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We hereby study the properties of a large class of weakly nonlocal gravitational theories around the (anti–)
de Sitter spacetime background. In particular, we explicitly prove that the kinetic operator for the graviton
field has the same structure as the one in Einstein-Hilbert theory around any maximally symmetric spacetime.
Therefore, the perturbative spectrum is the same as standard general relativity, while the propagator on any
maximally symmetric spacetime is a mere generalization of the one from Einstein’s gravity derived and
extensively studied in several previous papers. At quantum level the range of theories presented here is
superrenormalizable or finite when proper (not affecting the propagator) terms cubic or higher in curvatures
are added. Finally, it is proven that for a large class of nonlocal theories, which in their actions do involve
neither the Weyl nor the Riemann tensor, the theory is classically equivalent to the Einstein-Hilbert one with a
cosmological constant by means of a metric field redefinition at any perturbative order.
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I. INTRODUCTION

In previous studies it has been extensively shown that
a class of weakly nonlocal theories of gravity is unitary
(ghost-free) and perturbatively superrenormalizable or finite
in the framework of quantum field theory [1–11]. These
works mostly concentrated on the perturbative theory
around the flat Minkowski spacetime. The very foundations
of the theory are the following: (i) general covariance;

(ii) weak nonlocality (or quasipolynomiality) [12]; (iii) uni-
tarity (ghost freedom); and (iv) superrenormalizability or
finiteness at quantum level.1 The new class of generally
covariant theories differs from Einstein’s gravity because of
the weak nonlocality, which makes it possible to achieve
unitarity and superrenormalizability at the same time, and at
any order in the perturbative loop expansion. Nevertheless,
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1We here would like to point out that in this paper all the results
are proved in dimensional regularization scheme (DIMREG).
This is to clarify the difference with the Wilsonian point of view
and the functional renormalization group approach where the
cutoff is taken seriously. We will use the standard DIMREG
scheme adopted in QED, in QCD, and all the Standard Model of
particle physics. However, our results are, of course, independent
of the regularization scheme. We can, for example, use the cutoff
regularization scheme with Pauli-Villars fields as it is done in
QED, and we end up with exactly the same results found in
DIMREG. Finally, the readers interested in the analysis of
nonlocal theories carried out in the cutoff regularization scheme
are referred to [13].
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the theory is not unique and all the freedom is mainly
encoded in one, two, or three form factors (entire functions)
with very specific asymptotic limits in the ultraviolet (UV)
and infrared (IR) regimes in order to have a well defined
quantum field theory.
We here study the same range of weakly nonlocal theories

around maximally symmetric spacetimes (MSS) applying
exactly the same logic so successfully implemented for
theories around the Minkowski vacuum. In particular, we
show that the kinetic operator for the gravitational fluctua-
tions h resumes exactly the Einstein-Hilbert one up to some
multiplicative factors. For this achievement, we explicitly
show the results for the expansion of the action at the second
order in h around a MSS. Therefore, all the results
concerning the propagator on (anti–) de Sitter [(A)dS]
spaces for the Einstein-Hilbert action can be exported and
applied to the quasipolynomial theories, too. In particular,
for one out of the two classes of theories, which we
extensively study in this paper, we prove by the means of
a field redefinition that at the perturbative level, but to all
perturbative orders in the field redefinition, the nonlocal
action is classically equivalent to the Einstein-Hilbert one in
the presence of a cosmological constant. The proof is based
on a field redefinition theorem that was already applied in
[14] to the theory around the Minkowski vacuum.
There are several good theoretical as well as observa-

tional reasons to study the class of gravitational theories
around MSS and not only around flat spacetime vacuum.
Primarily, the true gravitational vacuum in quantum field
theory is not precisely located as suggested by the cosmo-
logical constant problem. This has to do in other disguises
with the gravitational effect of the zero modes of the simple
quantized harmonic oscillator. (The last one works as a toy
model for any perturbative quantum field theory (QFT),
when it is treated as a theory of free propagating excita-
tions.) Therefore, the flat Minkowski spacetime may not be
the correct gravitational vacuum, and in some theories this
state may even decay (via the spontaneous production of
ghosts) as in higher derivative models of gravity. It may
happen that the perturbative calculus around such false
vacua is very fast divergent and not reliable due to the
presence of different types of instabilities such as ghosts
(negative norm states) or tachyons (negative mass states). A
rescue could be to look for another vacuum state and to
study quantum perturbations around the new vacuum. The
MSS are the only other spacetimes where the number of
local generators is not in conflict with the one of the
Poincaré group for the flat spacetime. On MSS the
spacetime symmetries are as rich as when on flat spacetime;
hence MSS is potentially another good vacuum state. (We
remind the reader that the vacuum state is a state of quite
high symmetry.) On such a spacetime we do not violate
homogeneity nor isotropy and the group of symmetries is
only changed from SOð1; 3Þ into SOð2; 2Þ in the case of
AdS in D ¼ 4 spacetime dimensions. In the case of dS the
group of isometries remains the same. These new different

vacua may be perturbatively unreachable from the original
one; therefore, by studying quantum theories around (A)dS
spacetimes we actually do nonperturbative physics from the
flat spacetime perspective. Additionally, different back-
grounds can be viewed as a resummation of collective
gravitational fluctuations around an initial background.
On the other hand, the inclusion of background space-

times of constant curvature is a very mild modification that
can be treated exactly without tremendous efforts in
computations. Therefore, it is an interesting laboratory to
study perturbative implications of the same theory, but on
different maximally symmetric backgrounds. For example,
we can play with the value of the curvature radius of the
background and we can easily check the claims about
background independence of nonlocal theories. Since AdS
spacetimes gained a lot of attention in the past two decades,
mainly due to the AdS=CFT conjecture, it is also highly
desirable to have a gravitational version of nonlocal
theories formulated on general AdS backgrounds. This
could be viewed as a first step toward the investigation of
the gauge-gravity duality in a class of weakly nonlocal
gravitational theories consistent at quantum level.
The cosmological constant aΛ appearing in the tree-level

action should be understood as a new coupling constant of
gravitational character, and not as a special matter source.
Moreover, the cosmological constant term is an IR com-
pletion of the theory when we introduce all possible
operators with a fixed number of derivatives. In the case
of the cosmological constant we actually add a generally
covariant term with no derivatives at all. And then the
following issue arises that for consistency we should
quantize physical theory around on-shell background,
i.e., such that it solves exactly classical equations of
motion. If we have the cosmological constant in the action,
then the flat spacetime is not a solution anymore and we
have to study the theory around Einstein spaces. The de
Sitter and anti–de Sitter spacetimes serve as examples of
such background spacetimes.
However, here we want to remark that it is also possible

to pursue a different idea that the cosmological constantΛcc
may not be present in the action. The background does not
have to be on-shell with respect to the equations for the
perturbations, and only at the end should the physical
theory for the on-shell Minkowski background without Λcc
be considered. If Λcc is in the action, then the fluctuations
must be analyzed around on-shell (A)dS spacetimes. On the
other hand, from the mathematical point of view it is
consistent to have off-shell backgrounds on which one can
have whatever theory describing the propagation and
interactions of fluctuating modes. We only want these
fluctuations to be small (kind of a probe theory) to not
influence the background too much (backreaction is
neglected). For example, we can study the quantum
fluctuations around the flat background in a theory that
incorporates the cosmological constant term, too. Indeed,
we can always consider contributions to the propagator and
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vertices coming from the cosmological constant term even
on a flat spacetime background.
In this paper we show that the analysis of perturbative

linear stability (equivalent to the analysis of the spectrum of
linear perturbations around a given background) gives the
same results as in the flat spacetime case, and hence these
gravitational vacuum configurations are perfectly stable.
There is still a question, what is the vacuum here: gravita-
tional vacuum or vacuum with a value of the cosmological
constant, or no gravitational field at all (flat Minkowski
spacetime)? Besides this we think that having a one vacuum
(whichmay evenbe false) is fine for having a good candidate
for quantum gravitational fundamental theory. Moreover,
the quantization around MSS may have very important
meaning in nonsupersymmetric theories (in unbroken super-
gravity the vacuum must be flat due to constraints coming
from the supersymmetry algebra), and it must be considered
seriously like the quantization around flat spacetime.
Last but not least, we must look for a theory consistent

on a MSS spacetime background because the cosmological
observations suggest that we are living in an exponentially
expanding de-Sitter-like universe. Despite that for all Earth-
and solar system–based gravitational experiments we can
safely neglect the effect of being in the dS phase, it is
crucial that the theory, which has very good quantum
properties around the Minkowski background, can also be
formulated around any other MSS without major obstruc-
tions. Hereby, we show that such a theory exists and is well
defined, and it has the same analogous good quantum and
UV properties as the theory previously studied on the flat
spacetime background. The theory around any MSS
possesses the following virtues: is generally covariant,
background-independent, perturbatively unitary [15–18],
and in the quantum domain can easily be selected to be
superrenormalizable or UV finite. It is easily seen that the
presence of one constant parameter (namely the cosmo-
logical constant) in this fundamental theory does not
destroy, but rather only generalizes, the amazing structure
already known around the flat background. Indeed, on a
MSS the theory is only slightly modified with respect to the
theory on the flat background. The MSS backgrounds are
very well behaved: they are, for example, constant with
respect to covariant derivatives, and the commutators of
derivatives can be traced back to some correction propor-
tional to Λcc. Moreover, the background curvature tensors
can be completely written out using only the metric tensor
and the parameter Λcc. Therefore, we are going to include
the cosmological constant in all the operators present in the
action. In particular, the form factors could be selected to be
functions ofΛcc or the Ricci scalar. In the former case, as an
additional advantage we can easily recover the flat space-
time results, by taking the limit Λcc → 0.
At the level of classical solutions the gravitational

potential in the class of nonlocal theories is singularity-
free and approaches a constant at r ¼ 0, regardless of the

particular form factor appearing in the action [19–30]. This
was found in the context of approximate solutions. On the
other hand, regular bouncing solutions and Starobinsky’s
cosmological solution have been shown to solve exactly the
equations of motion of the nonlocal theory [31]. However,
Ricci-flat spacetimes and the Friedmann-Robertson-Walker
(FRW) spacetime in the presence of radiation are still exact
solutions of the weakly nonlocal theory [32]. This issue
also has to do with the question of localization of nonlocal
theories as addressed in [33]. Therefore, any form of
nonlocality is not enough to smear out the singularities.
However, at the present stage we cannot exclude that a
special nonlocal theory could have only nonsingular
solutions. Moreover, we have evidences that in this class
of theories with infinitely many derivatives the black hole
entanglement entropy is completely regularized and takes
only finite values [13,34].
In Sec. II we review the perturbative weakly nonlocal

gravitational theory around theMinkowski space: the propa-
gator, power counting, superrenormalizability, and finiteness
at quantum level. In Sec. III we propose two classes of
weakly nonlocal theories on (A)dS, and we explicitly prove
that the action at the second order in the graviton fluctuations
has the same structure of the Einstein-Hilbert one. In Sec. IV
we show that the theory is finite at quantum level, while in
Sec. Vwe prove that for one out of the two classes of theories
a perturbative field redefinition allows one to map the
nonlocal theory into the Einstein-Hilbert theory plus cos-
mological constant. In the last section we propose and study
the most general weakly nonlocal field theory.
Most of the results obtained in this paper can easily be

exported to Lee-Wick gravitational theories [35–40] just
by replacing the nonlocal form factors with appropriate
polynomials.

II. NONLOCAL GRAVITATIONAL THEORIES
ON MINKOWSKI VACUUM

The most generalD-dimensional theory weakly nonlocal
(or quasilocal) and quadratic in curvature reads [1–11]

Lg ¼ −2κ−2D
ffiffiffiffiffi
jgj

p
½Rþ Rγ0ð□ÞRþRicγ2ð□ÞRic

þRiemγ4ð□ÞRiemþ V�: ð1Þ

The above Lagrangian density of the theory consists of a
kinetic weakly nonlocal operator quadratic in curvature,
three entire functions γ0ð□Þ, γ2ð□Þ, γ4ð□Þ, and a set of
local terms V cubic or higher in curvature.2 The latter
consists of operators with a properly chosen number of
derivatives to not spoil the good quantum properties of

2Definitions.—The metric tensor gμν has signature ð−þ…þÞ
and the curvature tensors are defined as follows: Rμ

νρσ ¼
−∂σΓ

μ
νρ þ…, Rμν ¼ Rρ

μρν, R ¼ gμνRμν. With symbol R we
generally denote one of the above curvature tensors.
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the theory. Moreover, □ ¼ gμν∇μ∇ν is the covariant
d’Alembertian (or box) operator, while the entire functions
γlð□Þ are defined in terms of exponentials of entire
functions HlðzÞ (l ¼ 0, 2), namely

γ0ð□Þ ¼ −
ðD − 2ÞðeH0ð□Þ − 1Þ þDðeH2ð□Þ − 1Þ

4ðD − 1Þ□ þ γ4ð□Þ;

ð2Þ

γ2ð□Þ ¼ eH2ð□Þ − 1

□
− 4γ4ð□Þ; ð3Þ

while γ4ð□Þ stays arbitrary. It is only constrained by
renormalizability to have the same asymptotic UV behavior
as the other two form factors γlð□Þ (l ¼ 0, 2). The
minimal choice compatible with unitarity and superrenor-
malizability corresponds to retaining only two out of three
form factors; i.e., we can choose γ4ð□Þ ¼ 0.
Finally, the entire functions V−1

l ðzÞ≡ expðHlðzÞÞ
(z≡ −□Λ ≡ −□=Λ2) (for l ¼ 0, 2) introduced in (2)
and (3) satisfy the following general conditions [3,41]:

(i) V−1
l ðzÞ is real and positive on the real axis, and it has

no zeros on the whole complex plane jzj < þ∞.
This requirement implies that there are no gauge-
invariant poles other than the transverse massless
physical graviton pole.

(ii) jV−1
l ðzÞj has the same asymptotic behavior along the

real axis at �∞.
(iii) There exist Θ > 0, Θ < π=2, and positive integer γ,

such that asymptotically

jV−1
l ðzÞj → jzjγþNþ1; when jzj → þ∞

with γ ≥
Deven

2
or γ >

Dodd − 1

2
; ð4Þ

for the complex values of z in the conical regions C
defined by

C¼ fzj−Θ< arg z <þΘ;π −Θ< arg z < πþΘg:

The last condition is necessary to achieve the maximum
convergence of the theory in the UV regime. The necessary
asymptotic behavior is imposed not only on the real axis
but also on the conical regions that surround it. In an
Euclidean spacetime, the condition (ii) is not strictly
necessary if (iii) applies. In (4) the capital N is defined
to be the following function of the spacetime dimension D:
2Nþ 4 ¼ Dodd þ 1 in odd dimensions and 2Nþ 4 ¼
Deven in even dimensions. Moreover, by Λ we denote
the scale of nonlocality of the theory (not to be confused
with the cosmological constant: Λcc).
One example of an entire function due to Tomboulis [3] is

V−1ðzÞ ¼ e
1
2
½Γð0;pðzÞ2ÞþγEþlog ðpðzÞ2Þ�; ð5Þ

where Γð0; xÞ is the incomplete Gamma function with its
first argument put to zero, pðzÞ is a polynomial of degree
γ þ Nþ 1 and γE is the Euler-Mascheroni mathematical
constant. To achieve (super–)renormalizability the degrees
of the polynomials appearing in the definitions of V−1

0 ðzÞ
and V−1

2 ðzÞ must be equal. In the rest of the paper we will
denote the common degree by γþNþ 1 (N ¼ 0 inD ¼ 4).
A few comments are in order here:
(i) First, it is obvious that the Minkowski spacetime is

indeed a solution of the background equations of
motion (EOM) corresponding to the above action
(1). Other terms than the Einstein-Hilbert one in the
original Lagrangian are at least quadratic in curva-
ture and as such vanish when evaluated for the
Minkowski metric. Even though the EOM are not
used in our present analysis, the reader can find them
in [32,42,43]. A cosmological constant term cannot
be introduced here as it would lead to a constant
nontrivial curvature at least.

(ii) Second, the action (1) is written exactly in the form
as it is above because below we want to highlight the
structure of the gravity propagator. Since the propa-
gator can be read from a quadratic variation of the
background action, we worry about terms at most
quadratic in curvatures. Higher curvature corrections
vanish upon the second variation as long as the
background curvature itself is zero (as it is the case
in the Minkowski flat background).

(iii) The requirement that the form factors γl are entire
functions deserves a little bit more explanation. The
objects of our consideration are weakly nonlocal
theories. This means that we have an analytic function
in the whole complex plane with, in particular, a
smooth limit when momenta tend to zero. The way to
think about this is to introduce a scale of gravity
modification Λ with the dimension of mass and
carefully write everywhere □=Λ2. As such the low
energy limit is when the nonlocality scale goes to
infinity. From here we find out that the form factors
must be at least analytic in the origin. One may
wonder why we need them to be entire functions, i.e.,
analytic everywhere. It can be shown that the pro-
pagators of canonical variables in Arnowitt-Deser-
Misner (ADM) formalism (which are observable
quantities during inflation, for instance) feature a
propagator with the form factor γ0 in the denominator.
As such, if the function γ0 has some pole, it will
become a new pole for the canonical variable and the
quantum properties of the theory would be spoiled
with respect to our expectations for themeasurements.
The mathematical details of these arguments can be
found in a parallel study [44]. However, we make a
statement that indeed the functions γl must be entire.

(iv) The advertised above form of the form factors γl and
the comment that only two out of three of these
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functions are essential is a consequence of the
structure of the propagator, and this is the matter
of the succeeding analysis. It is, however, worth
mentioning that the formulas (2) and (3) do not
guarantee that γl are entire functions even though
the functions H0;2 are. This should be checked
independently.

We additionally remark here the reason to call the term V
appearing in the action (1) “curvature potential.” First of all,
we argue that for any gauge theory as well as for gravity
the strict distinction between the kinetic term and the
potential of interaction does not exist. This is due to gauge
invariance that connects interactions also with standard
terms responsible for the propagator. The nomenclature we
have adopted here is that by kinetic terms we mean terms
that do contribute to the propagator around flat spacetime.
Around the flat spacetime typically the kinetic terms are
operators up to quadratic in curvature, while in the
“curvature potential” we put all the terms cubic and higher
in the curvature. The counting above is insensitive to the
number of covariant derivatives appearing in the term under
consideration. This is the only meaningful difference
between the two parts of the action. On MSS operators
cubic and higher in the curvature can contribute to the
propagator. However, we can suitably modify the potential
to make it compatible with the above definition around the
Minkowski flat spacetime. Moreover, the locality of V is
not a must, while the weak nonlocality is not required by
the unitarity.
Finally, since in the gravitational case the notion of local

energy density of the gravitational field is not well defined
(strictly this is not a gauge-invariant observable with
respect to the diffeomorphism group), we cannot sensibly
speak about the potential energy for the gravitational
Lagrangian case. We want to emphasize that even in the
case of finite QED (studied in [45]) the role of the potential
V is different from the standard role ascribed to it in
classical mechanics or in other field theory models, so it is a
little inappropriate to call it that.

A. Propagator and unitarity around
the Minkowski spacetime

Splitting the spacetime metric into the flat Minkowski
background and the dimensionful fluctuation hμν defined
by gμν ¼ ημν þ κDhμν (here and above κD is proportional to
the square root of the gravitational Newton constant), we
can expand the action (1) to the second order in hμν. The
result of this expansion together with the usual harmonic
gauge-fixing term reads [46]

Lquad þ LGF ¼
1

2
hμνOμν;ρσhρσ; ð6Þ

where the operator O is made out of two terms, one
coming from the quadratization of (1) and the other

from the following gauge-fixing term, LGF ¼
ξ−1∂νhμνωð−□ΛÞ∂ρhρμ, where ωð−□ΛÞ is a weight func-
tional [47,48]. The d’Alembertian operator in Lquad and the
gauge-fixing term must be conceived on the flat spacetime.
Inverting the operator O [46] and making use of the form
factors (2) and (3), we find the two-point function in the
harmonic gauge (∂μhμν ¼ 0),

O−1¼ ξð2Pð1Þ þ P̄ð0ÞÞ
2k2ωðk2=Λ2Þ þ Pð2Þ

k2eH2ðk2=Λ2Þ−
Pð0Þ

ðD−2Þk2eH0ðk2=Λ2Þ :

ð7Þ

We omitted the tensorial indices for the propagatorO−1 and
the projectors fPð0Þ; Pð2Þ; Pð1Þ; P̄ð0Þg defined in [46,49].3

The propagator (7) is the most general one compatible
with unitarity. It propagates no other degree of freedom
(d.o.f.) besides the standard massless transverse spin-2
graviton. This follows from the fact that exponents of entire
functions are special entire functions with no zeros. So we
technically avoid new poles, which means we avoid new
physical d.o.f. Returning to the comment in the previous
subsection we see that the structure of the propagator
advocates the form of form factors γl as the absence of new
d.o.f. was exactly the requirement behind formulas (2) and
(3). We also note that in order to have a well behaved
propagator we need to get a correct form of only two factors
corresponding to spin-0 and spin-2 parts. This explains
why one function out of three γl can be put to zero from the
point of view of unitarity. Further, the unitarity is manifest,
because the optical theorem at tree level is trivially
satisfied, namely

2ImfTðkÞμνO−1
μν;ρσTðkÞρσg

¼ 2πResfTðkÞμνO−1
μν;ρσTðkÞρσgjk2¼0 > 0; ð9Þ

where TμνðkÞ is the Fourier transform of the conserved
energy tensor of a matter source.
So far we have proved that the theory is unitary at

the perturbative level around the Minkowski spacetime.
However, we will probably be able to prove the non-
perturbative unitarity of the theory around the Minkowski

3The standard projectors are defined by

Pð2Þ
μν;ρσðkÞ ¼ 1

2
ðθμρθνσ þ θμσθνρÞ −

1

D − 1
θμνθρσ;

Pð1Þ
μν;ρσðkÞ ¼ 1

2
ðθμρωνσ þ θμσωνρ þ θνρωμσ þ θνσωμρÞ;

Pð0Þ
μν;ρσðkÞ ¼ 1

D − 1
θμνθρσ; P̄ð0Þ

μν;ρσðkÞ ¼ ωμνωρσ ;

θμν ¼ ημν −
kμkν
k2

; ωμν ¼
kμkν
k2

: ð8Þ

We have also replaced −□ by k2 in the quadratized action.
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spacetime in the near future. On the other hand, unitarity
around general backgrounds is a very difficult task. Indeed,
unitarity is only well defined in Minkowski spacetime
mainly because it is not clear how to define the concept of a
particle in curved spacetime and even how unambiguously
to define the asymptotic states for the scattering S matrix.
We remind the reader that we can sensibly speak about the
unitarity of the S matrix only in theories where we have a
well defined S matrix. Regarding issues related to unitarity,
at most what can be proved is the absence of ghosts on
any background for some special theories (for example,
Einstein gravity is ghost-free around any background).
Nevertheless, in a recent paper we proved that we can have
up to 8 d.o.f. in nonlocal gravity on a general background,
and we do not know if some of them are ghostlike. In this
paper we are going to prove that there are no ghosts in
AdS and dS spacetimes (Sec. V), while in two other
papers [50,51] we have proved the absence of ghosts
(actually linear stability) around Ricci-flat spacetimes.
However, the linear stability of a general background is
really a difficult task and beyond the scope of this paper.

B. Power counting in a nutshell

We now review [1,3,5,6,52,53] the power counting
analysis of the quantum divergences. We remark that the
divergences do not depend on the choice of the background
spacetime metric; therefore, the results in this subsection
apply equally well to the case of theories studied around
general MSS backgrounds. In the high energy regime, the
above propagator (7) in momentum space schematically
scales as

O−1ðkÞ ∼ 1

k2γþD in theUV: ð10Þ

The vertices can be collected in different sets that may or
may not involve the entire functions expHlðzÞ. However,
to find a bound on the quantum divergences it is sufficient
to concentrate on the leading operators in the UV regime.
These operators scale as the inverse of the propagator
giving the following upper bounds on the superficial degree
of divergence of any graph G [1,3,5,6],

ωðGÞ ¼ DLþ ðV − IÞð2γ þDÞ; ð11Þ

in a spacetime of even or odd dimension, respectively. We
simplify the above relation further to

ωðGÞ ¼ D − 2γðL − 1Þ: ð12Þ

In (12), we used the topological relation between the
number of vertices V, the number of internal lines I,
and the number of loops L: I ¼ V þ L − 1. Thus, if
γ > D=2, in the theory only one-loop divergences survive.
Therefore, the theory is superrenormalizable [1,3,5,6,53]

and only a finite number of operators of mass dimension up
to MD has to be included in the action in the even
dimension for the purpose of renormalization.
Notice that the power counting analysis can be done in

Minkowski spacetime because any smooth spacetime is
locally flat and the divergences are related to the UV
coincidence limit in the correlation functions. Therefore,
we can expand around whatever background, and we will
always end up with the same divergent contributions to the
quantum effective action; namely we will always get the
same beta functions.

C. The theory in Weyl basis

We can equally consider a different action, which will be
written by reshuffling quadratic in curvature terms in (1).
The following action is equivalent to (1) for everything
about unitarity [the propagator is given again by (7)] and
superrenormalizability or UV finiteness and its Lagrangian
density reads

LC ¼ −2κ−2D
ffiffiffiffiffi
jgj

p
½RþCγCð□ÞCþ RγSð□ÞR

þRiemγRð□ÞRiemþ V�; ð13Þ

γC ¼ −
D − 2

4
γ2; γS ¼ γ0 þ

1

2ðD − 1Þ γ2;

γR ¼ γ4 þ
D − 2

4
γ2; ð14Þ

where C is the Weyl tensor and all the form factors γl are
defined in (2) and (3).
To start with, we recall that only two form factors are

needed to have an appropriate propagator. We thus put
γR ¼ 0 and the theory (13) reduces to

LC ¼ −2κ−2D
ffiffiffiffiffi
jgj

p
½Rþ CγCð□ÞCþ RγSð□ÞRþ VðCÞ�;

ð15Þ

γC ¼
D−2

4ðD−3Þ
eH2 −1

□
; γS ¼−

D−2

4ðD−1Þ
eH0 −1

□
: ð16Þ

In D ¼ 4 it is enough to include V made out of two Weyl
killers to end up with a completely finite quantum gravi-
tational theory at any perturbative order in the loop
expansion. For example, we can choose the following
two operators:

VðCÞ ¼ sð1Þw CμνρσCμνρσ
□

γ−2CαβγδCαβγδ

þ sð2Þw CμνρσCαβγδ
□

γ−2CαβγδCμνρσ: ð17Þ

The Gauss-Bonnet (GB) operator does not contribute to the
divergent part of the quantum effective action in D ¼ 4
when the manifold has a trivial topology; namely the
spacetime is topologically equivalent to the Minkowski
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one or the Euclidean space (see, for example, [1]).
However, in the rest of the paper we will deal with the
(A)dS space, and we will have to take care of the
divergence proportional to the GB, too.
The beta functions for the two couplings in front of terms

quadratic in curvature can be only linear in the front
coefficients sð1Þw and sð2Þw [6], and then we can always find
a solution to the equations βR2 ¼ 0 and βRic2 ¼ 0 regard-
less of the energy scale and the loop order. The integral of
the Gauss-Bonet operator is in this section identically zero
because we assume the space to be topologically equivalent
to the Minkowski spacetime. Later we will be forced to give
up this hypothesis in (A)dS.
As pointed out in the Introduction the weak nonlocality

is not sufficient to solve the singularity issue that plagues
the Einstein-Hilbert gravitational theory. In particular, for
the theory in the Weyl basis presented in this section the
FRW metrics for conformal matter (Tmatter ≡ 0) solve
exactly the nonlocal EOM [32]. This means that the big-
bang singularity shows up in an exact solution of our
nonlocal quantum gravity. However, if the gravitational
sector also enjoys conformal invariance, then any FRW
singular spacetime is conformally equivalent to the flat
spacetime by a conformal rescaling and the singularity
turns out to be unphysical [54]. Notice that the presence of
singularities in particular nonlocal theories does not rule
out that it may exist a nonlocal theory, which is singularity-
free. However, the naive nonlocality by itself is not enough
[32,54]. The crucial ingredient here is the conformal
symmetry, which allows for rescalings such as those

described above. Moreover, scale invariance helps with
the singularity of geodesics [54,55] and also with some
issues of black hole physics [56,57].

III. NONLOCAL GRAVITY IN (A)dS VACUUM

A generalization to a constant curvature background is
rather straightforward. We here provide the expansion of
the action to the second order in the gravitational fluctua-
tions around an (A)dS spacetime, and we will infer about
the stability properties of the theory around any maximally
symmetric vacuum. We retrace the path followed for the
case of the Minkowski vacuum to mimic as much as
possible the Einstein-Hilbert theory. Therefore, we will end
up with a quadratic operator that reproduces the one from
Einstein’s gravity on the same background up to, at most,
two multiplicative form factors that do not change the
structure of the classical two-point function [58].
Technically, we will use the previous computations pub-
lished in [31,59,60] (see also Appendix). For definiteness
we will first concentrate on the situation on on-shell MSS
backgrounds. For them we can use that aΛ ¼ Λcc.
For reasons that will be clear later in the paper, we here

study two classes of theories that we identify as theories in
the “Weyl basis” and theories in the “Ricci basis.”

A. A class of theories in the Weyl basis

To see how things work we stick to D ¼ 4, make use of
the Weyl basis, and consider the case γR ¼ 0,

LCR ¼ −2κ−24
ffiffiffiffiffi
jgj

p
½R − 2Λcc þCγCð□ÞCþ RγSð□ÞRþ VðCÞ� with ð18Þ

γCð□Þ ¼ 1

2
ðeH2ð□−2

3
RÞ − 1Þ 1

□ − 2
3
R
; γSð□Þ ¼ −

1

6

1

□þ R
3

ðeH0ð□;RÞ − 1Þ; ð19Þ

where the translations of the covariant box operators (by the amount proportional to R) in comparison to the form factors
given in (16) will be clear shortly. Notice that the form factors (19) turn in (16) when the formal limit R → 0 in (19) is taken.
Moreover, the ordering of the operators could be relevant in (19) for some choices of the asymptotic polynomials. Indeed,
the arguments of the entire functions H0 and/or H2 can in general differ from the denominators in (19) so that they do not
commute due to the Ricci scalar curvatures appearing with different numerical coefficients.4

4Another slightly different choice of the form factors with respect to (19) can make irrelevant the ordering, namely

γCð□Þ¼ 1

2

eH2ð□−8
3
ΛccÞ−1

□− 8
3
Λcc

; γSð□Þ¼−
1

6

eH0ð□þ4
3
ΛccÞ−1

□þ 4
3
Λcc

; ð20Þ

where we replaced R with the cosmological constant that now appears not only in the local Einstein-Hilbert sector of the theory but also
explicitly in the form factors. Notice that this is an off-shell replacement, and it is just a different definition of the theory. Here the
amount of the shift in terms of the cosmological constant had been fixed in order to have stability around the (A)dS spacetime.
Moreover, the form factors (20) can easily be expressed as

P∞
r¼0 ar□

r for a proper choice of the coefficients ar because Λcc is a constant
and then the form factor is commutative contrary to the one in the main text, namely (19). Therefore, it is easy to implement the power
counting analysis developed in [1,3,52]. The vertices for the theory with form factors (20) will contain the incremental ratios defined in
[52] for the same form factors (20) with□ replaced with□M (the box operator on Minkowski space) (see also the discussion in the last
part of this subsection).
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In taking the quadratic part of the action (18) in the
graviton fluctuation hμν we use the following decomposi-
tion of the graviton field:

hμν ¼ h⊥μνþ∇ðμA⊥
νÞ þ

�
∇μ∇ν−

1

4
gμν□

�
Bþ1

4
gμνh; ð21Þ

where the spin-two fluctuation h⊥μν contains 5 d.o.f. because
it satisfies ∇μh⊥μν ¼ gμνh⊥μν ¼ 0. The transverse vector A⊥

ν ,
satisfying ∇μA⊥

μ ¼ 0, accounts for 3 d.o.f. Finally, B and h
are two real scalars. However, A⊥

μ automatically drops out
of the second variation of the action, and out of the two
scalars only the following combination ϕ ¼ □B − h
appears there.
We end up with the following second order variation of

the action [31,59,60]:

Sð2ÞCRðAÞdS ¼
1

2

Z
d4x

ffiffiffiffiffi
jḡj

p �
h̃⊥μν

�
□−

R̄
6

�

×

�
1þ2γSð0ÞR̄þ2

�
□−

R̄
3

�
γC

�
□þ R̄

3

��
h̃⊥μν

− ϕ̃

�
□þ R̄

3

��
1þ2γSð0ÞR̄−6

�
□þ R̄

3

�
γSð□Þ

�
ϕ̃

�
;

ð22Þ

where we introduced the canonically normalized fields
h̃⊥μν ¼ MPh⊥μν=2, ϕ̃ ¼ ffiffiffiffiffiffiffiffiffiffi

3=32
p

MPϕ, and M2
P ¼ 4κ−24 . In this

part of the section the bar operators Ō denote any back-
ground quantity. Moreover, γSð0Þ can be read out of the
following general expansion:

γSð□Þ¼
Xþ∞

i¼0

cS;i½ð□þXÞn2 �ið□n1Þi; n1;n2 ∈N; ð23Þ

where X is an operator proportional to the background
Ricci scalar R. The chosen order in (23) is consistent with
the polynomial given below in (26). The detailed expres-
sions for the most general second order variations of
various actions on MSS are collected in Appendix. We
can assume γSð0Þ ¼ 0 [i.e., cS;0 ¼ 0 in (19), (23)] because
this is consistent with the requirements for the special entire
function HðzÞ [3]. Therefore, replacing the form factors
(19) in the variation (22) we end up with the following
result:

Sð2ÞCRðAÞdS ¼ 1

2

Z
d4x

ffiffiffiffiffi
jḡj

p �
h̃⊥μν

�
□ −

R̄
6

�
eH2ð□−R̄

3
Þh̃⊥μν

− ϕ̃

�
□þ R̄

3

�
eH0ð□;R̄Þϕ̃

�
: ð24Þ

The condition γSð0Þ ¼ 0 and the locality of counterterms
force us to select the following entire function (we here
consider the γ ¼ 3 case):

H0ð□;RÞ ¼ 1

2
fγE þΓð0; ½pSð□;RÞ�2Þ þ log ½pSð□;RÞ�2g;

ð25Þ

pSð□; RÞ ¼ 1

Λ8

�
□þ R

3

�
2

□2: ð26Þ

For the form factor γC we can take the following entire
function H2:

H2

�
□ −

2

3
R

�
¼ 1

2

�
γE þ Γ

�
0;

�
pC

�
□ −

2

3
R

��
2
�

þ log

�
pC

�
□ −

2

3
R

��
2
�
;

pC

�
□ −

2

3
R

�
¼ 1

Λ8

�
□ −

2

3
R

�
4

: ð27Þ

We notice here that the choice of polynomials is fixed only
by the UV behavior of the propagator and as such we have a
lot of freedom in choosing them as long as basic principles
are obeyed.
For instance, we can have “commutative” form factors

(20) such that

pCð□;ΛccÞ ¼
1

Λ8
□

2

�
□ −

8

3
Λcc

�
2

; ð28Þ

pSð□;ΛccÞ ¼
1

Λ8
□

2

�
□þ 4

3
Λcc

�
2

: ð29Þ

Notice that the above polynomials are zero for □ ¼ 0,
which is crucial to secure γSð0Þ ¼ 0. Indeed, (29) is a
polynomial in □, and if we do not multiply by □

2, we get
a constant dimensionless contribution proportional to
ðΛcc=Λ2Þ2 ∝ cS;0 ≠ 0.
The following special choice of the polynomial pγþ1

(γ þ 1 ¼ 8) makes also consistent the identification of H2

with H0:

p8ð□; RÞ ¼ 1

Λ16

�
□þ R

3

�
2

□
2

�
□ −

2

3
R

�
4

: ð30Þ

It is now clear why the fraction 1=ð□ − 2
3
RÞ is located

on the right in the definition of γCð□Þ in (19). This in
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turn results in that the second variation of the action
simplifies to

Sð2ÞCRðAÞdS ¼ 1

2

Z
d4x

ffiffiffiffiffi
jḡj

p �
h̃⊥μν

�
□ −

R̄
6

�
eH8ð□þR̄

3
Þh̃⊥μν

− ϕ̃

�
□þ R̄

3

�
eH8ð□þR̄

3
Þϕ̃
�
; ð31Þ

where H8 is in the class of entire functions (5) with the
polynomial pðzÞ substituted by the above definition of the
polynomial p8ð□þ R̄=3Þ evaluated on the (A)dS back-
ground of curvature R̄.
With a globally well defined field redefinition we can

now completely remove the form factor, and the kinetic
operator turns into the one of Einstein-Hilbert theory
with cosmological constant. The interactions will get
modified by the field redefinition as well, but the
Feynman diagrams will stay the same. However, in doing
so we do not really need to equate the form factors in front
of different spin modes. Therefore, for the moment the
choice (30) is just to make the second order variation of the
nonlocal theory as similar as we can to the Einstein-Hilbert
one. Details about such a field redefinition are explained
in Sec. V.

1. Analysis of the “noncommutative”
form factors

In this quite technical subsection we study some
properties of the form factors that will turn out to be
crucial in Sec. IV about quantum finiteness. Let us
remind the reader that the exponentials of one, two, or
multiple matrices are defined by means of power series,
namely

eX ¼
X∞
k¼0

1

k!
Xk;

eXþY ¼
X∞
k¼0

1

k!
ðX þ YÞk;

eX1þX2þX3þ…þXN ¼
X∞
k¼0

1

k!
ðX1 þ X2 þ X3 þ…þ XNÞk:

ð32Þ

For the form factors defined in (19) with polynomials (26)
and (27) we can make explicit the above formula (32) as
follows:

eH0;2ð□;RÞ ¼
X∞
n¼0

1

n!
Hð□; RÞn

¼
X∞
n¼0

1

n!

�
1

2
½Γð0; pS;Cð□; RÞ2Þ þ γE

þ logðpS;Cð□; RÞ2Þ�
�

n
ð33Þ

¼
X∞
n¼0

1

n!

�X∞
m¼1

ð−1Þm−1 1

m!

pS;Cð□; RÞ2m
2m

�n

¼
X∞
s¼0

cspS;Cð□; RÞ2s; ð34Þ

where the coefficients cs are obtained by comparing the last
two sums above. Notice that pð□; RÞ certainly commutes
with itself, but its arguments, namely □ and R, do not
commute. Therefore, it is still easily possible to apply the
structure of the vertex functions found in [3] to the case of a
binomial like (27) because the form factor γC is a function
of only one polynomial, namely

γC ¼
X∞
s¼0

c̃s

�
□ −

2

3
R

�
8s−1

¼ c̃1

�
□ −

2

3
R

�
7

þ c̃3

�
□ −

2

3
R

�
23

þ � � �

or γC ¼
X∞
r¼0

ar

�
□ −

2

3
R

�
r
; ð35Þ

for a proper and fixed choice of the coefficients ar given the
coefficients c̃s. Now we can apply the formula presented
in [1] and rigorously proved in [3,52] to the operator
□̃ ¼ □ − 2R=3. In particular, we can introduce the
following notation:

γC ¼
X∞
r

arð□M þ IÞr;

I ¼ □̃ −□M; □M ¼ ημν∂μ∂ν: ð36Þ

We also remind the reader that around fixed Minkowski
background the form factor in momentum space is the
Fourier transform of

γC ¼
X∞
r¼0

arð□MÞr ¼
1

2

1

□M
ðeH0ð□MÞ − 1Þ; ð37Þ

while the gravitons’ vertices come only from the perturba-
tive expansion of I .
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Less trivial is to apply the formula in [52] to γS that we can express as follows:

γS ¼ −
1

6

1

□þ R
3

X∞
s¼1

csp2s
S ð□; RÞ ¼ −

1

6

1

□þ R
3

X∞
s¼1

cs

�
1

Λ8

�
□þ R

3

�
2

□
2

�
2s

¼ −
1

6

1

□þ R
3

X∞
s¼1

cs

�
1

Λ8

�
□þ R

3

�
2

□2

��
1

Λ8

�
□þ R

3

�
2

□2

�
2s−1

¼ −
1

6

�
□

3 þ R
3
□

2

�X∞
s¼1

cs
Λ16s

��
□þ R

3

�
2

□
2

�
2s−1

¼ −
1

6

�
□

3 þ R
3
□

2

�X∞
r¼0

ar

��
□þ R

3

�
2

□
2

�
r
: ð38Þ

The coefficients cs are fixed using the definition (34), while
the coefficients ar can be derived comparing the last two
expressions in (38). Now we can apply the derivation in
[52] to

X∞
r¼0

arð□4
M þ IÞr; I ¼ □

4 −□
4
M þOðRÞ: ð39Þ

When we expand in the graviton field we get interaction
vertices coming from the variation of the binomial on the
left of the sum in (38) and other vertices come from the
variation of the sum. However, the full nonlocal contribu-
tion resulting from the variation of (38) will reconstruct the

same incremental ratios as defined in [52], but for the form
factor in Minkowski space rescaled by 1=□4, namely

γSð□MÞ
□

4
M

¼ −
1

6

eH0ð□MÞ − 1

□
5
M

Λ8: ð40Þ

We can forget the nonlocality to evaluate the divergent
contributions to the quantum effective action.

B. A class of theories in the Ricci basis

As a second example we consider the following action
involving the Ricci tensor, but not the Weyl tensor in the
quadratic in curvature part of the action, namely

LSR ¼ −2κ−24
ffiffiffiffiffi
jgj

p
½R − 2Λcc þ SγS2ð□ÞSþ RγSð□ÞRþ VðCÞ�; ð41Þ

where the rank-two tensor S is defined by

Sμν ¼ Rμν −
1

4
Rgμν: ð42Þ

InD ¼ 4 it is identically zero when evaluated on an (A)dS background, and, moreover, it is completely trace-free. The form
factors in the action (41) are defined by

γS2ð□Þ ¼ 1

□ − R
6

ðeHS2ðð□−R
6
Þð□−R

3
ÞÞ − 1Þ; ð43Þ

γSð□Þ ¼ −
1

6

1

□þ R
3

ðeH0ð□;RÞ − 1Þ −□
1

12ð□þ R
2
Þ ðe

HS2ðð□þR
2
Þð□þR

3
ÞÞ − 1Þ 1

ð□þ R
3
Þ: ð44Þ

We should here clarify how the entire functions defined above depend on their arguments. Let us start with HS2 in γS2ð□Þ,
which is defined to be the following entire function of the polynomial pS2 of a fourth degree in □:

HS2

��
□ −

R
6

��
□ −

R
3

��
¼ 1

2
fγE þ Γð0; p2

S2ð□; RÞÞ þ log ðp2
S2ð□; RÞÞg;

pS2ð□; RÞ ¼
�
□ −

R
6

�
2
�
□ −

R
3

�
2

: ð45Þ
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Therefore, the exponentiated entire function
HS2ðð□þ R

3
Þð□þ R

2
ÞÞ in the second analytic operator in

(44) is obtained translating the operator □ by the amount
2
3
R, namely

HS2

��
□þ R

2

��
□þ R

3

��

≔ HS2

��
□ −

R
6

��
□ −

R
3

��				
□→□þ2

3
R
: ð46Þ

Notice how the translated□ operators at the denominator in
(44) have been placed in order to avoid ordering issues.5

Moreover, taking the “formal” limit R → 0 in the form
factors (44) and assuming HS2 ¼ H0 the above Lagrangian
(41) turns into

LE ¼ −2κ−2D
ffiffiffiffiffi
jgj

p
½Rþ GμνγGð□ÞRμν þ V�;

γG ¼ eH2 − 1

□
: ð49Þ

Finally, the second order variation of the action for the
Lagrangian (41) reads

Sð2ÞCSRðAÞdS ¼ 1

2

Z
d4x

ffiffiffiffiffi
jḡj

p �
h̃⊥μν

�
□ −

R̄
6

�

×

�
1þ 2γSð0ÞR̄þ

�
□ −

R̄
6

�
γS2ð□Þ

�
h̃⊥μν

− ϕ̃

�
□þ R̄

3

��
1þ 2γSð0ÞR̄ − 6

�
□þ R̄

3

�
γSð□Þ

−
1

2
□γS2

�
□þ 2

3
R̄

��
ϕ̃

�
: ð50Þ

We also selected out a form factor such that γSð0Þ ¼ 0. For
this purpose, after looking at the formula (44), it is
sufficient to take the following asymptotic polynomial
pγþ1 (for γ þ 1 ¼ 3þ 1) as an argument of H0:

pSð□; RÞ ¼
�
□þ R

3

�
2

□
2: ð51Þ

Therefore, after plugging the form factors (44) in the
second order variation (50) we end up again with (24),
but with H2 replaced by HS2, namely

Sð2ÞCRðAÞdS ¼ 1

2

Z
d4x

ffiffiffiffiffi
jḡj

p �
h̃⊥μν

�
□ −

R̄
6

�
eHS2ðð□−R̄

6
Þð□−R̄

3
ÞÞh̃⊥μν

− ϕ̃

�
□þ R̄

3

�
eH0ð□;R̄Þϕ̃

�
: ð52Þ

In order to end up with the same form factor in the spin-two
as well as in the spin-zero graviton sectors we slightly
modify the polynomial in (45) and we replace the curvature
R with the cosmological constant Λcc, namely

p̃ð□;ΛccÞ¼
�
□−

R
6

�
2
�
□þR

3

�
2
�
□−

R
3

�
2
					
R→4Λcc

×□
2

¼
�
□−

2

3
Λcc

�
2
�
□þ4

3
Λcc

�
2
�
□−

4

3
Λcc

�
2

□
2;

ð53Þ

where we technically replaced the Ricci scalar R with 4Λcc
to end up with a form factor without ordering issues. This
replacement does not mean that we evaluate the form factor
on the background, but just that the form factor has a
particular (a posteriori) dependence on the constant Λcc. In
(53) the untranslated□ on the right secures that γSð0Þ ¼ 0.
The form factors now read

γS2ð□Þ ¼ eHS2ðp̃ðð□−2
3
ΛccÞð□þ4

3
ΛccÞð□−4

3
ΛccÞÞÞ − 1

□ − 2
3
Λcc

; ð54Þ

γSð□Þ ¼ −
1

6

eHS2ðp̃ðð□−2
3
ΛccÞð□þ4

3
ΛccÞð□−4

3
ΛccÞÞÞ − 1

□þ 4
3
Λcc

−
□

12

e
HS2ðp̃ðð□−2

3
ΛccÞð□þ4

3
ΛccÞð□−4

3
ΛccÞÞÞj□→□þ8

3
Λcc − 1

ð□þ 2ΛccÞð□þ 4
3
ΛccÞ

:

ð55Þ

Therefore, we end up with the form factors already
introduced in the footnote above, but with a new poly-
nomial as an argument of the entire function HS2. More-
over, now H0 ¼ HS2 and the second variation of the action
(52) turns into

Sð2ÞCRðAÞdS ¼ 1

2

Z
d4x

ffiffiffiffiffi
jḡj

p �
h̃⊥μν

�
□ −

R̄
6

�
eHS2ðp̃Þh̃⊥μν

− ϕ̃

�
□þ R̄

3

�
eHS2ðp̃Þϕ̃

�
: ð56Þ

The second order variation (56) has the same form factor to
multiply the tensorial as well as the scalar perturbations.

5We can use here different definitions of the form factors to
avoid the ordering problems of the denominators versus the
exponential form factors, namely

γS2ð□Þ ¼ eHS2ðð□−4Λcc
6
Þð□−4Λcc

3
ÞÞ − 1

□ − 4Λcc
6

; ð47Þ

γSð□Þ¼−
1

6

eH0ð□þ4Λcc
3
Þ−1

□þ 4Λcc
3

−□
eHS2ðð□þ4Λcc

3
Þð□þ4Λcc

2
ÞÞ−1

12ð□þ 4Λcc
3
Þð□þ 4Λcc

2
Þ : ð48Þ

The ordering is now irrelevant, because Λcc is a numerical
constant.
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Once more we point out that the replacement of R with
Λcc is an off-shell operation just as in the Einstein-Hilbert
theory in the presence of a cosmological constant.

IV. QUANTUM FINITENESS

In this section we study two classes of theories involving,
respectively, the Ricci scalar and the off-shell cosmological
constant in the form factors. In the first subsection we study
the theory (18) with form factors (19), and in the second
subsection the theory (18) with form factors (20).

A. Analysis of the theory (18) with form factors (19)

In agreement with the analysis in the previous section the
polynomial appearing in the ultraviolet limit of the form
factor can also contain powers of the Ricci scalar, while the
nonlocal structure gives contributions only to the finite part
of the quantum effective action. Therefore, a quite general
polynomial giving a contribution to the beta functions in
D ¼ 4 is

pðz;RÞ ¼ að0Þγþ1z
γþ1 þ að1Þγþ1z

γRþ að2Þγþ1z
γ−1R2 þ…

þ að0Þγ zγ þ að1Þγ zγ−1Rþ…þ að0Þγ−1z
γ−1: ð57Þ

For the theories presented in this paper R can only be the
Ricci scalar. The ellipses (…) also include terms arising
from commutators of the □ operator with covariant
derivatives and curvatures.
To have a finite theory at quantum level (or better

conformally invariant) we have to make the beta functions
for the following six operators vanish:

ffiffiffiffiffi
jgj

p
;

ffiffiffiffiffi
jgj

p
R;

ffiffiffiffiffi
jgj

p
R2;ffiffiffiffiffi

jgj
p

Ric2;
ffiffiffiffiffi
jgj

p
GB;

ffiffiffiffiffi
jgj

p
□R; ð58Þ

where GB is the Gauss-Bonnet operator. The beta func-
tions βR2 , βR2

μν
, and βGB [in the basis (58)] get contributions

also from the following killers, if they are added to the
action:

VðCÞ ¼ sð1Þw CμνρσCμνρσ□γ−2CαβγδCαβγδ

þ sð2Þw CμνρσCαβγδ
□

γ−2CαβγδCμνρσ: ð59Þ

These killers do not spoil the structure of the kinetic
operator nor the propagator because the Weyl tensor
evaluated on any homogeneous and isotropic spacetime
is identically zero and the second order variation on the
action based on (59) is at least quadratic in the Weyl tensor.
Moreover, they are enough to make zero the two beta
functions βR2 and βR2

μν
. Indeed, the contribution of (59) can

be only linear in the front coefficients sð1Þw and sð2Þw as has

been shown in [6] by a direct implementation of the
background field method.
If we want to use killers that do not change the structure

of the kinetic operator around (A)dS, one option is to build
them using only hatted quantities as in footnote 5 (so with
the background value of the tensor subtracted, cf. also
Appendix). Other viable killers, which possess the same
property, are

sð1Þs SμνSμν□γ−2SρσSρσ; sð2Þs SμνSρσ□γ−2SρσSμν; ð60Þ

where Sμν was defined in (42).
On any MSS background the GB operator is non-

vanishing, while □R always vanishes. Regarding the
contributions to the divergent part of the quantum effective
action (under an integral) GB and □R can be neglected as
total derivatives on MSS. The reason to kill these two more
divergences eventually has to do with the conformal
invariance of the theory, but not merely with finiteness.
The beta function for the Newton constant βR can be made

zero using the following example of the killer operator6:

SμνS
μ
ρ□

γ−2Sνρ: ð62Þ

Finally, to have a finite theory we need to make the beta
function for the cosmological constant vanish. For this
achievement we need to explicitly evaluate the divergent
contributions to the one-loop effective action that do not
contain any curvature tensor. This result was derived for the
first time in [37] and also successfully attained by our group
[61]. Given the polynomial (57), only the monomials
independent of the curvatures can contribute to the R0

divergence. Therefore, the beta function can depend only on

the coefficients að0Þγþ1; a
ð0Þ
γ ; að0Þγ−1 in (57). For the sake of

simplicity we here consider only the theory in Weyl basis
(18) with form factors (19). Moreover, we take H2 ¼ H0,
but we replace the polynomial (30) with

p12 ¼
�
□þ R

3

�
2

ðc1□3 þ c2□2 þ c3□Þ2
�
□ −

2

3
R

�
4

¼ að0Þγþ1□
12 þ að0Þγ □

11 þ að0Þγ−1□
10 þOðRÞ; ð63Þ

and comparing with (57): að0Þγþ1 ¼ c1, að0Þγ ¼ 2c1c2,

að0Þγ−1 ¼ 2c1c3. Note that with the polynomial (63) we surely

6Additionally, we can make to vanish the beta functions βR2 ,
βR2

μν
and βR introducing also the following terms in V,

sð1Þr R̂2
□

γ−2R̂2; sð2Þr R̂μνR̂
μν
□

γ−2R̂ρσR̂
ρσ

and sð3Þr R̂μνR̂
μν
□

γ−2R̂ respectively;

where R̂μν ¼ Rμν − Λccgμν and R̂ ¼ R − 4Λcc: ð61Þ
However, the operators (61) must be used more carefully because
the cosmological constant can be present in the beta functions.
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avoid the issue of nonlocal counterterms because it is definite
positive on the real axis (namely

ffiffiffiffiffiffiffi
p2
12

p
¼ p12). Therefore,

c1, c2, and c3 can be selected to be positive, negative, or zero
(at least one of the ci must be nonzero).
The form factors γC and γS in the UV are, respectively,

γC →
eγE=2

2

�
□þR

3

�
2

ðc1□3þ c2□2þ c3□Þ2
�
□−

2

3
R

�
4

;

ð64Þ

γS →−
eγE=2

6

�
□þR

3

�
ðc1□3þc2□2þc3□Þ2

�
□−

2

3
R

�
4

:

ð65Þ

Moreover, the operators OðRÞ do not give a contribution to
the beta function for the cosmological constant. Finally, we
need to explicitly evaluate the beta function for the
cosmological constant ðβΛcc

Þ and select the parameters

að0Þγþ1; a
ð0Þ
γ ; að0Þγ−1 to make zero βΛcc

. Once more, the param-

eters að0Þγþ1; a
ð0Þ
γ ; að0Þγ−1 do not run because all of them appear

in front of higher derivative operators of a dimension higher
than four.
For the theory (18) with form factors (19) we can

explicitly show the finiteness of the theory because the
beta function βΛcc

has been computed in [37,61] for the
following prototype theory:

SN ¼
Z

d4x
ffiffiffiffiffi
jgj

p
ðωN;RR□NRþ ωN;CC□NCÞ: ð66Þ

From the divergent part of the quantum effective action we
can read the beta function. The outcome of the computation
is [37]

Γð1Þ
cc;div ¼ −

1

2ð4πÞ2
1

ϵ

Z
d4x

ffiffiffiffiffi
jgj

p �
5ωN−2;C

ωN;C
þ ωN−2;R

ωN;R

−
5ω2

N−1;C

2ω2
N;C

−
ω2
N−1;R

2ω2
N;R

�

≡ −
1

2ϵ

Z
d4x

ffiffiffiffiffi
jgj

p
βΛcc

: ð67Þ

Finally, we have to compare the nonrunning coefficients
ωi;C and ωi;R (i ¼ N þ 1; N; N − 1), which appear in front
of the operators quadratic in the Weyl tensor and in the
Ricci scalar in (66), with the parameters in front of the same
operators resulting in the action (18) with asymptotic form
factors (64) and (65).
Since the issue with UV divergences is probing the UV

limit of the theory, this can also be thought of in the
following way. The divergences arise because of the
coincidence limit of points used as arguments of Green’s
functions. When points do come closer, the spacetime is

effectively flat and they do not see such an effect as the
(A)dS curvature radius. That is why all divergences on
MSS are the same as on the flat spacetime. Finally, the UV
divergences in QFT do not depend on the background, and,
therefore, we have background independence of super-
renormalizability or finiteness. In other words, if the theory
is UV finite around the flat spacetime, then it is also finite
around any other background; in particular, this applies to
MSS backgrounds.

B. Analysis of the theory (18) with form factors (20)

We hereby consider the theory (18) with form factors
(20). These form factors [and also (47), (48)] depend
explicitly on the cosmological constant Λcc that in general
could appear in the beta functions making the search for a
finite quantum gravity much more involved. However, it is
sufficient to select out polynomials that in the UV regime
do not involve the cosmological constant at least in the
coefficients ωi;C and ωi;R for i ¼ N þ 1; N; N − 1. Given
the theory (18) with form factors (20) we can select the
following asymptotic polynomials:

pCð□;ΛccÞ ¼
1

Λ8
□

2

�
□ −

8

3
Λcc

�
2

×

�
□

2 þ 8

3
Λcc□þ

�
8

3
Λcc

�
2
�
; ð68Þ

pSð□;ΛccÞ ¼
1

Λ8
□

2

�
□þ 4

3
Λcc

�
2

×

�
□

2 −
4

3
Λcc□þ

�
4

3
Λcc

�
2
�
: ð69Þ

Notice that the two parabolic trinomials on the right sides in
(68) and (69) are positive for any value of □ and Λcc > 0.
For the above selected polynomials (68) and (69),
ωN−1;CðRÞ ¼ 0 and ωN−2;CðRÞ ¼ 0. Indeed,

γCð□Þ ¼ 1

2

ðeH2ð□−8
3
ΛccÞ − 1Þ

□ − 8
3
Λcc

→
1

2

1

Λ8
□

2

�
□ −

8

3
Λcc

�

×
�
□2 þ 8

3
Λcc□þ

�
8

3
Λcc

�
2
�

¼ 1

2Λ8

�
□

5 −
512Λ3

cc□
2

27

�
;

γSð□Þ ¼ −
1

6

ðeH0ð□;ΛccÞ − 1Þ
□þ 4

3
Λcc

→ −
1

6

1

Λ8
□

2

�
□þ 4

3
Λcc

�

×

�
□

2 −
4

3
Λcc□þ

�
4

3
Λcc

�
2
�

¼ −
1

6Λ8

�
□

5 þ 64Λ3
cc□

2

27

�
:
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Therefore, there is no contribution to the beta functions βΛcc

and βκ. More importantly, the cosmological constant does
not appear in any beta function. In general, we only need
the beta function for the cosmological constant to be
independent of Λcc itself to achieve one-loop exact super-
renormalizability or finiteness because κ4 does not appear
in the form factors and, therefore, in the beta functions. Let
us expand a little on this point. If the beta functions do not
depend on any of the running couplings, then we can make
them zero at any energy scale and at any loop order by
adding suitably selected killer operators because the super-
renormalizability implies that the beta functions are one-
loop exact.

V. FIELD REDEFINITION AND TREE-LEVEL
PERTURBATIVE TRIVIALITY

In this section we explicitly show that for a large class of
theories involving neither the Riemann nor the Weyl tensor,
a field redefinition theorem provides an explanation for the
stability of MSS in weakly nonlocal theories. Namely all
these theories are tree-level equivalent to the Einstein-
Hilbert theory in the presence of the cosmological constant.
Let us consider the theory (41) with γC ¼ 0, namely

SNL−Λ ¼ −2κ−24

Z
d4x

ffiffiffiffiffi
jgj

p
½R − 2Λcc þ SγS2ð□ÞS

þ RγSð□ÞRþ Vð□;Ric; RÞ�: ð70Þ

We can now recast the above action in a way that explicitly
shows Einstein’s gravitational EOM in the presence of a
cosmological constant, i.e.,

Eμν ¼ Gμν þ Λccgμν; Rμν ¼ Eμν −
1

2
gμνEα

α þ Λccgμν;

Sμν ¼ Eμν −
1

4
gμνEα

α; R ¼ −Eα
α þ 4Λcc: ð71Þ

Making use of the EOM (71), the action now equivalently
turns into

SNL−Λ ¼ −2κ−24

Z
d4x

ffiffiffiffiffi
jgj

p
½R − 2Λcc

þ
�
Eμν −

1

4
Egμν

�
γS2ð□; E;ΛccÞ

�
Eμν −

1

4
Egμν

�

þ ðE − 4ΛccÞγSð□; E;ΛccÞðE − 4ΛccÞ
þ Vð□;E; E;ΛccÞ�; ð72Þ

where E stays for Eμν and E≡ Eμ
μ. The nonlocal form

factor γS satisfies the property γSð0Þ ¼ 0 [see, for example,
(55) with the polynomial (53)]. Therefore, we can rewrite
the action in the following simplified form:

SNL−Λ ¼ −2κ−24

Z
d4x

ffiffiffiffiffi
jgj

p
½R − 2Λcc þ EμνFμν;ρσEρσ�;

ð73Þ

Fμν;ρσ ≡ γS2ð□; E;ΛccÞ
�
gμρgνσ −

1

4
gμνgρσ

�

þ γSð□; E;ΛccÞgμνgρσ þ Ṽμνρσð□;E; E;ΛccÞ;
ð74Þ

where the potential Vð□;E; E;ΛccÞ must be at least
quadratic in the EOM Eμν, namely

Vð□;E; E;ΛccÞ ¼ EμνṼ
μνρσð□;E; E;ΛccÞEρσ: ð75Þ

In the view of the restructured action (73), we are now
ready to implement the following general theorem in the
presence of a cosmological constant. An analogous theo-
rem was previously proved and applied to the case without
a cosmological constant [14].
Theorem: By making use of a proper analytic field

redefinition g → g0 the action (73) can be recast in the
Einstein-Hilbert form with the presence of a cosmological
constant term, i.e.,

LEH−Λ ¼ −2κ−24
ffiffiffiffiffi
jgj

p
ðR − 2ΛccÞ; ð76Þ

provided that V has the structure given in (75); namely it is
at least quadratic in Eμν and/or Eα

α and does not contain any
Riemann or Weyl tensor explicitly. Therefore, the theorem
does not apply to the theory with γC ≠ 0.
Proof: The proof is based on a perturbative field

redefinition g → g0 to all orders in the Taylor expansion
with respect to the redefinition of the metric field. First, we
assume that we have given two general weakly nonlocal
action functionals S0ðgÞ and Sðg0Þ, respectively defined in
terms of the metric fields g and g0, such that

S0ðgÞ ¼ SðgÞ þ EiðgÞFijðgÞEjðgÞ; ð77Þ

where F can contain derivative operators and Ei ¼ δS=δgi
are the EOM of the theory with the action SðgÞ.7 The
statement of the theorem is that there exists a field
redefinition

g0i ¼ gi þ ΔijEj; Δij ¼ Δji; ð78Þ

7Here we use a compact deWitt notation, and with the indices
i, j on fields we encode all Lorentz, group indices, and the
spacetime dependence of the fields. Additionally, we assume that
the field space is flat and we do not need to raise indices in sums
there.
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such that, perturbatively in F, but to all orders in powers of
F in the field redefinition g → g0,8 we have the equivalence

S0ðgÞ ¼ Sðg0Þ: ð79Þ

AboveΔij is a possibly nonlocal operator acting linearly on
the EOM Ej, with indices i and j in the field space, and it is
defined perturbatively in powers of the operator FijðgÞ,
namely Δij ¼ FijðgÞ þ…. Let us consider the first order in
Taylor expansion for the functional Sðg0Þ, which reads

Sðg0Þ ¼ Sðgþ δgÞ ≈ SðgÞ þ δS
δgi

δgi ¼ SðgÞ þ Eiδgi: ð80Þ

If we can find a weakly nonlocal expression for δgi such
that S0ðgÞ ¼ SðgÞ þ Eiδgi (note that the argument of the
functionals S0 and S is now the same), then there exists a
field redefinition g → g0 satisfying (79). Hence the two
actions S0ðgÞ and Sðg0Þ are tree-level equivalent. □

As is obvious from above, in the proof of our theorem it
was crucial to use the classical EOM Ei. In the theory (73)
this implies E ¼ 0 (here no matter source is present).
Now we can explicitly apply the above field redefinition

theorem to our class of theories (73), where we do not
include terms with the Riemann tensor Rμνρσ nor the
Weyl tensor Cμνρσ in the action. Since we are interested
in Sðg0Þ≡ SEH−Λðg0Þ and S0ðgÞ≡ SNL−ΛðgÞ, the relation
(77) reads

Sðg0Þ ¼ SEH−ΛðgÞ−2κ−24

Z
d4x

ffiffiffiffiffi
jgj

p
EμνðgÞFμν;ρσðgÞEρσðgÞ

¼ S0ðgÞ; ð81Þ

where Eμν is given in (71), Fμν;ρσðgÞ is defined in (74), and
V compatible with the field redefinition has been intro-
duced in (75).
As a particular implication of the theorem we can always

make a field redefinition to turn the kinetic operator and the
propagator for the gravitational fluctuations of the nonlocal
theory into the one of Einstein’s gravity plus the cosmo-
logical constant. Moreover, when we can properly define
asymptotic graviton states in a MSS, all the tree-level on-
shell n-point functions for the weakly nonlocal theory (73)
are exactly the same as the ones for the Einstein-Hilbert-Λcc
gravity (76).

Finally, in view of the theorem proved here, it is clear
why at tree level a class of weakly nonlocal theories and the
local Einstein-Hilbert theory with the cosmological con-
stant have the same spectrum and the same n-point
functions; ergo this range of weakly nonlocal theories is
actually local at a classical perturbative level. However, we
cannot push further the outcome of the theorem because in
a theory with an infinite number of derivatives at the
moment we do not know the number of nonperturbative
d.o.f., in contrast to the Einstein-Hilbert theory where the
ADM formulation ensures that there are only 2 d.o.f. at
perturbative and nonperturbative levels and around any
background. Similarly this theorem likely does not hold at
quantum level.
To summarize the content of this section, we proved that

the Einstein-Hilbert-Λcc theory (EH-Λ) and nonlocal grav-
ity with the presence of a cosmological constant term are
equivalent at the perturbative level. The proof is based on a
field redefinition theorem that works perturbatively in Fij,
but to all perturbative orders in Δij. The above result can
therefore be seen as a resummation of all perturbative
contributions. In the previous sections we have proved that
the EOM for both the theories, EH-Λ and nonlocal gravity,
have the same solutions at the linear order in the gravita-
tional perturbation, and, therefore, we inferred that the two
theories have the same perturbative spectrum. The theorem
in this section guarantees that the classical n-point func-
tions (if they can be defined in AdS and/or dS spacetimes)
are also the same in the two theories. The theorem is
particularly useful in Minkowski spacetime where the
n-point functions are surely well defined. On the other
hand, we do not know if the spectrum of the two theories
still coincides at the nonperturbative level and/or on a
general background. Actually, on a general background we
expect more d.o.f. in nonlocal gravity contrary to what
happens in the EH-Λ theory as recently proved in [62,63].
At quantum level the two theories are completely

different: the EH-Λ theory is nonrenormalizable, while
nonlocal gravity is finite. Indeed, the field redefinition
surely changes the measure in the path integral, and the two
theories show different behaviors at quantum level. We
could say that the field redefinition is anomalous because at
quantum level other finite operators can be generated, as,
for example, Rieman3, and then the mapping between
EH-Λ and nonlocal gravity does not work anymore. (In the
proof we assumed the action to be quadratic in the EOM,
but the finite quantum corrections can violate such an
assumption.)

VI. MORE ON PROPAGATORS IN WEAKLY
NONLOCAL THEORIES

In this section we are going to extend our own con-
struction of propagators in weakly nonlocal theories. Let us
consider a simple example of a weakly nonlocal scalar field
theory and its propagator, namely

8The field redefinition preserves general covariance. Indeed,
formula (77) shows a multiple product of weakly nonlocal factors
Fij and the EOM Ei, which are both covariant under active
general coordinate transformations (diffeomorphisms). Addition-
ally, the asymptotic behavior of the field redefinitions is such that
they go to zero sufficiently fast at infinity together with the fast
falloff of fields in order to preserve the spectrum of the theory. As
a corollary, the large diffeomorphisms, are not touched by such
field redefinitions.
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S ¼
Z

dDxφfð□Þð□þm2Þφ ⇒ Π ¼ 1

fð□Þð□þm2Þ :

ð82Þ

The above theory in most cases comes as a generalization
of a local second order theory whose action and propagator,
respectively, read

S ¼
Z

dDxφð□þm2Þφ ⇒ Π ¼ 1

□þm2
: ð83Þ

One of the most frequent situations is the wish to constrain
fð□Þ such that both theories have the same physical
excitations. In this example this means that each theory
describes only a single scalar, the mathematical require-
ment for this is that fð□Þ has no zeros, and hence the
propagator in (82) has no extra new poles on the whole
complex plane besides the one at −m2. That is, fðzÞ ≠ 0 for
all jzj < ∞, z ∈ C, where z ¼ □.
The usual way used to achieve no extra poles in the

propagator in (82) is to require

fðzÞ ¼ eαðzÞ where αðzÞ is an entire function: ð84Þ

This indeed works and propagates from [12] through all the
papers known to us on the subject of weakly nonlocal
theories. By definition an entire function is a function
analytic on the whole complex plane. As such it has no
poles in any finite region of the complex plane. The
exponent of any finite (and zero) argument is always a
nonzero complex number. Actually, the exponent of an
entire function is a special entire function with no zeros on
the whole complex plane. As a result fðzÞ in (84) is always
nonzero. Moreover, a particular setup may be required to
preserve the normalization of the propagator in the low-
energy limit. This implies fð0Þ ¼ 1 or equivalently
αð0Þ ¼ 0. Physically this can be understood as follows:
given there is a scale Λ which defines the characteristic
scale of fð□Þ such that this function is truly fð□=Λ2Þ, one
may want to see the modified model (82) returning to its
local counterpart (83) when Λ → ∞. The latter is the local
theory limit.
At this point we put the following claim.
Claim: The form of fð□Þ given by (84) is overrestricted

and is not necessary as long as the number of d.o.f. is
concerned. Instead we can prove the following proposition.
Proposition: The less restrictive form that is still

compatible with the requirements (i) to avoid a generation
of new d.o.f., (ii) to keep the original normalization in the
local limit, and (iii) to preserve and/or improve the UV
behavior of the propagator is

fðzÞ¼ eαðzÞ

βðzÞ where αðzÞ; βðzÞare entire functions: ð85Þ

Indeed, substituting this in the propagator in (82)
one gets

Π ¼ βð□Þ
eαð□Þð□þm2Þ : ð86Þ

The exponent in the denominator works exactly as it worked
before when the form (84) was used. The crucial thing
to understand is that the new function βð□Þ does not change
either of required properties (i)–(iii) as long as it is an
entire function. This is a trivial consequence of the definition
of an entire function that says it has no poles on the whole
complex plane and, as such, our propagator has no newpoles
as well. The normalization in the local limit can always be
preserved by the demand βð0Þ expð−αð0ÞÞ ¼ 1. The UV
behavior is subject to a particular choice of the functions
αð□Þ and βð□Þ, which are almost unrestricted so far in
any way.
A point of worry is instead the EOM, which we are

going to consider in more detail. The EOM can be
written as

eαð□Þð□þm2Þ
βð□Þ φ ¼ 0: ð87Þ

We start with reminding the reader that thanks to the
Weierstrass factorization theorem [64] any entire function
βðzÞ can be represented as

βðzÞ ¼ eβ̃ðzÞ
Y
I

ðz − zIÞmI ; ð88Þ

where β̃ðzÞ is again an entire function, zI are roots
of βðzÞ, and mI are their multiplicities. First of all, we
stress that βðzÞ in the condition of the theorem is an
entire function and as such in general the 1=βðzÞ factor in
EOM (87) cannot be presented like this. Consequently,
and not surprisingly, we do not gain new factors in the
numerator of EOM. Having αðzÞ and β̃ðzÞ both entire
functions we can join them into a redefined function
α̃ðzÞ ¼ αðzÞ − β̃ðzÞ. So, without any assumptions we can
write the EOM (87) as

eα̃ð□Þð□þm2ÞQ
Ið□ − zIÞmI

φ ¼ 0: ð89Þ

We assume that by construction neither of zI coincides with
−m2. Otherwise, we would immediately write another
EOM and propagator. Then a canonical solution originates
from the mode

ð□þm2Þφ ¼ 0: ð90Þ

KOSHELEV, KUMAR, MODESTO, and RACHWAŁ PHYS. REV. D 98, 046007 (2018)

046007-16



Further, it was shown in [65] that the exponent operator
does not generate new solutions and we can drop it from the
consideration of solutions of the EOM. A simple way to
see that the denominator does not provide new solutions,
which could be associated with new d.o.f., is to notice that
we can use the Schwinger and Feynman parametrization to
achieve

1Q
Ið□− zIÞmI

φ

¼ ΓðPImIÞQ
IΓðmIÞ

Z
1

0

�Y
I

duI

�
δð1−P

IuIÞ
Q

Iu
mI−1
I

½PIuIð□− zIÞ�
P

I
mI

φ

¼ 1Q
IΓðmIÞ

Z
1

0

�Y
I

duIu
mI−1
I

�

× δ

�
1−

X
I

uI

�Z
∞

0

dss
P

I
mI−1es

P
I
uIzI e−s

P
I
uI□φ:

ð91Þ

This is again an exponential of the d’Alembertian operator
acting on the scalar field φ. Therefore, we can say that no
new solutions are generated as long as we can change the
order of differentiation and integration. The latter is true as
long as a Laplace transform of the scalar field function
can be defined. The classical field in turn has to have
a well defined Laplace transform in order to be properly
quantized.
The situation becomes trickier when we have to define

and solve for the Green function that is defined as a solution
to the fundamental equation

eα̃ð□Þð□þm2ÞQ
Ið□ − zIÞmI

Gðx; x0Þ ¼ δðx − x0Þ; ð92Þ

with appropriate boundary conditions (retarded,
advanced, causal, etc.). Here we can act in analogy with
the treatment of the 1=□ operator in gravity theories
as in [66]. However, a consistent treatment exists for the
single inverse d’Alembertian only. We do not need
Green functions of this (or any other) kind to proceed,
but we very much hope to see this question solved in
future works.
Two more comments are in order here. First, the new

form (85) is definitely a significant extension of the class of
possible form factors that can enter in weakly nonlocal
theories. Second, it will be shown below that such an
extension is crucial to guarantee the no-ghost conditions in
both regimes: quantum gravity and inflation.
For the case of gravitational theories the propagator (86),

especially the new higher derivative factors must obey
several conditions that were first formulated in [1,3] and are
given above in Sec. II.

These conditions are aimed at achieving the maximum
convergence of loop integrals still preserving the power law
falloff of the integrands at infinity. The latter is important to
preserve the locality of counterterms and as such to
maintain the renormalizability of the theory [5,6,31].
Prior to the current analysis the conditions in question
were considered for the function fðzÞ as it is given in (84).
However, it is easy to see that no extra complications
arise when we have to satisfy the above conditions
using the function fðzÞ in (85) in kinetic operators for
theory not involving gravity or any other non-Abelian
gauge theory.
Going further one can easily understand that the form

(85) is again not an ultimate nonlocal factor. That factor
was constructed under the assumption that we do not alter
the already existing pole at □ ¼ −m2 in the propagator in
(82). Under this assumption the nonlocal factor is still
maximally general. However, this requirement can in
principle be relaxed unless we have some external reasons
to maintain this property. Having said this, we understand
that we can suggest a function

fðzÞ ¼ eαðzÞ

βðzÞ
zþμ2

zþm2
where αðzÞ; βðzÞ are entire functions;

ð93Þ

which being substituted in the propagator (82) results in

Π ¼ βð□Þ
eαð□Þð□þ μ2Þ : ð94Þ

This clearly propagates only a scalar with a new mass
square μ2 while all other properties remain the same. From
here actually no further generalization is seen as long as we
preserve the number of poles. The latter property is indeed
very important because new poles will be ghosts due to the
Ostrogradsky instability [67].
In an extreme case we can have a very special

function

fðzÞ ¼ eαðzÞ

βðzÞ
1

zþm2
where αðzÞ

and βðzÞ are entire functions; ð95Þ

which being substituted in the propagator (82) results in

Π ¼ βð□Þ
eαð□Þ : ð96Þ

This is a clear analog of a Lagrangian of a p-adic theory
which has no poles and as such no propagating d.o.f. in the
perturbative vacuum at all.
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The following comment follows. Our generalized con-
struction is transparent and obviously valid as long as
everything but gravity is concerned. As an immediate
example, what we have just discussed helps in under-
standing the behavior of quantum perturbations during
inflation as will be explained in details in [44]. This is
because the propagator for perturbations explicitly
and generically has a numerator factor which is βð□Þ
above. Concerning gravity, the propagator (96) comes
together with strongly nonlocal vertices. The role of
these new vertices in the perturbative unitarity is at the
moment not under control and deserves much more
investigation.

VII. CONCLUSIONS

In this paper we explicitly proved that all the weakly
nonlocal gravitational theories consistent at quantum
level have exactly the same classical properties as
Einstein’s gravity at linear level when studied pertur-
batively around any maximally symmetric spacetime
background. These theories differ only for the presence
or not of the Weyl tensor in the nonlocal operators
quadratic in curvatures, but the outcome is always the
same. Namely, the quadratic action at the second order
in the graviton perturbations around any MSS can be
recast in the form of the Einstein-Hilbert quadratized
action up to exponential form factors in front of the
corresponding projectors for the spin-two and spin-zero
components. For one out of the two ranges of theories,
namely the one without a Weyl or Riemann tensor in
the action, we proved, making use of a field redefinition
theorem, that the theory is perturbatively (in the entire
function defining the field redefinition) equivalent to the
Einstein-Hilbert action in the presence of a cosmologi-
cal constant. This statement holds to all orders in Taylor
expansion in the field redefinition of the metric tensor.
Moreover, the field redefinition theorem, when the
graviton’s asymptotic states on a MSS are properly
defined, endorses that all tree-level n-point scattering
amplitudes in the weakly nonlocal theory coincide with
the ones of Einstein-Hilbert gravity with a cosmological
constant on the same MSS background.
At quantum level, for one out of the two classes of

theories (namely the one in Weyl’s basis) we explicitly
proved that all the beta functions can be made to
vanish. Therefore, the quantum theory is finite (in the
DIMREG scheme) on any MSS. Certainly, the theory
in the Ricci basis also enjoys the same convergence
properties.

We can finally claim that the weakly nonlocal theories
are perturbatively well defined, unitary (as long as the
Einstein-Hilbert is), and finite at quantum level on any
maximally symmetric space. Having an ultraviolet com-
plete theory for gravity in the quantum field theory
framework, we can now study the implications and/or
applications in the AdS=CFT domain. The AdS=CFT
correspondence is clearly defined, but there is no clear
definition of the dS=CFT correspondence, unless one
appeals to a nonlocal map between the AdS and dS spaces
as discussed in [68]. However, we remark that our con-
struction is valid and works equally well for both signs of
the cosmological constant. First, preliminary results show
that the transition from dS to AdS can be reached as an
effect of RG flow of the couplings of the theory. Second, of
course, we understand that for holding gauge/gravity
duality even simple kinematical conditions must be sat-
isfied (such as the equivalence between the group of
isometries of AdS and the conformal group in flat
Minkowski spacetime), and these are not true on dS.
However, here we treat dS/AdS as backgrounds and for
the moment quantum backreaction is neglected. We may
express a belief that including backreaction effects in a
particular class of theories studied in this paper will show
some preference toward the sign of the curvature of the
background, and then we could ultimately decide whether
we can or why we cannot extend the duality to a dS
spacetime. We are interested to export all the results
obtained in string theory and in the AdS=CFT correspon-
dence to nonlocal quantum gravity, and we will surely
invest time and resources on this topic in the future. We
believe it will be interesting to see whether nonlocal gravity
could shed light on various conceptual problems associated
with possible dS=CFT correspondence.
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APPENDIX: VARIATIONS

Here we collect the results about variations on a
maximally symmetric background of operators quadratic
in curvature. We write them in a manifestly self-adjoint
form. First, the variation of action written with Weyl
tensors reads
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Next we introduce the definition R̂ ¼ R −DΛcc ¼ R − R̄,
and we evaluate the following variation:
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On a MSS we have the following values of the background
curvatures:

R̄μνρσ ¼
2Λcc

D−1
gμ½ρgσ�ν; R̄μν¼Λccgμν; R̄¼DΛcc: ðA3Þ

An useful formula is

R̂F ð□ÞR̂ ¼ RF ð□ÞR − 2DF 0ΛccRþD2F 0Λ2
cc;

where F 0 ¼ F ð0Þ: ðA4Þ

The variations of the cosmological constant aΛ and the
Einstein-Hilbert actions read as follows [69]:
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For completeness we give also the expression for the
variation (in normal form) in D ¼ 4,
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where we introduced a short notation for the form factor
with a translated argument,

F 2 ≡ F
�
□þ 4

3
Λcc

�
: ðA8Þ

We observe an interesting fact, that all dependence on the
form factor in (A7) is only via shifted oneF 2. The variation
of the nonlocal Weyl square operator on a MSS background
can be written also in a manifestly self-adjoint form in
D ¼ 4, namely
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It can easily be seen that in this self-adjoint form we
encounter three different shifts of the argument of the form
factor by 4=3Λcc, 3Λcc, and 4Λcc, respectively.
The above results for the second variations were checked

using variousmethods. First, all expressions can be put in the
self-adjoint form of the operator of the second order
variational derivative. Second, all the variations, except for
the term with a cosmological constant only, are invariant
under the substitution hμν → hμν þ∇ðμξνÞ for all left or right

instances of the fluctuations ofmetric,where ξν is an arbitrary
vector field andwhen the on-shell background is used. This is
the statement of gauge invariance of the actionwith respect to
general coordinate transformations. Last but not least, the
secondvariationswere checked against conformal invariance
of the actionwith twoWeyl tensors inD ¼ 4.More precisely,
it had been checked that for metric fluctuations of the form
hμν ¼ ω2ðxÞgμν the second variation of such an action on any
MSS background vanishes.
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