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We study a complex free scalar field theory on a noncommutative background spacetime called
κ-Minkowski. We ensure the Lorentz invariance of the theory by assuming an “elliptic de Sitter” topology
for momentum space. To define covariant quantization rules, we introduce a noncommutative Pauli-Jordan
function, which is invariant under κ-deformed Poincaré transformations, as well as diffeomorphisms of
momentum space. We derive the algebra of creation and annihilation operators implied by our Pauli-Jordan
function. Finally, we use our construction to study the structure of the light cone in κ-Minkowski spacetime,
and to derive its physical consequences.
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I. INTRODUCTION

Quantum field theory (QFT) on Minkowski spacetime is
arguably the most successful paradigm in physics, both for
the precision with which some of its predictions have been
tested, and for the variety of phenomena it is capable to
describe. As a description of Nature, flat-space QFT is
clearly an effective theory, as it ignores the dynamics of the
gravitational field, for which we currently have no satisfy-
ing quantum formulation. The unspoken underlying
assumption is that, whatever the correct quantum theory
of gravity is, it will admit a “ground state” which looks like
Minkowski spacetime. Then flat-space QFT would be a
good description of matter as long as graviton production
can be ignored. This last condition is a safe assumption in
the experimental regimes we have access to. This is because
the coupling between matter and gravity is controlled
by the Planck scale Ep ∼ 1028 eV, which is an enormous
energy scale that makes for an extremely small coupling
constant. Our current understanding of quantum gravity
suggests that the aforementioned assumption might not be
correct. The ground state of general relativity might be
something different from Minkowski space, which only
looks like it in the low-energy limit. The strongest
indications come from 2þ 1 dimensional quantum gravity,
which, because it lacks local propagating degrees of free-
dom (gravitons), can be quantized with topological QFT

methods. Coupling this theory to matter and integrating
away the gravitational degrees of freedom, one ends up
with a nonlocal effective theory [1,2]. This theory admits
a description as a QFT on a noncommutative background,
in the sense that the ordinary algebra of functions on
spacetime [which is an Abelian algebra when endowed
with the pointwise product ðf · gÞðxÞ ¼ fðxÞgðxÞ] is
replaced with a noncommutative algebra. The Planck
scale (or rather its inverse, which in ℏ ¼ c ¼ 1 units is
the Planck length Lp ∼ 10−35 m) plays the role of non-
commutativity parameter, similar to that played by ℏ in
ordinary quantum mechanics. In particular it appears on
the right-hand side of uncertainty relations between
coordinate functions xμ, and therefore there is a sense
in which the noncommutative geometry described by this
algebra should look like the commutative geometry of
Minkowski spacetime in the large-scale/infrared limit. Let
us restate this important point: the “background state” of
2þ 1D quantum gravity coupled with matter is not QFT
on Minkowski spacetime. It is rather a QFT on a
noncommutative geometry which reduces to Minkowski
space only in the low-energy limit.
In light of the lesson of 2þ 1D quantum gravity,

studying noncommutative geometries in 3þ 1D, and
the QFTs that can be built upon them, acquires a great
interest [3,4]. Because of our lack of understanding of
3þ 1D quantum gravity, we presently have no way to
repeat the exercise done in 2þ 1D of integrating away the
gravitational field to uncover the correct effective theory
of matter on a quantum-gravity background. For this
reason, we are compelled to study all the possible 3þ 1D
noncommutative geometries whose noncommutativity
parameter depends on the Planck length. If we are able
to develop consistent QFTs on such backgrounds, there is
a chance that their phenomenological implications could
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be experimentally tested, giving us precious hints towards
the correct quantum theory of gravity in 3þ 1D.
A powerful way to describe a geometry is through its

symmetries. Minkowski spacetime, e.g., is completely
characterized by the fact that it is a maximally symmetric
spacewhich is flat. The first condition (maximal symmetry)
reduces the possible choices to only three: de Sitter (for
positive curvature), anti-de Sitter (negative curvature), and
Minkowski (flat). Then the spacetime can be understood as
the quotient of a 10-dimensional Lie group [(A)-dS or
Poincaré, depending on the curvature] by a 6-dimensional
isotropy subgroup (the Lorentz group). Interestingly, these
structures generalize to noncommutative spaces. Lie groups
are generalized to something called quantum groups [5,6]:
essentially, the algebra of functions on the group manifold
becomes noncommutative (see next section).
Remarkably, there is only a limited number of quantum

groups that reduce to the Poincaré group when the non-
commutativity parameter vanishes [7]. In particular, if we
require the noncommutativity parameter to depend linearly
on the Planck scale, and to admit a regular limit as the
cosmological constant is sent to zero, we are left with
(almost) only one choice [8]. This is the κ-Poincaré
quantum group [9,10], where κ refers to the (inverse of
the) noncommutativity parameter, which has the dimen-
sions of an energy. Field theories that are invariant under κ-
Poincaré symmetries have been studied extensively in the
past (see for instance [11–30]), especially at the classical
level (i.e., in the limit ℏ → 0 while keeping κ finite).
However, the understanding of κ-deformed field theories is
still far from complete, especially for what regards their
second quantization.
In the present work we discuss a new strategy for the

construction and quantization of a complex scalar field on
κ-Minkowski. Our approach is explicitly κ-Poincaré covar-
iant, and independent on the choice of basis of the
spacetime symmetry algebra (an important feature which
most previous approaches lacked; see below). A key
element of our analysis is the observation that, in order
to preserve Lorentz invariance, the momentum space of
fields on κ-Minkowski must have the topology of elliptic de
Sitter space. It has in fact been observed long ago [31] that
the κ-deformed momentum space has a de Sitter geometry.
However, at the global level the momentum space covers
only half of the de Sitter hyperboloid, and that half is not
closed under the action of Lorentz transformations. The
Lorentz orbits become complete (i.e., do not terminate at a
finite boundary) only if we assume the elliptic topology
dS=Z2 for the de Sitter hyperboloid (see Sec. II).
Our approach will allow us to write the algebra of

creation and annihilation operators for a scalar filed, which
in turn defines the Fock space of the theory. An important
feature of our analysis is that we define the quantization
rules of the theory in a covariant way, using the Pauli-
Jordan function. This affords us to avoid using canonical

quantization and therefore Hamiltonian formulations.
Such formulations are problematic, because κ-Minkowski
(the noncommutative spacetime whose symmetries are
described by the κ-Poincaré group) does not admit the
notion of constant-time slices.1

Our covariant approach has an additional bonus: it gives
us a generalization of the notion of light cone. In fact the
commutative Pauli-Jordan function vanishes outside the
light cone: it measures the commutator between quantum
fields at different points, and such a commutator must
vanish on spacelike-separated points in order for causality
to be respected. In the noncommutative case the Pauli-
Jordan function turns into an element of a noncommutative
algebra, and therefore some more work is necessary in
order to extract a notion of light cone from it. Our proposal
is to interpret the Pauli-Jordan function as an operator on a
Hilbert space of “geometrical” states, i.e., states of the
background quantum geometry. By calculating the expect-
ation value of said operator on a state that is peaked around
a classical pair of points (what we call semiclassical state)
we are able to extract the dependence of the Pauli-Jordan
function on the coordinates of the classical points around
which our state is peaked. It turns out that this dependence
is not confined inside the classical light cone, but it rather
“spills out” within a region whose size is the geometric
mean between the Planck length and the distance from the
origin of the light cone. The derivation of these results is the
subject of Sec. V.
Our calculation of the Pauli-Jordan function allows us to

intervene in a debate that has been ongoing since the early
days of κ-Poincaré. This is whether the deformations of
relativistic kinematics predicted by κ-Poincaré imply
anomalous in-vacuum dispersion and whether such
dispersion can be detected with present-day technology.
At the turn of the century it was proposed that the Planck
scale might enter new physics in a fashion similar to that of
the speed of light. c in fact is a speed constant that takes the
same value for all inertial observers, and in order to
accommodate the relativistic invariance of c one needs
to deform Galilean relativity in a c-dependent way.
Similarly, as suggested in [32–34], Ep could be a new
energy scale that appears the same to all inertial observers,
but this requires a deformation of special relativity into a
new relativistic theory with two invariant scales (this
proposal was dubbed doubly special relativity [32–37]).
Soon after this idea was proposed, κ-Poincaré was iden-
tified as a candidate model to realize such two-scale
generalization of special relativity [38]. Indeed, as we
show in Eq. (28) below, one finds deformed Lorentz
transformations laws for energy and momentum which
depend on both c and the Planck scale. κ-Poincaré is still

1The commutation relations of κ-Minkowski coordinates are
such that a sharply defined time coordinate implies infinite
uncertainty on the spatial coordinates (see Sec. IV).
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today the best candidate for a consistent model realizing the
idea of doubly special relativity. Unfortunately introducing
the Planck scale as an observer-independent constant
makes it harder to detect its effects. In fact, most mean-
ingful constraints for a possible role of Ep in physics come
from testing some conjectured Lorentz-breaking effects,
whereupon Michelson-Morley-like experiments putting
constraints on a “quantum-gravity aether” are easy to
devise and extremely powerful [39–42]. If the Planck scale
enters as a deformation of some laws of physics in a way
that does not depend on the inertial frame, it becomes much
harder to detect. One of the best proposals for such a test is
in-vacuum dispersion: if the relativistic kinematics is
deformed in a Planck-scale-dependent way, it is conceiv-
able that the energy-momentum dispersion relation
acquires Planck-scale corrections. Then the group velocity
of particles propagating in a vacuum should get Planck-
scale corrections, and it is just a matter of dimensional
analysis to show which kind of dependences on energy and
momentum such a deformation could acquire [43]. One
possibility is that the dispersion is such that distant point-
like sources arrive on Earth with a time delay of the form

δt ∝ LpEL; ð1Þ

where δt might be a systematic delay of all particles or a
random uncertainty on the time of arrival, different for each
particle. E is the energy of the particle and L is the distance
of the source (in units ℏ ¼ c ¼ 1). Such a law can be
meaningfully tested with present-day observations: in
particular gamma ray bursts provide bright sources of
photons of energies up to 1 TeV at distances of the order
of a billion light years. With such numbers the law (1)
predicts time delays of the order of 1 sec. Indeed the Fermi-
LAT experiment has been testing such a hypothesis for
years, putting constraint on the energy scale of the
proposed quantum-gravity effect [44] of the order of Ep

or more. More recently, a proposal to test the hypothesis
that the high-energy neutrinos observed by the IceCube
observatory are originated in gamma ray bursts, and are
subject to the same proposed quantum-gravity effects
gained significant attention [45]. Similarly, the coincidence
between LIGO/VIRGO detections of gravitational waves
with electromagnetic counterparts can represent powerful
independent tests of Planck-scale-originated time delays of
different particles [46]. Other tests have been proposed,
e.g., based on primordial cosmology [47]. So, soon after a
law like (1) was first proposed, it was conjectured that it
would be a prediction of κ-Poincaré,2 and then gamma ray

bursts would be the perfect arena to test the predictions of
this model. In the present paper we study the constraints
imposed by κ-Poincaré-invariant QFT on the causal struc-
ture of κ-Minkowski. This will allow us to establish with a
higher level of confidence whether gamma ray burst
phenomenology is able to put meaningful bounds on
our model.
In the Sec. II we briefly review the mathematical tools

needed for our analysis, and give a brief recap of the things
we already know about scalar fields and the geometry of
momentum space. In Sec. III we generalize the Klein-
Gordon equation to κ-Minkowski and in Sec. IV we
introduce the “κ-deformed” Pauli-Jordan function. In
Sec. V we use the Pauli-Jordan function to study the
noncommutative light cone of our theory and in Sec. VI we
present future perspectives and conclusions.

II. THE κ-POINCARÉ QUANTUM GROUP AND
THE κ-MINKOWSKI SPACETIME

A. The standard Poincaré group as a Hopf algebra

The structure of the Poincaré group G can be described in
algebraic terms by considering the algebra of complex-
valued functions on the group C½G�, and by introducing
three maps which are dual3 to the three defining axioms of
Lie groups. First one needs to introduce coordinate
functions on the group Λμ

ν, aμ∶G → C, i.e., elements of
C½G� which associate with each group element g ∈ G its
coordinates in the standard representation of the group.
The group product can be described by a coproduct map

Δ∶C½G� → C½G� ⊗ C½G�:

Δ½Λμ
ν� ¼ Λμ

ρ ⊗ Λρ
ν; Δ½aμ� ¼ aμ ⊗ 1þ Λμ

ν ⊗ aν:

ð2Þ

Δ½Λμ
ν� is now a function that associates with two group

elements g, h ∈ G the coordinates, in the coordinate system
Λμ

ν, aμ, of the product element g · h: Δ½Λμ
ν�ðg; hÞ ¼

Λμ
νðgÞΛν

μðhÞ ¼ Λμ
νðg · hÞ, and similarly for Δ½aμ�:

Δ½aμ�ðg; hÞ ¼ aμðgÞ þ Λμ
νðgÞaνðhÞ ¼ aμðg · hÞ.

The group inverse can be encoded into an antipode map
S∶C½G� → C½G�:

S½Λμ
ν� ¼ ðΛ−1Þμν; S½aμ� ¼ −ðΛ−1Þμνaν; ð3Þ

which, when calculated on the coordinate functions give
two functions whose value on a group element g is the
coordinates of the inverse element g−1: S½Λμ

ν�ðgÞ ¼
ðΛ−1ÞμνðgÞ ¼ Λμ

νðg−1Þ, S½aμ�ðgÞ ¼ −Λμ
νaνðgÞ ¼ aμðg−1Þ.

Finally, the map that stands in for the unit is called counit
ε∶C½G� → C:

ε½Λμ
ν� ¼ δμν; ε½aμ� ¼ 0; ð4Þ

2However, κ-Poincaré is not the only theoretical scenario that
was proposed to be relevant for this kind of phenomenology:
models inspired by string theory [48–52], loop quantum gravity
[53,54], and in general, Lorentz-violating extensions of known
physics [39,41] are constrained by it. 3In the category-theory sense of inverting all the arrows.
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where ε½Λμ
ν� ¼ Λμ

νðeÞ and ε½aμ� ¼ aμðeÞ give the coor-
dinates of the identity element e ∈ G in the coordinate
system Λμ

ν; aμ.
In relation to the structures of the commutative algebra

C½G� (product and linear combination), the maps Δ and ε
are algebra homomorphisms: Δ½fg�¼Δ½f�Δ½g�, Δ½fþg� ¼
Δ½f�þΔ½g�, while S is an antihomomorphism.
With the three maps Δ, S, and ε we can completely

describe the group, provided that they satisfy a compati-
bility axiom:

μ ∘ ðS ⊗ idÞ ∘Δ ¼ μ ∘ ðid ⊗ SÞ ∘Δ ¼ 1ε; ð5Þ

where μ∶C½G� ⊗ C½G� → C½G� is the product of C½G� (the
pointwise product between functions) and id is the identity
map. This axiom coincides with the definition of the
inverse g−1 · g ¼ g · g−1 ¼ e.

B. Generalization to quantum groups

Having achieved this unusual description of the well-
known Poincaré group, we can disclose now the reason for
going through all this trouble. The commutative algebra of
functions C½G� can be replaced with a non-Abelian algebra
Cκ½G�, whose product now does not admit anymore the
interpretation of pointwise product between functions, nor
its elements the interpretation of functions on G. We are
now dealing with a quantum group [6,55], whose algebra
of functions is noncommutative. In the case of the Poincaré
group in 3þ 1 dimensions, there appears to be essentially
only a seven-parameter space of candidates which admit
the interpretation of the flat-space limit of a Planck-scale
deformation (first order in the Planck length) of the
Poincaré group [8]. If three of these parameters (those
associated with a “Reshetikhin twist” [8]) are set to zero,
we obtain the κ-Poincaré group, defined by the commu-
tation relations [9]

½aμ; aν� ¼ iðvμaν − vνaμÞ; ½Λμ
ν;Λρ

σ� ¼ 0;

½Λμ
ν; aρ� ¼ −i½ðΛμ

σvσ − vμÞΛρ
ν þ ðΛσ

νvσ − vνÞημρ�; ð6Þ

where ημν ¼ diagð−;þ;þ;þÞ and vμ ¼ ðv0; v1; v2; v3Þ are
four deformation parameters, which should be of the order
of the Planck length. In a mathematical sense, all choices of
vμ with the same sign of the norm, vμvμ, are equivalent
(they are related by algebra automorphisms). Then the
mathematically inequivalent cases are only three: when vμ

is spacelike, lightlike, or timelike [13]. Mathematical
equivalence aside, the question whether different choices
of vμ lead to different physics remains open, and we do not
intend to dwell on these issues in the present paper. For
now, it is sufficient to study one particular case, and we
choose the most-studied one, which is vμ timelike and of
the form

vμ ¼ 1

κ
δμ0; ð7Þ

where κ is the eponymous parameter of the κ-Poincaré
group. κ has the dimensions of an energy, and it is expected
to be close to the Planck energy, if the κ-Poincaré group is
to describe deformations originated in a presently unknown
quantum theory of gravity.
Notice that the commutation relations (6) admit two

subalgebras, one generated by the four translation gener-
ators aμ and another one generated by the Lorentz matrices
Λμ

ν (moreover the latter algebra is commutative; therefore,
the Lorentz subgroup SOð3; 1Þ is classical). The fact that
the translation generators close a subalgebra is a conse-
quence of the fact that the κ-Poincaré algebra is coisotropic
with respect to Lorentz transformations [56]. This is
required to be able to talk about a quantum homogeneous
space, generated by quotienting Cκ½G� by the Lorentz
subgroup A ¼ Cκ½G�=SOð3; 1Þ. This is a noncommutative
algebra generated by

½xμ; xν� ¼ iðvμxν − vνxμÞ; ð8Þ

or, in the timelike case we are concerned with in the present
paper,

½x0; xi� ¼ i
κ
xi; ½xi; xj� ¼ 0: ð9Þ

The xμ generators should be interpreted as coordinate
functions on a noncommutative spacetime, which we call κ-
Minkowski. The algebraA is to be interpreted as the algebra
of functions on κ-Minkowski, or, which is the same thing,
the algebra of scalar fields. A is obtained by taking all
possible (finite or infinite) products and sums of xμ, i.e.,P∞

n¼0 cμ1…μnx
μ1…xμn with cμ1…μn ∈ C.

Just like commutative homogeneous spaces, κ-Minkowski
comes equipped with an action of the κ-Poincaré group
which leaves it invariant. In the Hopf algebra language, as
could be expected, this is expressed by means of a (left-)
coaction map, ΔL∶A → C½G� ⊗ A,

ΔL½xμ� ¼ Λμ
ν ⊗ xν þ aμ ⊗ 1: ð10Þ

The map above is anA-homomorphism, as can be explicitly
seen by calculating the commutator between two trans-
formed coordinates:

½ΔL½xμ�;ΔL½xν�� ¼ ΔL½iðvμxν − vνxμÞ�
¼ iðvμΔL½xν� − vνΔL½xμ�Þ: ð11Þ

The above relation is left invariant only if Λμ
ν and aμ satisfy

the commutation relations (6).
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C. Scalar fields on κ-Minkowski
and the κ-Poincaré algebra

As we remarked above, scalar fields on κ-Minkowski are
simply generic elements of A (spacetime coordinates are
scalar fields too: in the commutative case they are four
scalar fields whose values at a spacetime point give the
values of the four coordinates of that point in a certain
coordinate system). One can define on κ-Minkowski a
notion of Fourier transform, by expanding a generic scalar
field ϕðxÞ in ordered plane waves [16]:

ϕðxÞ ¼
Z
R4

d4kϕ̃rðkÞeikixieik0x0 ¼
Z
R4

d4kϕ̃lðkÞeik0x0eikixi

¼
Z
R4

d4kϕ̃wðkÞeik0x0þikixi : ð12Þ

Using the commutation relations (9) we can prove the
following relationships between waves written with differ-
ent ordering conventions [57]:

eik0x
0

eikix
i ¼ eie

k0
κ kixieik0x

0

; eik0x
0þikixi ¼ eið

ek0=κ−1
k0=κ

Þkixieik0x0 ;

ð13Þ
and therefore the Fourier transform coefficients corre-
sponding to differently ordered waves are related to each
other by coordinate transformations of momentum space:

ϕ̃rðq0;qÞ ¼ e−3q0=κϕ̃lðq0; e−q0=κqÞ

¼ jq0=κj3
jeq0=κ − 1j3 ϕ̃w

�
q0;

q0=κ

ðeq0=κ − 1Þq
�
: ð14Þ

We can find out how the κ-Poincaré group acts on a
scalar field by using the homomorphism property (10) of
the left coaction:

ΔL½ϕðxÞ� ¼ ϕðΔL½x�Þ ¼
Z
R4

d4kϕ̃rðkÞeikiΔL½xi�eik0ΔL½x0�:

ð15Þ

The right-ordered plane waves transform in the following
way:

eikiðΛi
ν⊗xνþai⊗1Þeik0ðΛ0

ν⊗xνþa0⊗1Þ

¼ eiλi½k;Λ�⊗xieiλ0½k;Λ�⊗x0eikia
i⊗1eik0a

0⊗1 ð16Þ

where λμ½k;Λ� are four complicated, nonlinear function of
kμ and Λμ

ν, which we calculate explicitly (in the 1þ 1-
dimensional case) in Appendix A.
At first order in ωμ

ν ¼ logΛμ
ν and aμ:

eikiΔL½xi�eik0ΔL½x0� ¼1⊗eikix
i
eik0x

0 þωμ
ν⊗Mν

μ⊳eikix
i
eik0x

0

þaμ⊗Pμ⊳eikix
i
eik0x

0 þ…: ð17Þ

The operators Mμ
ν and Pμ are the Lorentz and translation

generators of the κ-Poincaré algebra, which is dual to the
quantum group. The symbol ⊳ refers to an action of the
κ-Poincaré algebra on A. From the last formula we deduce
that, at first order in the transformation parameters, a scalar
field transforms as

ΔL½ϕðxÞ� ¼ 1⊗ ϕþωμ
ν ⊗Mν

μ ⊳ ϕþ aμ ⊗ Pμ ⊳ ϕþ…:

ð18Þ

The operators Mμν and Pμ close a Hopf algebra Uκ½g�,
which is dual to Cκ½G�. Its commutators are4

½Pμ; Pν� ¼ 0; ½Rj; P0� ¼ 0; ½Rj; Pk� ¼ iεjklPl; ½Rj; Nk� ¼ iεjklNl; ½Rj; Rk� ¼ iεjklRl;

½Nj; Pk� ¼ iPj; ½Nj; Pk� ¼
i
2
δjk

�
κð1 − e−2P0=κÞ þ 1

κ
jPj2

�
−
i
κ
PjPk; ½Nj; Nk� ¼ −iεjklRl: ð19Þ

Notice that ∂λρ½P;Λ�
∂Λμ

ν
j
Λμ

ν¼δμν
¼ i½Mμ

ν; Pρ�, and therefore the nonlinear commutators ½Mμ
ν; Pρ� encode the action of

infinitesimal Lorentz transformations on momentum space. The coproducts, antipodes, and counits of Uκ½g� are5

Δ½Pj� ¼ Pj ⊗ 1þ e−P0=κ ⊗ Pj; Δ½P0� ¼ P0 ⊗ 1þ 1 ⊗ P0;

Δ½Rj� ¼ Rj ⊗ 1þ 1 ⊗ Rj; Δ½Nk� ¼ Nk ⊗ 1þ e−P0=κ ⊗ Nk þ
i
κ
εklmPl ⊗ Rm; ð20Þ

S½P0� ¼ −P0; S½Pj� ¼ −eP0=κPj; S½Rj� ¼ −Rj; S½Nj� ¼ −eP0=κNj þ
i
κ
εjkleP0=κPkRl; ð21Þ

ε½P0� ¼ 0; ε½Pj� ¼ 0; ε½Rj� ¼ 0; ε½Nj� ¼ 0: ð22Þ

4Ni ¼ M0i, Ri ¼ 1
2
ϵijkMjk.

5For a nice introduction to κ-Minkowski and κ-Poincaré see, for instance, [58,57] for a more formal exposition.
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The coproducts, antipode, and counit are deformations of
the relations Δ½t� ¼ t ⊗ 1þ 1 ⊗ t, S½t� ¼ −t and ε½t� ¼ 0
which identify the Lie-algebra generator t as a differential
operator. In particular Δ½t� encodes the Leibniz rule for
acting on products of functions, through the relation
t⊳ ðfgÞ¼ μ∘½Δ½t�⊳ ðf⊗ gÞ� ¼ ðt⊳ fÞgþfðt⊳ gÞ. In the
case of Uκ½g� the coproduct above implies that only P0

and Ri will respect the Leibniz rule when acting on
noncommutative products of functions. Pj and Nj

will behave differently, e.g., Pj ⊳ ðϕψÞ ¼ ðPj ⊳ ϕÞψ þ
ðe−P0=κ ⊳ ϕÞðPj ⊳ ψÞ.
The commutators (19) leave invariant the following

function of the momentum generators:

□κ ¼ −4κ2sinh2
�
P0

2κ

�
þ e

P0
κ jPj2: ð23Þ

□κ is a high-energy deformation of the quadratic Casimir
of the Poincaré algebra. In fact, expanding in powers
of κ−1,

□κ ¼ −P2
0 þ jPj2 þ 1

κ
P0jPj2 þOðκ−2Þ; ð24Þ

which is indistinguishable from −P2
0 þ jPj2 for P0 ≪ κ.

D. The κ-momentum space

The time-to-the-right-ordered plane waves eipixieip0x0 are
eigenfunctions of the momentum operators Pμ:

Pμ ⊳ eipixieip0x0 ¼ pμeipixieip0x0 : ð25Þ
Applying the κ-deformed Casimir operator (23) to a plane
wave,

□κ⊳eipixieip0x0 ¼
�
−4κ2sinh2

�
p0

2κ

�
þe

p0
κ jkj2

�
eipixieip0x0 ;

ð26Þ
we can introduce a notion of an “on-shell” wave,
which satisfies a κ-deformed version of the Klein–Gordon
equation:

−4κ2sinh2
�
p0

2κ

�
þ e

p0
κ jkj2 ¼ const: ð27Þ

Now consider the on-shell curves, in the space of momen-
tum eigenvalues pμ ∈ R4, associated with constant values
of □κ. In Fig. 1 we see that these curves are a high-energy
deformation of the on-shell curves of Minkowski space.
We can study the action of Lorentz transformations on

momentum space. In 1þ 1D, boost transformations of
Eq. (16) can be written as (for the proof, see Appendix A)

FIG. 1. The□κ ¼ const curves in momentum space in 1þ 1 dimensions. Both the vertical (p0) and the horizontal (p1) axes have been
compactified by taking the arctan of the variable. In a sufficiently small neighborhood of the origin pμ ¼ 0, the diagram is
indistinguishable from the mass-shell hyperboloids of the momentum space of waves on the commutative Minkowski spacetime. This
diagram is a compactified version of the diagram that first appeared in Fig. 2 of [10]. The orange region corresponds to negative □κ,
which in the κ → ∞ limit coincides with waves with positive squared mass. The white region, instead, tends to tachyonic (negative
squared mass) waves in the κ → ∞ limit. Notice how the “future-directed” (p0 > 0) and “past-directed” (p0 < 0) mass shells are
differently shaped. In particular, the future-directed one is spatially bounded jp1j < κ while the past-directed one is not. To give a sense
of scale, we plotted differently the on-shell curves with □κ ¼ �κ2.
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λ0½ξ; p� ¼ p0 þ κ log

��
cosh

ξ

2
þ p1

κ
sinh

ξ

2

�
2

− e−2p0=κsinh2
ξ

2

�
;

λ1½ξ; p� ¼ κ
ðcosh ξ

2
þ p1

κ sinh
ξ
2
Þðsinh ξ

2
þ p1

κ cosh
ξ
2
Þ − e−2p0=κ cosh ξ

2
sinh ξ

2

ðcosh ξ
2
þ p1

κ sinh
ξ
2
Þ2 − e−2p0=κsinh2 ξ

2

: ð28Þ

We plot the flux of the above transformation (i.e., the vector

field ∂λμ
∂ξ

∂
∂pμ

) in Fig. 2 (on the left).

Notice that both components of Eq. (28) have a diver-
gence at�

cosh
ξ

2
þ p1

κ
sinh

ξ

2

�
2

− e−2p0=κsinh2
ξ

2
¼ 0; ð29Þ

which means

coth
ξ

2
¼ �e2p0=κ −

p1

κ
: ð30Þ

Now, the image of coth is ð−∞;−1Þ ∪ ð1;þ∞Þ, and
therefore the above equation admits a solution in ξ only
wherever j� e2p0=κ − p1

κ j > 1. This completely excludes the
positive-frequency mass shell, and part of the□κ > 0white
region of Fig. 1. We plot the two regions je2p0=κ − p1

κ j > 1

and j − e2p0=κ − p1

κ j > 1 in Fig. 2 (on the right). The
existence of this “critical rapidity” was first noticed by
Majid [10]. As can be seen in Fig. 2, the positive-frequency
□κ < 0 shell does not have a critical rapidity: in there, any
finite value of ξ corresponds to a finite boosted momentum.
All the other regions of momentum space, however, have
this issue, and the rapidities can only take either a finite
interval or an interval bounded from above or below,
because with a finite value of the rapidity one is boosted

to the boundary of momentum space. This is in principle a
serious issue which might spoil any theory based on this
symmetry group of the equivalence between inertial
observers. Tackling this issue will be an important part
of our results.
As we remarked in (13), changing the ordering coincides

with a nonlinear redefinition of the eigenvalue kμ, e.g.,

ki → e
k0
κ ki, k0 → k0 to go from the right-ordered to the left-

ordered plane waves. This, in turn, means that the left-
ordered plane waves are eigenfunctions of the operators

Pl
i ¼ e

P0
κ Pi, which are just a different basis for the Uκ½g�

algebra. In Fig. 3 we plot the on-shell curves in the Weyl-
ordered and the time-to-the-left-ordered coordinates. We
can see that most qualitative features of these diagrams
depend on the ordering choice, and therefore on the Hopf
algebra basis.

E. The geometry of momentum space

More than one author could not resist the temptation to
interpret expressions like (24) literally, as relations between
the physical (observable) energy and momentum carried by
a wave in a noncommutative spacetime. Then one would be
led to calculate things like the group velocity of the wave as
the slope of the on-shell curves, ∂p0=∂p1, and deduce, e.g.,
that the positive-frequency waves of Fig. 1 have an infinite
group velocity as the spatial momentum approaches

0

FIG. 2. Left: Lorentz vector field on momentum space. Right: regions where a critical rapidity exists. In the superposition between the
blue and the green regions, there exist two values of the rapidity that make the boosted momenta diverge.
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jp1j → κ. The group velocity of negative-frequency waves
instead would become infinite only as jp1j → ∞. However,
if we adopted the convention of ordering our waves with
the time to the left, positive- and negative-frequency waves
would swap their behaviors, as suggested by the diagram
on the right-hand side of Fig. 3. Even more strange would
be the behavior of the Weyl-ordered waves: the left-hand
side of Fig. 3 suggests that positive-frequency waves have a
multivalued dispersion relation, that associates two differ-
ent energies to each spatial momentum (and the group
velocity would diverge at a value of jp1j that is even smaller
than κ).
It would of course be preferable to avoid the conclusion

that physics depends on the convention we adopt to order
our operators. Considering different ordering choices,
however, suggests the way out of this problem: changing
ordering corresponds to making a general coordinate
transformation on our momentum space. Then we should
be looking for statements that are coordinate independent:
those that regard the pseudo-Riemannian geometry of
momentum space.
Kowalski-Glikman was the first to observe that the

momentum space of κ-Minkowski has the geometry of a
de Sitter manifold [31]. Here we would like to repeat the
argument presented in [30], which starts with the obser-
vation that there exists a change of basis:

η0 ¼ κ sinh
P0

κ
þ 1

2κ
e
P0
κ jPj2; ηi ¼ e

P0
κ Pi; ð31Þ

such that ημ closes a Poincaré algebra with the Lorentz
generators Mμν:

½Mμν; ηρ� ¼ iημρην − iηνρημ; ð32Þ
as can be explicitly deduced from the definition of ημ
and the commutation relations (19). The generators ημ

transform classically under Lorentz transformations.
However they do not close a Hopf algebra: their
coproducts are

Δ½η0� ¼ η0 ⊗ eP0=κ þ e−P0=κ ⊗ η0 þ
1

κ
e−P0=κηi ⊗ ηi;

Δ½ηi� ¼ ηi ⊗ eP0=κ þ 1 ⊗ ηi; ð33Þ

S½η0� ¼ −η0 þ e−P0=κjηj2; S½ηi� ¼ −e−P0=κηi; ð34Þ

but we cannot express eP0=κ uniquely in terms of η0, η1. The
reason is that Eq. (31) as a transformation ðP0; PiÞ →
ðη0; ηiÞ is not injective, because it admits two inversions:

e
P0
κ ¼ η0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η20 − jηj2 − κ2

q
;

Pi ¼ ηi
κðη0 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η20 − jηj2 − κ2

p Þ
jηj2 − κ2

; ð35Þ

so the coalgebra does not close. If we now introduce a new
algebra element,

η4 ¼ κ cosh
P0

κ
−

1

2κ
e
P0
κ jPj2; ð36Þ

the coordinate transformation ðP0; PiÞ → ðη0; ηi; η4Þ
becomes injective (although it is not surjective, because
the target space is 5-dimensional)

e
P0
κ ¼ η0 þ η4

κ
; Pi ¼ ηi

κðη0 − η4Þ
jηj2 − κ2

; ð37Þ

and then the coproducts close on the ðη0; ηi; η4Þ basis:

FIG. 3. The □κ ¼ const curves in Weyl-ordered coordinates (left), and time-to-the-left-ordered coordinates (right).
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Δ½η0� ¼ η0 ⊗ ðη0 þ η4Þ þ
κ

η0 þ η4
⊗ η0 þ

ηi
η0 þ η4

⊗ ηi;

Δ½ηi� ¼
1

κ
ηi ⊗ ðη0 þ η4Þ þ 1 ⊗ ηi;

Δ½η4� ¼ η4 ⊗ ðη0 þ η4Þ −
κ

η0 þ η4
⊗ η0 −

ηi
η0 þ η4

⊗ ηi;

ð38Þ

as well as the antipodes:

S½η0� ¼ −η0 þ
jηj2

η0 þ η4
; S½ηi� ¼ −

κηi
η0 þ η4

; S½η4� ¼ η4:

ð39Þ

Notice that the definitions of ηa ¼ ηaðP0;PÞ, a ¼
0;…; 4 are such that the five ηa are not independent: they
satisfy an algebraic relation

η20 − jηj2 − η24 ¼ −κ2; ð40Þ

which is the equation for the 4D de Sitter hyperboloid in
5-dimensional embedding coordinates. Together with the
counits,

ε½η0� ¼ 0; ε½ηi� ¼ 0; ε½η4� ¼ κ; ð41Þ

the coproducts (38) and antipodes (39) satisfy the
Hopf algebra axiom (5) only on shell, that is, after imposing
Eq. (40).
We conclude that ηa ¼ ηaðP0;PÞ∶R4 → dS4 are a coor-

dinatization of de Sitter space. Differently ordered bases
just correspond to different ways of coordinatizing de Sitter

space withR4. In other words, different bases are related by
diffeomorphisms. The metric induced on dS by the flat
ambient metric,

ds2 ¼ −dη20 þ dη21 þ dη22 þ dη23 þ dη24

¼ −dP2
0 þ e2P0=κðdP2

1 þ dP2
2 þ dP2

3Þ; ð42Þ

is, in right-ordered bicrossproduct coordinates, the de Sitter
metric in comoving coordinates:

gμν ¼ diagð−1; e2P0=κ; e2P0=κ; e2P0=κÞ; ð43Þ

so we may conclude that right-ordered coordinates are
comoving coordinates on momentum space.
Notice now that the coordinates ηa ¼ ηaðP0;PÞ only

cover half of de Sitter space. In fact from Eq. (37) we see

that, for P0 real, η0 þ η4 ¼ κe
P0
κ > 0. The region η0 þ η4

cuts the de Sitter hyperboloid in the way shown in Fig. 4.
Equation (32) implies that the Lorentz transformations

act in an undeformed way on the ημ coordinates. The η4
coordinate, on the other hand, is Lorentz invariant; in fact, it
is a function of the Casimir (23):

η4 ¼ κ −
□κ

2κ
: ð44Þ

Then the Lorentz group acts on the de Sitter momentum
space as the group of isometries that stabilize the “origin”
point6 η4 ¼ κ, ημ ¼ 0 (see Fig. 5). It is obvious that these

FIG. 4. Left: κ-Minkowski’s de Sitter momentum space in embedding coordinates ηa. The dark gray area is not covered by the bi-
cross-product coordinates. The red and white areas correspond, respectively, to□κ < 0 and□κ > 0. Right: part of de Sitter space that is
covered by bi-cross-product coordinates, from a different perspective.

6Notice how the coordinates of the origin point are given by
the counits of ηa: εðη4Þ ¼ κ, εðημÞ ¼ 0.
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transformations do not leave the region covered by
the bi-cross-product coordinates, η0 þ η4 > 0, invariant.
Moreover it takes a finite rapidity to bring a point in the
region η0 þ η4 > 0 outside of it, unless this point is in the
future light cone of the origin—the only region which is
closed under Lorentz transformations.
The region η0 þ η4 > 0 is sent to its complement by

reflections ηa → −ηa. Consequently, if we quotient de
Sitter space by reflections, we obtain a manifold that is
covered uniquely by the bi-cross-product coordinates. This

manifold is a known and well-studied example of non-time-
orientable solution of Einstein’s equations: it is called
“elliptic de Sitter spacetime” [24,59], dS=Z2. This mani-
fold is motivated by the fact that the whole dS hyperboloid
is “too much” as a cosmological model. In fact, unlike what
happens in Minkowski spacetime, an observer located on a
timelike curve cannot be in causal contact with more than
“half” of de Sitter space. The causal domain of a timelike
curve is precisely a region of the same form as η0 þ η4 > 0.
(All of these causal domains can be obtained by rotating
η0 þ η4 > 0 around the η0 axis. They are parametrized only
by the endpoint of their defining worldline on the boundary
of dS space.7)
Both dS and dS=Z2 locally solve Einstein’s equations

with a positive cosmological constant, under the
assumption of spacetime homogeneity. What distinguishes
them is the assumed topology. Similarly, in realizing that
the κ-Poincaré momentum space has a dS geometry, we
used the local structure of its symmetries (the κ-Poincaré
algebra) while tacitly making an assumption regarding its
global topology, which in truth we are free to choose. The
global behavior of the Lorentz flow on momentum space
reveals that the standard dS topology R × S3 is not
adequate, as it leads to a singular Lorentz flow. We assume

FIG. 5. Left: Lorentz flow on de Sitter momentum space. It is apparent that a finite boost can bring a point outside of the region
covered by the bi-cross–product coordinates. Right: Elliptic boundary conditions on the patch of dS momentum space covered by the
bi-cross-product coordinates, and how to continue the Lorentz vector flow through the boundaries. Notice how the region that is
connected by Lorentz transformations to the past light cone of the origin is now in red.

FIG. 6. Momentum space in bi-cross=product coordinates. The
negative-Cκ region (the one with real mass) has been divided into
its two connected components under Lorentz transformations: the
positive-frequency one a (in yellow) and the negative-frequency
one, b and c (in orange). Moreover some special curves have been
highlighted: the zero-mass one (in red), one with minimal value
of Cκ ¼ −κ2, and the one with Cκ ¼ þκ2.

7One can convince herself of this by observing that the past
light cone of a point on a timelike worldline is included in the past
light cone of any future point on the worldline. Therefore, to find
the causally connected region to the whole worldline, it is
sufficient to consider the past light cone of the ’ point on the
worldline at the infinite boundary of dS spacetime. This is given,
in the ambient space, by a half-space delimited by a 45° plane
which intersects the center of the dS hyperboloid. One such plane
is η0 þ η4 ¼ 0.
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the dS=Z2 topology solves this issue, because now the
Lorentz flow lines close.
Now, under the elliptic identification the Casimir □κ is

not continuous: it is negative in the orange region of Fig. 1,
but it changes sign when a Lorentz transformation brings us
from the “past light cone” region through its boundary into
the negative-η4 region. The way the elliptic identification is
defined, a Lorentz transformation bringing us through the
boundary of the bi-cross-product patch will preserve the
absolute value of η4 but flip its sign. □κ is therefore not a
good generalization of the D’Alembert operator, as it fails
to be Lorentz -invariant at the global level. In particular,
upon crossing the boundary of the bi-cross-product patch,
□κ → 4κ2 −□κ. Then it is obvious that any function of the
quantity

Cκ ¼
�
1 −

□κ

4κ2

�
□κ ð45Þ

will be genuinely Lorentz invariant all along any Lorentz
orbit. The above function on momentum space will be our
choice for the D’Alembert operator. It is negative definite in
the on-shell regions and unbounded. Moreover it reduces to
□ in the κ → ∞ limit. This operator was already proposed
as the generalization of the D’Alembert operator in [13] and
used also in other works, like [24]. However, the authors of
[13] had a different reason to introduce Cκ: one obtains the
same operator by defining the D’Alembert operator as ημημ,
where the four ημ are those defined in (31).

III. FREE QUANTUM κ-KLEIN-GORDON FIELD

Now that we know that momentum space is a pseudo-
Riemannian manifold, we can observe that the noncom-
mutative functions written in Fourier transform with respect
to a basis of ordered plane waves, as in (12), have Fourier
coefficients ϕ̃r or ϕ̃w that transform, under a change of
ordering (that is, a diffeomorphism of momentum space),
as scalar densities. Equation (14) expresses this fact: the

factors e−3q0=κ and jq0=κj3
jeq0=κ−1j3 are nothing else than the

Jacobians det ð∂qμ=∂q0νÞ of the coordinate transforma-
tions ðq00;q0Þ ¼ ðq0; e−q0=κqÞ and, respectively, ðq00;q0Þ ¼
ðq0; q0q=ðκeq0=κ − κÞÞ. Then we can write the Fourier
coefficients, e.g., in the right-ordered coordinates, as a
scalar field on momentum space times a volume density

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμνðkÞ

q
¼ e3

k0
κ ; ð46Þ

and a scalar field ϕðxÞ can be written, in right-ordered
momentum space coordinates:

ϕðxÞ ¼
Z

d4k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
ϕrðkÞeikixieik0x0 ; ð47Þ

where gμν is the dS metric in comoving coordinates
introduced in Eq. (43).
Our noncommutative generalization of the complex

Klein-Gordon equation will be

Cκ ⊳ ϕ ¼ −m2ϕ; Cκ ⊳ ϕ† ¼ −m2ϕ†; ð48Þ

A solution to the above equations of motion can be
written as

ϕðxÞ ¼ 1

2m

Z
d4p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðpÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðpÞ ∂Cκ∂pμ

∂Cκ
∂pν

s

× δðCκðpÞ þm2ÞϕrðpÞ∶ eipμxμ∶; ð49Þ

where the expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðpÞ ∂Cκ∂pμ

∂Cκ∂pν

q
makes the integral

invariant under reparametrizations of the on-shell curve,
and the numerical factor 1

2m ensures that the expression has
the right commutative limit. The previous expression is
invariant under diffeomorphisms in momentum space.
We can solve the on-shell condition CκðpÞ ¼ −m2 with

respect to the p0 coordinate, and rewrite the delta function
term as

1

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðpÞ ∂Cκ∂pμ

∂Cκ
∂pν

s
δðCκþm2Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2þm2

p

κ
δðCκþm2Þ

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þjpj2

p ½δðp0−ωþðjpjÞÞþδðp0−ω−ðjpjÞÞ�; ð50Þ

with

ω�ðjpjÞ ¼ −
1

2
κ log

�
1þ 2m2 þ jpj2 ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2 þm2Þðm2 þ jpj2Þ

p
κ2

�
; ð51Þ

which tends to the usual �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
in the κ → ∞ limit. Notice that the ωþðjpjÞ solutions split into two, one set defined

only in the region jpj < κ and the other in jpj > κ. This is because at jpj ¼ κ, ω−ðjpjÞ has a (coordinate) singularity:
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lim
jpj→κ

ωþðjpjÞ ¼ þ∞: ð52Þ

The two parts of ωþðjpjÞ belong to the regions a (when jpj < κ) and c (when jpj > κ) of momentum space. For this reason,
when integrating Eq. (49) with respect to p0 we write

ϕðxÞ ¼
Z
jpj<κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p ϕaðpÞeip·xeiωþðjpjÞx0 þ
Z
R3

d3pe
3ω−ðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p ϕbðpÞeip·xeiω−ðjpjÞx0

þ
Z
jpj>κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p ϕcðpÞeip·xeiωþðjpjÞx0 : ð53Þ

The coefficients ϕaðpÞ are closed under Lorentz flow, while
the coefficients ϕbðpÞ and ϕcðpÞ flow into each other.
The delta function (49) should not be recasted in terms of

an integral over a contour on the complex plane of p0 (as
was done in early works like [11,13]). In fact, in doing so,
one necessarily breaks the invariance under diffeomor-
phisms of momentum space, which has been one of the
guiding principles of our current analysis. A manifestation
of this problem is the fact that the function ðCκðpÞ þm2Þ
has infinitely many zeroes in the complex plane of p0:

p0 ¼ ω�ðjpjÞ þ iπκn; n ∈ Z: ð54Þ

This is due to the fact that CκðpÞ depends on p0 only
through the function e

p0
2κ and therefore it is periodic in the

imaginary direction, with period π. But a simple change of
variable, e.g., q ¼ e

p0
2κ , removes all of the nonreal zeroes

from the complex plane of q. It is clear then that complex-
ifying one coordinate is a nondiffeomorphism-invariant
operation.

In [11,13] the complex zeroes of CκðpÞ were interpreted
as poles of the Green function, and a summation over this
infinite tower of poles was proposed. We believe that such a
proposal violates one of the basic symmetries of the theory
(namely, the independence on the coordinate system in
momentum space), and therefore it is not tenable.
Fortunately one is not obligated to use residues and contour
integrals for what we are concerned with in this paper, and
we will be able to use more geometric alternatives, which
are explicitly invariant under general changes of coordi-
nates in momentum space.
A classical scalar field is an element of the algebra A. In

the noninteracting case, scalar fields are quantized by
simply replacing the coefficients aðpÞ and bðpÞ with
operators on a Hilbert space H (Fock space). The natural
generalization of this to the noncommutative case is to take
quantum fields to be elements of A ⊗ H, and replace
ϕaðpÞ, ϕbðpÞ and ϕcðpÞ with operators on H. Then this
will be our definition of a noncommutative quantum
scalar field:

ϕ̂ðxÞ ¼
Z
jpj<κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p âðpÞeip·xeiωþðjpjÞx0 þ
Z
R3

d3pe
3ω−ðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p b̂†ðpÞeip·xeiω−ðjpjÞx0

þ
Z
jpj>κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p ĉ†ðpÞeip·xeiωþðjpjÞx0 : ð55Þ

A. Hermitian conjugacy

Cκ ⊳ ϕ ¼ −m2ϕ implies Cκ ⊳ ϕ† ¼ −m2ϕ†, because the Hermitian conjugate acts on (49) by replacing ∶eipμxμ∶ with
∶eiSðpμÞxμ∶, and the Klein-Gordon operator is invariant under antipode: CκðSðpÞÞ ¼ CκðpÞ. To find how Hermitian
conjugacy acts on creation and annihilation operators, we first write

ϕ̂†ðxÞ ¼
Z
jpj<κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p â†ðpÞeiSþðpÞ·xe−iωþðjpjÞx0 þ
Z
R3

d3pe
3ω−ðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p b̂ðpÞeiS−ðpÞ·xe−iω−ðjpjÞx0

þ
Z
jpj>κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p ĉðpÞeiSþðpÞ·xe−iωþðjpjÞx0 ; ð56Þ
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where

S�ðpÞ ¼ −e
ω�ðpÞ

κ p: ð57Þ

Now we would like, in all of the three integrals in (56), to make the following change of variables:

S�ðpÞ ¼ q: ð58Þ

The following relations:

S−ðSþðpÞÞ ¼ p if jpj < κ; SþðS−ðpÞÞ ¼ p ∀ p ∈ R3; SþðSþðpÞÞ ¼ p if jpj > κ; ð59Þ

which are useful, respectively, in region a, b, and c (See Fig. 6), allow us to invert S�ðpÞ ¼ q for p:

SþðpÞ ¼ q ⇒

� jpj < κ p ¼ S−ðqÞ; q ∈ R3;

jpj > κ p ¼ SþðqÞ; jqj > κ;
S−ðpÞ ¼ q ⇒ p ¼ SþðqÞ; jqj < κ ð60Þ

So in region awe have to make the substitution p ¼ S−ðqÞ, where now the integration domain for q is all ofR3. In region b
we replace p ¼ SþðqÞ, while integrating q only in the region jqj < κ. Finally, in c too the transformation is p ¼ SþðqÞ, but
the integration region is jqj > κ. These transformations act on the frequencies in the following way:

ω−ðSþðqÞÞ ¼ −ωþðqÞ if jqj < κ; ωþðS−ðqÞÞ ¼ −ω−ðqÞ ∀ q ∈ R3; ωþðSþðqÞÞ ¼ −ωþðqÞ if jqj > κ:

ð61Þ

Again, the three relations above are useful, respectively, in region a, b, and c. Finally, the integration measure transforms in
the following way:

d3p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p ⟶
p→S�ðqÞ

d3qe
−3ω�ðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ; ð62Þ

so, applying the coordinate transformations to the three integrals in (56), the expression for the Hermitian conjugate scalar
field becomes

ϕ̂†ðxÞ ¼
Z
R3

d3q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p â†ðS−ðqÞÞeiq·xeiω−ðjqjÞx0 þ
Z
jqj<κ

d3q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p b̂ðSþðqÞÞeiq·xeiωþðjqjÞx0

þ
Z
jqj>κ

d3q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ĉðSþðqÞÞeiq·xeiωþðjqjÞx0 : ð63Þ

IV. PAULI-JORDAN FUNCTION

Scalar field theory quantization on κ-Minkowski
was studied by several authors in the past. Among others,
we believe the most remarkable approaches are the
ones pursued in [13,22,24,26]. Each of those results
contributed to our present understanding of field theory
on κ-Minkowski. For example [13] was the first to consider
the Green functions and the Pauli-Jordan function.
Reference [24] exploited the de Sitter geometry of momen-
tum space to define field theory in a Lorentz invariant way,
and was the first to observe that the half-cover of de Sitter
space offered by the bi-cross-product coordinates is sent to
its complement by the elliptic identification map.

Early studies like [11,13] lacked the present under-
standing of the geometry of momentum space. This led
to choices that we do not consider physical, e.g., in [13] the
positive- and negative-frequency modes in the Pauli-Jordan
function are distinguished by the sign of p0, a choice that is
not Lorentz covariant in our setting. In [11] on the other
hand, the tower of complex solutions of the κ-deformed
on-shell relation we discussed in Sec. III was considered
a physical feature. This, as we argued in the preceding
sections, is incompatible with momentum-space diffeo-
morphism invariance.
More recent studies, e.g., [24,26] take into account the de

Sitter geometry of momentum space; however, they made
use of Hamiltonian/canonical methods which are not
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explicitly spacetime covariant. Expressions involving only-
space integrals are hard to make sense in κ-Minkowski,
turning out to be basis dependent. In general one can note
that κ-Minkowski commutation rules imply uncertainty
relations of the kind:

δtδx ∼
1

2κ
hxi; ð64Þ

thus choosing a state on the algebra (9) such that δt ¼ 0
necessarily sets hxi ¼ 0. As a consequence, defining equal-
time canonical commutation rules such as

½ _ϕð0;xÞ;ϕð0; yÞ� ¼ −iδ3ðx − yÞ ð65Þ

is an ill-defined procedure.
An approach that is devoid of any of the problems listed

above is [22,23] and following works [21,27,29]. These
papers use a covariant symplectic form to define the
canonical structure of the theory. This, being defined on
the space of solutions, does not require a hypersurface of
simultaneity or space-only integrals. The problem of the
nonclosure of the region “b” under Lorentz transformations
is solved, in [22], by restricting the Hilbert space to the “a”
region, and demanding reality conditions on the field. This
was extended to a complex field in [26], where the
nonclosure of region b under Lorentz transformations
was solved by defining the Lorentz transformations in
region b as the image, under antipode, of the Lorentz
transformations on region a (which, we recall, leaves
region a closed).
In the present paper, we will follow a different approach,

motivated by the request of invariance under coordinate
transformations in momentum space. This immediately
excludes the possibility of using Hamiltonian/canonical
quantization methods, which rely on splitting time and
3-dimensional hypersurfaces of simultaneity. We have to
rely on a covariant quantization scheme. In order to imple-
ment our momentum-space general coordinate invariance,
we find the best-suited approach is to define the Pauli-Jordan
function, an approach already explored in [13] (without
however attempting to implement coordinate invariance).
In the commutative case, the covariant scalar field

commutators ½ϕ̂ðxÞ; ϕ̂ðyÞ� ¼ iΔPJðx; yÞ are given by

iΔPJðx; yÞ ¼ iΔPJðx − yÞ

¼
Z

d3p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ðeip·ðx−yÞ − e−ip·ðx−yÞÞ

¼
Z

d4psignðp0Þδðp2 −m2Þeip·ðx−yÞ; ð66Þ

and the ΔPJ function satisfies

ð□x þm2ÞΔPJðx; yÞ ¼ ð□y þm2ÞΔPJðx; yÞ ¼ 0: ð67Þ

Moreover ΔPJ is antisymmetric in its two variables,
ΔPJðy; xÞ ¼ −ΔPJðx; yÞ, and it is zero outside of the light
cone:

ΔPJðx; yÞ ¼ 0 if ðx − yÞ2 > 0: ð68Þ

This last property is the most interesting one from the
physical point of view, because it allows us to introduce a
notion of light cone in a purely field-theoretical fashion.
Wewant to generalizeΔPJ to κ-Minkowski. First of all we

need a generalization of the notion of bilocal function. The
only such generalization we are aware of was introduced in
[60]: a function of two points is assumed to be an element of
A ⊗ A. The basis elements of the algebra A ⊗ A general-
ize the notion of two independent points z and y:

zμ ¼ xμ ⊗ 1; yμ ¼ 1 ⊗ xμ: ð69Þ

With this construction we can generalize the properties (67)
when ΔPJðz; yÞ ∈ A ⊗ A:

ððCκ þm2Þ ⊗ idÞ ⊳ ΔPJðz; yÞ
¼ ðid ⊗ ðCκ þm2ÞÞ ⊳ ΔPJðz; yÞ ¼ 0: ð70Þ

The following expression satisfies the condition above and
generalizes the Pauli-Jordan function in a way that is
diffeomorphism invariant on momentum space:

iΔPJðz; yÞ ¼
1

2m

Z
d4p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðpÞ

p
εðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðpÞ ∂Cκ∂pμ

∂Cκ
∂pν

s

× δðCκ þm2Þ∶ eipμzμeiSðpÞμy
μ∶; ð71Þ

where ∶∶ refers to time-to-the-right ordering, and

εðpÞ ¼
8<
:

þ1 in region a

−1 in region b

−1 in region c

: ð72Þ

The form of the ε function has been chosen in order to be
invariant under the Lorentz flow, which connects regions b
and c. The function ΔPJ introduced here is also invariant
under κ-Poincaré transformations, understood in the follow-
ing sense: zμ → Λμ

ν ⊗ zν þ aμ ⊗ 1 ⊗ 1, yμ → Λμ
ν ⊗

yν þ aμ ⊗ 1 ⊗ 1, that is

zμ ¼ xμ ⊗ 1 → Λμ
ν ⊗ xν ⊗ 1þ aμ ⊗ 1 ⊗ 1;

yμ ¼ 1 ⊗ xμ → Λμ
ν ⊗ 1 ⊗ xν ⊗ 1þ aμ ⊗ 1 ⊗ 1: ð73Þ

We can show that the exponentials ∶eipμzμeiSðpÞμy
μ∶ trans-

form in the following way:

eipizieip0z0eiSðpÞiyieiSðpÞ0y0

→ eiλi½ξ;p�⊗zieiλ0½ξ;p�⊗z0eiS½λi½ξ;p��⊗yieiS½λ0½ξ;p��⊗y0 ; ð74Þ
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where λμ½ξ; p� is the 3þ 1-D generalization of the Lorentz
transformation of momenta (28). The expression (71) is
invariant under Lorentz transformations, so changing var-
iables pμ → λμ½ξ; p� allows us to prove that

ΔPJðΛ ⊗ zþ a ⊗ 1 ⊗ 1;Λ ⊗ yþ a ⊗ 1 ⊗ 1Þ
¼ 1 ⊗ ΔPJðz; yÞ; ð75Þ

i.e., our noncommutative Pauli-Jordan function is κ-
Poincaré invariant.
Solving the delta function in (71) we get

iΔPJðz; yÞ ¼
Z
jPj<κ

d3p
e3

ωþ
κ eip·z−ie

ωþ
κ p·yeiω

þðz0−y0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ jpj2Þ

p
−
Z
R3

d3p
e3

ω−
κ eip·ze−ie

ω−
κ p·yeiω

−ðz0−y0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ jpj2Þ

p
−
Z
jPj>κ

d3p
e3

ωþ
κ eip·ze−ie

ωþ
κ p·yeiω

þðz0−y0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ jpj2Þ

p :

ð76Þ

The Pauli-Jordan-like function we defined is Poincaré
invariant but it is not Hermitian nor antisymmetric under
exchange of z and y. However it satisfies the following
conjugacy relation:

Δ†
PJðz; yÞ ¼ ΔPJðy; zÞ; ð77Þ

because

ð∶eipμzμeiSðpÞμy
μ∶Þ†≕ eiSðpÞμz

μ
eipμyμ ≔ ∶eipμyμeiSðpÞμz

μ∶:

ð78Þ

This property is exactly what we expect from a field
commutator:

ð½ϕ̂ðzÞ; ϕ̂†ðyÞ�Þ† ¼ ½ϕ̂ðyÞ; ϕ̂†ðzÞ�: ð79Þ

A. Covariant commutation relations

Consider now the following commutation relations:

½ϕ̂ðzÞ; ϕ̂†ðyÞ� ¼ iΔPJðz; yÞ;
½ϕ̂ðzÞ; ϕ̂ðyÞ� ¼ ½ϕ̂†ðzÞ; ϕ̂†ðyÞ� ¼ 0; ð80Þ

where of course we interpret ϕ̂ðzÞ as ϕ̂ðxÞ ⊗ 1 and ϕ̂ðyÞ as
1 ⊗ ϕ̂ðxÞ. We can deduce the corresponding commutation
relations for the creation and annihilation operators, âðpÞ,
b̂ðpÞ, ĉðpÞ, â†ðpÞ, b̂†ðpÞ, ĉ†ðpÞ, by replacing the expres-
sion (55) for ϕ̂ðzÞ and (63) for ϕ̂†ðyÞ into (80). A detailed
calculation is presented in Appendix B. The final result is

½âðpÞ; â†ðkÞ� ¼ 2e−
3ωþðkÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðkÞj2

q
δð3Þ½p − k�;

½b̂ðpÞ; b̂†ðkÞ� ¼ 2e−
3ω−ðkÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS−ðkÞj2

q
δð3Þ½p − k�;

½ĉðpÞ; ĉ†ðkÞ� ¼ 2e−
3ωþðkÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðkÞj2

q
δð3Þ½p − k�;

ð81Þ

with all the other commutators vanishing.
Except for a momentum-dependent weight that is nec-

essary to make it Lorentz invariant, the algebra above is a
standard creation and annihilation operator algebra. One
can check that the algebra (81) is covariant under κ-
deformed Lorentz transformations (28). In fact the delta
function transforms like the inverse of d3p, and
d3p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS�ðpÞj2

p
transforms like the inverse of the

volume element
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðpÞp ¼ e−

3ω�ðPÞ
κ . Therefore, if âðpÞ,

b̂ðpÞ, ĉðpÞ, â†ðkÞ, b̂†ðkÞ, and ĉ†ðkÞ transform like scalar
fields on momentum space, the algebra (81) is left invariant.
The algebra (81) suggests a natural form for the number

operator:

N̂ ¼
Z
jpj<κ

d3pe
3ωþðpÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

p â†ðpÞâðpÞ

þ
Z
R3

d3pe
3ω−ðpÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS−ðpÞj2

p b̂†ðpÞb̂ðpÞ

þ
Z
jpj>κ

d3pe
3ωþðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

p ĉ†ðpÞĉðpÞ; ð82Þ

its commutation relations with the creation and annihilation
operators are perfectly standard:

½N̂; â†ðpÞ� ¼ â†ðpÞ; ½N̂; âðpÞ� ¼ −âðpÞ;
½N̂; b̂†ðpÞ� ¼ b̂†ðpÞ; ½N̂; b̂ðpÞ� ¼ −b̂ðpÞ;
½N̂; ĉ†ðpÞ� ¼ ĉ†ðpÞ; ½N̂; ĉðpÞ� ¼ −ĉðpÞ; ð83Þ

and moreover N̂ is explicitly Hermitian: N̂† ¼ N̂. This
implies that we can define the Fock space exactly like in the
commutative case.
In the rest of the present paper we are interested in the

consequence for causality of the Pauli-Jordan function, so
we will not dwell on the consequences of the algebra (81).
It is worth mentioning, however, that the construction of the
Fock space implementing the right statistics, with (anti)
symmetrized multiparticle states, is a particularly complex
challenge in κ-Minkowski, and several papers discussed the
issue, e.g., [61–64]. The issue was initially noticed in [12],
and the first paper to propose a solution is the already
mentioned [22], where a deformed creation and annihila-
tion operator algebra was introduced, in which commuting
two operators changes the momentum of the particles they
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create/annihilate. Such commutation rules are capable of
reproducing the κ-Poincaré coproduct rules. However, if a
standard/undeformed (anti)symmetrization rule is assumed
when defining multiparticle states, these will not have a
well-defined total momentum. A deformed statistics is
necessary to define multiparticle states which are eigen-
states of the total momentum. The (anti)symmetrization
proposed in [22] however is not covariant, and cannot be
applied to massive fields. These further issues were
addressed in [27], where the difficulty of satisfying
Lorentz covariance in such a κ-deformed Fock space is
shown to reduce to the problem of finding closed form, all-
order expression for the R matrix of κ-Poincaré, which is
still lacking. In the case of deformations of the Poincaré
algebra which do admit a closed-form R matrix, however,
the problem is solvable: e.g., in the case of the Lorentz
double in 2þ 1 dimensions [65], where the deformed Fock
space is related to the phenomenon of “flux metamorpho-
sis” of non-Abelian anyons.

V. MINIMAL-UNCERTAINTY STATES
ON THE κ-MINKOWSKI ALGEBRA

We now turn to developing the machinery that will allow
us to extract physical predictions from the nonommutative
Pauli-Jordan function we introduced in Sec. IV. ΔPJðz; yÞ in
fact is not a traditional function of two variables. It is rather
an element of the non-Abelian algebraA ⊗ A, and as such
does not admit a single numerical value. By introducing a
representation of A ⊗ A, ΔPJðz; yÞ can be made into an
operator on a Hilbert space H, and then one could invoke
Born’s rule to argue that a measurement involving ΔPJðz; yÞ
will deliver one of its eigenvalues with probability given by
the squared norm of the value of the wave function on that
eigenvalue. Of course we are talking about the state of the
background quantum geometry, and invoking Born’s rule
in this case is likely unwarranted, as we lack the whole
interpretational edifice of standard quantum mechanics,
which is based on a vast empirical basis. This situation is,
however, the daily bread of the quantum gravity researcher,
and we have to make do with the mathematical structures at
our disposal, without the power of experimental guidance,
for the moment. Therefore we resort to the structure that is
more likely to provide a translation from a quantum
operator, ΔPJðz; yÞ, into definite outcomes: the expectation
value on a state of the Hilbert space H. The logic is the
following: we suppose that the underlying quantum geom-
etry is in some unknown state that cannot be determined
within our theory, and the observables that depend on
ΔPJðz; yÞ8 will on average give outcomes that are compat-
ible with a commutative Pauli-Jordan function of value
hΔPJðz; yÞi. The first goal is then to introduce a represen-
tation of our noncommutative algebra (9).

In [66] the irreducible representations of the κ-
Minkowski algebra A are constructed,9 and they involve
(for simplicity let us consider the 1þ 1-dimensional case)
representing x̂0 as a derivative operator,10 and x̂0 ¼ − i

κ
d
dx

and x̂1 as (plus or minus) the exponential of a multiplicative
operator, x̂1 ¼ � ex

κ (notice that the placement of the
constant κ is unambiguously fixed by the request that x̂μ

have dimensions of length while the “pregeometric”
variable x is dimensionless). These two are the nondegen-
erate representations, and one must complete them with a
degenerate representation in which x̂1 is in an eigenstate
with eigenvalue zero, and x̂0 has a real spectrum. These
three representations can be put together by representing
instead x̂1 as a multiplicative operator (in this case we use
the variable q) and x̂0 as a dilatation operator:

x̂0 ¼ i
κ
q
d
dq

; x̂1 ¼ q
κ
; q ∈ R: ð84Þ

In this way we are simultaneously considering the positive,
negative, and zero parts of the spectrum of x̂1. Indeed on
any test function f the commutation relations (9) are
respected:

½x̂0; x̂1� ⊳ f ¼
�
i
κ
q
d
dq

;
q
κ

�
f ¼ i

κ
q
d
dq

�
q
κ
f
�
− q

i
κ

q
κ

d
dq

f

¼ i
q
κ2

f ¼ i
κ
x̂1 ⊳ f: ð85Þ

The representation we have introduced, however, has a
problem: if the Hilbert space of functions over which this
representation acts is L2ðRÞ with inner product

ðψ1;ψ2Þ ¼
Z
R
dqψ�

1ðqÞψ2ðqÞ; ψ ∈ L2; ð86Þ

then x̂0 is not Hermitian. This can be fixed by shifting the
representation as

i
κ
q
d
dq

→
i
κ
q
d
dq

þ i
2κ

; ð87Þ

which can always be done since our representation is
defined up to an additive constant. Now

ðψ1; x̂0 ⊳ ψ2Þ ¼
Z
R
dqψ�

1ðqÞ
�
i
κ
q
d
dq

þ i
2κ

�
ψ2ðqÞ

¼
Z
R
dq

��
i
κ
q
d
dq

þ i
2κ

�
ψ1ðqÞ

��
ψ2ðqÞ

¼ ðx̂0 ⊳ ψ1;ψ2Þ; ð88Þ

8Which could be, e.g., the arrival time of a particle in a detector
(see below).

9Larger realizations have been considered in the literature, e.g.,
involving deformed phase spaces [67,68].

10From now on noncommuting coordinates will be represented
with a hat.
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as can be easily seen. The representation we introduced can
be easily generalized to 3þ 1 dimensions as

x̂0 ¼ i
κ

X3
i¼1

qi
d
dqi

þ 3i
2κ

; x̂i ¼ qi

κ
qi ∈ R3; ð89Þ

but for the rest of the paper we will only consider, for
simplicity, the 1þ 1 dimensional case without losing
anything essential.

A. Semiclassical states

As we said before, we think of the Hilbert space H as
the set of states of the underlying quantum geometry.
κ-Minkowski is supposed to be an effective description of
matter fields propagating on a quantum gravity back-
ground. By its nature, an effective theory cannot calculate
everything it depends on within its own framework: some
input is needed. In our case this input is represented by the
element of H which represents the quantum state of our
noncommutative coordinates. Of the infinitely many such
states present in H, many represent very nonclassical
situations: one could have a superposition of macroscop-
ically distant points (i.e., the wave function of x̂1 is peaked
around points that are far away). Or the uncertainty on one
of the coordinates could be enormous. If the underlying
quantum theory of gravity that is supposed to admit κ-
Minkowski as “ground state” produces such queer states,
then we could probably rule it out with the observation that
we experience, within a very small error margin, classical
Minkowski spacetime as the geometric background on
which known physics unfolds. Then we can, on physical
ground, rule out most states in H as unphysical and focus
on those that resemble more closely a classical geometry.
We then formulate the following semiclassicality condi-
tions for states in H: (1) the wave function needs to be
localized, in the sense that the amplitudes need to fall off
fast at a few variances away from the expectation values;
(2) none of the variances of the time and spatial coordinates
should be too large. This can be achieved by requiring that
the squared sum of the variances ðδx0Þ2 þ ðδx1Þ2 is near its
theoretical minimum. These variances are constrained by
the uncertainty relations:

δx0δx1 ≥
hx1i
2κ

: ð90Þ

It is clear that the values of δx0 and δx1 that minimize the
squared sum ðδx0Þ2 þ ðδx1Þ2 are those such that11

δx0 ∼ δx1 ∼

ffiffiffiffiffiffiffiffi
hx1i
2κ

r
: ð91Þ

Within the above constraint, we still have at our disposal
a vast class of wave functions that have good semi-
classical properties. Only a more fundamental theory can
single out a particular function, so, if we are working
within an effective field theory framework, we should
stay agnostic with regards to the particular choice of
function, and study the behavior of our observables on all
semiclassical wave functions. Universal features, i.e.,
features that are independent of the choice of function,
can be deemed “emergent” properties of the theory, and
can be legitimately claimed to be physical. In the
following, we will consider Gaussian wave functions,
which allow us to perform almost all calculations
analytically, and impose the semiclassicality conditions
within this restricted class of functions.
Consider a Gaussian state jψi with wave function

ψðq; hx0i; hx1iÞ≡ ψðqÞ ¼
�

2

πσ2

�1
4

e
−ðq−κhx1iÞ2

σ2
−ihx

0i
hx1iq: ð92Þ

hx0i and hx1i here are numerical parameters. Its L2 norm is
1 and the expectation values hψ jx̂0jψi and hψ jx̂1jψi are

hx̂0i ¼
Z
R
dqψ�ðqÞ

�
i
κ
q
d
dq

þ i
2κ

�
ψðqÞ ¼ hx0i;

hx̂1i ¼
Z
R
dqψ�ðqÞ q

κ
ψðqÞ ¼ hx1i: ð93Þ

The variances are

ðδx̂0Þ2 ¼ hðx̂0Þ2i − hx̂0i2

¼
�hx1i

σ

�
2

þ 1

4κ2

�
2þ

�hx0iσ
hx1i

�
2
�
;

ðδx̂1Þ2 ¼ hðx̂1Þ2i − hx̂1i2 ¼ σ2

4κ2
: ð94Þ

We can find an optimal balance between the uncertainty in
x̂0 and that in x̂1 by minimizing the sum ðδx̂0Þ2 þ ðδx̂1Þ2

d
dσ

ððδx̂0Þ2 þ ðδx̂1Þ2Þ

¼ d
dσ

��hx1i
σ

�
2

þ 1

4κ2

�
2þ

�hx0iσ
hx1i

�
2
�
þ σ2

4κ2

�
¼ 0:

ð95Þ

This equation selects a specific value of σ:

σ4 ¼ 4κ2hx1i4
hx0i2 þ hx1i2 : ð96Þ

11Notice that measurability limits of the form (91) have been
already conjectured in [69], based on independent physical
arguments that did not involve at all commutation relations of
the form of κ-Minkowski.
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Close to the classical light cone, i.e., when hx̂0i ∼ hx̂1i, we
have σ2∼2κhx1i, and the uncertainties are ðδx̂0Þ2∼ 3hx1i

2
ffiffi
2

p
κ
,

ðδx̂1Þ2 ∼ hx1i
2
ffiffi
2

p
κ
.

Let us look into some real-world numbers, and imagine
we are considering an astrophysical event, e.g., a gamma
ray burst which is highly localized in space and time,
compared to the space and time distances at which the event
is located (gamma ray bursts can be located as far back in
time as several billion years, and their temporal resolution
can be of the order of the second). Assuming that the
deformation parameter κ is equal to the Planck energy,
κ ∼ Ep ∼ 1028 eV, then its inverse is (with the appropriate
powers of ℏ and c, which we omit) the Planck length,
1
κ ∼ Lp ∼ 10−35 m. Now consider a point near the classical
light cone, at 2 billion light years from the origin, i.e., the
expectation value of x̂1 is hx̂1i ∼ 2 × 109 ly, or, in terms of
the Planck length, hx̂1i ∼ 1060Lp. Our semiclassical
Gaussian state in this case would have

δx̂1 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx1iLp

2
ffiffiffi
2

p
s

∼ 6 × 10−6 m;

δx̂0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
hx1iLp

2
ffiffiffi
2

p
s

∼ 3 × 10−14 s: ð97Þ

So we can prepare a semiclassical state of one point
centered on hx̂1i ∼ 2 billion light years, hx̂0i ∼ 2 billion
years, and δx̂0 ∼ 30 femtoseconds, δx̂1 ∼ 6 μm. This
state has a microscopic space and time uncertainty
while the expectation values are of the order of billion
(light) years.
Now, if the expectation value of the Pauli-Jordan

function on such a geometric state has a tail outside of
the classical light cone hx̂1i ¼ hx̂0i that is exponentially
suppressed over a range of the order of the 10 femtoseconds
(or tens of μm), we can say that all the fuzziness of the light
cone is due to the intrinsic uncertainty of the geometric
state, and there is no effect due to propagation over
cosmological distances. Instead, if it is suppressed over a
much greater range (e.g., over time intervals of the order of
1 sec, as is necessary in order to reveal such effects with
astrophysical sources like gamma ray bursts [43]), we can
say that we expect photons or neutrinos from distant
localized sources to arrive with a measurable uncertainty
in the time of arrival, whose origin is to be traced back to
the quantum fluctuations of the underlying spacetime. We
now turn to evaluating the Pauli-Jordan function on a
semiclassical Gaussian state of two coordinates ŷμ and ẑμ,
which will allow us to study its dependence on the four free
parameters of the state: the expectation values hy0i, hz0i,
hy1i, and hz1i.

B. Expectation value of the Pauli-Jordan function
around the light cone

We now consider a representation of the (1þ 1 dimen-
sional version of the) tensor product algebra (9):

ẑ0 ¼ i
κ
qz

d
dqz

þ i
2κ

; ẑ1 ¼ qz
κ
; qz ∈ R;

ŷ0 ¼ i
κ
qy

d
dqy

þ i
2κ

; ŷ1 ¼ qy
κ
; qy ∈ R: ð98Þ

We are interested in calculating matrix elements such as
hψ z;ψyjeikẑeiωþðkÞẑ0 jψ z;ψyi, where

ΔPJðẑ; ŷÞ ¼
Z
jpj<κ

dp
e
ωþ
κ eipẑ−ie

ωþ
κ pŷeiω

þðẑ0−ŷ0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
−
Z

dp
e
ω−
κ eipẑe−ie

ω−
κ pŷeiω

−ðẑ0−ŷ0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
−
Z
jpj>κ

dp
e
ωþ
κ eipẑe−ie

ωþ
κ pŷeiω

þðẑ0−ŷ0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
≕Δaðẑ; ŷÞ þ Δbðẑ; ŷÞ þ Δcðẑ; ŷÞ; ð99Þ

and the states jψ z;ψyi are products of Gaussian states:

jψ z;ψyi ¼ ψðqz; hz0i; hz1iÞψðqy; hy0i; hy1iÞ: ð100Þ

Notice that the ẑ0 operator is just the dilatation operator
plus a phase shift:

eiω
þðpÞẑ0 ⊳ψðqzÞ¼eiω

þðpÞðiκqz d
dqz

þ i
2κÞψðqzÞ¼e−

ωþðpÞ
2κ ψðe−ωþ

κ qzÞ;
ð101Þ

while eipẑ
1 ⊳ ψðqzÞ ¼ eikqzψðqzÞ. In order to calculate, for

instance, hψ z;ψyjΔaðẑ; ŷÞjψ z;ψyi we need

fzðpÞ ≔ hψ zjeipẑ1eiωþðpÞẑ0 jψ zi

¼
Z
R
dqzψ�ðqzÞeipqze−

ωþðpÞ
2κ ψðe−ωþ

κ qzÞ; ð102Þ

and

fyðpÞ ≔ hψyje−ipŷ1e
ωþðpÞ

κ e−iω
þðpÞŷ0 jψyi

¼
Z
R
dqyψ�ðqyÞe−ipqye

ωþðpÞ
κ e

ωþðpÞ
2κ ψðeωþ

κ qyÞ; ð103Þ

which are Gaussian integrals and can be readily calculated
analytically, with parameters hz0i, hz1i, hy0i, hy1i, m, κ
(and, if we do not want to specialize immediately to
semiclassical Gaussian states, also the variances σz and σy).
After that one can evaluate numerically
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hψ z;ψyjΔPJðẑ; ŷÞjψ z;ψyi¼
Z

κ

−κ
dp

e
ωþ
κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p fzðpÞfyðpÞ;

ð104Þ

where the f are some functions of momenta and parameters.
An analog procedure allows us to calculate the expectation
values of Δbðẑ; ŷÞ and Δcðẑ; ŷÞ on jψ z;ψyi.
Our calculation reveals that ΔPJ is real (or at least its

imaginary part is smaller than the numerical error), just like
in the commutative case. Moreover, when hzμi − hyνi is
spacelike the noncommutative Pauli-Jordan function is not
zero; however, it falls off exponentially away from the light

cone, with a characteristic length of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lphz1i

q
.

We conclude that the light cone in κ-Minkowski spacetime
is “blurry,” and “spills out” of the classical light cone over a
distance of the same order of magnitude of the minimal
intrinsic uncertainty of semiclassical states on the under-
lying noncommutative geometry. For a pointlike source
placed at a distance hz1i of the order of one billion light
years, one can expect photons to arrive with an uncertainty

of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lphz1i

q
∼ 10−14s ¼ 10 fs, but not more.

This is 14 orders of magnitude less than that predicted by a
linear relation of the kind (1) for E ¼ 1 TeV particles.

VI. OUTLOOK AND CONCLUSIONS

Our approach allowed us to define a quantum non-
interacting scalar field theory on the κ-Minkowski non-
commutative spacetime, in a way that is (1) completely
covariant, (2) invariant under diffeomorphism of momen-
tum space, and (3) κ-Poincaré invariant.
Point (1) refers to the fact that our quantization pre-

scription does not depend on 3-dimensional structures
like 3þ 1 decompositions of spacetime. Hamiltonian
formulations or symplectic structures [22,24,26] are incon-
sistent in κ-Minkowski due to its peculiar commutators
½x0; xi� ¼ i

κ x
i. These imply Heisenberg-like relations

δx0δxi ≥ 1
2κ hxii that do not allow the uncertainty on the

time coordinate, δx0, to be infinitely small: one therefore
loses the notion of a spacelike hypersurface. Covariant
commutators (81) and the Pauli-Jordan function allowed us
to quantize the theory in a 4-dimensional way, without
being forced to make reference to any hypersurface of
simultaneity (and therefore without referring to a particular
inertial frame). There is already in the literature (see
[13,11]) an attempt at introducing Pauli-Jordan function
(and the related Green functions). However, at the time, the
understanding of κ-Minkowski’s momentum space was
somewhat limited, and this led the authors of [11,13] to
define their Green functions as contour integrals on the
complexification of a particular timelike “energy” coor-
dinate on momentum space. Complexifying this coordinate
breaks diffeomorphism invariance and introduces an

infinite tower of poles of the Green functions. The authors
interpreted this as a physical feature of the theory. With
hindsight, we can exclude that these features have physical
meaning, because they depend on the choice of a particular
set of coordinates on momentum space. This brings us to
point (2), invariance under diffeomorphisms of momentum
space. One of our basic principles is that only statements
that are coordinate independent on momentum space
should be physical. Without such an assumption, the
nonlinear structures introduced by spacetime noncommu-
tativity would make the theory not predictable. One could
draw all sorts of mutually incompatible conclusions just by
choosing different coordinate systems on momentum
space. As observed in Sec. II [e.g., Eq. (14)] each ordering
prescription for κ-Minkowski plane waves corresponds to a
different coordinate system on momentum space. Moreover
each of these coordinate system corresponds to a choice of
basis for momentum generators in the κ-Poincaré algebra.
Just like in a Lie algebra one is free to make linear
redefinitions of the generators (without changing the
algebra itself); in a Hopf algebra this freedom extends to
any nonlinear redefinition of the generators. If we are to use
Hopf algebras to describe the symmetries of a noncom-
mutative spacetime, we should not break their basic
invariance properties when building physical models on
such a framework. Point (3) is of course the reasonable
request that all of the equations of the theory, in particular
the commutation relations, be left invariant by κ-Poincaré
transformations. There is one subtlety in this point, some-
thing that in the commutative case one does not need to
worry about. In the commutative case one can check
independently the invariance under translations and
Lorentz transformations; this ensures invariance under
the whole Poincaré group. In the noncommutative case
one should look for invariance under a complete κ-Poincaré
transformation of the form (10). Invariance under such a
transformation does not imply invariance under a “pure”
Lorentz transformation of the form xμ → Λμ

μ ⊗ xν. For
example, to prove the κ-Poincaré invariance of the Pauli-
Jordan function (75) we have to use the commutation
relations ½aμ;Λρ

σ� [see Eq. (6)]. Setting aμ to zero would
not deliver the desired result: the Pauli-Jordan function is
not invariant under “pure-Lorentz” transformations. This is
an aspect of the so-called “no pure boost” property of the
κ-Poincaré group (first noticed in [25]). The commutators
(6) imply uncertainties between Λμ

ν and aμ such that we
cannot set δaμ ¼ 0, not without making either δΛμ

ν

divergent or by setting the expectation hΛμ
νi ¼ δμν (at

least for some components of Λμ
ν). This means that we

cannot fix the translation parameters to be zero with total
certainty, and still be free to choose the Lorentz parameters
arbitrarily.
The most advanced theoretical result that was enabled by

our approach is the definition of the creation and annihi-
lation operators algebra (81), and the introduction of a
number operator N̂ with standard commutation rules (83).
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The number operator is Hermitian, and therefore we can
construct a Fock space in the standard way, with a vacuum
that is annihilated by all of the annihilation operators. The
n-particle states are eigenstates of N̂ with eigenvalue n, and
are obtained by the successive application of creation
operators.
The next step of our analysis would be to introduce an

electric charge operator (recall that our scalar field is
complex) and C, P, and T conjugation operators, and then
to study how they are represented on the creation and
annihilation operator algebra. In the commutative case the
charge operator is just a number operator with a minus sign
in front of the integral on negative-frequency states. By
analogy it seems natural to introduce a noncommutative
charge operator as the same expression as (82), with a
minus in front of the second and third integral. Such an
expression is Hermitian and κ-Poincaré invariant. However
in this case we anticipate a difficulty with the definition of
charge conjugation: if the antipode map is used to define
the charge conjugation operator, then there is an issue with
Lorentz covariance. In fact the antipode maps region a to
region b, and maps region c onto itself. But Lorentz
transformations connect regions b and c and this could
lead to a non-Lorentz-invariant charge conjugation oper-
ator. These issues deserve a focused analysis, which we
postpone to future studies.
On the level of physical interpretation and, possibly,

phenomenology, our study focused on a prescription to
extract observable features from our noncommutative
Pauli-Jordan function. In particular we were interested
in understanding how to generalize to our noncommutative
setting the well-known result that the Pauli-Jordan function
defines a light cone. In ordinary QFT this function is zero
on spacelike intervals. To achieve this result we had to
introduce a representation of the noncommutative algebra
A of κ-Minkowski coordinates (9), and a Hilbert space H
on which this representation acts. The Pauli-Jordan func-
tion is a function of two variables (i.e., an element of
A ⊗ A), and therefore we need to consider the tensor
product Hilbert space H ⊗ H. There are many states on
this Hilbert space, and our theory is not able to make any
prediction regarding which of those will be physically
realized. We then make an ansatz: our field theory on κ-
Minkowski is supposed to be an effective description of
matter on a quantum gravity background, once the gravi-
tational degrees of freedom are integrated away (in analogy
to what happens in 2þ 1 dimensions [1,2]). Then the
particular state of the quantum geometry can only be
determined by the underlying quantum gravity theory,
which we do not have access to. The best we can do is
to make an educated guess regarding the properties of the
states that are physically realized. The one we made is
based on the insight that such states will have to be “as
classical as possible,” resembling commutative, classical
Minkowski geometry as much as possible. This excludes

those states in H in which the uncertainty of one of the
coordinates is macroscopically large, for instance. We
therefore introduce a notion of “semiclassical” states which
minimize the squared sum of the uncertainties of the
coordinates, i.e., ðδx̂0Þ2 þ ðδx̂1Þ2 is minimal. Among those
states (which are still uncountably many) we may pick one
and calculate the expectation value of the Pauli-Jordan
function hΔPJðẑ; ŷÞi. The result is a commutative function
that depends on the state, and we are interested in how it
varies when the expectation value of the coordinates of the
two points, hẑμi and hŷμi, are varied. These expectation
values now are commutative functions and define a
classical lightcone (i.e., when hẑμi − hŷμi is lightlike).
One can check whether hΔPJðẑ; ŷÞi vanishes outside of
this classical light cone, or it possesses a “tail.” In the
massless case it is easy to integrate the commutative Pauli-
Jordan function for a massless scalar field [Eq. (66)]—in
the 1þ 1 dimensional case—and get

ΔPJðz; yÞ ¼
π

2
sign½ðz0 − y0Þ − ðz1 − y1Þ�

−
π

2
sign½ðz0 − y0Þ þ ðz1 − y1Þ�: ð105Þ

We plot this function in the plane ðz1 − y1Þ vs ðz0 − y0Þ in
Fig. 9. Its main feature is that it is zero on lightlike intervals,

FIG. 7. Pauli-Jordan function for Minkowski (dashed line) and
κ-Minkowski (solid line) spacetimes. The hyi coordinates are
fixed to a smaller value hy0i ∼ hy1i ∼ 1

100
hz0i, while the hz0i

coordinate is fixed to a large value (in this case 103 in units of
κ−1). The hz1i coordinate varies on the horizontal axis around the
light-cone value hz1i ¼ hz0i, over an interval of a few units offfiffiffiffiffiffiffiffiffiffiffiffiffihz0i=κ
p

. In this simulation we are looking at unrealistically
small distances (1000 Planck lengths), but realistic values (i.e.,
109 light years ¼ 1060 Planck lengths) are impossible to work
with on the calculator. Our strategy is therefore to start with small
distances, and then see how the result evolves as we increase the
distances by several orders of magnitude at the time (see
Fig. 8 below).
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while it is �π inside the light cone (þπ in the future light
cone and −π in the past one). The noncommutative
generalization of this function is the expectation value
hΔPJðẑ; ŷÞi, which we plot in Fig. 10 (our numerical
calculation revealed that hΔPJðẑ; ŷÞi is real within the
numerical error). The plots show how the border between
the region where hΔPJðẑ; ŷÞi is a nonzero constant and the
region where it is zero gets blurred. The size of the region
over which this blurring occurs depends on the distance
from the origin: in the leftmost plot of Fig. 9 we are
focusing on a region of size 20 × 20 Planck units κ−1 (20
Planck lengths × 20 Planck times), and the blurring zone

extends over several Planck units. The other two diagrams
are zoomed out over, respectively, a 200 × 200 and a
2000 × 2000 Planck units region. The blurring zone in
those two cases extends over order ∼10 and order ∼30 ∼ffiffiffiffiffiffiffiffiffiffi
1000

p
Planck units. We see that the blurring range goes

like the square root of the distance from the origin in Planck
units, or, in other words, as the geometric mean

ffiffiffiffiffiffiffiffiffiffi
Lκ−1

p
between the distance from the origin L and the Planck scale
κ−1. This can be seen clearly in Figs. 7 and 8, where we plot
a constant-ðhz0i − hy0iÞ slice of hΔPJðẑ; ŷÞi, centred upon
the classical light cone, ðhz1i − hy1iÞ ¼ ðhz0i − hy0iÞ, and
rescaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz0iκ−1

p
. The three diagrams represent three

choices of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz0iκ−1

p
or

ffiffiffiffiffiffiffiffiffiffi
Lκ−1

p
: 103, 107 and 1010, and it

becomes apparent how, in these scales, the three slices of
the Pauli-Jordan function appear exactly identical.
Therefore, we can conclude that the blurring radius is
always of order

ffiffiffiffiffiffiffiffiffiffi
Lκ−1

p
.

To obtain our result we chose a particular example of
“semiclassical” wave function: a Gaussian (92). This
allows us to integrate analytically all of the functions that
appear in hΔPJðẑ; ŷÞi, except the very last one, and permits
us to produce particularly clean numerical results. The
Gaussian wave function is characterized only by two
parameters: the expectation values of the time and space
coordinates (the normalization being fixed to one and the
variance being fixed by the semiclassicality condition). It is
with respect to these two variables that we study the
variation of hΔPJðẑ; ŷÞi. In general, a wave function
satisfying the semiclassicality condition will be much more
complicated than (92), and will depend on a potentially
infinite set of parameters. We conjecture that the depend-
ence of hΔPJðẑ; ŷÞi on all of these additional parameters
will be weak, and the essential features of the function will

FIG. 8. The Pauli-Jordan function calculated at 107 and 1010 Planck units of distance from hyμi. The horizontal scale is units offfiffiffiffiffiffiffiffiffiffiffiffiffi
hz0i=κ

p
. We see that in this scale the function has exactly the same shape, independently of the value of κhz0i (the right-hand-side plot

suffers from significant numerical errors, but it shows, near to the limits of our numerical precision, that the shape of the function is still
the same). It is therefore safe to assume that the shape of the Pauli-Jordan function will be the same also for κhz0i ∼ 1060Lp ∼ 1 billion
light years.

FIG. 9. Contour plot of the Pauli-Jordan function in the plane of
space intervals z1 − y1 vs time intervals z0 − y0, for a commu-
tative massless scalar field (units are arbitrary, as the plot is scale
invariant).
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only depend on the expectation values hẑμi and hŷμi. We
provide evidence to support this conjecture in [70], where
we calculate the expectation value of the Pauli-Jordan
function on three additional choices of wavefunction. We
observe that the result depends only on the expectation
values hzμi and hyμi, and not on the details of the test wave
functions, provided they satisfy the semiclassicality con-
dition. This point will be further illustrated in [70].
For what concerns phenomenology, the shape of our

Pauli-Jordan function leads us to the conclusion that there
is an in-principle-observable violation of the classical light
cone. The Pauli-Jordan function spills out of the classical
light cone by an amount that depends on the geometric
mean of the distance from the source and the Planck scale.
This suggests that, on a κ-Minkowski background, a
perfectly localized signal emitted at a distance L will be
detected with an uncertainty in time and space of the order

of
ffiffiffiffiffiffiffiffiffiffi
Lκ−1

p
. Real-life numbers are quite small: for L ∼ 1

billion lightyears we get an uncertainty in the time of arrival
of the order of 10 femtoseconds. If we had a sufficiently
bright ultrashort pulse source (i.e., a femtosecond laser)
placed at one billion years from Earth, we would be able to
detect the effect as a broadening of the pulse duration upon
detection. Similarly, a distant source that is sufficiently
localized in space (i.e., a micrometer-scale source one
billion lightyears away) would allow detection of our effect
with present-day technology. Of course we are not aware of
such precisely localized sources in our Universe, and the
proposed effect remains well beyond the reach of current
experiments. Our analysis, however, is useful to settle a
question that was debated since the introduction of the
κ-Poincaré group: does κ-Poincaré predict in vacuo
dispersion of particles that can be detected with gamma
ray burst observations? The commutator between quantum
fields at spacelike separated points becomes zero already at
a distance of a few units of

ffiffiffiffiffiffiffiffiffiffi
Lκ−1

p
from the classical light

cone, which for L ∼ 1 billion years and κ−1 ∼ Lp is ∼10 fs.
This is a time interval that is 14 orders of magnitude smaller
than 1s. So at a distance of 1 sec from the light cone there
can be no signal transmission. We indeed have an effect of

in vacuo dispersion of the kind that is considered by the
literature on quantum-gravity phenomenology with gamma
ray burst [43,44], but the effect is enormously smaller than
what would be required to be detected using gamma ray
bursts.
Our conclusion is that gamma ray bursts are not capable

of constraining models of quantum fields propagating on a
κ-Poincaré background. We nonetheless want to stress that
we find a distance-dependent effect. This means that for
macroscopic distances the size of the nonlocal blurring is
greatly boosted, which gives hope to detecting the effect by
some other means. Contrast this result with previous claims
[71], which attribute an invariably Planckian size to the
nonlocal effect in κ-Minkowski, independently of the
distances involved. Such effects would be in principle
impossible to measure, and our results improve the sit-
uation dramatically for phenomenology (see also the com-
ments in [70]).
The present work opens several lines of future inves-

tigation. QFT on a κ-Minkowski background should be
further developed. We already remarked that the next
natural step is to discuss discrete symmetries (C, P, and
T). Then an important issue is to understand conserved
quantities, which provide the building blocks for asymp-
totic observables. The theory at that point would be
developed enough to introduce interactions and develop
dynamically nontrivial models. For what regards phenom-
enology, the two most urgent extensions of our work are on
one hand the exploration of the dependence of the light
cone on the choice of state of the quantum geometry. As we
remarked in Sec. VA a feature of our effective theories can
be deemed observable only if it is robust under change of
the choice of state. On the other hand, the Pauli-Jordan
function is suited to discuss causality issues (i.e., to tell
whether two events can be causally connected, and, in our
case, to exclude an apparently superluminal propagation of
a certain magnitude). To make actual predictions regarding
the waveform of signals propagating in a vacuum we need
the two-point function. This can be calculated using the
techniques developed in our paper, and will be the subject
of future works.

FIG. 10. Same diagram as Fig. 9 in the noncommutative case. The diagram on the left is zoomed in at the origin, and shows a region of
20 × 20 Planck units κ−1. The central diagram shows 200 × 200 Planck units, while the one on the left shows 2000 × 2000.
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APPENDIX A: FINITE LORENTZ
TRANSFORMATIONS IN MOMENTUM

SPACE (IN 1+ 1 DIMENSIONS)

In this Appendix, we want to derive Eq. (28), which we
used first in Eq. (16). This is the expression for the finite
Lorentz transformations on momenta that is implied by the
(noncommutative) way in which κ-Poincaré coordinates
transform under the left coaction of the κ-Poincaré group:

ΔL½xμ� ¼ Λμ
ν ⊗ xν þ aμ ⊗ 1 ⇒ ΔL½eipixieip0x0 �

¼ eiλi½p;Λ�⊗xieiλ0½p;Λ�⊗x0eipiai⊗1eip0a0⊗1: ðA1Þ

In 1þ 1 dimensions, we can write the κ-Poincaré group
commutation relations (6) [in the timelike case (7)] as

½a0; a1� ¼ i
κ
a1; ½a0; ξ� ¼ i

κ
sinh ξ;

½a1; ξ� ¼ i
κ
ðcosh ξ − 1Þ; ðA2Þ

where ξ is the rapdity, cosh ξΛ0
0 ¼ Λ1

1, sinh ξΛ0
1 ¼ Λ1

0.
The commutation relations above can also be obtained from
the request that the coaction ΔL leaves the κ-Minkowski
commutation relations invariant, i.e.,

½cosh ξx0 þ sinh ξx1 þ a0; cosh ξx1 þ sinh ξx0 þ a11�

¼ i
κ
ðcosh ξx1 þ sinh ξx0 þ a1Þ; ðA3Þ

where, for simplicity, we omitted the tensor product ⊗
between group elements and coordinates, and we under-
stand xμ, ξ, and aμ as belonging to the same algebra, in
which xμ commute with ξ and aμ (this is just the standard
construction of a tensor product algebra).
To find the explicit expression of λμ½p;Λ�, we need to

first calculate the adjoint action of eip0a0 and eip1a1 on ξ. To
do so, we notice that the following nonlinear changes of
variable

η ¼ log

�
tanh

ξ

2

�
; ρ ¼ − coth

ξ

2
ðA4Þ

make the commutator with a0, respectively, a1, canonical:

½a0; η� ¼ i
κ
; ½a1; ρ� ¼ i

κ
: ðA5Þ

Then the adjoint action of eip0a0 and eip1a1 on these algebra
elements is a translation

eip0a0ηe−ip0a0 ¼ η −
p0

κ
; eip1a1ρe−ip1a1 ¼ ρ −

p1

κ

ðA6Þ
using the homomorphism property of the adjoint action and
the inverses of the relations (A4):

eip0a0ξe−ip0a0 ¼ 2arctanh

�
e−

p0
κ tanh

ξ

2

�
;

eip1a1ξe−ip1a1 ¼ 2arccoth

�
p1

κ
þ coth

ξ

2

�
: ðA7Þ

The homomorphism property implies that the above rules
can be applied to an arbitrary function of ξ; in particular the
following holds:

eip0a0fðξÞ ¼ fðξ̃Þeip0a0 ; ξ̃ ¼ 2arctanh

�
e−

p0
κ tanh

ξ

2

�
;

eip1a1fðξÞ ¼ fðξ̂Þeip1a1 ; ξ̂ ¼ 2arccoth

�
p1

κ
þ coth

ξ

2

�
:

ðA8Þ
Now we are interested in the adjoint action of (an

arbitrary function of) ξ on an ordered exponential of aμ.
Consider the following induction chain:

efðξÞa0 ¼
�
a0 −

i
κ
sinh ξf0ðξÞ

�
efðξÞ;

efðξÞða0Þ2 ¼
�
a0 −

i
κ
sinh ξf0ðξÞ

�
2

efðξÞ;

..

.

efðξÞða0Þn ¼
�
a0 −

i
κ
sinh ξf0ðξÞ

�
n
efðξÞ: ðA9Þ

Therefore

efðξÞeip0a0 ¼ eip0ða0−i
κ sinh ξf

0ðξÞÞefðξÞ; ðA10Þ

which can be written as an ad-action of fðξÞ on eip0a0 :

eip0a0þp0
κ sinh ξf0ðξÞ ¼ efðξÞeip0a0e−fðξÞ; ðA11Þ

and, similarly, in the case of eip1a1 :

eip1a1þp1
κ ðcosh ξ−1Þf0ðξÞ ¼ efðξÞeip1a1e−fðξÞ: ðA12Þ

The last two relations are true if fðξÞ is a pure function of ξ.
We are interested in the case in which it is a linear
combination of x0 and x1 which, despite commuting
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with ξ, do not commute with each other. We can apply the
rule unchanged when the exponent contains x0 or x1 alone
(because they commute with ξ and aμ, so it is convenient to
consider the following ordered plane wave:

eik1ðξÞx1eik0ðξÞx0 ; ðA13Þ
where the coefficients kμðξÞ are arbitrary functions of ξ.
Computing the commutator with a0

eik1ðξÞx1eik0ðξÞx0a0 ¼ eik1ðξÞx1
�
a0 þ 1

κ
sinh ξk00ðξÞx0

�
eik0ðξÞx0

¼
�
a0 þ 1

κ
sinh ξ

�
k00ðξÞx0 þ k10ðξÞx1 þ

1

κ
k00ðξÞk1ðξÞx1

��
eik1ðξÞx1eik0ðξÞx0 ; ðA14Þ

where the last addend in the square brackets is a consequence of

eik1ðξÞx1x0 ¼
�
x0 þ

1

κ
k1ðξÞx1

�
eik1ðξÞx1 ; ðA15Þ

which is easy proved using the commutation relations ½x0; x1� ¼ i
κ x

1. A similar relation is satisfied by a1:

eik1ðξÞx1eik0ðξÞx0a1 ¼ eik1ðξÞx1
�
a1 þ 1

κ
ðcosh ξ − 1Þk00ðξÞx0

�
eik0ðξÞx0

¼
�
a1 þ 1

κ
ðcosh ξ − 1Þ

�
k00ðξÞx0 þ k10ðξÞx1 þ

1

κ
k00ðξÞk1ðξÞx1

��
eik1ðξÞx1eik0ðξÞx0 : ðA16Þ

These relation hold too on powers of a0 or a1, and consequently also on exponentials:

eik1ðξÞx1eik0ðξÞx0eip1a1 ¼ eip1½a1þ1
κðcosh ξ−1Þðk0 0ðξÞx0þk1 0ðξÞx1þ1

κk0
0ðξÞk1ðξÞx1Þ�eik1ðξÞx1eik0ðξÞx0 ;

eiq1ðξÞx1eiq0ðξÞx0eip0a0 ¼ eip0½a0þ1
κ sinh ξðq0 0ðξÞx0þq1

0ðξÞx1þ1
κq0

0ðξÞq1ðξÞx1Þ�eiq1ðξÞx1eiq0ðξÞx0 : ðA17Þ

If we multiply both sides from the right by e−ik0ðξÞx0e−ik1ðξÞx1 and reorder the exponentials using (A8) we get two BCH
formulas for our algebra:

eip1½a1þ1
κðcosh ξ−1Þðk0 0x0þk1 0x1þ1

κk0
0k1x1Þ� ¼ eik1x

1

eik0x
0

eip1a1e−ik0x
0

e−ik1x
1

¼ eik1x
1

eiðk0−k̂0Þx0e−ik̂1x1eip1a1

¼ eiðk1−e−ðk0−k̂0Þ=κ k̂1Þx1eiðk0−k̂0Þx0eip1a1 ;

eip0½a0þ1
κ sinh ξðq0 0x0þq1 0x1þ1

κq0
0q1x1Þ� ¼ eiq1x

1

eiq0x
0

eip0a0e−iq0x
0

e−iq1x
1

¼ eiq1x
1

eiðq0−q̃0Þx0e−iq̃1x1eip0a0

¼ eiðq1−e−ðq0−q̃0Þ=κ q̃1Þx1eiðq0−q̃0Þx0eip0a0 ; ðA18Þ
where we used the relation

eax
0

ebx
1 ¼ ee

ia=κbx1eax
0

; ðA19Þ

and the notation k̂μ ¼ kμðξ̂Þ, k̃μ ¼ kμðξ̃Þ is pretty self-explanatory. Multiplying the first equation to the second from the left:

eip1½a1þ1
κðcosh ξ−1Þðk0 0x0þk1 0x1þ1

κk0
0k1x1Þ�eip0½a0þ1

κ sinh ξðq0 0x0þq1
0x1þ1

κq0
0q1x1Þ�

¼ eiðk1−e−ðk0−k̂0Þ=κ k̂1Þx1eiðk0−k̂0Þx0eip1a1eiðq1−e−ðq0−q̃0Þ=κ q̃1Þx1eiðq0−q̃0Þx0eip0a0

¼ eiðk1−e−ðk0−k̂0Þ=κ k̂1Þx1eiðk0−k̂0Þx0eiðq̂1−e−ðq̂0−
ˆ̃q0Þ=κ ˆ̃q1Þx1eiðq̂0− ˆ̃q0Þx0eip1a1eip0a0

¼ ei½k1−e−ðk0−k̂0Þ=κ k̂1þe−ðk0−k̂0Þ=κðq̂1−e−ðq̂0− ˆ̃q0Þ=κ ˆ̃q1Þ�x1eiðk0−k̂0þq̂0− ˆ̃q0Þx0eip1a1eip0a0 : ðA20Þ
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The final step is to equate the left-hand ides of (A20) with

ΔL½eip1x1eip0x1 � ¼ eip1ðx1 cosh ξþx0 sinh ξÞþip1a1eip0ðx0 cosh ξþx1 sinh ξÞþip0a0 : ðA21Þ

This can be achieved by fixing the functions kμðξÞ, qμðξÞ through the following differential equations:

� 1
κ ðcosh ξ − 1Þk00 ¼ sinh ξ;
1
κ ðcosh ξ − 1Þðk10 þ 1

κ k0
0k1Þ ¼ cosh ξ;

� 1
κ sinh ξq0

0 ¼ cosh ξ;
1
κ sinh ξðq10 þ 1

κ q0
0q1Þ ¼ sinh ξ:

ðA22Þ

These are easily solved:

(
k0 ¼ κ½2 log ðsinh ξ

2
Þ þ c1�;

k1 ¼ κ½sinh ξþc2
cosh ξ−1 �;

� q0 ¼ κ½log ðsinh ξÞ þ c3�;
q1 ¼ κ½cosh ξþc4

sinh ξ �: ðA23Þ

So the conclusion is the formula

ΔL½eip1x1eip0x1 � ¼ eiλ1½ξ;p�x1eiλ0½ξ;p�x0eip1a1eip0a0 ; ðA24Þ

where (
λ1½ξ; p� ¼ k1 − e−ðk0−k̂0Þ=κk̂1 þ e−ðk0−k̂0Þ=κðq̂1 − e−ðq̂0− ˆ̃q0Þ=κ ˆ̃q1Þ;
λ0½ξ; p� ¼ k0 − k̂0 þ q̂0 − ˆ̃q0;

ðA25Þ

in which

8>>><
>>>:

k̂μ ¼ kμ½ξ̂� ¼ kμ½2arccothðp1

κ þ coth ξ
2
Þ�;

k̃μ ¼ kμ½ξ̃� ¼ kμ½2arctanhðe−
p0
κ tanh ξ

2
Þ�;

ˆ̃kμ ¼ kμ½2arctanhðe−
p0
κ tanh ξ̂

2
Þ� ¼ kμ

h
2arctanh

�
e−

p0
κ

p1
κ þcothξ

2

	i
;

ðA26Þ

and analogously for qμ. An explicit calculation reveals that

λ0½ξ; p� ¼ p0 þ κ log

��
cosh

ξ

2
þ p1

κ
sinh

ξ

2

�
2

− e−2p0=κsinh2
ξ

2

�
;

λ1½ξ; p� ¼ κ
ðcosh ξ

2
þ p1

κ sinh
ξ
2
Þðsinh ξ

2
þ p1

κ cosh
ξ
2
Þ − e−2p0=κ cosh ξ

2
sinh ξ

2

ðcosh ξ
2
þ p1

κ sinh
ξ
2
Þ2 − e−2p0=κsinh2 ξ

2

; ðA27Þ

which is Eq. (28) which we used, initially, in Eq. (16).
The transformation rule above can be found by integrating the vector flow on momentum space that is generated by the

action of infinitesimal Lorentz transformations [Eq. (19)] on the momenta. This was first done in [72]. Alternatively, one
can use a matrix representation of the algebra (A2) and essentially do the samewe did algebraically in this Appendix, as was
done in [10].

APPENDIX B: CALCULATION OF THE CREATION AND ANNIHILATION OPERATOR ALGEBRA

It is convenient to introduce the following three new operators:

d̂ðqÞ ¼ e−
3ω−ðjqjÞ

κ â†ðS−ðqÞÞ; êðqÞ ¼ e−
3ωþðjqjÞ

κ b̂ðSþðqÞÞ; f̂ðqÞ ¼ e−
3ωþðjqjÞ

κ ĉðSþðqÞÞ; ðB1Þ

which makes ϕ̂†ðxÞ in (63) take the same form as ϕ̂ðxÞ in Eq. (55). Expliciting the mode expansion of the fields in the
commutation relations (80),
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½ϕ̂ðzÞ; ϕ̂†ðyÞ� ¼
Z
jpj<κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p �Z
R3

d3qe
3ω−ðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½âðpÞ; d̂ðqÞ�eip·zþiq·yeiω
þðjpjÞz0þiω−ðjqjÞy0

þ
Z
jqj<κ

d3qe
3ωþðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½âðpÞ; êðqÞ�eiP·zþiq·yeiω
þðjpjÞz0þiωþðjqjÞy0

þ
Z
jqj>κ

d3qe
3ωþðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½âðpÞ; f̂ðqÞ�eip·zþiq·yeiω
þðjpjÞz0þiωþðjqjÞy0

�

þ
Z
R3

d3pe
3ω−ðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p �Z
R3

d3qe
3ω−ðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½b̂†ðpÞ; d̂ðqÞ�eip·zþiq·yeiω
−ðjpjÞz0þiω−ðjqjÞy0

þ
Z
jqj<κ

d3qe
3ωþðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½b̂†ðpÞ; êðqÞ�eip·zþiq·yeiω
−ðjpjÞz0þiωþðjqjÞy0

þ
Z
jqj>κ

d3qe
3ωþðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½b̂†ðpÞ; f̂ðqÞ�eip·zþiq·yeiω
−ðjpjÞz0þiωþðjqjÞy0

�

þ
Z
jpj>κ

d3pe
3ωþðjpjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p �Z
R3

d3qe
3ω−ðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½ĉ†ðpÞ; d̂ðqÞ�eip·zþiq·yeiω
þðjpjÞz0þiω−ðjqjÞy0

þ
Z
jqj<κ

d3qe
3ωþðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½ĉ†ðpÞ; êðqÞ�eip·zþiq·yeiω
þðjpjÞz0þiωþðjqjÞy0

þ
Z
jqj>κ

d3qe
3ωþðjqjÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½ĉ†ðpÞ; f̂ðqÞ�eip·zþiq·yeiω
þðjpjÞz0þiωþðjqjÞy0

�
: ðB2Þ

Comparing with (76) reveals that the three terms above should be identified pairwise with the three terms in the Pauli-Jordan
function:

�Z
R3

d3qe
3ω−ðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½âðpÞ; d̂ðqÞ�eip·zþiq·yeiω
þðpÞz0þiω−ðqÞy0

þ
Z
jqj<κ

d3qe
3ωþðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½âðpÞ; êðqÞ�eip·zþiq·yeiω
þðpÞz0þiωþðqÞy0

þ
Z
jqj>κ

d3qe
3ωþðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½âðpÞ; f̂ðqÞ�eip·zþiq·yeiω
þðpÞz0þiωþðqÞy0

�
¼ eip·z−ie

ωþðpÞ
κ p·yeiω

þðpÞðz0−y0Þ; ðB3Þ

�Z
R3

d3qe
3ω−ðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½b̂†ðpÞ; d̂ðqÞ�eip·zþiq·yeiω
−ðpÞz0þiω−ðqÞy0

þ
Z
jqj<κ

d3qe
3ωþðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½b̂†ðpÞ; êðqÞ�eip·zþiq·yeiω
−ðpÞz0þiωþðqÞy0

þ
Z
jqj>κ

d3qe
3ωþðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½b̂†ðpÞ; f̂ðqÞ�eip·zþiq·yeiω
−ðpÞz0þiωþðqÞy0

�
¼ −eip·ze−ie

ω−ðpÞ
κ p·yeiω

−ðpÞðz0−y0Þ; ðB4Þ
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�Z
R3

d3qe
3ω−ðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½ĉ†ðpÞ; d̂ðqÞ�eip·zþiq·yeiω
þðpÞz0þiω−ðqÞy0

þ
Z
jqj<κ

d3qe
3ωþðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½ĉ†ðpÞ; êðqÞ�eip·zþiq·yeiω
þðpÞz0þiωþðqÞy0

þ
Z
jqj>κ

d3qe
3ωþðqÞ

κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

p ½ĉ†ðpÞ; f̂ðqÞ�eip·zþiq·yeiω
þðpÞz0þiωþðqÞy0

�
¼ −eip·ze−ie

ωþðpÞ
κ p·yeiω

þðpÞðz0−y0Þ: ðB5Þ

Let us introduce the following ansatz:

½âðpÞ; d̂ðqÞ� ¼ Faaδ
ð3Þ½q − SþðpÞ�; ½âðpÞ; êðqÞ� ¼ Fabδ

ð3Þ½q − SþðpÞ�; ½âðpÞ; f̂ðqÞ� ¼ Facδ
ð3Þ½q − SþðpÞ�;

½b̂†ðpÞ; d̂ðqÞ� ¼ Fbaδ
ð3Þ½q − S−ðpÞ�; ½b̂†ðpÞ; êðqÞ� ¼ Fbbδ

ð3Þ½q − S−ðpÞ�; ½b̂†ðpÞ; f̂ðqÞ� ¼ Fbcδ
ð3Þ½q − S−ðpÞ�;

½ĉ†ðpÞ; d̂ðqÞ� ¼ Fcaδ
ð3Þ½q − SþðpÞ�; ½ĉ†ðpÞ; êðqÞ� ¼ Fcbδ

ð3Þ½q − SþðpÞ�; ½ĉ†ðpÞ; f̂ðqÞ� ¼ Fccδ
ð3Þ½q − SþðpÞ�:

ðB6Þ

The first equation, Eq. (B3), turns into:

eip·zþiSþðpÞ·yeiωþðpÞz0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

p ðe3ω−ðSþðpÞÞ
κ Faaeiω

−ðSþðpÞÞy0 þ ΘðjSþðpÞj < κÞe3ωþðSþðpÞÞ
κ Fabeiω

þðSþðpÞÞy0

þ ΘðjSþðpÞj > κÞe3ωþðSþðpÞÞ
κ Faceiω

þðSþðpÞÞy0Þjjpj<κ ¼ eip·z−ie
ωþðpÞ

κ p·yeiω
þðpÞðz0−y0Þ; ðB7Þ

and using the relations (61), in particular ω−ðSþðpÞÞ ¼ −ωþðpÞ if jpj < κ, we see that

eiω
−ðSþðpÞÞy0 jjpj<κ ¼ e−iω

þðpÞy0 ; eiω
þðSþðpÞÞy0 jjpj<κ ≠ e−iω

þðpÞy0 ;

and so only the term multiplying Faa is identical to the right-hand side. The second equation, Eq. (B4), is

eip·zþiS−ðpÞ·yeiω−ðpÞz0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS−ðpÞj2

p ðe3ω−ðS−ðpÞÞ
κ Fbaeiω

−ðS−ðpÞÞy0 þ ΘðjS−ðpÞj < κÞe3ωþðS−ðpÞÞ
κ Fbbeiω

þðS−ðpÞÞy0

þ ΘðjS−ðpÞj > κÞe3ωþðS−ðpÞÞ
κ Fbceiω

þðS−ðpÞÞy0Þ




p∈R3

¼ eip·z−ie
ω−ðpÞ

κ p·yeiω
−ðpÞðz0−y0Þ; ðB8Þ

where the third term is crossed because ΘðjS−ðpÞj > κÞjp∈R3 ¼ 0. Another look at relations (61), in particular
ωþðS−ðpÞÞ ¼ −ω−ðpÞ if p ∈ R3, reveals that:

eiω
−ðS−ðpÞÞy0 jp∈R3 ≠ e−iω

−ðpÞy0 ; eiω
þðS−ðpÞÞy0 jp∈R3 ¼ e−iω

−ðpÞy0 ;

so only the Fbb term survives. Finally consider Eq. (B5):

eip·zþiSþðpÞ·yeiωþðpÞz0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

p ðe3ω−ðSþðpÞÞ
κ Fcaeiω

−ðSþðpÞÞy0 þ ΘðjSþðpÞj < κÞe3ωþðSþðpÞÞ
κ Fcbeiω

þðSþðpÞÞy0

þ ΘðjSþðpÞj > κÞe3ωþðSþðpÞÞ
κ Fcceiω

þðSþðpÞÞy0Þ




jpj>κ

¼ eip·z−ie
ωþðpÞ

κ p·yeiω
þðpÞðz0−y0Þ; ðB9Þ

with relations (61), in particular ωþðSþðpÞÞ ¼ −ωþðpÞ if jpj > κ:

eiω
−ðSþðpÞÞy0 jjpj>κ ≠ e−iω

þðpÞy0 ; eiω
þðSþðpÞÞy0 jjpj>κ ¼ e−iω

þðpÞy0 :

We see that only the Fcc term survives. The three surviving coefficients then are constrained to be
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Faa ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

q
e
3ωþðpÞ

κ ; Fbb ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS−ðpÞj2

q
e
3ω−ðpÞ

κ ; Fcc ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

q
e
3ωþðpÞ

κ ; ðB10Þ

and the commutation relations are therefore,

½âðpÞ; d̂ðqÞ� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

q
e
3ωþðpÞ

κ δð3Þ½q − SþðpÞ�;

½b̂†ðpÞ; êðqÞ� ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS−ðpÞj2

q
e
3ω−ðpÞ

κ δð3Þ½q − S−ðpÞ�;

½ĉ†ðpÞ; f̂ðqÞ� ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðpÞj2

q
e
3ωþðpÞ

κ δð3Þ½q − SþðpÞ�: ðB11Þ

We can change variables in the delta functions on the right-hand sides, and isolate p. Then the delta functions produce the
determinant of a Jacobian that cancels with the exponential terms multiplying them:

if jpj < κ e
3ωþðpÞ

κ δð3Þ½q − SþðpÞ� ¼
e
3ωþðpÞ

κ

j det ∂SþðpÞ∂p j
δð3Þ½p − S−ðqÞ� ¼ δð3Þ½p − S−ðqÞ�;

∀p e
3ω−ðpÞ

κ δð3Þ½q − S−ðpÞ� ¼
e
3ω−ðpÞ

κ

j det ∂S−ðpÞ∂p j
δð3Þ½p − SþðqÞ� ¼ δð3Þ½p − SþðqÞ�;

if jpj > κ e
3ωþðpÞ

κ δð3Þ½q − SþðpÞ� ¼
e
3ωþðpÞ

κ

j det ∂SþðpÞ∂p j
δð3Þ½p − SþðqÞ� ¼ δð3Þ½p − SþðqÞ�; ðB12Þ

then the commutation relations take a particularly simple
form:

½âðpÞ; d̂ðqÞ� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

q
δð3Þ½p − S−ðqÞ�;

½b̂†ðpÞ; êðqÞ� ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

q
δð3Þ½p − SþðqÞ�;

½ĉ†ðpÞ; f̂ðqÞ� ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

q
δð3Þ½p − SþðqÞ�: ðB13Þ

Now use the definition (B1)

½âðpÞ; â†ðS−ðqÞÞ� ¼ 2e
3ω−ðjqjÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

q
δð3Þ½p − S−ðqÞ�;

½b̂†ðpÞ; b̂ðSþðqÞÞ� ¼ −2e
3ωþðjqjÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

q
δð3Þ½p − SþðqÞ�;

½ĉ†ðpÞ; ĉðSþðqÞÞ� ¼ −2e
3ωþðjqjÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2

q
δð3Þ½p − SþðqÞ�;

and recall Eq. (59):

SþðSþðpÞÞ ¼ p if jpj > κ; S−ðSþðpÞÞ ¼ p

if jpj < κ; SþðS−ðpÞÞ ¼ p ∀ p ∈ R3;

and we get

½âðpÞ; â†ðkÞ� ¼ 2e
3ω−ðSþðkÞÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðkÞj2

q
δð3Þ½p − k�;

½b̂†ðpÞ; b̂ðkÞ� ¼ −2e
3ωþðS−ðkÞÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS−ðkÞj2

q
δð3Þ½p − k�;

½ĉ†ðpÞ; ĉðkÞ� ¼ −2e
3ωþðSþðkÞÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðkÞj2

q
δð3Þ½p − k�:

Finally, using one last time Eq. (61):

ωþðS−ðqÞÞ ¼ −ω−ðqÞ; if q ∈ R3;

ω−ðSþðqÞÞ ¼ −ωþðqÞ; if jqj < κ;

ωþðSþðqÞÞ ¼ −ωþðqÞ; if jqj > κ;

we get the final form of the commutation relations:

½âðpÞ; â†ðkÞ� ¼ 2e−
3ωþðkÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðkÞj2

q
δð3Þ½p − k�;

½b̂†ðpÞ; b̂ðkÞ� ¼ −2e−
3ω−ðkÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jS−ðkÞj2

q
δð3Þ½p − k�;

½ĉ†ðpÞ; ĉðkÞ� ¼ −2e−
3ωþðkÞ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jSþðkÞj2

q
δð3Þ½p − k�:

ðB14Þ
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