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With fourth-order derivative theories leading to propagators of the generic ghostlike 1=ðk2 −M2
1Þ −

1=ðk2 −M2
2Þ form, it would appear that such theories have negative norm ghost states and are not unitary.

However on constructing the associated quantum Hilbert space for the free theory that would produce such
a propagator, Bender and Mannheim found that the Hamiltonian of the free theory is not Hermitian but is
instead PT symmetric, and that there are in fact no negative norm ghost states, with all Hilbert space norms
being both positive and preserved in time. Even though perturbative radiative corrections cannot change the
signature of a Hilbert space inner product, nonetheless it is not immediately apparent how such a ghostlike
propagator would not then lead to negative probability contributions in loop diagrams. Here we obtain the
relevant Feynman rules and show that all states obtained in cutting intermediate lines in loop diagrams have
positive norm. Also we show that due to the specific way that unitarity (conservation of probability) is
implemented in the theory, negative signatured discontinuities across cuts in loop diagrams are canceled by
a novel and unanticipated contribution of the states in which tree approximation (no loop) graphs are
calculated, an effect that is foreign to standard Hermitian theories. Perturbatively then, the fourth-order
derivative theory with propagator 1=ðk2 −M2

1Þ − 1=ðk2 −M2
2Þ is viable. Implications of our results for the

pure massless 1=k4 propagator are also discussed.

DOI: 10.1103/PhysRevD.98.045014

I. INTRODUCTION

In a typical fourth-order derivative theory such as that
based on the action

IS ¼
1

2

Z
d4x½∂μ∂νϕ∂μ∂νϕ − ðM2

1 þM2
2Þ∂μϕ∂μϕ

þM2
1M

2
2ϕ

2�; ð1Þ

where ϕðxÞ is a neutral scalar field, the equation of motion
is given by

ð∂2
t −∇2 þM2

1Þð∂2
t −∇2 þM2

2ÞϕðxÞ ¼ 0; ð2Þ

and the phase space Hamiltonian is given by H ¼R
d3xT00, where

Tμν ¼ πμϕ;ν þ πλμϕ;ν;λ − ημνL;

πμ ¼ ∂L
∂ϕ;μ

− ∂λ

� ∂L
∂ϕ;μ;λ

�
¼ −∂λ∂μ∂λϕ − ðM2

1 þM2
2Þ∂μϕ;

πμλ ¼ ∂L
∂ϕ;μ;λ

¼ ∂μ∂λϕ;

T00 ¼ π0 _ϕþ 1

2
π200 þ

1

2
ðM2

1 þM2
2Þ _ϕ2 −

1

2
M2

1M
2
2ϕ

2

−
1

2
πijπ

ij þ 1

2
ðM2

1 þM2
2Þϕ;iϕ

;i: ð3Þ

With the use of the commutation relations given in (81)
below the DðxÞ ¼ ihΩjTðϕðxÞϕð0ÞÞjΩi propagator obeys

ð∂2
t −∇2 þM2

1Þð∂2
t −∇2 þM2

2ÞDðxÞ ¼ −δ4ðxÞ;

DðxÞ ¼
Z

d4k
ð2πÞ4 e

−ik·xDðkÞ

¼ −
Z

d4k
ð2πÞ4

e−ik·x

ðk2 −M2
1Þðk2 −M2

2Þ
; ð4Þ

with partial fraction decomposition

DðxÞ ¼
Z

d4k
ð2πÞ4

1

ðM2
1 −M2

2Þ
�

e−ik·x

k2 −M2
2

−
e−ik·x

k2 −M2
1

�
: ð5Þ
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The presence of the relative minus sign given in (5)
suggests that there would be states of negative norm in
the theory, since one would anticipate identifying the
propagator asDðxÞ ¼ ihΩjTðϕðxÞϕð0ÞÞjΩi, with the inser-
tion into ihΩjTðϕðxÞϕð0ÞÞjΩi of a completeness relation
for energy eigenstates of the formX

jnihnj −
X

jmihmj ¼ I ð6Þ
immediately leading to (5).
However one cannot determine the structure of the

underlying q-number theory purely by inspection of
DðxÞ since it itself is a c-number. Rather, one has to
quantize the theory and explicitly determine the structure
of the q-number Hilbert space. And when Bender and
Mannheim did this, they found [1,2] that there are in fact no
states with negative norm in the theory at all. Specifically,
they found that the energy eigenstates are not normalizable
on the real axis, in immediate consequence of which there
could not be any completeness relation of the form given in
(6) at all since its validity would require that the energy
eigenstates be normalizable. Moreover, when acting on
such non-normalizable states the Hamiltonian of the theory
would not be self-adjoint since one could not throw
away surface terms in an integration by parts, with the
Hamiltonian thus not being Hermitian.
In order to obtain states that are normalizable one has to

continue the theory into the complex plane, and it is in the
complex plane that the theory has to be formulated. And
when this was done it was found that there are no states
with negative norm [1,2], with the theory thus being viable.
The key to determining the structure of the theory is thus in
finding a viable set of boundary conditions, and in and of
itself inspection of (5) does not enable one to do so.
Despite the fact the Hamiltonian is not Hermitian, all the

poles ofDðkÞ lie on the real k0 axis in the complex k0 plane,
so all the eigenvalues of the Hamiltonian are real. While
Hermiticity of a Hamiltonian implies the reality of its
eigenvalues, there is no converse theorem that says that if
energy eigenvalues are real then the Hamiltonian must be
Hermitian, with Hermiticity only being sufficient to yield
real eigenvalues and not necessary. The necessary condition
has been identified in the literature, with it being that the
Hamiltonian must possess an antilinear symmetry (see e.g.,
[3–6] and references therein), with it in addition being
shown that if complex Lorentz invariance is imposed as
well the antilinear symmetry is uniquely fixed to be CPT
[6,7]. And in [1,2] it was found that the Hamiltonian
associated with the fourth-order derivative IS theory does in
fact possess a specific antilinear symmetry, namely PT (P
is parity and T is time reversal), with CPT symmetry
reducing to PT symmetry in this case since charge
conjugation C is separately conserved for a neutral scalar
field theory. The IS theory thus falls into the class of non-
Hermitian but PT-symmetric theories of the type explored
by Bender and collaborators [8–12]. In these non-
Hermitian but PT-symmetric theories the left-eigenvectors

hLj and left-vacuum hΩLj of the Hamiltonian are not the
Hermitian conjugates of the right-eigenvectors jRi and right-
vacuum jΩRi. Rather, they are related according to hLj ¼
hRjV where the operator V effects VHV−1 ¼ H† [3,5,6],
with it being the hLjRi inner product and not the hRjRi one
that is time independent. In consequence, the propagator is
given not by DðxÞ ¼ ihΩjTðϕðxÞϕð0ÞÞjΩi, but by

DðxÞ¼ ihΩLjTðϕðxÞϕð0ÞÞjΩRi¼ ihΩRjVTðϕðxÞϕð0ÞÞjΩRi
ð7Þ

instead, with it being through the presence of the V operator
in (7) that the relativeminus sign in (5) is generated [1,2], and
not through any negative norm properties of the states.
While the study of [1,2] establishes that the Hilbert space

built on hΩLj and jΩRi possesses no states with negative
norm, the theory based on IS is a noninteracting, free theory.
However, if we now add on to IS an interaction term, then
since one cannot change the signature of Hilbert space inner
products perturbatively, radiative corrections are not able to
generate any negative norm states. Even though the theory
must thus remain viable perturbatively, it is not immediately
obvious how radiative loops involving the propagator in (5)
with its relative minus sign can actually achieve this. It is the
purpose of this paper to show that radiative corrections do not
lead to observable cut discontinuities in scattering amplitudes
that are negative signatured, with the theory thus being viable.
Aswe shall see, and in contrast to standardHermitian theories,
through a novel effect of the V operator, negative disconti-
nuities that occur in loop diagrams in the non-Hermitian
fourth-order derivative theory are canceled by positive dis-
continuities that occur in the V-dependent matrix elements in
which tree approximation (no loop) diagrams are calculated.

II. THE PAIS-UHLENBECK
TWO-OSCILLATOR MODEL

Since none of our discussion depends on the quantum-
field-theoretic structure of the relativistic IS theory that is
provided in [2] and in the Appendix to this paper, it suffices
here to study its associated quantum mechanics. Thus on
setting ω1 ¼ ðk̄2 þM2

1Þ1=2, ω2 ¼ ðk̄2 þM2
2Þ1=2 and drop-

ping the spatial dependence, the IS action reduces to the
quantum-mechanical Pais-Uhlenbeck (PU) two-oscillator
model action [13]

IPU ¼ 1

2

Z
dt½̈z2 − ðω2

1 þ ω2
2Þ_z2 þ ω2

1ω
2
2z

2�; ð8Þ

where for definitiveness we take ω1 > ω2. The equation of
motion is given by

d4z
dt4

þ ðω2
1 þ ω2

2Þ
d2z
dt2

þ ω2
1ω

2
2z ¼ 0; ð9Þ

while in analog to (4) and (5) the propagator is given by
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�
d4

dt4
þ ðω2

1 þ ω2
2Þ

d2

dt2
þ ω2

1ω
2
2

�
GðtÞ ¼ −δðtÞ;

GðEÞ ¼
Z

dteiEtGðtÞ ¼ −
1

ðE2 − ω2
1ÞðE2 − ω2

2Þ
¼ 1

ðω2
1 − ω2

2Þ
�

1

E2 − ω2
2

−
1

E2 − ω2
1

�

¼ 1

ðω2
1 − ω2

2Þ
�

1

2ω2

�
1

E − ω2

−
1

Eþ ω2

�
−

1

2ω1

�
1

E − ω1

−
1

Eþ ω1

��
: ð10Þ

With x ¼ _z, ½z; pz� ¼ i, ½x; px� ¼ i, the Hamiltonian is
given by [14]

HPU ¼ p2
x

2
þ pzxþ

1

2
ðω2

1 þ ω2
2Þx2 −

1

2
ω2
1ω

2
2z

2: ð11Þ

With the usual causal Feynman contour prescription for
the GðEÞ propagator, positive energy states propagate for-
ward in time, while negative energy states propagate back-
ward in time, with the lowest positive energy eigenvalue
associated withGðEÞ being the zero-point energy of the two
oscillators, viz. E0 ¼ ðω1 þ ω2Þ=2. If we now set pz ¼
−i∂z, px ¼ −i∂x, the Schrödinger equation takes the form

�
−
1

2

∂2

∂x2 − ix
∂
∂zþ

1

2
ðω2

1 þ ω2
2Þx2 −

1

2
ω2
1ω

2
2z

2

�

× ψnðz; xÞ ¼ Enψnðz; xÞ; ð12Þ

with the ground-state energy E0 ¼ ðω1 þ ω2Þ=2 having
eigenfunction [15]

ψ0ðz; xÞ ¼ exp

�
1

2
ðω1 þ ω2Þω1ω2z2 þ iω1ω2zx

−
1

2
ðω1 þ ω2Þx2

�
: ð13Þ

As z → �∞, ψ0ðz; xÞ diverges, with, as noted earlier,
the wave function of the ground state jΩi [and thus its
hΩjΩi ¼ R

dxdzhΩjxzihxzjΩi ¼ R
dxdzψ�

0ðx; zÞψ0ðx; zÞ
norm] not being normalizable on the real z axis.

Noting that ψ0ðz; xÞwould be normalizable if zwere pure
imaginary and the operator zwere anti-Hermitian (equivalent
to representing pz by ∂z rather than −i∂z), Bender and
Mannheim continued z (but not x) into the complex plane.
However rather thanworkwith anti-Hermitian operators, it is
instead more convenient to make a similarity transform on
the operators in HPU of the form [1,2]

y ¼ eπpzz=2ze−πpzz=2 ¼ −iz;

q ¼ eπpzz=2pze−πpzz=2 ¼ ipz; ð14Þ

so that ½y; q� ¼ i. Under this same transformation HPU
transforms into

eπpzz=2HPUe−πpzz=2¼ H̄

¼p2

2
− iqxþ1

2
ðω2

1þω2
2Þx2þ

1

2
ω2
1ω

2
2y

2;

ð15Þ

where for notational simplicity we have replaced px by p, so
that ½x; p� ¼ i. When acting on the eigenfunctions of H̄ the y
and q operators are Hermitian (as are x and p). However, as
the presence of the factor i in the−iqx term indicates, H̄ is not
Hermitian.

III. QUANTIZATION OF THE THEORY

To quantize the theory one sets [2]

_yðtÞ ¼ i½H̄; y� ¼ −ixðtÞ; _xðtÞ ¼ pðtÞ; _pðtÞ ¼ iqðtÞ − ðω2
1 þ ω2

2ÞxðtÞ; _qðtÞ ¼ −ω2
1ω

2
2yðtÞ;

yðtÞ ¼ −ia1e−iω1t þ a2e−iω2t − iâ1eiω1t þ â2eiω2t;

xðtÞ ¼ −iω1a1e−iω1t þ ω2a2e−iω2t þ iω1â1eiω1t − ω2â2eiω2t;

pðtÞ ¼ −ω2
1a1e

−iω1t − iω2
2a2e

−iω2t − ω2
1â1e

iω1t − iω2
2â2e

iω2t;

qðtÞ ¼ ω1ω2½−ω2a1e−iω1t − iω1a2e−iω2t þ ω2â1eiω1t þ iω1â2eiω2t�;

a1e−iω1t ¼ 1

2ðω2
1 − ω2

2Þ
�
−iω2

2y − pþ iω1xþ
q
ω1

�
; â1eþiω1t ¼ 1

2ðω2
1 − ω2

2Þ
�
−iω2

2y − p − iω1x −
q
ω1

�
;

a2e−iω2t ¼ 1

2ðω2
1 − ω2

2Þ
�
ω2
1y − ip − ω2xþ

iq
ω2

�
; â2eþiω2t ¼ 1

2ðω2
1 − ω2

2Þ
�
ω2
1y − ipþ ω2x −

iq
ω2

�
: ð16Þ
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With ½x; p� ¼ i, ½y; q� ¼ i, the ai and âi operators obey the standard two-oscillator commutation algebra

½a1; â1� ¼
1

2ω1ðω2
1 − ω2

2Þ
¼ N1; ½a2; â2� ¼

1

2ω2ðω2
1 − ω2

2Þ
¼ N2;

½a1; a2� ¼ 0; ½a1; â2� ¼ 0; ½â1; a2� ¼ 0; ½â1; â2� ¼ 0; ð17Þ

with â1 and â2 serving as creation operators and a1 and a2
serving as annihilators in the Hilbert space built on the
right- and left-vacua jΩRi and hΩLj according to

a1jΩRi¼ 0; a2jΩRi¼ 0; hΩLjâ1 ¼ 0; hΩLjâ2¼ 0:

ð18Þ
With both N1 and N2 being positive there are no states with
negative norm. Because the theory is not Hermitian the âi
are not the Hermitian conjugates of the ai, and hΩLj is not
the Hermitian conjugate of jΩRi. However, since the theory
is a PT-symmetric one, one can characterize the x, y, p and
q operators by their behavior under PT, with x and y being
taken to be PT odd and p and q to be PT even in [1,2]. In
consequence a1 and â1 are PT even and a2 and â2 are PT
odd. We should note that these PT assignments are not
unique, and in [16] x and y were taken to be PT even and p
and q to be PT odd, with a1 and â1 then being PT odd and
a2 and â2 being PT even. Both of these sets of assignments
are consistent with (16) and the PT symmetry of H̄, and
none of these choices affect the conclusions of this paper.
In terms of the creation and annihilation operators the

Hamiltonian is diagonalized as

H̄ ¼ 2ðω2
1 − ω2

2Þ½ω2
1â1a1 þ ω2

2â2a2� þ
1

2
ðω1 þ ω2Þ; ð19Þ

and with there being no relative minus sign between the
ω2
1â1a1 and ω2

2â2a2 terms, there are no states of negative
energy. On dropping the zero-point energy for convenience,
for this Hamiltonian the right and left vacua obey
H̄jΩRi ¼ 0, hΩLjH̄ ¼ 0.
The one-particle right-eigenvector states that obey

H̄jii ¼ Eijii ¼ ωijii are

j1Ri ¼ N−1=2
1 â1jΩRi; j2Ri ¼ N−1=2

2 â2jΩRi; ð20Þ
while the left-eigenvector one-particle states that obey
hijH̄ ¼ hijEi ¼ hijωi are

h1Lj ¼ N−1=2
1 hΩLja1; h2Lj ¼ N−1=2

2 hΩLja2: ð21Þ
These states obey the orthonormal relations

h1Lj1Ri¼ 1; h1Lj2Ri¼ 0; h2Lj1Ri¼ 0;

h2Lj2Ri¼ 1; j1Rih1Ljþ j2Rih2Lj ¼ I; ð22Þ
to thus have positive norm and obey a positive signatured
closure relation.
Because we have replaced z by −iz ¼ y, pz by ipz ¼ q,

and HPU by H̄, the propagator is now given by ḠðtÞ ¼
−ihΩLjyðtÞyð0ÞjΩRi, (equivalent to þihΩLjzðtÞzð0ÞjΩRi
rather than −ihΩLjzðtÞzð0ÞjΩRi), and it obeys

�
d4

dt4
þ ðω2

1 þ ω2
2Þ

d2

dt2
þ ω2

1ω
2
2

�
ḠðtÞ ¼ −δðtÞ;

ḠðEÞ ¼ −
1

ðE2 − ω2
1ÞðE2 − ω2

2Þ
¼ 1

ω2
1 − ω2

2

�
−

1

E2 − ω2
1

þ 1

E2 − ω2
2

�

¼ 1

ðω2
1 − ω2

2Þ
�
−

1

2ω1

�
1

E − ω1

−
1

Eþ ω1

�
þ 1

2ω2

�
1

E − ω2

−
1

Eþ ω2

��
: ð23Þ

Given the form for yðtÞ given in (16) we evaluate the two-
point function, and for t > 0 obtain

ḠðtÞ ¼ −ihΩLjyðtÞyð0ÞjΩRi
¼ −ihΩLj½−ia1e−iω1t þ a2e−iω2t�½−iâ1 þ â2�jΩRi
¼ −i½−N1e−iω1t þ N2e−iω2t�: ð24Þ

In Fourier space ḠðEÞ ¼ R
dteiEtθðtÞḠðtÞ is given by

ḠðEÞ ¼ −
N1

E − ω1 þ iϵ
þ N2

E − ω2 þ iϵ
; ð25Þ

with the minus sign in the ω1 term being generated by the
−i factors in yðtÞ and not by states of negative norm.
Comparing the positive frequency components of (23) with
(25) we confirm that despite our being in a fourth-order
derivative theory rather than a second-order one, the
propagator is given by ḠðtÞ ¼ −ihΩLjyðtÞyð0ÞjΩRi and
not by any expression that might involve time derivatives of
yðtÞ. Consequently, in the Feynman rules for the interacting
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theory that we discuss below, the Wick contraction pro-
cedure is the completely standard second-order theory one
familiar from Hermitian theories.
This expression that we have obtained for ḠðEÞ is just

the value of GðEÞ given in (10) as evaluated at the two
positive frequency poles ω ¼ ω1 and ω ¼ ω2. [We defined
the propagators so that the coefficient of the δðtÞ term
would be negative in both (10) and (23)]. In (25) the ω2

term has the same overall positive sign as that of a standard
one-dimensional harmonic oscillator, while the ω1 term has
the opposite sign to that of a standard one-dimensional
harmonic oscillator. [In a standard second-order field
theory where δðtÞ½ _ϕðxÞ;ϕð0Þ� ¼ −iδ4ðxÞ, we have ð∂2

t −
∇2þm2Þ½−ihΩjTðϕðxÞϕð0ÞÞjΩi�¼ð∂2

t −∇2þm2ÞDðx2Þ¼
−δ4ðxÞ (viz. a negative coefficient), so that DðxÞ ¼
þ R

d4k=ð2πÞ4e−ik·x=ðk2 −m2Þ.] As we see, we can obtain
a minus sign in ḠðEÞ even though no commutator in (17) is
negative. A relative minus sign in the propagator is thus not
indicative of the presence of states with negative norm, and

in this way the theory is viable. This same analysis goes
through identically in the relativistic case of IS itself, and
we present the calculation in an Appendix.
To underscore that all norms are positive we note that we

can make a similarity transformation on H̄ in order to
decouple the two oscillators [1,2]. Specifically, one intro-
duces an operator Q,

Q¼αpqþβxy; α¼ 1

ω1ω2

log

�
ω1þω2

ω1−ω2

�
; β¼αω2

1ω
2
2;

ð26Þ

with Q being Hermitian since x, y, p and q are all
Hermitian, while being PT even for either choice of PT
assignments of the x, y, p and q operators described above.
With this Q we transform H̄ of (15) and x, y, p and q
according to

H̄0 ¼ e−Q=2H̄eQ=2 ¼ p02

2
− iq0x0 þ 1

2
ðω2

1 þ ω2
2Þx02 þ

1

2
ω2
1ω

2
2y

02;

y0 ¼ e−Q=2yeQ=2 ¼ y cosh θ þ iðα=βÞ1=2p sinh θ; p0 ¼ e−Q=2peQ=2 ¼ p cosh θ − iðβ=αÞ1=2y sinh θ;
x0 ¼ e−Q=2xeQ=2 ¼ x cosh θ þ iðα=βÞ1=2q sinh θ; q0 ¼ e−Q=2qeQ=2 ¼ q cosh θ − iðβ=αÞ1=2x sinh θ; ð27Þ

where θ ¼ ðαβÞ1=2=2, tanh θ ¼ ω2=ω1. However, as noted
in [1] the transformed H̄0 can actually be written entirely in
terms of the original x, y, p and q variables as

H̄0 ¼ p2

2
þ q2

2ω2
1

þ 1

2
ω2
1x

2 þ 1

2
ω2
1ω

2
2y

2: ð28Þ

In addition we note that with its phase being −Q=2 rather
than −iQ=2, the e−Q=2 operator is not unitary. As we see
from (28), with this nonunitary transformation we bring H̄
to a Hermitian form, since with x, y, p and q all being
Hermitian, it follows that H̄0 is Hermitian too. With H̄0
having the form of two decoupled, conventional, ghost-free
harmonic oscillators each with positive norm states and
positive energy modes, we confirm, just as we had found,
that the same must be true of the untransformed H̄ since
one cannot change the signs of inner products or energies
by a similarity transformation.
In addition we note that e−Q effects e−QH̄eQ ¼ H̄†, a

relation that entails that H̄ and H̄† are isospectrally related.
H̄ and H̄† thus have to have the same set of eigenvalues,
consistent with the fact that all eigenvalues of H̄ are real.
For the PU oscillator we recognize e−Q as being the
operator V that we introduced earlier, and we can thus
write the PU oscillator propagator as

DðtÞ ¼ −ihΩLjTðyðtÞyð0ÞÞjΩRi
¼ −ihΩRje−QTðyðtÞyð0ÞÞjΩRi: ð29Þ

IV. RADIATIVE CORRECTIONS
AND LOOP DIAGRAMS

In analyzing loop diagramswith a total incomingmomen-
tum Pμ we have to consider two situations, Pμ timelike and
Pμ spacelike. For spacelike Pμ the poles in loop diagrams
with a running momentum kμ lie in the upper-left or lower-
right quadrants in the complex k0 plane. The Feynman
contour encloses the lower-left and lower-right quadrants,
and for spacelike Pμ thus encloses those poles with positive
frequency. The Wick contour encloses the lower-left and
upper-right quadrants and thus encloses no poles at all, and
pole structure has no bearing on the evaluation of the
spacelike region Green’s functions. The Wick contour can
be used to explore the off-shell spacelike Euclidean behavior
in PμPμ of loop diagrams, and to determine the behavior in
the timelike region the resulting expressions can then be
analytically continued in PμPμ in order to identify on-shell
branch points and branch cuts. Alternatively, in the timelike
region one could evaluate the Feynman contour directly.
Since momenta are far off-shell in the asymptotic spacelike
region, in that region there is no concern about the relative
minus sign in the propagator affecting probabilities (an on-
shell concept), and one can take advantage of the 1=k4

convergence property of the asymptotic spacelike propaga-
tor. However, we do need to address how the relative minus
sign in the propagator might affect the on-shell structure of
loop diagrams in the timelike region.
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A. The Feynman rules

In order to evaluate intermediate loops we need to
determine the appropriate Feynman rules. We note that
the fourth-order propagator only depends on the field and
not any of its time derivatives, i.e., −ihΩLjTðyðtÞyð0ÞÞjΩRi
in the PU case and −ihΩLjTðϕ̄ðxÞϕ̄ð0ÞÞjΩRi in the
relativistic case where ϕ̄ ¼ −iϕ, which as discussed
below, is the analog of y ¼ −iz. Since it is immaterial to
the Wick contraction procedure as to whether or not
hΩLj is the Hermitian conjugate of jΩRi, the contraction

rules for a string of field operators are exactly the same
as in the standard second-order Hermitian case. Similarly,
the rules for vertices are the same as well. Thus for a
−λy4 ¼ −λz4 or a −λϕ̄4 ¼ −λϕ4 interaction for instance
(each of these interactions being PT symmetric no
matter whether y, z, ϕ̄ or ϕ are PT even or PT odd),
in a two-particle to two-particle scattering amplitude
the one loop graphs (shaped like the symbol ≬)
would contain two intermediate lines and respectively
behave as

ΠðEÞ ¼ iλ2
Z

dω
2π

1

ðω2 − ω2
1Þðω2 − ω2

2Þ
1

ððωþ EÞ2 − ω2
1Þððωþ EÞ2 − ω2

2Þ
;

ΠðPμPμÞ ¼ iλ2
Z

d4k
ð2πÞ4

1

ðk2 −M2
1Þðk2 −M2

2Þ
1

ððkþ pÞ2 −M2
1Þððkþ pÞ2 −M2

2Þ

¼ iλ2

ðM2
1 −M2

2Þ2
Z

d4k

�
1

k2 −M2
2

−
1

k2 −M2
1

��
1

ðkþ pÞ2 −M2
2

−
1

ðkþ pÞ2 −M2
1

�
: ð30Þ

In (30) we have used ḠðEÞ and the D̄ðxÞ ¼
−ihΩLjTðϕ̄ðxÞϕ̄ð0ÞÞjΩRi propagator given in (82) below.
Thus the Wick contraction procedure is the standard one,
with the only difference being that one should use the
fourth-order derivative theory propagator rather than the
standard second-order one, with there being no modifica-
tion in the rules for vertices.

B. The cutting rules

Suppose we now try to cut propagators in intermediate
loops. We can introduce on-shell intermediate
j1Ri; j2Ri; h1Lj; h2Lj states and evaluate their contribution
to the ḠðtÞ ¼ −ihΩLjyðtÞyð0ÞjΩRi propagator with t > 0,
to obtain

ḠðtÞ ¼ −ihΩLjyðtÞyð0ÞjΩRi
¼ −ihΩLjyðtÞj1Rih1Ljyð0ÞjΩRi − ihΩLjyðtÞj2Rih2Ljyð0ÞjΩRi
¼ −ihΩLjð−ia1e−iω1tÞj1Rih1Ljð−iâ1ÞjΩRi − ihΩLja2e−iω2tj2Rih2Ljâ2jΩRi
¼ −i½−N1e−iω1t þ N2e−iω2t�: ð31Þ

Recognizing (31) as being none other than (24), we thus see
that the intermediate on-shell states associated with cutting
the ḠðtÞ propagator all have positive norm. Thus despite
the relative minus sign in ḠðEÞ [or analogously in
D̄ðk2Þ ¼ R

d4xeik·xθðtÞD̄ðxÞ, where we cut using the states
introduced in the Appendix], all cut lines have positivity,
just as required of the standard Landau-Cutkosky cutting
rules. As we see below, in the field theory case these cutting
rules are consistent with the existence of on-shell branch
cuts in scattering amplitudes, with the masses of the
intermediate on-shell states fixing the locations of branch
points.

C. Pseudounitarity and the time evolution operator

In order to be as general as possible in discussing
unitarity let us consider some general time-independent

Hamiltonian H that does not obey H ¼ H† (as usual the
dagger symbol denotes the operation complex conjugation
plus transposition), but for the moment let us put no other
constraint on it. Let us introduce right-eigenvector states of
H that obey

i∂tjRni ¼ HjRni; −i∂thRnj ¼ hRnjH†: ð32Þ

Because H is not Hermitian, we see that hRnj is not a left
eigenvector of H, with the matrix element hRnðtÞjRnðtÞi ¼
hRnð0ÞjeiH†te−iHtjRnð0Þi not being equal to hRnð0ÞjRnð0Þi,
to thus not be time independent. To construct a Hilbert
space inner product that is time independent, we introduce
a time-independent operator V and a V norm hRnjVjRmi
that thus obeys
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i∂thRnjVjRmi ¼ hRnjðVH −H†VÞjRmi: ð33Þ

Then if V obeys

VH −H†V ¼ 0; ð34Þ

the V norm is preserved in time, with it being the V norm
rather than the standard hRnjRmi Dirac norm that is the one
that is needed in the non-Hermitian case. In [6] a converse
theorem was established, namely that if we start with the
time independence of the V norm as input, then if the jRmi
states are complete we can establish the relation VH −
H†V ¼ 0 as an operator identity. The validity of the relation
VH ¼ H†V entails the time independence of inner prod-
ucts, while the time independence of inner products entails
that VH −H†V ¼ 0. Probability conservation in the sense
of the time independence of inner products and probability
conservation in the sense of completeness of states are thus
just as intimately connected in the non-Hermitian case as
they are in the Hermitian case, and the interplay of these
two notions of probability conservation is central to the
analysis of this paper.
For a V that is invertible (this for instance being the case

for the V ¼ e−Q operator in the PU theory or its relativistic
generalization), we in addition obtain the so-called pseudo-
Hermitian condition [3,4]

VHV−1 ¼ H†: ð35Þ

With H and H† thus being isospectrally related when V is
invertible, they must have the same set of eigenvalues, just
as required of the PU oscillator theory where all eigenval-
ues are real. Moreover, as noted in general in [6], any
Hamiltonian that obeys (35) must necessarily possess an
antilinear symmetry. Requiring that inner products be time
independent is thus equivalent to demanding antilinear
symmetry. If one in addition imposes complex Lorentz
invariance, the antilinear symmetry is uniquely specified to
be CPT [6,7]. With the neutral scalar field IS action being
both CPT and C invariant, the PT symmetry of the PU
oscillator theory that descends from it is thus automatic.
Given (35), we can construct states that are left eigen-

vectors of H. Specifically, we note that

−i∂thRnjV ¼ hRnjH†V ¼ hRnjVH: ð36Þ

We can thus identify the left eigenvectors as hLnj ¼ hRnjV
(here n labels the eigenvector and not one of its components
in any chosen basis) as they obey −i∂thLnj ¼ hLnjH. And
since they do, the so-called biorthogonal inner product
hLnðtÞjRnðtÞi ¼ hLnð0ÞjeiHte−iHtjRnð0Þi ¼ hLnð0ÞjRnð0Þi
is preserved in time.
In the same way that the operator V generates pseudo-

Hermiticity it also generates pseudounitarity, with the time
evolution operator U ¼ e−iHt obeying

UV−1U†V ¼ UV−1eiH
†tV ¼ UeiHt ¼ UU−1 ¼ I: ð37Þ

It is by obeying the relation UV−1U†V ¼ I that U is able to
evolve states so that their norms remain unchanged in time.
With the S matrix being the double limit ti → −∞,

tf → ∞ of U ¼ e−iHðtf−tiÞ, the S matrix obeys

SV−1S†V ¼ I; ð38Þ

a relation that reduces to the familiar SS† ¼ I when V ¼ I
and H ¼ H†. Since S is the limit of a time evolution
operatorU that maintains the time independence of the left-
right inner product, scattering must also maintain proba-
bility. Given such an assurance, scattering involving the
1=ðk2 −M2

2Þ − 1=ðk2 −M2
1Þ propagator must thus, despite

its appearance, preserve probability too. How it actually
does so is shown in more detail below by introducing the T
matrix.
Now instead of just considering Hamiltonians that obey

H† ¼ VHV−1, let us in addition restrict to Hamiltonians
that have all eigenvalues real and all eigenvectors complete.
(As well as allowing for eigenvalues to be real the
isospectral equivalence of H and H† also allows for
eigenvalues to appear in complex conjugate pairs.) Such
Hamiltonians must either already obey H ¼ H† or be
transformable by a (nonunitary) similarity transformation
B into one that does according to BHB−1 ¼ H0 ¼ H0†.
(With H being taken to be time independent here, B can be
taken to be time independent too.) For the primed system
one has eigenvectors that obey

i∂tjR0
ni ¼ H0jR0

ni; −i∂thR0
nj ¼ hR0

njH0; ð39Þ

with the eigenstates of H and H0 being related by

jR0
ni ¼ BjRni; hR0

nj ¼ hRnjB†: ð40Þ

On normalizing the eigenstates of H0 to unity, we obtain

hR0
njR0

mi ¼ hRnjB†BjRmi ¼ δm;n: ð41Þ

With H0 ¼ H0† we obtain

BHB−1 ¼ B†−1H†B†;

B†BHB−1B†−1 ¼ B†BH½B†B�−1 ¼ H†: ð42Þ

We can thus identify B†B with V, and as noted in [16], can
thus establish that the V norm is the B†B norm, so that in
this case hRnjVjRmi ¼ hLnjRmi ¼ δm;n is positive definite.
The interpretation of the V norms as probabilities is then
secured, with their time independence ensuring that prob-
ability is preserved in time.
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D. Pseudounitarity and in and out states

While we can establish the pseudounitarity of the S
matrix by relating it to the evolution operator, because
we are in a non-Hermitian theory it turns out that we
cannot also establish the same pseudounitarity condition
by using the completeness properties of in and out states.
Using the S matrix to relate in and out states actually
makes no reference to the interactions that might occur
between states coming in at ti ¼ −∞ and going out at
tf ¼ þ∞ (these interactions being taken to be adiabati-
cally switched on at ti ¼ −∞ and switched off at
tf ¼ þ∞), and thus only involves solutions to the non-
interacting Hamiltonian; i.e., it only involves the eigen-
states of Hamiltonians such as the free HPU. The in-out
definition of the S matrix does not involve the operator
V that acts while the interaction is active, and thus
cannot recover (38) unless we are in a Hermitian theory
and V ¼ I. Rather, the in-out definition can only involve
the V in and Vout operators associated with the in and out
states themselves. Thus all that is needed for the in-out
definition is the completeness of the in states and
completeness of the out states. For free in and out
theories this is the case as long as the free Hamiltonian is
not of nondiagonalizable Jordan-block form, a form
that we actually encounter below when we discuss the
equal-frequency PU oscillator theory. For the PU case
HPU is similarity equivalent to the Hermitian H̄0

[cf. (28)], so the eigenstates of HPU are indeed complete.
In fact, completeness of the eigenstates of HPU is not in
question since in writing the propagator as 1=ðE2 −
ω2
1Þ − 1=ðE2 − ω2

2Þ [or as 1=ðk2 −M2
1Þ − 1=ðk2 −M2

2Þ]
we are writing the propagator as the sum of two standard
propagators both of whose eigenspectra are complete.
The relative minus sign does not affect completeness,
but as noted in [1,2] and described above, it does affect
what constitutes the appropriate set of eigenvectors.
While we take V in and Vout to be Hermitian,

we note that for the in and out states of any free
Hamiltonian (of which HPU is an example), the relevant
V in and Vout need not actually be Hermitian, since in
the event that the Hamiltonian has complex conjugate
eigenvalues (this would actually be the case for HPU if
one makes the PT-symmetry-preserving substitution
ω1 ¼ ωR þ iωI , ω2 ¼ ωR − iωI [6]), complex conjugate
pairs of eigenvectors would be needed for completeness
and the relevant V would not be Hermitian. (A particle
such as a pion is a stable out state under strong inter-
action scattering but not under electroweak scattering.)
On restricting to Hermitian V in and Vout, the left and right

in and out eigenvectors are related by hLinj ¼ hRinjV in and
V injRini ¼ jLini and hLoutj ¼ hRoutjVout and VoutjRouti ¼
jLouti. They obey the biorthonormal conditions (see e.g., [5])

hLi
injRj

ini ¼ hRi
injV injRj

ini ¼ δi;j;

hLi
outjRj

outi ¼ hRi
outjVoutjRj

outi ¼ δi;j;X
i

jRi
inihRi

injV in ¼
X
i

V injRi
inihRi

inj ¼ I;

X
i

jRi
outihRi

outjVout ¼
X
i

VoutjRi
outihRi

outj ¼ I: ð43Þ

In terms of these in and out states the S matrix operator
that effects hLi

injS ¼ hLi
outj, jLi

outi ¼ S†jLi
ini, jRi

outi ¼
V−1
outS†V injRi

ini is given by

S ¼
X
i

jRi
inihLi

outj ¼
X
i

jRi
inihRi

outjVout:

S† ¼
X
i

jLi
outihRi

inj ¼
X
i

VoutjRi
outihRi

inj: ð44Þ

Thus from (43) and (44) we obtain

SV−1
outS†V in ¼

X
i

jRi
inihRi

outjVoutV−1
out

X
j

VoutjRj
outihRj

injV in

¼
X
i

X
j

jRi
iniδi;jhRj

injV in

¼
X
i

jRi
inihRi

injV in ¼ I: ð45Þ

Consequently, for non-Hermitian but PT- or CPT-invariant
Hamiltonians in-out pseudounitarity of the scattering process
takes the form

SV−1
outS†V in ¼ I: ð46Þ

We note that (46) differs from (38). While (46) is a valid
relation, in the following we use (38) as it directly connects
to the time evolution operator and its Feynman diagram
expansion. Even if a Hamiltonian is not Hermitian it is still
the generator of time translations, and thus in the following
we understand the Smatrix to be the asymptotic time limit of
Uðtf; tiÞ. (Even for potential scattering time-evolution-
operator unitarity differs from in-out unitarity when a
Hamiltonian is not Hermitian, and it is time evolution
unitarity that is relevant. This point will be discussed in
detail elsewhere [17].)

E. Unitarity and CPT

Another way to implement a unitarity condition is to
note [5] that when H is CPT invariant one can set
CPTe−iHt½CPT�−1¼eiHt¼U−1. ThusUCPTU½CPT�−1¼I.

F. The T matrix and the signs of
discontinuities across cuts

To connect to specific scattering diagrams we introduce
the T matrix according to
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S ¼ I − iT; S† ¼ I þ iT†: ð47Þ

For convenience, both here in (47) and throughout we
suppress a four-momentum conserving delta function in
the definition of T. From the pseudounitarity condition
SV−1S†V ¼ I given in (38) we obtain

T − V−1T†V ¼ −iTV−1T†V: ð48Þ
Now while we were able to derive (38) without needing to
require that V be Hermitian, in order to establish the
biorthonormality of the basis vectors, which we need
below, we need V to be writable as the Hermitian V ¼
B†B where B implements BHB−1 ¼ H0 ¼ H0†, with the
theory being similarity equivalent to a Hermitian theory.
We thus restrict to such V operators, since for them we have
both biorthonormality and closure relations of the form

hRnjVjRmi ¼ hLnjRmi ¼ δm;n;

jRnihRnjV ¼ jRnihLnj ¼ I: ð49Þ
On taking left-right matrix elements of the left-hand side

of (48) we obtain

hRαjVðT − V−1T†VÞjRβi ¼ hRαjVTjRβi − hRαjT†VjRβi
¼ hRαjVTjRβi − hRβjVTjRαi�:

ð50Þ
Similarly, from the right-hand side of (48), through use of
the closure relation we obtain

hRαjVTV−1T†VjRβi¼
X
i

hRαjVTjRiihRijVV−1T†VjRβi

¼
X
i

hRαjVTjRiihRijT†VjRβi

¼
X
i

hRαjVTjRiihRβjVTjRii�: ð51Þ

The pseudounitarity condition thus takes the form

hRαjVTjRβi−hRβjVTjRαi�¼−i
X
i

hRαjVTjRiihRβjVTjRii�;

hLαjTjRβi−hLβjTjRαi�¼−i
X
i

hLαjTjRiihLβjTjRii�:

ð52Þ

We recognize this pseudounitarity condition as having none
other than the same generic form that appears in the
standard unitarity situation, save only that we have replaced
the Hermitian conjugates of right eigenvectors of the
Hamiltonian by left eigenvectors.
In (52) all terms are to be calculated at energy Eþ iϵ.

From the Schwarz reflection principle [which holds above
threshold since TðEÞ is real below threshold] we can set

hRβjVTðEþ iϵÞjRαi� ¼ hRβjVTðE − iϵÞjRαi: ð53Þ

We can thus rewrite (52) as

hRαjVTðEþ iϵÞjRβi − hRβjVTðE − iϵÞjRαi
¼ −i

X
i

hRαjVTðEþ iϵÞjRiihRβjVTðEþ iϵÞjRii�;

hLαjTðEþ iϵÞjRβi − hLβjTðE − iϵÞjRαi
¼ −i

X
i

hLαjTðEþ iϵÞjRiihLβjTðEþ iϵÞjRii�: ð54Þ

With the right-hand side of (54) being given by −i times a
positive definite quantity when α ¼ β, we see that when a
Hamiltonian is similarity equivalent to a Hermitian theory,
cut discontinuities have the same signs as they do in standard
unitary theories, with probability conservation above scatter-
ing thresholds thus being implemented in the standard way.
When a theory is not similarity equivalent to a Hermitian
theory there is no automatic positivity requirement and cut
discontinuities are not immediately obliged to be positive.
As derived, (54) is an exact, all-order relation, and all

that goes into its derivation is that the Hamiltonian
obeys VHV−1 ¼ H†, that the time evolution operator is
U ¼ e−iHt, and that H is similarity equivalent to a
Hermitian Hamiltonian. For the −λϕ̄4 theory of interest
to us here the lowest order term in T in a two-particle to
two-particle scattering amplitude is the tree approximation
four-point vertex graph with strength λ (shaped like the
letter X). Since the right-hand side of (54) thus must begin
in order λ2 the conventional tree approximation graph has
no discontinuity. (However, as we see below, through
taking matrix elements in the appropriate V-operator based
states the tree approximation graph in fact acquires an
unconventional imaginary part, one that proves crucial
below.) With the right-hand side of (54) beginning in order
λ2 in the −λϕ̄4 theory, the lowest order graph that could
have a discontinuity would have to be of order λ2, viz.
precisely the one loop graph ΠðPμPμÞ discussed above. To
get the overall phases we recall that the time evolution
operator can be written as the time-ordered product

Uðf;iÞ¼ Iþ
X∞
n¼1

ð−iÞn
n!

Z
f

i
d4x1…d4xnT½HIðx1Þ…HIðxnÞ�;

ð55Þ
where HI is the interaction Hamiltonian density. With
HI being of order λ we can symbolically set S¼
Uðtf¼∞;ti¼−∞Þ¼1−iλα−λ2β, and thus T¼λα−iλ2β.
With λ being taken to be real, when V is Hermitian we thus
obtain T − T� ¼ −iλ2½βðEþ iϵÞ − βðE − iϵÞ� ¼ −iTT� ¼
−iλ2αðEþ iϵÞαðEþ iϵÞ�, with pseudounitarity requiring
that the coefficient βðEþ iϵÞ − βðE − iϵÞ be positive. In
addition we note that since the right-hand side of (54) is
quadratic in T it contains two (suppressed) four-momentum
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conserving delta functions. However, the left-hand side of
(54) is linear in T and thus seemingly only contains one. As
we show below, a second delta function is generated by the
loop diagram integration itself. We thus now proceed to an
evaluation of the loop diagram.

G. Loop cut discontinuities

To evaluate the one loop ΠðPμPμÞ of (30) in the timelike
region we set Pμ ¼ ðp0; 0; 0; 0Þ where p0 is taken to be
positive, with the Feynman causal propagator then taking
the form

Πðp0Þ ¼
iλ2

ðM2
1 −M2

2Þ2
Z

d4k
ð2πÞ4

�
1

k20 − E2
2 þ iϵ

−
1

k20 − E2
1 þ iϵ

��
1

ðk0 þ p0Þ2 − E2
2 þ iϵ

−
1

ðk0 þ p0Þ2 − E2
1 þ iϵ

�
; ð56Þ

where E2
i ¼ k̄2 þM2

i . We write Πðp0Þ symbolically as

Πðp0Þ ¼
λ2

ðM2
1 −M2

2Þ2
½Πð2; 2Þ − Πð1; 2Þ − Πð2; 1Þ þ Πð1; 1Þ�; ð57Þ

with Πð2; 2Þ þ Πð1; 1Þ being standard contributions of the type that one obtains in Hermitian field theories and −Πð1; 2Þ −
Πð2; 1Þ being nonstandard contributions that one obtains because of the relative minus sign in 1=ðk2 −M2

2Þ − 1=ðk2 −M2
1Þ.

We evaluate the k0 integration using the Feynman contour, and on closing the contour below the real k0 axis in a
clockwise direction obtain for the typical Πð1; 2Þ component

Πð1;2Þ¼ i
Z

d4k
ð2πÞ4

1

k20−E2
1þ iϵ

1

ðk0þp0Þ2−E2
2þ iϵ

¼
Z

d3k
ð2πÞ3

�
1

2E1½ðp0þE1Þ2−E2
2þ iϵÞ�þ

1

2E2½ðp0−E2Þ2−E2
1þ iϵ�

�

¼
Z

∞

0

dkk2

2π2
1

4E1E2

�
1

p0þE1−E2þ iϵ
−

1

p0þE1þE2þ iϵ
þ 1

p0−E2−E1þ iϵ
−

1

p0−E2þE1þ iϵ

�

¼
Z

∞

0

dkk2

2π2
1

4E1E2

�
−

1

p0þE1þE2þ iϵ
þ 1

p0−E2−E1þ iϵ

�

¼
Z

∞

0

dkk2

2π2
1

4E1E2

�
−PP

�
1

p0þE1þE2

�
þ iπδðp0þE1þE2ÞþPP

�
1

p0−E2−E1

�
− iπδðp0−E1−E2Þ

�
; ð58Þ

where PP denotes the Cauchy principal part, and where we
have kept the iϵ in order to determine the structure of
Πð1; 2Þ in the complex p0 plane.
Under a CPT transformation theΠð1; 2Þ amplitude would

be complex conjugated and p0 would be replaced by −p0.
On noting that Πð1; 2; p0Þ ¼ Πð1; 2;−p0Þ�, we see that
the theory is CPT symmetric and that the condition
UCPTU½CPT�−1¼I is obeyed identically. With
Πð1;2;p0Þ¼Πð1;2;−p0Þ� we see that even in a non-
Hermitian theory, and even with a 1=ðk2−M2

2Þ−1=ðk2−M2
1Þ

propagator, we still have standard CPT microreversibility.
With p0 being taken to be positive, of the two delta

functions that appear in (58) only δðp0 − E1 − E2Þ con-
tributes, while at the same time the integration over the
PP½1=ðp0 þ E1 þ E2Þ� term becomes an ordinary integral,
with (58) reducing to

Πð1;2Þ¼
Z

∞

0

dkk2

8π2
1

E1E2

�
−

1

p0þE1þE2

þPP

�
1

p0−E2−E1

�
− iπδðp0−E1−E2Þ

�
: ð59Þ

For the delta function term we see that p0 is constrained to
obey p0 ¼ ðk̄2 þM2

1Þ1=2 þ ðk̄2 þM2
2Þ1=2. [This is just the

energy conservation condition for an incoming pair of
particles with total four-momentum ðp0; 0; 0; 0Þ and two
outgoing particles with four-momenta ððk̄2 þM2

1Þ1=2; k̄Þ
and ððk̄2 þM2

2Þ1=2;−k̄Þ, and is, as noted above, needed
to balance delta functions in the nonlinear T − V−1T†V ¼
−iTV−1T†V.] Since the delta function condition can be
satisfied for all allowed k ¼ jk̄j, we thus obtain a cut in the
p0 plane beginning at p0 ¼ M1 þM2. Similarly, Πð1; 1Þ
and Πð2; 2Þ have branch points at p0 ¼ 2M1, p0 ¼ 2M2.
This is just as should be the case if we cut the intermediate
lines in the loop diagram on shell. Thus, as we see, even in
the non-Hermitian case, the cutting rules give the locations
of branch points and branch cuts.
Solving for the value of k that satisfies p0 ¼ E1 þ E2 we

obtain

ðp2
0−2k2−M2

1−M2
2Þ2 ¼ 4ðk2þM2

1Þðk2þM2
2Þ; ð60Þ

from which it follows that
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4p2
0k

2 ¼ p4
0 − 2p2

0ðM2
1 þM2

2Þ þM4
1 þM4

2 − 2M2
1M

2
2;

ð61Þ

with solution k ¼ α where

2p0α¼ ½p2
0− ðM1þM2Þ2�1=2½p2

0− ðM1−M2Þ2�1=2: ð62Þ

On recalling that
R
dkgðkÞδðfðkÞÞ ¼ gðαÞ=f0ðαÞ where

fðαÞ ¼ 0, evaluating the delta function term in (59)
gives

Πð1; 2; δÞ ¼ −
i
8π

α2

ðα2 þM2
1Þ1=2ðα2 þM2

2Þ1=2

×

� ðα2 þM2
1Þ1=2ðα2 þM2

2Þ1=2
α½ðα2 þM2

1Þ1=2 þ ðα2 þM2
2Þ1=2�

�
¼ −

i
8π

α

p0

:

ð63Þ

The complete delta function contribution to Πðp0Þ from
Πð2; 2Þ − Πð1; 2Þ − Πð2; 1Þ þ Πð1; 1Þ is thus given by

Πðp0; δÞ ¼ −
iλ2

8πðM2
1 −M2

2Þ2
Z

dkk2
�

1

E2
2

δðp0 − 2E2Þ þ
1

E2
1

δðp0 − 2E1Þ −
2

E1E2

δðp0 − E1 − E2Þ
�

¼ −
iλ2

8πðM2
1 −M2

2Þ2
�
θðp0 − 2M2Þ

ðp2
0 − 4M2

2Þ1=2
2p0

þ θðp0 − 2M1Þ
ðp2

0 − 4M2
1Þ1=2

2p0

− θðp0 −M1 −M2Þ
½p2

0 − ðM1 þM2Þ2�1=2½p2
0 − ðM1 −M2Þ2�1=2

p2
0

�
; ð64Þ

to nicely exhibit square root branch points at the required
places. [For comparison we note that for the standard
1=ðk2 −M2

2Þ þ 1=ðk2 −M2
1Þ propagator the coefficients of

all of the theta functions would be of the same overall sign
as that of the θðp0 − 2M1Þ term.]
To make contact with the T matrix we recall that in a

Hermitian theory with a propagator of the form 1=ðE −HÞ,
the T matrix behaves as 1=ðE −H þ iϵÞ. Thus, in analog to
(54), in a Hermitian theory the T matrix discontinuity is
given by

TðEþ iϵÞ − TðE − iϵÞ ¼ −2πiδðE −HÞ; ð65Þ
while from the Hermitian theory SS† ¼ I relation wewould
obtain

TðEþ iϵÞ − TðE − iϵÞ ¼ −iTðEþ iϵÞT�ðEþ iϵÞ: ð66Þ
Now as introduced, in the non-Hermitian fourth-order
derivative case we can identify T ¼ iðS − IÞ with Πðp0Þ.
Comparing with (64) we see that the Πð2; 2Þ þ Πð1; 1Þ
contribution has the positive standard signature that would
occur in a Hermitian theory, while the −Πð1; 2Þ − Πð2; 1Þ
contribution has a nonstandard negative signature. Now we
have constructed the V operator of the PU theory to be the
Hermitian e−Q, and thus (52) and (54) should be obeyed
and all cut discontinuities should have positive signature.
And yet the one associated with the −Πð1; 2Þ − Πð2; 1Þ
contribution does not. We now clarify the point and show
that despite this pseudounitarity is in fact obeyed.

H. Reconciling negative cut discontinuities
with pseudounitarity

In adding on a−λy4 term or a−λϕ̄4 term to the Lagrangian
weare replacing aHamiltonian such as H̄ of (15) by H̄ þ λy4.

Now since we have added on a Hermitian λy4, we might
expect that this should not affect Hermiticity considerations,
but in fact it does since H̄ is not Hermitian. Specifically, we
introduced the Hermitian Q operator of (26) that effects
e−QH̄eQ ¼ H̄† while generating an H0 ¼ e−Q=2H̄eþQ=2

that is Hermitian. However under this latter transforma-
tion y transforms into y0 ¼ e−Q=2yeQ=2 ¼ y cosh θ þ
iðα=βÞ1=2p sinh θ where θ ¼ ðαβÞ1=2=2. With y and p both
being Hermitian, we see that y0 is not Hermitian. Thus after
transforming with Q we find that e−Q=2½H̄ þ λy4�eQ=2 ¼
H̄0 þ λy04 is not Hermitian, and that the Hermiticity of λy4

has effectively been transformed away. In passing we note
that if ywere not to transform, theHamiltonianwould then be
of the standard anharmonic oscillator form H̄0 þ λy4 ¼
p2=2þ q2=2ω2

1 þ ω2
1x

2=2þ ω2
1ω

2
2y

2=2þ λy4 with propa-
gator 1=ðE2 − ω2

1Þ þ 1=ðE2 − ω2
2Þ, an entirely different

theory, one not similarity equivalent to H̄ þ λy4 at all.
Now the derivation of (52) and (54) requires that the

requisite V be of the form B†B where the BHB−1 trans-
formation brings the Hamiltonian to a Hermitian form.
However, this is not the case for H̄ þ λy4 even though the
free theory e−Q=2 is Hermitian. Consequently, the pseu-
dounitarity condition given in (52) and (54) does not apply
and cut discontinuities are not obliged to be positive. The
calculation of the loop diagram that we have presented is
thus not in conflict with either standard unitarity or the
pseudounitarity condition (52) and (54) as neither applies.
However, that does not therefore mean that there is a

negative cut discontinuity in the theory, since in the
presence of the λy4 term the operator e−Q is no longer
the relevant V operator. Rather, we need an operator that
brings the entire H̄ þ λy4 to a Hermitian form, rather than
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just H̄ itself. Perturbatively, we would only need to do this
to lowest order in λ. So let us introduce a new operator
B̂ ¼ ð1þ λAÞe−Q=2, with B̂−1 ¼ eQ=2ð1 − λAÞ, and B̂† ¼
e−Q=2ð1þ λA†Þ to lowest order in λ. To lowest order in λ let
us identify

V̂ ¼ B̂†B̂ ¼ e−Q=2ð1þ λAþ λA†Þe−Q=2;

V̂−1 ¼ eQ=2ð1 − λA − λA†ÞeQ=2: ð67Þ

If B̂ðH̄ þ λy4ÞB̂−1 is Hermitian, it is equal to
B̂†−1ðH̄† þ λy4ÞB̂†, with V̂ ¼ B̂†B̂ thus implementing

V̂ðH̄ þ λy4ÞV̂−1 ¼ H̄† þ λy4. Similarly, if V̂ implements
V̂ðH̄ þ λy4ÞV̂−1 ¼ H̄† þ λy4, then B̂ðH̄ þ λy4ÞB̂−1 is
Hermitian. Thus to fix A we just need to satisfy

V̂ðH̄þλy4ÞV̂−1¼ e−QH̄eQþλe−Q=2ðAþA†Þe−Q=2H̄eQ

−λe−QH̄eQ=2ðAþA†ÞeQ=2þλe−Qy4eQ

¼ H̄†þλy4¼ e−QH̄eQþλy4; ð68Þ

with A being the solution to

ðAþ A†Þe−Q=2H̄eQ=2 − e−Q=2H̄eQ=2ðAþ A†Þ ¼ eQ=2y4e−Q=2 − e−Q=2y4eQ=2;�
Aþ A†;

p2

2
þ q2

2ω2
1

þ 1

2
ω2
1x

2 þ 1

2
ω2
1ω

2
2y

2

�
¼ −

8i
ðω2

1 − ω2
2Þ2

�
ω2
1y

3p −
1

ω2
1

yp3

�
; ð69Þ

where the second form given in (69) follows from (26)–(28).
While it does not appear to be possible to solve for A

analytically, we note that in lowest order perturbation theory
the shift to any energy eigenvalueof the free H̄ theory is given
by λhnLjy4jnRi ¼ λhnRje−Qy4jnRi. With such a shift being
real [since it must contain an even number of the i factors
given in (16) for yðtÞ], to lowest order in λ we see that the
eigenvalues of H̄ þ λy4 are all real. With the eigenvectors
being complete (something that cannot change in perturba-
tion theory) H̄ þ λy4 must be similarity equivalent to a
Hermitian Hamiltonian. Therefore theremust be a B̂ and a V̂,
and there therefore must be a solution for A. Therefore
according to (54) there thus must be a pseudounitarity
relation for V̂ of the form

hRαjV̂ T̂ðEþ iϵÞjRβi− hRβjV̂ T̂ðE− iϵÞjRαi
¼−i

X
i

hRαjV̂ T̂ðEþ iϵÞjRiihRβjV̂ T̂ðEþ iϵÞjRii�; ð70Þ

where T̂ is the T matrix for H̄ þ λy4.
Even though (70) guarantees that there are no negative

cut discontinuities in T̂, it is instructive to see how the
negative cut discontinuity in the loop diagram is actually
canceled since it is not immediately apparent. With the
negative cut discontinuity in the loop diagram being of
order λ2, we need to generate an additional term of order λ2

in (70), and not only that, it would need to be imaginary.
With the difference between V̂ and e−Q being of order λ, on
the left-hand side of (70) we would need a contribution
from T̂ that is also of order λ. Since in general one can
write the T matrix for a Hamiltonian H0 þHI as T ¼
HI þH1ðE −H0 þ iϵÞ−1HI þ � � � ·, the term of relevance
for us in T̂ would be T̂ ¼ λy4. As per the structure of (52),
the relevant term of order λ2 in the left-hand side of (70) is
thus given by

hRαjV̂ T̂ jRβi − hRβjV̂ T̂ jRαi�
¼ λ2

X
i

½hRαje−Q=2ðAþ A†Þe−Q=2jRiihRije−Qy4jRβi − ðhRαje−Q=2ðAþ A†Þe−Q=2jRiihRije−Qy4jRβiÞ��;

¼ λ2
X
i

½hRαje−Q=2ðAþ A†Þe−Q=2jRii − hRαje−Q=2ðAþ A†Þe−Q=2jRii��hRije−Qy4jRβi

¼ λ2
X
i

½hLαjeQ=2ðAþ A†Þe−Q=2jRii − hLαjeQ=2ðAþ A†Þe−Q=2jRii��hLijy4jRβi ð71Þ

a term which nicely has an imaginary part of order λ2. We
note that to order λ2 all the states that appear in (71) have to
be λ independent. These states thus have to be eigenstates
of H̄, and as noted above, for them matrix elements of y4

are real. Consequently, in (71) we were able to set
hRije−Qy4jRβi ¼ hRije−Qy4jRβi�. Also we note that while
y4 could connect an external two-particle state to an
intermediate state with 0, 2, 4 or 6 particles, the only loop
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diagram negative cut discontinuity that would need to be
canceled in order λ2 is the one associated with the two-
particle to two-particle Πð1; 2Þ. (A two-particle to four-
particle loop for instance would be of order λ3.) Hence in
(71) all states of interest to us here are two-particle states.
With the insertion of a summation of a complete set of

on-shell intermediate two-particle states that we have
made in (71), (71) has exactly the same δðp0 − 2E2Þ,
δðp0 − 2E1Þ, δðp0 − E1 − E2Þ set of delta functions as the
one loop Πðp0; δÞ given in (64). When the delta function
terms in (64) and (71) are combined on the left-hand side of
(70) [(70) contains all λ2 contributions], the coefficients
of each of the three of them are then of the standard form
of −i times a positive quantity. Thus the introduction of V̂
does not affect the locations of the branch points or the
presence of branch cuts, but does affect the magnitudes and
signs of the discontinuities across the cuts.
As we see, the essence of the effect is that while both

hRjλy4jRi and hRje−Qλy4jRi would be real and first order
in λ, hRjV̂λy4jRi contains a term that is both second order
in λ and complex. The effect is entirely due to the states in
which we evaluate matrix elements and not due to the
vertex itself, with the vertex still being the bare point-
coupled λy4. For the vertex itself the contribution of interest
to us is an order λ tree approximation contribution, with a
second power of λ being generated through the fact that the
Hamiltonian is not Hermitian, with left eigenvectors not
being the Hermitian conjugates of right eigenvectors.
In addition, not only does the generation of this second

power of λ lead to the cancellation of the negative cut
discontinuity, it involves no momentum dependence other
than the energy conserving delta functions, and thus does
not affect the asymptotic spacelike behavior of the theory.
Thus even while we cancel the negative cut discontinuity,
we lose none of the good ultraviolet behavior of the
1=ðk2 −M2

2Þ − 1=ðk2 −M2
1Þ propagator. Moreover, this

same cancellation generalizes to higher order graphs with
negative-signatured discontinuities in loop graphs of order
λ2n being canceled by a tree graph with a V̂ contribution of
order λ2n−1 and a four-point vertex contribution of order λ.
Thus with the inclusion of the λ-dependent term in V̂ all cut
discontinuities in Feynman diagrams obey the positivity
that is required by the pseudounitarity condition given in
(70). It is thus through the very unusual behavior of the
tree approximation graph contribution then that unitarity
is secured, with there being no observable negative
probabilities.
To conclude, we see that having a 1=ðk2 −M2

2Þ −
1=ðk2 −M2

1Þ propagator does not lead to nonconservation
of probability. We also note that the very mechanism that
leads to the partial fraction decomposition of the 1=ðk2 −
M2

2Þ − 1=ðk2 −M2
1Þ propagator in the first place, namely

the existence of a fourth-order derivative theory based on
IS, also leads to the theory being non-Hermitian but PT

symmetric. And this in turn is then responsible for main-
taining the unitarity in loop diagrams that provides for the
resolution of the very problem that this propagator appears
to create. Thus by possessing this wisdom, the fourth-order
theory is able to take care of itself.
However, as we see below, the wisdom associated with

the pole structure of the fourth-order theory will itself need
to be modified in the equal-frequency or equal or zero mass
limits, since the partial fraction decompositions into two
separate pole terms as given in (23) and (82) below become
undefined when ω1 ¼ ω2 and M1 ¼ M2. However, despite
the fact that we get a modification to the pole structure of
the propagator in the equal frequency or M1 ¼ M2 ¼ 0
limits, we can nonetheless construct the relevant M1 ¼
M2 ¼ 0 propagator by taking the limit, to then enable us to
obtain the relevant Feynman rules and contours associated
with a 1=k4 propagator. Moreover, since no negative norm
states are present before we take the limit, none are found in
the limit either. While we are able to extract information
about the pure massless theory 1=k4 propagator via a study
of the limit of the 1=ðk2 −M2

2Þ − 1=ðk2 −M2
1Þ propagator,

as is typical of massless theories there are infrared
divergence issues associated with a 1=k4 propagator.
Their study is beyond the scope of this paper.

V. THE PAULI-VILLARS REGULATOR SCHEME
AND THE LEE-WICK MECHANISM

In trying to regulate the asymptotic momentum behavior
of Feynman diagrams, Pauli and Villars [18] suggested that
one replace DðkÞ ¼ 1=ðk2 −M2

2Þ by DðkÞ ¼ 1=ðk2 −M2
2Þ

−1=ðk2 −M2
1Þ. As conceived by Pauli and Villars it was

necessary that both of the 1=ðk2 −M2
2Þ and 1=ðk2 −M2

1Þ
propagators couple to vertices with the same relative sign.
The two propagators would act as mirror images of each
other, to thus be associated with two independent and
decoupled second-order derivative actions

IS2 þ IS1 ¼
Z

d4x

�
1

2
∂μϕ2∂μϕ2−

1

2
M2

2ϕ
2
2− λϕ4

2

�

þ
Z

d4x

�
1

2
∂μϕ1∂μϕ1 −

1

2
M2

1ϕ
2
1− λϕ4

1

�
: ð72Þ

However, in order to generate the relative minus sign in
DðkÞ ¼ 1=ðk2 −M2

2Þ − 1=ðk2 −M2
1Þ so as to effect the

regulation cancellation, one would have to take ϕ2 to be
quantized with positive norm and ϕ1 to be quantized in a
negative norm Krein space. Thus in this case the relative
minus sign inDðkÞ really would be due to using an indefinite
metric.
The objective of Pais and Uhlenbeck was to see whether

one could generate the same DðkÞ ¼ 1=ðk2 −M2
2Þ −

1=ðk2 −M2
1Þ propagator from an action involving a single

field, namely the fourth-order derivative IS associated with
a single field ϕ. However, it was thought that this IS action
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would itself lead to either negative energy states or negative
norm states. And it was only with the work of [1,2] that it
was shown that there were in fact no states of negative norm
or negative energy in the PU two-oscillator theory after all.
Left open was the question of how one could avoid negative
probabilities once one switched on a −λϕ4 interaction.
Since we have now addressed this question in this paper, it
appears to us that one does not need to consider the action
based on (72) at all, and that via a fourth-order derivative
IS-based theory one can have Pauli-Villars regulation
without negative norm states or loss of unitarity.
With there being no unitarity problem for both the free and

interacting fourth-order derivative theories, there is no need
to invoke the Lee-Wick mechanism [19] for the DðkÞ ¼
1=ðk2 −M2

2Þ − 1=ðk2 −M2
1Þ propagator. In this mechanism

Lee and Wick took the DðkÞ propagator to be associated
with a nonunitary, indefinite metric theory of the form
exhibited in (72), and then found that they could
obtain unitarity if they took the masses to be complexified
into a complex conjugate pair according to D̃ðkÞ ¼
1=ðk2 −M2 þ iN2Þ − 1=ðk2 −M2 − iN2Þ. Now we noted
above that for anyH with antilinear symmetry,H andH† are
related by VHV−1 ¼ H†. With H and H† thus having the
same set of eigenvalues, the eigenvalues of H can either be
real or appear in complex conjugate pairs. Thus not only does
DðkÞ ¼ 1=ðk2 −M2

2Þ − 1=ðk2 −M2
1Þ fall into the class of

antilinearly symmetric theories, so does D̃ðkÞ ¼ 1=ðk2 −
M2 þ iN2Þ − 1=ðk2 −M2 − iN2Þ [6]. Thus both of theDðkÞ
and D̃ðkÞ propagators are associated with unitary theories,
both of the propagators are associated with non-Hermitian
Hamiltonians that possess an antilinear symmetry, and there
is no need to complexifyDðkÞ in order to obtain unitarity as
not only doesDðkÞ already possess it, the theory continues to
possess it in the presence of interactions.
Also in regard to the Lee-Wick mechanism, we recall that

in the literature there have been some concerns expressed as
towhether or not it is causal. To this endwe note that through
use of the fourth-order propagator equation given in (82)
below both of the DðkÞ and D̃ðkÞ propagators have been
shown to be causal [6]. [Both 1=ðk2 −M2

2Þ and 1=ðk2 −M2
1Þ

are separately causal if one uses the Feynman contour for
each one, and the pole structure does not change if one uses
1=ðk2 −M2

2Þ and−1=ðk2 −M2
1Þ.]Moreover, in the presence

of interactions, if the theory remains similarity equivalent to
a Hermitian theory causality could not be lost. However, if
interactions were to move poles from the lower-right quad-
rant in the complex k0 plane to the upper-right quadrant, or
if one were to work with D̃ðkÞ ¼ 1=ðk2 −M2 þ iN2Þ −
1=ðk2 −M2 − iN2Þ propagator, then, as noted in [5], to
maintain causality the Feynman contour would have to be
deformed so that these upper-right-quadrant poles would be
enclosed in the contour integration. Thuswhen theLee-Wick

mechanism is associated with a fourth-order derivative
theory its causality can be secured.

VI. THE EQUAL-FREQUENCY LIMIT
OF THE PU THEORY

While we can use the Q operator to bring H̄ to the
Hermitian H̄0 given in (28), we note that the factor α in (26)
becomes undefined in the equal-frequency limit in which
ω1 and ω2 become equal. In addition, in this limit the
commutation relations in (17) also become singular.
Moreover, if we make the partial fraction decomposition
of the propagator given in (23), we see that in the limit
ω2
1 → ω2

2, the decomposition becomes undefined, with the
limit being singular. The decomposition of the unequal-
frequency propagator into two separate pole terms thus
does not provide a reliable guide as to the pole structure
of the equal-frequency theory as the limit is singular. In
fact, the equal-frequency theory is qualitatively different
from the unequal-frequency theory, with it being found [2]
that in the equal-frequency limit H̄ cannot be brought to a
Hermitian form at all, as it instead becomes of non-
diagonalizable Jordan-block form.
To see explicitly what happens in this limit, we set

ω1 ¼ ωþ ϵ, ω2 ¼ ω − ϵ, and rewrite ḠðtÞ of (24) as

ḠðtÞ ¼ −
i

8ωϵ

�
−
e−iðωþϵÞt

ωþ ϵ
þ e−iðω−ϵÞt

ω − ϵ

�
: ð73Þ

On taking the ϵ → 0 limit we obtain

ḠðtÞ ¼ −
ie−iωt

8ωϵ

�
−
ð1 − iϵtÞ
ωþ ϵ

þ ð1þ iϵtÞ
ω − ϵ

�
: ð74Þ

Thus we obtain

ḠðtÞ ¼ −
ie−iωt

4ω3
½1þ iωt�; ð75Þ

and note that it was only because the N1 and N2 terms in
(25) did have opposite signs that we were able to cancel the
overall 1=ϵ factor in (74) and get a finite limiting value in
(75). Inspection of (75) shows it to consist of one standard,
stationary, oscillating e−iωt term together with a nonstand-
ard, nonstationary te−iωt term that grows in time. Now a
Jordan-block Hamiltonian cannot be diagonalized because
it has an incomplete set of eigenstates. The two stationary
eigenstates j1i and j2i that existed before we took the
equal-frequency limit reemerge as one stationary state and
one nonstationary state, with the nonstationary state being a
solution to the time-dependent Schrödinger equation but
not to the time-independent one [2].
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On Fourier transforming θðtÞḠðtÞ, we obtain

ḠðEÞ ¼ 1

4ω2

�
1

ωðE − ωþ iϵÞ −
1

ðE − ωþ iϵÞ2
�
; ð76Þ

with (76) being the ϵ → 0 limit of (25). We recognize the
þ1=½4ω3ðE − ωþ iϵÞ� term as being a one-particle pole
term, and note not only that its contribution to ḠðEÞ is
positive definite, but that this positivity is obtained only
because we had to continue z into the complex plane and
replace it by y ¼ −iz. While there is a relative minus sign
between the two pole terms of order 1 in the unequal-
frequency ḠðEÞ, in the equal-frequency limit its single pole
term of order 1 has no minus sign, with the other pole term
of order 1 being replaced by a double pole term of order 2.
To get the Feynman rules for the equal-frequency PU
oscillator one can start with the Feynman rules for H̄ of (15)
or (19) and take the ϵ → 0 limit. However, since nonsta-
tionary states are involved in the ϵ ¼ 0 Jordan-block case,
the standard cutting rules would not apply.

VII. THE ZERO MASS LIMIT OF
THE SCALAR FIELD THEORY

When we first studied the scalar action IS in (1) we set
ω1 ¼ ðk̄2 þM2

1Þ1=2, ω2 ¼ ðk̄2 þM2
2Þ1=2, and to obtain a

nonrelativistic limit then dropped jk̄j. However, there is a
second limit, namely to set M1 ¼ 0, M2 ¼ 0 while retain-
ing jk̄j with no nonrelativistic limitation on its magnitude
being needed, and then identify ω1 ¼ ω2 ¼ jk̄j ¼ ω.
Specifically, if we set both M1 and M2 equal to 0 in IS,
then IS and T00 given in (3) take the form

ISðM1¼M2 ¼ 0Þ¼ 1

2

Z
d4x∂μ∂νϕ∂μ∂νϕ;

T00ðM1¼M2 ¼ 0Þ¼−⃛ϕ _ϕþ _ϕ∇2 _ϕþ1

2
ϕ̈2−

1

2
∂i∂jϕ∂i∂jϕ:

ð77Þ

To show that ISðM1 ¼ M2 ¼ 0Þ is analogous to the equal-
frequency IPU, we initially assume this to be the case and
then show that the assumption is consistent. With the
unequal-frequency HPU being given in (11), in the equal-
frequency limit HPU is given by

HPU ¼ p2
x

2
þ pzxþ ω2x2 −

1

2
ω4z2: ð78Þ

Thus we can set

ϕ≡ z;

_ϕ≡ i½HPU; z� ¼ x;

ϕ̈≡ i½HPU; x� ¼ px;

⃛ϕ≡ i½HPU; px� ¼ −pz − 2ω2x: ð79Þ

On taking the spatial dependence of ϕ to be eik̄·x̄ we obtain

T00ðM1 ¼ M2 ¼ 0Þ≡ p2
x

2
þ pzxþ ω2x2 −

1

2
ω4z2: ð80Þ

Since we recognize T00ðM1 ¼ M2 ¼ 0Þ as being the equal-
frequency HPU, our identification of ISðM1 ¼ M2 ¼ 0Þ
with the equal-frequency IPU is valid, and results that we
obtained for the equal-frequency PU oscillator thus apply to
ISðM1 ¼ M2 ¼ 0Þ, with ISðM1 ¼ M2 ¼ 0Þ thus also being
associated with a Jordan-block Hamiltonian. We also note
that with ½x; z� ¼ 0, ½px; z� ¼ 0, ½pz; z� ¼ −i, from (79) we
obtain the pattern of equal time commutators

δðtÞ½ _ϕðxÞ;ϕð0Þ� ¼ 0;

δðtÞ½ϕ̈ðxÞ;ϕð0Þ� ¼ 0;

δðtÞ½⃛ϕðxÞ;ϕð0Þ� ¼ iδ4ðxÞ; ð81Þ

which enforces ð∂2
t −∇2Þð∂2

t −∇2ÞDðxÞ ¼ −δ4ðxÞ when
DðxÞ ¼ ihΩjTðϕðxÞϕð0ÞÞjΩi, as required to be in line with
(4). To summarize, we see that the unequal-frequency PU
two-oscillator model corresponds to the nonrelativistic
limit of a second-order plus fourth-order derivative IS
theory, while the equal-frequency PU oscillator model
corresponds to a pure fourth-order derivative ISðM1 ¼
M2 ¼ 0Þ theory with no mass terms.
While we have related T00ðM1 ¼ M2 ¼ 0Þ to HPU, as

withHPU we actually need to find analogs of (14) and (15).
We thus introduce ϕ̄ ¼ −iϕ. We provide an analog of H̄ in
(A1) below, and replace the DðxÞ ¼ ihΩjTðϕðxÞϕð0ÞÞjΩi
propagator by D̄ðxÞ ¼ −ihΩLjTðϕ̄ðxÞϕ̄ð0ÞÞjΩRi. For non-
zero masses first, using the commutators provided in (A2)
below, the propagator obeys

ð∂2
t −∇2þM2

1Þð∂2
t −∇2þM2

2ÞD̄ðxÞ¼−δ4ðxÞ;

D̄ðxÞ¼
Z

d4k
ð2πÞ4e

−ik·xD̄ðkÞ¼−
Z

d4k
ð2πÞ4

e−ik·x

ðk2−M2
1Þðk2−M2

2Þ

¼
Z

d4k
ð2πÞ4

1

ðM2
1−M2

2Þ
�
−

e−ik·x

k2−M2
1

þ e−ik·x

k2−M2
2

�
; ð82Þ

while for the zero mass ISðM1 ¼ M2 ¼ 0Þ we have
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ð∂2
t −∇2Þð∂2

t −∇2ÞD̄ðxÞ ¼ −δ4ðxÞ;

D̄ðxÞ ¼ −
Z

d4k
ð2πÞ4

e−ik·x

k4
¼ −

Z
d4k
ð2πÞ4

e−ik·x

ðk20 − k̄2 þ iϵÞ2 ¼ −
Z

d3kdE
ð2πÞ4

e−iEtþik̄·x̄

ðE2 − ω2 þ iϵÞ2 : ð83Þ

As we establish momentarily, the last expression given in (83) defines the contour needed for the complex k0 ¼ E plane
integration. Since the pure fourth-order propagator is of the 1=k4 form, it does not admit of a partial fraction decomposition,
and thus suffers from none of the negative probability concerns that we had to resolve above for the second-order plus
fourth-order propagator given in (5).
For the 1=k4 propagator we can rewrite the integrand in the last expression in (83) as

ḠðEÞ ¼ −
1

ðE2 − ω2 þ iϵÞ2 ¼ −
1

2ω

d
dω

�
1

2ωðE − ωþ iϵÞ −
1

2ωðEþ ω − iϵÞ
�

¼ 1

4ω2

�
1

ωðE − ωþ iϵÞ −
1

ðE − ωþ iϵÞ2
�
−

1

4ω2

�
1

ωðEþ ω − iϵÞ þ
1

ðEþ ω − iϵÞ2
�
: ð84Þ

With (84) recovering (76) at the E ¼ þω pole, we confirm
that the form for 1=k4 as 1=ðk20 − k̄2 þ iϵÞ2 is the correct
form for the complex k0 plane singularity structure of 1=k4

[i.e., not 1=ðk4 þ iϵÞ]. With the pure fourth-order theory
massless propagator being given by an expression D̄ðxÞ ¼
−ihΩLjTðϕ̄ðxÞϕ̄ð0ÞÞjΩRi that contains the scalar field ϕ̄ but
none of its time derivatives, the Wick contractions needed
for the Feynman rules proceed as with the massive field IS
given in (1), with Feynman contours being evaluated
according to the 1=ðk20 − k̄2 þ iϵÞ2 prescription.
To confirm that there are no states of negative norm in

the massless theory case (which there could not be since
we constructed it as the limit of a massive theory that was
ghost free), we note that we can also write the massless
propagator as the limit

D̄ðkÞ¼−
1

ðk2þ iϵÞ2¼− lim
M2→0

d
dM2

�
1

k2−M2þ iϵ

�
; ð85Þ

i.e., we can write the massless propagator as the deriva-
tive of a completely standard, ghost-free, positive norm
1=ðk2 −M2 þ iϵÞ propagator, with the 1=k4 propagator
then not containing any states of negative norm. The utility
of the form given in (85) is that it exhibits the appropriate iϵ
prescription needed for the 1=ðk2 þ iϵÞ2 propagator. In
addition the form given in (85) is very convenient for

monitoring infrared divergences that appear in the mass-
less limit.
Finally, we note that despite its Jordan-block structure,

the pure fourth-order derivative theory is not without
physical interest as the conformal gravity theory [viz. a
conformal invariant theory of gravity that is based on the
action IW ¼ −αg

R
d4xð−gÞ1=2CλμντCλμντ where Cλμντ is the

conformal Weyl tensor and αg is a dimensionless coupling
constant] that has been advanced as a candidate alternative
to standard gravity is also a pure fourth-order derivative
Jordan-block theory [20]. When quantized around flat
spacetime its lowest order propagator is of the same
1=k4 form that we have studied in this paper. With the
conformal gravity theory propagator being of this highly
convergent 1=k4 form in the ultraviolet the theory is
renormalizable. Similarly, since there are no states of
negative norm in the theory to lowest perturbative order,
none can be generated in higher perturbative order either.
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APPENDIX: THE RELATIVISTIC CASE

Given the analogy with the PU two-oscillator model, for
the full relativistic case the Hamiltonian H̄ and commuta-
tion relations associated with ϕ̄ ¼ −iϕ are given by [2]

H̄ ¼
Z

d3k

�
2ðM2

1 −M2
2Þðk̄2 þM2

1Þâ1;k̄a1;k̄ þ 2ðM2
1 −M2

2Þðk̄2 þM2
2Þâ2;k̄a2;k̄

þ 1

2
ðk̄2 þM2

1Þ1=2 þ
1

2
ðk̄2 þM2

2Þ1=2
�
; ðA1Þ

and
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δðtÞ½ _̄ϕðxÞ; ϕ̄ð0Þ� ¼ 0; δðtÞ½ ̈ϕ̄ðxÞ; ϕ̄ð0Þ� ¼ 0; δðtÞ½⃛ϕ̄ðxÞ; ϕ̄ð0Þ� ¼ −iδ4ðxÞ;
½a1;k̄; â1;k̄0 � ¼ ½2ðM2

1 −M2
2Þðk̄2 þM2

1Þ1=2�−1δ3ðk̄ − k̄0Þ;
½a2;k̄; â2;k̄0 � ¼ ½2ðM2

1 −M2
2Þðk̄2 þM2

2Þ1=2�−1δ3ðk̄ − k̄0Þ;
½a1;k̄; a2;k̄0 � ¼ 0; ½a1;k̄; â2;k̄0 � ¼ 0; ½â1;k̄; a2;k̄0 � ¼ 0; ½â1;k̄; â2;k̄0 � ¼ 0; ðA2Þ

where all relative signs are positive (we take M2
1 > M2

2). The field expansion is given by

ϕ̄ðxÞ ¼
Z

d3k

ð2πÞ3=2 ½−ia1;k̄e
−ik1·x þ a2;k̄e

−ik2·x − iâ1;k̄e
ik1·x þ â2;k̄e

ik2·x�: ðA3Þ

The left and right vacua obey

a1;k̄jΩRi ¼ 0; a2;k̄jΩRi ¼ 0; hΩLjâ1;k̄ ¼ 0; hΩLjâ2;k̄ ¼ 0; hΩLjΩRi ¼ 1; ðA4Þ

and the one-particle states with energies ðk̄2 þM2
1Þ1=2 and ðk̄2 þM2

2Þ1=2 above the ground state are given by

jkiRi ¼ ½2ðM2
1 −M2

2Þðk̄2 þM2
i Þ1=2�1=2âi;k̄jΩRi;

hkiLj ¼ ½2ðM2
1 −M2

2Þðk̄2 þM2
i Þ1=2�1=2hΩLjai;k̄; ðA5Þ

as normalized according to

hk1Ljk1Ri ¼ 1; hk2Ljk2Ri ¼ 1; hk1Ljk2Ri ¼ 0; hk2Ljk1Ri ¼ 0; jk1Rihk1Lj þ jk2Rihk2Lj ¼ I: ðA6Þ

Through use of the commutation relations, in analog to (31) we obtain the on-shell contributions

hΩLjϕ̄ð0Þjk1Rihk1Ljϕ̄ð0ÞjΩRi ¼ −
1

ð2πÞ32ðk̄2 þM2
1Þ1=2ðM2

1 −M2
2Þ
;

hΩLjϕ̄ð0Þjk2Rihk2Ljϕ̄ð0ÞjΩRi ¼
1

ð2πÞ32ðk̄2 þM2
2Þ1=2ðM2

1 −M2
2Þ
: ðA7Þ

Thus just as we found in the PU case, in analog to (31), the relative minus sign in D̄ðxÞ as given in (82) originates in the
relative minus sign given in (A7), with all on-shell intermediate states having positive norm.
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