we can
conclude that the asymptotic AdS spacetime has been
learned properly. On the other hand, for the result in the
region near the black hole horizon, the learned metric
reproduces qualitatively the behavior around the horizon,
but quantitatively it deviates from the true metric. This
could be due to the discretization of the spacetime.
Third, let us discuss the regularization for the second

numerical experiment for the emergence of the metric for
the condensed-matter material data. The regularization
used is

Ereg ¼ Eð1Þ
reg þ Eð2Þ

reg

¼ 3 × 10−3
XN−1

n¼1

ðηðnÞÞ4ðhðηðnþ1ÞÞ − hðηðnÞÞÞ2

þ cð2ÞregðhðηðNÞÞ − 1=ηðNÞÞ2; ðD2Þ

with cð2Þreg ¼ 10−4. The second term is introduced to fit the
metric hðηÞ near the horizon to the value 1=η, because 1=η
behavior is expected for any regular horizons. In Fig. 9, we
present our statistical analyses of the obtained metrics for
two other distinct choices of the regularization parameter:

cð2Þreg ¼ 0 and cð2Þreg ¼ 0.1. For cð2Þreg ¼ 0, there is no regulari-
zation Ereg, so the metric goes down to a negative number at

the horizon. For cð2Þreg ¼ 0, which is a strong regularization,
the metric is almost completely fixed to a value 1=η with
η ¼ ηðNÞ. For all cases, the learned metrics achieve a loss
≈0.02, so the system is successfully learned. The only
difference is how we pick up “physically sensible” metrics

among many learned metrics. In Fig. 6, we chose cð2Þreg ¼
10−4 which is in between the values used in Fig. 9, because
the deviation of the metric near the horizon is of the same
order as that near the asymptotic region.

2. Numerical experiment 1: Reconstructing
an AdS Schwarzschild black hole

We have performed two independent numerical experi-
ments: the first one consisted of the reconstruction of the
AdS Schwarzschild black hole metric, and the second one
consisted of the emergence of a metric from the exper-
imental data of a condensed-matter material. Here we
explain details about the coding and the setup, for each
numerical experiment.
In the first numerical experiment, we fix the mass of the

scalar field m2 and coupling constant in the potential
VðϕÞ ¼ λ

4
ϕ4 to

m2 ¼ −1; λ ¼ 1; ðD3Þ

and prepare data fðx̄ð1Þ; ȳÞg to train the neural network. The
training data is just a list of initial pairs of x̄ð1Þ ¼ ðϕ; πÞ and
corresponding answer signals ȳ. We regard x̄ð1Þ ¼ ðϕ; πÞ as
field values at the AdS boundary, and define the answer
signal so that it represents whether they are permissible or

FIG. 9. Statistical results of the 13 obtained metrics. Left: cð2Þreg ¼ 0. Right: cð2Þreg ¼ 0.1.

FIG. 8. A learned metric with a high accuracy, without the use
of the regularization Ereg. The setup used is the same as what we
used for the reproduction of the AdS Schwarzschild metric.
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not when they propagate toward the black hole horizon.
More explicitly, what we do is the iteration defined below.
(1) Randomly choose ϕ ∈ ½0; 1.5�, π ∈ ½−0.2; 0.2� and

regard them as input: x̄ð1Þ ¼ ðϕπÞ.
(2) Propagate it using the equation of motion (6) with

the AdS Schwarzschild metric (11) from ðϕðηiniÞ¼ϕ
πðηiniÞ¼πÞ

to ðϕðηfinÞπðηfinÞÞ.
(3) Calculate the consistency F, i.e., the right-hand

side of Eq. (10), and define the answer signal:

ȳ ¼
n
0 if F < 0.1;
1 if F > 0.1:

To train the network appropriately, it is better to prepare
data containing roughly an equal number of ȳ ¼ 0 samples
and ȳ ¼ 1 samples. We use a naive strategy here: if the
result of step 3 becomes ȳ ¼ 0, we add the sample ðx̄ð1Þ; ȳÞ
to the positive data category; if not, we add the sample to
the negative data category. Once the number of samples of
one category saturates to 103, we focus on collecting
samples in another category. After collecting both sets of
data, we concatenate positive data and negative data and
regard it as the total data for the training:

Training data D¼ð103positive dataÞ⊕ ð103negative dataÞ;

where

�
positive data¼fðx̄ð1Þ; ȳ¼ 0Þg;
negative data¼fðx̄ð1Þ; ȳ¼ 1Þg:

In addition, we prepare the neural network (1) with the
restricted weight (7). The only trainable parameters are
hðηðnÞÞ, and the purpose of this experiment is to see
whether trained hðηðnÞÞ are in agreement with the AdS
Schwarzschild metric (11) encoded in the training data
implicitly. To compare ȳ and the neural net output y,
we make the following final layer. First, we calculate
F≡ πðηfinÞ [which is the rhs of Eq. (10) in the limit
ηfin → 0], and second, we define y≡ tðFÞ where

tðFÞ ¼ ½tanhð100ðF − 0.1ÞÞ − tanhð100ðF þ 0.1ÞÞ þ 2�=2:
ðD4Þ

We plot the shape of tðFÞ in Fig. 10. Before running the
training iteration, we should take certain initial values for
hðηðnÞÞ. We use the initial hðηðnÞÞ ∼N ð1=ηðnÞ; 1Þ (which is
a Gaussian distribution), because any black hole horizon is
characterized by the 1=ηðnÞ behavior at ηðnÞ ≈ 0. [81] After
setting the initial values for the trained parameters, we
repeat the training iteration.
(1) Randomly divide the training data into a direct

sum: D ¼ ðmini data 1Þ ⊕ ðmini data 2Þ ⊕ � � � ⊕
ðmini data 200Þ.

(2) Calculate the loss (2) and update hðηðnÞÞ using the
Adam optimizer [82] for each mini data set.

When the target loss function (2) becomes less than 0.0002,
we stop the iteration 1 and 2.

3. Numerical experiment 2: Emergent metric
from experimental data

As a next step, we perform the second numerical
experiment. In this case, we use experimental data [72]
composed of pairs of magnetic field strengths H and
corresponding magnetic responses M of Sm0.6Sr0.4MnO3

at the temperature 155 K. To pad the data, we plot the
experimental paired ðH;MÞ values as a two-dimensional
scatter plot and fit it by using a polynomial with respect to
H up to 15th order (see Fig. 11), and call it fðHÞ. By using
this fðHÞ, we prepare the training data fðX̄ð1Þ; ȳÞg as
follows.
(1) Randomly choose H ∈ ½0; 6�;M ∈ ½0; 2� and regard

them as input: X̄ð1Þ ¼ ðHMÞ.
(2) Define the answer signal: ȳ ¼n

0 if M ∈ ½fðHÞ − noise; fðHÞ þ noise�;
1 otherwise;

where

the noise ∼N ð0; 0.1Þ.

FIG. 10. Final layer function tðFÞ in Eq. (D4).

FIG. 11. Experimental data of magnetization (M) versus
magnetic field (H) and its polynomial fitting.
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We prepare 104 positive data and 104 negative data, the
same as in the first numerical experiment. See Fig. 5 for
the padding of the obtained data. On the neural network,
we insert an additional layer as the first layer (12). In
addition to the values for hðηðnÞÞ, we update α, β in Eq. (12)
and m2, λ in Eqs. (6) and (7) with VðϕÞ ¼ λ

4
ϕ4. As one can

notice, m2 appears in the definitions for Δ�, so Eq. (12)
includes m2 implicitly. The training is performed in the
same manner as in the first numerical experiment. We use a
ten-layer neural network in our numerical experiments.
When the target loss function (2) becomes smaller than
0.02, we stop the learning. Initial conditions for the
network are taken as hðηðnÞÞ ∼N ð2; 1Þ; m2 ∼N ð2; 1Þ;
λ ∼N ð1; 1Þ and α; β ∼ ½−1; 1�.

APPENDIX E: COMMENTS ON THE
CONFORMAL DIMENSIONS

Here we review the critical exponents for a magnetic
system, which are described by a scalar field near the
critical point. In D-dimensional space ðD ¼ d − 1Þ, the
correlation function of the scalar field behaves as

GðxÞ ∼ jxj−ðD−2þηÞ ðE1Þ
at the critical temperature, where η is the anomalous
dimension. Thus, the scaling dimension of the scalar is
given by

Δ ¼ D − 2þ η

2
: ðE2Þ

The critical exponent δ is defined as

M ∼H1=δ ðE3Þ
at the critical temperature, i.e., δ characterizes how the
magnetization M depends on the magnetic field H near
H ¼ 0. It is known (see e.g., Ref. [83]) that the scaling
hypothesis relates the critical exponents δ and η as

δ ¼ Dþ 2 − η

D − 2þ η
: ðE4Þ

The critical exponent δ should be positive because the
magnetization M should vanish when the magnetic field H
is turned off. Thus, the scaling law (E4) implies that the
anomalous dimension η satisfies η < Dþ 2. Therefore, the
scaling dimension Δ should be bounded as Δ < D. In
particular, by setting D ¼ 3, we should have Δ < 3.
However, in our numerical experiment using the mag-

netic response data of the material Sm0.6Sr0.4MnO3 at
155 K, from the obtained data we can calculate the
conformal dimension, Δþ ¼ 4.89� 0.32. The estimated
value of the conformal dimension is larger than the bound
Δþ < 3, and we have to be careful in the interpretation of
the value here.
Let us discuss several possible reasons for the violation

of the bound. In fact, we use a scalar model which does not
properly reflect the spin structure of the operator. For a
holographic treatment of the magnetization, several meth-
ods have been proposed; see Refs. [84–88]. Depending on
the model, the identification of the conformal dimension
could be different.
Another reason is that when we compute Δþ numeri-

cally, we set ηini ¼ 1 to reduce the computational cost. If we
chose ηini to take a much larger value ηini=L ≫ 1, the extent
of the violation would have been milder.
We also speculate that the temperature 155 K we chose

for the analyses may not be close enough to the critical
temperature [89]. In addition, because the order of the
phase transition is not evident in the experimental data, the
scaling law discussed above may not be applied. Of course,
even if the temperature is near the critical temperature, there
is no persuasive reason that the material Sm0.6Sr0.4MnO3

can be described holographically by a classical bulk scalar
field. The simulation is just a demonstration of how our DL
is used for the given experimental data, and we do not take
the violation of the bound as a serious problem in this
paper. It is more interesting to find a material such that the
scaling dimension computed from our DL agrees with the
critical exponents estimated from the experimental data.
The agreement suggests that such a material has a holo-
graphic dual [90].
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