
 

Thoughts on holographic complexity and its basis dependence
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In this paper, we argue that holographic complexity should be a basis-dependent quantity. Computa-
tional complexity of a state is defined as a minimum number of gates required to obtain that state from the
reference state. Due to this minimality, it satisfies the triangle inequality and can be regarded as a (discrete
version of) distance in the Hilbert space. However, we show a no-go theorem that any basis-independent
distance cannot reproduce the behavior of the holographic complexity. Therefore, if holographic
complexity is dual to a distance in the Hilbert space, it should be basis dependent; i.e., it is not invariant
under a change of the basis of the Hilbert space.
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I. INTRODUCTION

What is the boundary dual of the black hole interior in
AdS=CFT? If such a quantity exists, it should enable us to
probe behind the black hole horizon in terms of the
boundary theory. Therefore, it is very interesting to study
any candidates for that. In particular, since the interior of a
black hole grows linearly in time for a very long period
t ∼ eS where S is the entropy of the system [1,2] (see also
[3] for earlier observation of the late time behavior of the
entanglement entropy), the dual quantity should also satisfy
this property. In fact, it is conjectured that the dual quantity
is quantum computational complexity [1,2], since the
maximal complexity for a quantum system seems as big
as eS, and also complexity, especially that of quantum
circuit models, grows linearly in time [1,4]. More con-
cretely, there are two conjectures according to these
expectations: the complexity ¼ volume (CV) conjecture
[1,5] and the complexity ¼ action (CA) conjecture [6,7].
For eternal two-sided black holes, the CV conjecture states
that the complexity is dual to the volume of the maximal
time slice anchored at the two given boundary times. The
CA conjecture instead proposes that the complexity equals
the gravitational action on a region so-called the Wheeler-
DeWitt (WDW) patch. Although the time dependence of
the maximal volume and the WDW action are quantita-
tively different (see [8]), they show the same behavior at

late times; they grow linearly in time and saturate Lloyd’s
bound.1 Here we call all these ‘bulk-defined-quantities’
holographic complexity, and denote it by Chol. Here the
point is that the late time behavior of holographic complex-
ity is universal, even though their behaviors except at late
times depend on the details of the definition.
Recently, there has been many works on the holographic

complexity [9–27]. In order to verify the conjectures, we
need to know the properties of complexity in quantum field
theories (QFTs). However, currently, even a proper defi-
nition of it is beyond our reach. Recently there were several
proposals for the definition of the complexity for QFTs
[28–36], with which the complexity is evaluated and
compared with the holographic counterpart. While each
argument is concrete, the universal way to define the
complexity in QFTs is missing.2

Thus, a universal requirement for the complexity in QFTs
is called for, and in this paper we attempt to characterize the
complexity in QFTs in regard to the properties of the
holographic complexity. As we will see soon, complexity
is a kind of distance between quantum states. In fact, a
geometric approach is proposed to define a complexity in
[37,38], and the relation to the holographic complexity was
discussed in [39,40] (see also [32,33,41,42] for attempts to
define complexities for QFTs as geometric distances). Since
there is a variety of distance measures, we need to discrimi-
nate proper ones for our purpose. In quantum information,
popular definitions of the distance are basis independent.
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1If the growth rate is fractional of the value of Lloyd’s bound,
one can easily define the holographic complexity by multiplying
an overall factor to saturate the bound.

2In two dimensions, there is a nice definition of the complexity
by the path-integral optimization procedure [28–30]. It is
interesting to investigate if one can generalize this to higher
dimensions.
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We argue that a distance corresponding to the holographic
complexity should be a basis-dependent quantity; i.e., it is
not invariant under a change of the basis of theHilbert space.
In otherwords, we show that any basis-independent distance
cannot be dual to the holographic complexity.

II. COMPLEXITY AS A DISTANCE

Quantum computational complexity (or gate complexity)
is a quantity characterizing the difficulty to construct a state
from a given reference state. Given a set fGαg of elemen-
tary unitary operators called gates Gα, the complexity
Cðψ ;ψ0Þ of a state jψi is defined as the minimum number
of gates needed to construct jψi from a reference state jψ0i.
Thus, complexity Cðψ ;ψ0Þ represents how jψi is far from
jψ0i measured with a given gate set. Actually, as we will
see as follows, complexity has properties of a distance
between two quantum states jψi and jψ0i.
Let us recall the axioms of distance. For a general

distance Dðρ; σÞ between two density matrices ρ and σ,3 it
satisfies the following axioms:

Dðρ; σÞ ≥ 0: ð1Þ

Dðρ; σÞ ¼ 0 ⇔ ρ ¼ σ: ð2Þ

Dðρ2; ρ1Þ þDðρ3; ρ2Þ ≥ Dðρ3; ρ1Þ: ð3Þ

The last axiom is called the triangle inequality. In general,
distances also satisfy the symmetric property:

Dðρ; σÞ ¼ Dðσ; ρÞ; ð4Þ

but we do not require this property.4

Complexity Cðψ ;ψ0Þ shares the same properties (1)–(3):

Cðψ ;ψ0Þ ≥ 0: ð5Þ

Cðψ ;ψ0Þ ¼ 0 ⇔ jψi ¼ jψ0i: ð6Þ

Cðψ2;ψ1Þ þ Cðψ3;ψ2Þ ≥ Cðψ3;ψ1Þ: ð7Þ

The first and the second properties are trivial: The number
of gates are non-negative, and if we do not use any gate, the
final state is nothing but the initial state and vice versa.
The triangle inequality Eq. (7) follows from the fact that the
complexity Cðψ ;ψ 0Þ counts the minimum number of gates
to reach jψi from jψ 0i. Thus, although it takes discrete
values, gate complexity Cðψ ;ψ0Þ is a sort of a distance

between jψi and jψ0i in the sense that it satisfies the axiom
of the distance (5)–(7).5
In addition, holographic complexity takes continuous

values; therefore, it is very natural to regard it as a distance
shared with the properties of the gate complexity. However,
under a few assumptions, we will show that there is no
basis-independent distance dual to the holographic com-
plexity, and thus conclude that holographic complexity
should be a basis-dependent distance.

III. BASIS INDEPENDENCE

All of the physical observables are independent of the
choices of the basis of the Hilbert space. Therefore, it seems
to be natural that the quantum distance dual to holographic
complexity is also basis independent. In addition to (1)–(3),
the basis independence requires that distances satisfy

DðUρU†; UσU†Þ ¼ Dðρ; σÞ; ð8Þ

where U is any unitary operator on the Hilbert space. In
fact, well-known quantum distances, e.g., the trace distance
and the quantum angle,6 satisfy this property [43].
However, this requirement of the basis independence

imposes a very strong constraint on complexities as
follows. Let us consider a distance with the basis inde-
pendence (8) between two time-evolved states jψðtÞi and
jψðt0Þi. Since Eq. (8) holds for any unitary operator
U ¼ e−iHδt, the distance satisfies

DðψðtÞ;ψðt0ÞÞ ¼ Dðψðt − t0Þ;ψð0ÞÞ; ð9Þ

i.e., the distance depends on just the difference of times.
Thus, if the holographic complexityCholðtÞ is dual to such a
distance, the triangle inequality

Dðψðt1Þ;ψð0ÞÞþDðψðt2Þ;ψðt1ÞÞ≥Dðψðt2Þ;ψð0ÞÞ ð10Þ

leads to the following inequality

Cholðt1Þ þ Cholðt2 − t1Þ ≥ Cholðt2Þ; ð11Þ

where t2 ≥ t1. We will see that this inequality does not
match the known properties of the holographic complexity.
Therefore, we should reject the requirement (8).

3If the two density matrices are pure states, they can be
represented as ρ ¼ jψihψ j and σ ¼ jψ0ihψ0j, for example.

4Relative entropy satisfies (1) and (2) but not (3) above. This
can be checked easily for mixed states. For pure states, if two pure
states are the same, then relative entropy becomes zero but for any
different pure states, it diverges.

5Complexity can also satisfy the symmetric propertyCðψ ;ψ0Þ¼
Cðψ0;ψÞ although we do not require it. Actually, if we choose the
gate set so that it has all inverse gates of the gates in the set, the
complexity satisfies the symmetric property.

6The trace distance is defined as Dtrðρ; σÞ≡ 1
2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − σÞ2

p
.

The quantum angle is defined as Aðρ; σÞ≡ arccosFðρ; σÞ, where
Fðρ; σÞ is the fidelity Fðρ; σÞ≡ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1=2σρ1=2

p
. These Dtrðρ; σÞ

and Aðρ; σÞ satisfy the axioms of distance (1)–(3) [43]. It is
obvious from the definitions that they are basis independent.
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IV. LLOYD BOUND AND HOLOGRAPHIC
COMPLEXITY

A characteristic property of the holographic complexity
is the saturation of the Lloyd bound [44]. Lloyd argued that
the rate of computation by a physical device is limited by
the energy; it is essentially due to the uncertainty principle

1

Δt
∼M: ð12Þ

Based on this argument, it is conjectured that the growth
rate of the holographic complexity is bounded by the mass
M of the black hole [6,7]:

dChol

dt
≤ αM; ð13Þ

where α is a numerical constant and its value is not
important in the following discussion.
In [6,7], it is also conjectured that the uncharged black

holes saturate the bound (13) at late times

lim
t→∞

dChol

dt
¼ αM: ð14Þ

This is natural in the view that black holes are the fastest
scrambler [45,46]; as far as complexity is associated with
the growing black hole interiors at late times, its evolution
is expected to take the maximum speed.
For example, in the CV conjecture with the definition of

the holographic complexity as CholðtÞ ¼ VðtÞ=GNL, where
VðtÞ is the maximal volume7 at time t, and GN is Newton’s
constant and L is the AdS radius, CholðtÞ for an uncharged
planar black hole satisfies

dChol

dt
≤

16π

d − 1
M; ð15Þ

for any t [8],8 and saturates the bound at late times [1,5].
On the other hand, in the CA conjecture, the bound (13)

is violated although it behaves as (14) at late times [8].
See also [47] where the violation of the Lloyd bound for
the holographic complexity is discussed. In any case, we
next present the incompatibility between the inequality (11)
and (13), (14).

V. A NO-GO THEOREM

We now show a no-go theorem that any basis-independent
distance which satisfies the inequality (11) cannot be

compatible with the Lloyd bound (13) and its saturation
(14) at late times except for the case that the bound (13) is
saturated for any time. Let us set t1 ¼ t and t2 ¼ 2t in the
inequality (11). We then have the inequality

2CholðtÞ ≥ Cholð2tÞ: ð16Þ
If we define the following function fðtÞ,

fðtÞ≡ αMt − CholðtÞ; ð17Þ

then, from the inequality (16), it must satisfy

fð2tÞ ≥ 2fðtÞ: ð18Þ

On the other hand, from the Lloyd bound (13), fðtÞ
clearly satisfies

dfðtÞ
dt

≥ 0: ð19Þ

We also have fðt ¼ 0Þ ¼ 0 since Cholðt ¼ 0Þ ¼ 0 from (6).
With (19), this implies that fðtÞ is a non-negative function;

f ≥ 0 ðat t ≥ 0Þ: ð20Þ

Furthermore, the saturation of the Lloyd bound at late times
(14) implies that

lim
t→∞

fðtÞ ¼ const≡ f0 ≥ 0: ð21Þ

If we ignore the constraint (18) which comes from
the triangle inequality with basis independence, there are
infinite number of functions satisfying (19)–(21). However,
these functions cannot satisfy the inequality (18) except
for the case that the Lloyd bound is saturated at any time,
i.e., CholðtÞ ¼ αMt exactly for any time t (or equivalently,
fðtÞ≡ 0). This can be easily seen, since the triangle
inequality (18) at late times implies

lim
t→∞

2fðtÞ ≤ lim
t→∞

fð2tÞ ⇔ f0 ≤ 0: ð22Þ

In other words, no function can satisfy (18) and (21) unless
f0 ¼ 0 exactly. Here, f0 ¼ 0 is equivalent to

dChol

dt
¼ αM ð23Þ

exactly for any time t from (19) and (20).
On the other hand, we point out that there is no known

bulk-defined holographic complexity which satisfies this
property (23) for any time t, see [8].
Therefore, we conclude that holographic complexity,

satisfying the late time behavior (14), cannot satisfy both
the Lloyd bound (13) and the nature of the basis-independent
distance (11).

7The maximal volume itself (and also the action on the
WDW patch) is a UV-divergent quantity, and the UV-divergence
is time independent [8]. We regularize the holographic complex-
ity by subtracting that at t ¼ 0. Thus, Cholðt ¼ 0Þ ¼ 0 in our
regularization.

8The time t is different from t in [8] by a factor of two.
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VI. ANOTHER ARGUMENT USING
DIMENSIONAL ANALYSIS

Here we provide another argument supporting our
claim that basis-independent distances cannot be dual to
holographic complexities, without relying on the Lloyd
bound. The basis-independent distance might take the
following form

Dðρ; σÞ ¼ hðTrgðρ; σÞÞ; ð24Þ
where h is an arbitrary function R → R≥0, and g is an
arbitrary map from two density matrices to an operator on
the Hilbert space.9 We concentrate on this class of distances
in this section, although we are not sure if all basis-
independent distances take the form (24). For this class of
distances, the basis independence (8) is automatically
satisfied, since they are defined with the trace. In addition,
the distance is simplified for the case of two pure states
ρ ¼ jψihψ j and ρ0 ¼ jψ 0ihψ 0j. Actually, since pure states
satisfy ρ2 ¼ ρ, Trρ ¼ 1, and also

Trðρρ0Þn ¼ jhψ jψ 0ij2n; ð25Þ

then the distance can always be written as a function of the
fidelity of the two pure states

Fðψ ;ψ 0Þ≡ jhψ jψ 0ij; ð26Þ

which satisfies 0 ≤ Fðψ ;ψ 0Þ ≤ 1. (See also [48] for a
discussion that a fidelity is related to the bulk volume.)
In literatures, holographic complexities are computed for

eternal AdS black holes, which are dual to the thermofield
double (TFD) states [49]. The TFD state is a pure state

jTFDðt ¼ 0Þi ¼ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

n

e−βEn=2jniLjniR ð27Þ

on the tensor product of the same two Hilbert spaces
HL ⊗ HR, where ZðβÞ≡P

ne
−βEn is the partition function

on the single system at the inverse temperature β. Let us
consider the time evolution of the TFD state by the total
Hamiltonian Htot ¼ HL ⊗ 1R þ 1L ⊗ HR, and consider
the distance between the time-evolved states jTFDðtÞi
and jTFDðt ¼ 0Þi. Since they are pure states, the distance
with the form (24) is a function of their fidelity. We
represent the fidelity as FðtÞ, which takes a simple
expression

FðtÞ≡ jhTFDðtÞjTFDðt ¼ 0Þij ¼ jZðβ þ 2itÞj
ZðβÞ : ð28Þ

Here Zðβ þ 2itÞ means the analytic continuation, β → βþ
2it, of the partition function ZðβÞ. jZðβ þ 2itÞj2 is called

the spectral form factor [50,51], whose late time behavior
is used to diagnose the discreteness of the black hole
spectrum. Interestingly, since the fidelity FðtÞ is nothing
but the normalized spectral form factor, the distance of the
TFD state at time t from that at t ¼ 0 is a function of the
spectral form factor. We note that the distance function (24)
is introduced independently of states, so the functions g
and h in (24) should be independent of the temperature.
Thus, the temperature and time dependence in the distance
between the time-evolved TFD states come only thorough
the fidelity FðtÞ.
However, any function of the fidelity FðtÞ cannot be the

candidate for the holographic complexity, which can be
seen as follows: At high temperature limit for any field
theories on d-dimensional flat space, the leading parts of
the partition functions take the following dimensionally
determined form,

ZðβÞ ∼ expðcVβ−dÞ; ð29Þ

where c is a constant which is roughly the number of
degrees of freedom, and V denotes the (regularized) spatial
volume.10 Using Eq. (29), the fidelity FðtÞ is given by

FðtÞ ¼ exp
�
cV

�
−1
βd

þ ðβ þ 2itÞd þ ðβ − 2itÞd
2ðβ2 þ 4t2Þd

��
: ð30Þ

At late times t ≫ β, it is written as

FðtÞ∼

8>>><
>>>:
exp

�
cV

�
−1
βd

þð−1Þd=2
ð2tÞd

��
ðd∶evenÞ

exp

�
cV

�
−1
βd

þð−1Þðd−1Þ=2dβ
ð2tÞdþ1

��
ðd∶evenÞ

ð31Þ

On the other hand, in the high temperature limit, the
mass of the black hole is given by

M ∼ cV=βdþ1; ð32Þ

up to a numerical factor. Thus, the late time behavior of the
holographic complexity, Eq. (14), is written as

CholðtÞ ∼ cVt=βdþ1: ð33Þ

Now it is clear that this (33) cannot be reproduced by any
function of the fidelity (31) without using some other
independent function of temperature. In other words, since
the temperature and time dependence of any distance
comes only through the fidelity, the holographic complex-
ity is not dual to the class of distances (24). This implies

9We assume that gðρ; σÞ can be expanded as series of ρ and σ.

10This formula works even for theories on a curved space, as
long as its curvature length scale is much bigger than the inverse
of the temperature.
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that even though the spectral form factor (28) is useful to
probe a structure of the spectrum and to diagnose the chaos
[50,51], it fails to capture the fine-grained structure of the
Hilbert space, necessary for complexity.

VII. DISCUSSIONS

We have assumed that complexity can be defined as a
distance in the Hilbert space like Nielsen’s approach [37].
Then, if we further assume that the distance is basis
independent, we have faced the mismatch with the holo-
graphic complexity. The assumption that complexity is a
distance is probably reasonable because complexity should
satisfy the same axioms of distance. The mismatch clearly
comes from our assumption that the distance is basis
independent (8).
Actually, the basis independence restricts the distances

to the class as (24). For pure states jψi and jψ 0i, such a
distance depends only on the absolute value of the inner
product jhψ jψ 0ij. As explained in [40], the inner product
jhψ jψ 0ij loses much of the information of states; any
states orthogonal to jψi are regarded as the most distant
state from jψi. Therefore, we cannot see the fine-grained
structure of the system by this class of distances.11

However, holographic complexity needs to capture the
fine-grained structure such that it keeps growing at
late time.
Without the basis independence, we could not obtain

the strong constraint from the triangle inequality (7). If we
set ψ1 ¼ ψð0Þ, ψ2 ¼ ψðtÞ and ψ3 ¼ ψðtþ dtÞ in (7), we
obtain

Cðt; 0Þ þ Cðtþ dt; tÞ ≥ Cðtþ dt; 0Þ; ð34Þ

which leads to the following inequality

dCðt; 0Þ
dt

≤
dCðt0; tÞ

dt0

����
t0¼t

: ð35Þ

The inequality is a kind of the Lloyd bound. The growth
rate of the complexity of ψðtÞ with the reference state ψð0Þ
is bounded from the growth rate between two near states.
Since this inequality holds between two different reference
states, it doe not give a constraint to time dependence of
complexities with the fixed reference state.
Our conclusion is that if holographic complexity is dual

to a distance in the Hilbert space, it should be basis
dependent. Since all physical observables in quantum
mechanics are defined basis independently, this might
sound a bit puzzling in the following sense: If we admit
that holographic complexity is basis dependent, the

growing volume of the wormhole cannot be observable.
However, this is not a contradiction. To see this, remember
that in holographic entanglement entropy [52], RT surface
(or volume) is not observable since entanglement entropy is
not directly observable.
In this paper, we have considered distances only between

states at different times, and did not see the detailed
dependence of the reference states. In literatures [32,33],
unentangled states (or direct products states) are often taken as
reference states. Here, “unentangle” means forming a direct
product structure under the spatial (or geometrical) decom-
position of the Hilbert space, and thus a specific basis
respecting the spatial structure or locality is implicitly chosen.
On the other hand, the basis-independent distances do not
respect locality at all. Since basis independence Eq. (8) was
required for arbitrary unitary transformations including
highly nonlocal ones, this turns out too strong assumption.
To seek for a good definition of complexity as a distance,
we should respect the locality of quantum field theories.
Representation of states by tensor networks, which gives a
nice interpretation of growth of the wormhole [3], also
suggests that we should respect the locality. If we perform
the nonlocal transformations, such a local tensor structure of
the state is lost. Furthermore, in order to define complexity,
one needs to define, at first, a gate-set. If one changes the
basis, the gate-set also changes and accordingly, the complex-
ity (or distance in the Hilbert space) also changes for fixed
target and reference states.12 This implies that there should
exist a preferred choice of a gate-set which respects the
locality of quantum field theories. In spin systems, to find
such a locality-respecting gate-set is not that difficult.
However, the real difficulty is for gauge theories where gauge
constraint makes it complicated. Extended Hilbert space
approaches are probably useful in such situations just as
entanglement entropy case, see e.g., [53–56].
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