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We study scalar-tensor theories respecting the projective invariance in the metric-affine formalism. The
metric-affine formalism is a formulation of gravitational theories such that the metric and the connection
are independent variables in the first place. In this formalism, the Einstein-Hilbert action has an additional
invariance, called the projective invariance, under a shift of the connection. Respecting this invariance for
the construction of the scalar-tensor theories, we find that the Galileon terms in curved spacetime are
uniquely specified at least up to quartic order which does not coincide with either the covariant Galileon or
the covariantized Galileon. We also find an action in the metric-affine formalism which is equivalent to
class 2N-I/Ta of the quadratic degenerated higher order scalar-tensor (DHOST) theory. The structure of
DHOST would become clear in the metric-affine formalism since the equivalent action is just linear in the
generalized Galileon terms and non-minimal couplings to the Ricci scalar and the Einstein tensor with
independent coefficients. The fine-tuned structure of DHOST is obtained by integrating out the connection.
In these theories, nonminimal couplings between fermionic fields and the scalar field may be predicted. We

discuss possible extensions which could involve theories beyond DHOST.

DOI: 10.1103/PhysRevD.98.044038

I. INTRODUCTION

Einstein’s general relativity (GR) is now accepted as the
standard theory of gravity which provided an important
insight on physics: a gravitational field corresponds to a
deviation of the spacetime geometry from the flat spacetime
geometry. Although it was believed that only the (pseudo-)
Euclidean geometry is relevant to physics, the idea of GR
tells us that the Euclidean geometry is just a special case in
physical systems. GR is usually formulated in the (pseudo-)
Riemannian geometry in which all intrinsic structure of the
geometry is uniquely determined by the metric. The
Einstein equation is regarded as the equation of motion
of the metric. However, we should emphasize that the
Riemannian geometry is still a special case and there is a
more general framework of the geometry called the metric-
affine geometry (see [1,2] for reviews). The structure of the
metric-affine geometry is defined in terms of two indepen-
dent geometrical objects, the metric and the connection,
i.e., the quantities defining the inner product and the
parallel transport, respectively. Only if one assumes the
metric compatibility condition and the torsionless condition
(detailed in Sec. II), the metric-affine geometry is reduced
to the Riemannian geometry. A point is that GR formulated
in the metric-affine geometry is effectively equivalent to
GR in the Riemannian geometry in a vacuum because the
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metric compatibility condition and the torsionless condition
are obtained from the equation of motion of the indepen-
dent connection [3-5]. It is important to stress that we do
not need to assume the Riemannian geometry in the first
place to obtain GR.

When one recedes from GR, however, the equivalence of
the theories in the Riemannian geometry and in the metric-
affine geometry cease to exist. A popular example of this is
metric-affine f(R) theories, also sometimes referred to as
Palatini f(R) theories [4,6] in which the resulting geometry
is either Riemann-Cartan geometry or integrable Weyl
geometry when solving the equation of the connection.
Such theories differ from their metric formalism counter-
part and have been applied in cosmological scenarios (for a
review see [7,8]). Further extending the f(R) theories, one
could consider metric-affine formalism in f(R,,) theories
[9], consider gravity coupling with the energy-momentum
tensor in f(R, T) theories [10] or introduce two curvature
tensor, one from the metric and the other from the
connection, in hybrid metric-Palatini gravity [11].

Another way to simply extend GR is introducing a scalar
degree of freedom (d.o.f.) that describes the gravitational
field in addition to the tensor d.o.f. This is commonly called
scalar-tensor theories. Although many of these theories
have been proposed, there are unified descriptions of the
scalar-tensor theories. The Horndeski theory [12-16] is the
most general scalar-tensor theory with the equation of
motion with at most second derivatives. The assumption on
the number of derivatives is imposed to avoid the
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Ostrogradsky ghost. However, the discovery of the
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theory [17,18]
revealed that the assumption of the derivatives is too strong
to obtain a general description of the Ostrogradsky ghost-
free theories. The currently known most general theory
with one scalar is called the degenerated higher order
scalar-tensor (DHOST) theory [19,20] (see also [21]). Note
that these theories are formulated based on the Riemannian
geometry. A little attention has been paid to scalar-tensor
theories in the metric-affine geometry.

Since the Riemannian geometry is a quite strong
assumption for the description of gravitational theories,
it would be natural to ask whether a scalar-tensor theory
can be reformulated in the metric-affine geometry as with
GR and whether there is a theory beyond DHOST or not.
We shall call gravitational theories formulated in the
Riemannian geometry the theories in the metric formalism
and those in the metric-affine geometry the theories in the
metric-affine formalism, respectively. In the metric-affine
formalism, the Einstein-Hilbert action and the standard
matter action have an additional gauge invariance, the
projective invariance, under a shift of the connection [given
by (2.16) later]. One may discuss both projective invariant
scalar-tensor theories and nonprojective invariant theories;
in the latter case, a constraint on the connection is imposed
to eliminate the projective mode [6,22]. Hence, we shall
focus on the projective invariant case in order not to impose
any assumption on the connection. If the Lagrangian does
not contain either higher order derivatives of the scalar field
or nonminimal couplings to the curvature, the Lagrangian
has no additional connection dependence and then it is
trivially projective invariant. However, the higher deriva-
tives or the non-minimal couplings yield explicit depend-
ence of the connection and it has not been known how to
construct the general projective invariant Lagrangian with
such scalar d.o.f. (see [23] for the case of nonminimal
couplings to the symmetric part of the Ricci tensor).

In the present paper, we thus discuss scalar-tensor
theories with the projective invariance. The projective
invariance leads to a restriction on the form of the higher
derivative terms of the scalar field Lagrangian. Indeed, we
find that the covariant Galileon terms are uniquely deter-
mined by the projective invariance in the metric-affine
formalism at least up to the quartic order although those in
the metric formalism are not unique. Then, a question
arises: can the projective invariance prohibit the appearance
of the Ostrogradsky ghost? Since the higher derivative
terms in the DHOST theory are fine-tuned to eliminate the
ghost, it should be interesting to seek a hidden symmetry to
protect the structure of the DHOST theory. We find a
projective invariant action in the metric-affine formalism
which is equivalent to class °N-I/Ia of DHOST in the metric
formalism, where *N-1 is named by [20,24] and Ia is by
[25], when we use the equation of motion of the con-
nection. The equivalent action is just linear in the Galileon

terms and the non-minimal couplings to the Ricci scalar
and the Einstein tensor with independent coefficients.
However, we also find other projective invariant terms
yielding the Ostrogradsky ghost. Therefore, the DHOST
theory can be reformulated to be projective invariant but
this symmetry cannot prohibit the appearance of the ghost.
The paper is organized as follows. In Sec. II, we review
the basic concepts of metric-affine gravity and how the
Riemannian geometry emerges from the metric-affine
geometry when casting special conditions to the connec-
tion. We will then introduce a symmetry of the connection
called projective symmetry which appears when considered
the metric-affine formalism of GR. In Sec. III, we will
formulate Galileon in metric-affine formalism and find that,
when projective invariance is assumed the Galileon terms
are uniquely determined. The equation of the connection
can be explicitly solved and then by integrating it out, we
find an effective description of metric-affine Galileon in
Riemannian geometry. In Sec. IV, we go further into
considering generalized Galileons in terms of the metric-
affine formalism and find that in an effective description of
Riemannian geometry the theory becomes a class °N-I/Ia
DHOST theory, i.e., the theory has no Ostrogradsky ghost.
Then in Sec. V, we argue the Lagrangian cubic in the second
derivative of the scalar field. Finally, we make summary
remarks in the last Sec. VI. In Appendix A, we discuss
generic projective invariant scalar-tensor theories with at
most quadratic in the connection and show the ghost-free
conditions and the classifications of generic theories.

II. METRIC-AFFINE FORMALISM

A. Metric-affine, Riemann-Cartan,
Riemannian, and Euclidean geometries

The intrinsic structure of the metric-affine geometry is
defined in terms of the metric g, and the connection F’;ﬂ.
We should emphasize that the connection and the metric are
independent geometrical objects in the first place. For
mathematical rigorousness of this geometry see e.g. [1].
The covariant derivatives for a vector are defined by

I
V AF = 0,41 + T AP, (2.1)

I
B
VoA, = 0,A, — ThaAy. (2.2)

In a manifold with a metric and a connection, there are three
tensors that characterize the geometry: Riemann curvature,
torsion, and nonmetricity. These are defined by

r
R (D) 1= 0oy = Opliia + Toul 0y — Ty T5,,
TV s =Ty = s (2.3)
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r
0,7 =V g7 (2.4)
In four dimensions, the metric has 10 independent
components and the connection has 64 independent com-
ponents, respectively. To simplify the structure of the
geometry, one may assume the metric compatibility con-
dition
0,7 =0. (2.5)
This condition is obtained if we demand that the inner

product of two vectors is preserved under the parallel
transport because

G (X + dx)Apr(x + dx) By (x 4 dx) — g, (x)A* (x) B (x)

= — Q4 A¥ B dx", (2.6)
where

G (X + dx) = g4 (x) + Opgu(x)dx”,  (2.7)

App(x 4 dx) = A#(x) = Ty (x)A%(x)dx". (2.8)

When the covariant derivative is metric compatible, the
connection is called a metric connection. Then, the geom-
etry is reduced to the Riemann-Cartan geometry in which
the connection is given by

H 1
Flolcﬂ = {(Xﬁ} - E(Tﬂaﬂ - Tﬁ“a + Taﬂ”), (29)

u
where {af} is the Levi-Civita connection defined by

K 1
{aﬂ} = 20" (DuGps + Opa = ep). (2.10)
Furthermore, one may assume the torsionless condition

T, =0, (2.11)
and now parallel displacement is fully characterized by the
Riemann tensor. As a result, we obtain the Riemannian
geometry in which the connection is uniquely determined
to be the Levi-Civita connection. The 64 independent
components are now fixed and then the structure of the
geometry is determined by the metric only.
When we further assume

r

Rfyep =0, (2.12)

the Euclidean geometry is obtained.

B. Metric-affine formalism of GR

When a gravitational theory is formulated in the
Riemannian geometry, the independent variable is the
metric only. This formalism of these gravitational theories
is called the metric formalism. However, as discussed
above, the general geometry does not require the con-
nection is given by the Levi-Civita connection. Hence, it
would be natural to promote that the metric and the
connection are independent variables in the first place
and a gravitational theory dynamically determines not only
the metric but also the connection. This is called the metric-
affine formalism.

It is known that the Einstein-Hilbert (EH) action in the
metric-affine formalism is equivalent to that in the metric
formalism in vacuum [3-5]. Let us consider the EH action

Sen(g.T) = /d4x\/—9EEH,

My oT
‘CEH(97 F) = T.Q#HR;W (213)
r r

where R, = R, . Since the metric and the connection are
independent variables in the metric-affine formalism, the
variation of the EH action leads to two independent
equations. To take the variation, we have to take care of
the fact that the connection is not a tensor. The easiest way
is to express the connection as

"
My = {ap} +xtp. (2.14)
and to regard the distortion tensor x* 45 as the independent
variable instead of the connection itself. Then, the EH
action is rewritten by

2

My,
Leu(g.T) =—>(R(g) + Kaﬂa’cﬂyy - Kaﬂy’cﬂw)’

> (2.15)

where R(g) is the Ricci scalar constructed by the Levi-
Civita connection.

Before proceeding with the variation, we note that the
EH action has an additional gauge invariance, called the
projective invariance, under the transformation

F’;ﬁ - Fﬁﬁ + 8aUyp, (2.16)
for an arbitrary vector U, (x). Geometrically, the projective
transformation is a change of the connection which
preserves the geodesic equation

d>x " dx® dxP

— ——= 2.17
g (2.17)

up to the redefinition of the affine parameter A — A(1)
[26,27]. Note that the general projective transformation is
given by
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F’;ﬂ —>Fﬁﬁ+5¢§Uﬂ+5§Va, (2.18)
with two arbitrary vectors U, and V. The transformation
(2.16) is a special class of the projective transformation
which also preserves the angle between two vectors under
the parallel transport since the nonmetricity tensor is
transformed as

0, - 0,7 +2U,4%. (2.19)

In the present paper, we just call the transformation (2.16)
the projective transformation and the invariance under it the
projective invariance, respectively. For further explanation
of geometrical characteristics of projective transformation
see Sec. VI of the textbook [26].

After introducing the distortion tensor k* 5, the projec-
tive invariance is cast in the invariance under

K”aj —>K”a/,’+5l(;U/}, (220)
which results the identity
oS
st —E — 0. (2.21)
5Kﬂaﬂ

Since the distortion tensor is a non-dynamical field in the
action (2.15), the distortion tensor can be integrated out.
The variation with respect to x* 4 yields the solution,

K op =0, (2.22)
up to the gauge freedom. Note that, although the solution of
K" 45 18 not uniquely determined due to the freedom of the
projective transformation, we just omit the gauge mode
because the gauge mode does not affect the motion of the
physical variables. As a result, the EH action in the metric-
affine formalism coincides with the EH action in the metric
formalism after integrating out the distortion tensor.

C. Coupling to matter

The equivalence between the metric-affine formalism
and the metric formalism must not be true in general if we
add either higher curvature terms or a matter field. In the
present paper, we shall consider a sufficiently low energy
scale so that higher curvature terms can be ignored, and
then only focus on the latter one, the inclusion of matter,
which enables us to integrate out the distortion tensor since
k is still a nondynamical field.

In this section, we discuss a minimal scalar field ¢, a
vector field A¥, and a Dirac field y. We consider the action

S = Sen(9.T) + Sn(9.T. ¢, A, y),

where S, is a matter action which generally contains the
connection as well as the metric. Similarly to the previous
case, we can introduce the distortion tensor,

(2.23)

S = SEH(g’K> +Sm(gvk7¢’A’ ll/) (224)
The matter fields can be a source of the distortion tensor
and then x*,; = 0 up to the gauge mode is no longer the
solution to the equation of motion, in general.

We note that the projective invariance still holds even if
we add the standard matter fields. The minimal kinetic term
of the scalar field is given by —1 9" 0,¢0,¢ which is
manifestly projective invariant. As for the vectors, since the
appropriate definition of the covariant field strength of the
vector field is

F, =0,A,-0A, (2.25)
the vector field does not couple with the distortion tensor
and then the action of the vector field is invariant under
(2.20) which is also true for the Yang-Mills fields. One
could propose that the covariant field strength is actually
written with the covariant derivative of the connection as,

r r r
F,=V,A -VA,. (2.26)
However, first this field strength is not U(1) invariant, and
second, when considered in the language of differential
forms the field strength is F' = dA and this in tensor form is
(2.25). For more discussion see e.g. [28,29].

While the bosonic field do not couple to the distortion
tensor, the Dirac field has a coupling to x and thus the Dirac
field can be a source of k. To discuss the Dirac field, we
have to introduce the tetrad ej; and the spin connection

o 4 We assume the tetrad postulate which reads that the
connection I' and the spin connection @ represent the same
geometrical object, i.e.,

Afr(x 4 dx) = efj(x + dx)Apr(x + dx), (2.27)
where

Al (x + dx) = A%(x) — 0y, A" (x)dx*,  (2.28)

ef(x +dx) = e + J,ep(x)dx". (2.29)

Then, the variables (g,I") and (e, w) are related by

(2.30)

— b
gﬂl/ - Wabeﬁew

r
Vel =06l —T%es+ ayel =0, (2.31)

The second equation leads to that the spin connection can
be written by
b _ Aab b
®®, =AY, + k7, (2.32)

where A® y are the Ricci rotation coefficients and
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ab _ La, b, af
K", = egegk™ .

(2.33)

The covariant derivative of the Dirac field y is then
given by

I 1
Vo= (0 gotirand o @234
where y, is the gamma matrix with {y,,7,} = —274.

Since [y, yp] is antisymmetric for the indices a, b, (2.34) is
projective invariant.

The Dirac field Lagrangian in the metric-affine geometry
may be

i

r r
Lp =5 @V = (Vap)r'y) — mpy, (2.35)

or

r
Ly = iy — mypy, (2.36)
where y# = ehy®. Admitting the equivalence upon the
integration by parts, only difference between (2.35) and
(2.36) is the coupling to the distorsion tensor. The inter-
action terms are given by

Lini = — % €k 5, 13 (2.37)
and
L =- ieaﬂyﬁxaﬂy i+ é:&aﬁ] Bia (2.38)
respectively, where
I =W s =W (2.39)

with y5 = — £ e, y4y,75; and €¥7° is the Levi-Civita
tensor. Due to the coupling to the distortion tensor, k3 =0
is not a solution if the Dirac field exists for both cases.
Then, the equivalence between the metric one and the
metric-affine one does not hold which is well known in the
context of the Einstein-Cartan-Sciama-Kibble theory.

III. GALILEON IN METRIC-AFFINE FORMALISM

In the previous section, we discussed that the standard
Lagrangian including matter as well as gravity is projective
invariant. Hence, it would be natural to ask whether a
nonstandard Lagrangian can be projective invariant or not.
We consider a scalar field and assume the projective
invariance for the construction of the scalar field Lagrangian.

In this section, we study the Galileon scalar field. In the
flat spacetime, the action of the Galileon scalar field is
specified to enjoy the Galileon invariance

o—>d+bx+c (3.1)

where b, and ¢ are constant parameters [30]. The flat
spacetime Lagrangian of the Galileon scalar is given by

5

L=t (3.2)
=2 3
with
L5 = eProe 0, pOu . (3.3)
L5 = eP1e?P 0,030y b, (3.4)
L5 = PP 0,0y py0y 0, 0,4,  (3.5)
LE = PP 9 Dy pDs0y 0,0, 4505, (3.6)

where ¢, are dimensionless constants and A5 represents the
strong coupling scale. We note that the Galileon terms can
be expressed by

L5 = —6(0p)>. (3.7)
o5 = %8»@5" PP 5,500 Dt
= —(0¢)20p, (3.8)
L5 = 0,0 pe PV 150,104y Dy
= =2(0¢)*[(0)? = (9u0ph)?): (3.9)

5 = %8u¢0“¢€“/’y5€“/ﬂ/y'53a/3a¢3ﬂ’aﬂ¢8r’aﬁb

- ‘% (00 [(0¢)* = 30h(0,0pp)* + 2(0a0p¢p)*).
(3.10)

after taking the integration by parts. As a result, the
Galileon terms in the flat spacetime are schematically
given by

L5 = ee(0¢)*(90¢)"2

= (0¢)*ee(00¢)"~? + total divergence.  (3.11)

We then consider the Galileon field in the curved
spacetime. In the metric formalism, there are two ways
to covariantize the Galileon field: the covariant Galileon
[31] and the covariantized Galileon [30], respectively. The
covariant Galileon is based on the form (9¢)*ee(90¢)" 2,
while the covariantized Galileon is given by the form
e€(0)?(00¢)"=2. The equivalence between them no
longer holds in the curved spacetime and then the covariant
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Galileon and the covariantized Galileon are different
theories. Indeed, the covariant Galileon is a theory in the
class of Horndeski theory and the covariantized Galileon is
in the class of GLPV theory, respectively.

When we consider the metric-affine formalism instead of
the metric formalism, the covariant theory must be invariant
under the projective transformation.' Here, we assume the
Galileon terms are purely constructed by the covariant
derivatives of the scalar field and the metric, i.e.,

r r

L8 = gy V.Y,V 3.12
n — ~n g’¢’ ;4¢7 M p¢) ( )

This assumption is a minimal way to introduce derivative
interactions of a scalar field in the metric-affine formalism.
Since

I T rr I
VEVE g = g1V + 0V

rr
# 99"V, Vo, (3.13)

r r
due to the nonmetricity tensor where V¥ := ¢V, a

r r
Lagrangian containing V¥ V¥ ¢ implicitly contains the
nonmetricity tensor in addition to the covariant derivatives
of the scalar field, i.e.,

I r r r r r
V, 0.V ) =L(g.4.V, .V, V,b,0.7).
(3.14)

I r
L(9.9.V,.9.V

u H

Supposing the minimal derivative interactions of the scalar
field (3.12), we find that the Lagrangian of the covariant
Galileon terms is uniquely specified by the projective
invariance at least up to the quartic order.

The form ee(dg)*(00¢p)"=* is projective invariant,
while (9¢)?ee(00¢)"2 is not. In this way, we obtain all
projective invariant terms which reproduce (3.3)—(3.6) by

r
replacing V,, with 9, except the freedom of the integration
by parts. The projective invariant Galileon terms are

gall’ apys o y g
L5 = €% 3 NV y b, (3.15)
L8 = aprogal vr qbvr ¢vr vr ¢ (3.16)
3 75 a o ﬂ ﬂ’ ’ .

I ) I I I r I I
Eia — E(I/))}/(Se(lﬁy 5va¢va/¢VﬁVﬁ/¢vyvy/¢, (3.17)

!Galileon terms in the metric-affine formalism were consid-
ered in [22] without respecting the projective invariance. They
instead introduce an additional constraint on the connection to
eliminate the projective mode.

r sl r r r r r r r
E%a = g‘xﬁ}"ieaﬂ 7’6 va¢va/¢vﬁvﬁl¢v7v}/¢v5v5/¢’
(3.18)

and

- ,.r r rr r T
L8 — crdedBT N N VN gV VB, (3.19)

I T r r r

/a Sl ’F F F
[jgalr = PPN PV y VsV 3V, V V5V 5,
(3.20)

where we note that the second derivative has no symmetric
indices,

r r
2V, V¢ = -T%,0,¢ # 0, (3.21)
and then (3.19) [and (3.20)] potentially differs from (3.17)
[and (3.18)]. However, as shown in Appendix A, (3.17)
and (3.19) give the same result and thus it is sufficient to
consider only one of them. We may conjecture that (3.18)
and (3.20) lead to the same result as well and then we shall
ignore (3.19) and (3.20). Adding the EH action, the total
action of the covariant Galileon in the metric-affine
formalism is then given by

2
CloT.d) =0k 25: Cn__pmll (327)
ga ) - 2 Uv — A3<n_2) n . .
nz 3

At least up to the quartic order, the action (3.22) is the
unique covariant Galileon theory in the metric-affine
formalism.

Just for simplicity, we consider the Galileon terms up to
n = 4 hereafter. This is because the term L& is cubic in the
connection and then the equation of motion of the connection
becomes nonlinear. We could not find an explicit solution in
the nonlinear case. On the other hand, we can find explicit
solutions of the connection up to n = 4.

As performed in the previous section, we introduce the
distortion tensor x*,; and integrate it out to obtain the
effective action of the metric formalism. The variation with
respect to k5 yields the solution

1
M2 (1 +2¢4X>/AS)

Kﬂaﬂ = —

C
X A—g (X8b — X Gup + 20" bathp)

204

+
AS

{2X¢ﬂ(a¢ﬁ) - X¢ﬂ¢aﬂ

+ ¢(z¢ﬁ(¢”¢yy - 2¢ﬂy¢y)} ’ (323)
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up to the gauge freedom where we have introduced the
notation ¢, =V,p.¢,, =V, V,,X = ¢'¢p, and V, is
the covariant derivative with respect to the Levi-Civita
connection. The scale A, is defined by

A = A%MPI. (3.24)
The result explicitly shows that the distortion is no longer
zero due to the Galileon scalar field. Unlike the metric-
affine f(R) theories neither the torsionless condition or
metric compatibility could be obtained by a suitable fixing
of the projective gauge. Substituting it to (3.22), the
resultant action is given by

2
£ = Mol gy 4 A derc) /N
2 1+ 2c4X?/AS
1 lg | €3 pgalg | €4 pgal
- - L8 4 = 89 4 = 89,
+ 1 _|_2c4X2/A§ <C2 2 JFA% 3 +A§ 4
(3.25)
where
E%alg _ eaﬁyae{fﬁlyédhqsa/’ (326)
£§a1g _ eaﬂyﬁea/ﬁw%%,(bﬂﬁ,, (3.27)
al a a8
,Ci I = Wrée ﬁy&d’a‘pa"ﬁﬁ/}’d)w" (3'28)

Therefore, the covariant Galileon in the metric-affine
formalism (3.22) is not equivalent to either the covariant
Galileon or the covariantized Galileon in the metric
formalism. Although (3.25) could be approximated by
the covariantized Galileon in the scales below A,, the
deviation becomes relevant when

1X| = A3 (3.29)
The new scale A, naturally arises in the covariant Galileon
in the metric-affine formalism.

We thus have three theories of Galileon: the covariant
Galileon and the covariantized Galileon in the metric
formalism, and the projective invariant Galileon in the
metric-affine formalism [or its equivalent form (3.25) after
integrating out x]. When we ignore gravity, i.e., taking the
limit Mpl — 00, all of them reduce to the flat Galileon;
however, they do not coincide with each other when gravity
is included.

Since the distortion tensor x is no longer zero, the
Galileon field may nonminimally couple with the Dirac
field after the integrating out x while ¢ does not directly
couple with the vector field. Note that the totally anti-
symmetric part of x is zero and thus the nonminimal
coupling does not exist if the Dirac field Lagrangian is

given by (2.35). On the other hand, as for (2.36), the
interaction terms are given by2

L = :
M (14 2¢4X/AS)

Ja

3C3

X [
2A3

X+ Xy~ )| (330
3

The Galileon in the metric-affine formalism may predict
that the bosons (the minimal scalar and vector fields)
and the fermions have different couplings to ¢ although
depending on the definition of the Dirac field Lagrangian.

IV. GENERALIZED GALILEON IN
METRIC-AFFINE FORMALISM IS DHOST

A. Equivalent Lagrangian to class 2N-1/1a of DHOST

In the metric formalism, the known most general frame-
work of the scalar-tensor theories without the Ostrogradsky
ghostis the DHOST theory. In the DHOST theory, we require
a fine-tuning between the coefficients in front of the non-
minimal coupling to the curvature and the higher derivatives
of the scalar field in order to eliminate the Ostrogradsky
ghost. The conditions are called the degeneracy condi-
tions [19].

In the metric-affine formalism, we find that the equiv-
alent Lagrangian to (class *N-I/Ia of) the DHOST theory is
given by

r r
L(0.T ) = (. X)g" Roy + fo(h. X)GN ¥,
+ Fa(.X) + F3(. X) L5 + Fo(¢p. X) L5,
(4.1)

where f,, f5, F», F3, F, are arbitrary functions of ¢ and
X = ¢"0,¢0,¢. The last three terms are generalization of
the Galileon terms. The first two terms are the nonminimal
couplings to the Ricci scalar and the Einstein tensor,
respectively, where the Einstein tensor is now defined by

r

1 T
G = Ze“"”’“eyﬂ" YR (4.2)

uopl'V -

The action (4.1) can be thus regarded as the straightforward
generalization of the Galileon field in the metric-affine
formalism including the nonminimal couplings to the
curvature.

“When the Dirac field is introduced, Eq. (3.23) is not a solution
because the Dirac field contributes to the equation of motion of .
Nonetheless, in cosmological situations such that the Galileon
dominates the universe while the Dirac field can be treated as a
test field, Eq. (3.23) may be used.
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After integrating out the distortion tensor, we obtain

L= fR(g9) + P+ 019" by + Q2" b, 0"

+ Cﬂy'pagbﬂu(ppm (43)

where
Cro = g, o 1 ay g
+ %as(fiﬁ”fﬁ”g"" +9'P°9")
+ 504(415”45(”9”)” + UG + asdh pr P e
(4.4)

The explicit form of x is written in Appendix B. The
coefficients are given by

1
f=nh —§f2X7 (4.5)
_ 3X(f14 — F3X)?
P X R (46)
_ 4f1(f1p — F3X)
O ==2fy+ 2f 1 — X + 2F X%’ (47)
_2fy Mf1=3f1x)(fig — F3X)
Q=5 X(2f) — f2X +2F,X?) (48)
_ o Al m2RX)
M= = x4
_ 4f1Fy + (4f 1x = f2)(f2 — 2F4X)
a3 = 2fox + = X 1 2F X . (4.10)
ay = =2fox + 27 f1x(Bf1x = f2)
+ 2N X (fixf> = 4f 1 2x)
f%_4f1F4_2f2F4X (411)
2f1 = [oX +2FX* .
as=—=f1*fix(fixf2 —=4f1f2x)
2f ix{4f1Fs+ Bfix = f2) (f2 —2F,X)} (4.12)

F1(2f1 = f2X +2F,X?) ’

where f, = 0f/0¢, fi1x = Of,/0X and so on. One can
observe that (4.5)—(4.12) satisfy the degeneracy conditions.
The resultant action is class 2N-I/Ia of quadratic DHOST.
This class depends on five arbitrary functions which is
indeed the same number of the arbitrary functions of (4.1).

While the totally antisymmetric part ! is zero, the
antisymmetric trace (%! 5 18 nonzero and then (4.1) yields

nonminimal couplings to the Dirac field (2.36). In this
sense, (4.1) is equivalent to class >N-I/Ia of DHOST only if
we do not consider the Dirac field and (4.1) is potentially a
theory beyond DHOST due to a coupling to the Dirac field
given by (2.38). The trace of the antisymmetric part of « is

3(f1p—F3X) fo—2F4X
7] — a__ a1 f
S Y R O T8 LA S ST Ll
1
—Z_f%(flezx‘f’6f1flx—f1f2—2f1f2XX)¢aﬂ¢/3
1
+2—ﬁ Sixfa=2f1fx
S/ 1Fa+(6f1x—f2)([2=2F4X)}] 5
B e
(4.13)

which indicates that generic scalar-tensor theories may
predict the nonminimal coupling between ¢ and fermions
in the metric-affine formalism as well.

Note that the action (4.1) is not the most general projective
invariant action up to quadratic in the connection. We can
find more general Lagrangian by only assuming the projec-
tive invariance; however, such generalized theories are
suffered from the Ostrogradsky instability which is discussed
in Appendix A. A typical example is a term (£5"" )2 which is
certainly projective invariant but it leads to the Ostrogradky
ghost. Therefore, we cannot unfortunately conclude that the
structure of DHOST is protected by the projective invariance.

B. Specific models

We shall discuss some specific models. The Galileon
field has been already discussed in the previous section.
Here, we consider nonminimal couplings to the curvature.
One of the simplest models of a nonminimal scalar field is

M-

L=—t——

PRy =3O V@), (414

In particular, in the case of the metric formalism, the non-
minimal coupling p?R with &= 1/6 is known as the
conformal coupling. If the coupling £p?R exists in the
metric-affine formalisms, integrating out «, the Lagrangian
(4.14) becomes

| ME =51+ 68)47
2(My - ¢¢7%)

My -8

L=—F (9)

(0)* = V().
(4.15)

where £ = 1/6 is no longer the conformal coupling due to
the noncanonical kinetic term. A similar action was first
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considered in [32] for a torsionless case, and our results agree
with their result when transformed into the Einstein frame.

Another example is the nonminimal coupling to the
Einstein tensor,

I uv

M? 1 G
£ gk, (gw _W) 0,006~ V(@). (4.16)

In the metric formalism, the Einstein tensor coupling
G"0,90,¢ is in the class of the Horndeski theory. On
the other hand, we obtain

L e

D) >8u¢au¢ - V(¢>

1
-~ L5, (4.17)
AMAMZ (2 - X/MPM2)

from (4.16) after integrating out x, which is in the class of
the GLPV theory due to the quartic Galileon term £,
A theory in the class of the DHOST theory is obtained by
considering the kinetic coupling to the curvature. For
instance, let us assume that the scalar field appears only
through X = (O¢)? in the action. The most general action
of the form £ = L(g,T’, X) up to linear in the curvature is

£ = f(X)g"R,, + P(X). (4.18)

whose equivalent action in the metric formalism is

6f%

L=fR(g)+P+ 7 PP oyt (4.19)

which is in the class of the DHOST theory.

We note that (4.19) automatically has the structure
a; = a, = 0. The modified gravity theories to explain
the present cosmic accelerating expansion are strongly
constrained by the speed of gravitational wave [33,34]. In
order that the speed of the gravitational wave exactly
coincides with the speed of light, the functions in
DHOST should be f = f(¢) and o; =0 or should be
fine-tuned to a; = a, = 0 with f = f(¢, X) [35-37] (see
also [38—40]). However, (4.19) does not require the fine-
tuning even with a nonminimal coupling f(X)R since
(4.19) is obtained from the simple action (4.18) where the
“counterterm” ¢“¢/’¢(,y¢; to eliminate the Ostrogradsky
ghost, which does not change the speed of gravitational
waves, is automatically obtained by integrating out the
distortion tensor in the action (4.18).

V. HIGHER ORDERS OF CONNECTION

So far, we have considered theories up to quadratic
in the connection in order to explicitly solve the equa-
tion of motion of the connection. When the Lagrangian

r T
L(g,T,¢, V¢,V V ¢) contains terms cubic or higher in the
connection, a solution of the connection may be given by

s = 3 K. X) (V) (VIBVL,,

i.j.k

(5.1)

where the label k classifies possible contractions of
(V@) (VVg)/ with the free indices y, a, f for the same
i and j. Up to j = 1, we obtain

Kap = ki oGap®" + K3 o0atbs + K oFgba + k3 08 Puthy + K11 Gup b + KT 1 Gupb, 07 + K3 aipppy
+ k?l%(ﬁa(bl}; + kilézd)yd)ﬁy + k?,l(#/;'qﬁyqﬁay + k?,l¢”¢aﬂ + k21g1¢a¢}/; + k?,lqﬁ/iﬁbgc

+ ké,lgaﬂgbﬂ PP+ k%,15g¢ﬁ¢y¢5¢y5 +k
+ K31 bo by + kS B Dpd Doy + K51 Patbpb, T 4 K\ Putppd? Bhys + O(di,)-

Note that the expression (5.2) contains the projective mode
ki .k 1. k7 1. k3, and they can be removed by the projec-
tive transformation. Then, (5.2) has 17 independent terms
up to linear in the second derivative of ¢.

Since the second derivative of the scalar field is given by

r r
vuvy¢ = ¢;w - Kaw‘ﬁw (53)

3.1050a ' Py + Ki 10 bathpd)

(5.2)

r r
the second derivative V,V, ¢ is still linear in ¢, if the
equation of motion of k admits a solution

k _ .
k=0 forj>2. (5.4)

We thus consider whether the quintic Galileon (3.22) can
admit the solution (5.4) by tuning the remaining 17

coefficients kf, and kf. After a straightforward
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calculation, we find that (3.22) does not admit the solution
(5.4) if ¢5 # 0. This result implies that, when formally
integrating out «, the quintic Galileon (3.22) must generate
terms more than cubic in ¢, and then the resultant theory
cannot be in the cubic DHOST theory except for the case
when there are miracle cancellations in higher orders of
¢,- Therefore, it would be interesting to investigate
whether the quintic Galileon is still ghost-free even in
the metric-affine formalism which is nonetheless beyond
the scope of the present paper.

VI. SUMMARY AND DISCUSSIONS

In the present paper, we have reformulated scalar-tensor
theories in the metric formalism to those in the metric-
affine formalism and clarified the relation between them.
We assume that the Lagrangian is projective invariant and
that the scalar field does not directly couple with the non-
metricity tensor. Then, we find that the covariant Galileon
terms in the metric-affine formalism are uniquely specified
at least up to the quartic order although those in the metric
formalism are not. The covariant Galileon in the metric-
affine formalism does not coincide with either of those in
the metric formalism where the deviation becomes relevant
at the scales beyond A,. We then discuss a straightforward
generalization of the Galileon and obtain an equivalent
action to class °N-I/Ia of DHOST. The equivalent action
(4.1) makes the structure of DHOST clear because it is
just linear in the generalized Galileon terms and the non-
minimal couplings to the Ricci curvature and the Einstein
tensor. We should, however, emphasize that the equivalence
between (4.1) and class >N-I/Ia of DHOST holds only if we
ignore the fermionic fields.

An important difference between theories in the
metric formalism and in the metric-affine formalism is
the coupling to the fermions. When we a priori assume the
torsionless condition and the metric compatibility condi-
tion, i.e., kK = 0, scalar-tensor theories should predict the
universal coupling to bosons and fermions. On the other
hand, as clarified in Sec. II, the standard bosonic fields do
not couple with the distortion tensor x while the fermionic
fields couple with « in the metric-affine formalism where
the interaction depends on the definitions of the Dirac field
Lagrangian. Although GR leads to the solution x = 0, in
general, scalar-tensor theories yield /! s # 0 and lead to
the nonminimal coupling only with the fermions in the case
of (2.36). Hence, it would be interesting to study phenom-
enological signatures of this non-minimal coupling.

The metric-affine formalism of gravity is sometimes
called the first order formalism of gravity because the
curvature is given by the first order derivative of the
connection. The Ostrogradsky ghost-freeness of (4.1) could
be understood by the fact that (4.1) does not contain second
order derivatives of the fields except the Galileon combi-
nations. To obtain the effective description of (4.1) in the

metric formalism, one should decompose the general
connection I' to the Levi-Civita connection and the dis-
tortion tensor x, and integrate out «; then, the Lagrangian
(4.1) becomes to contain the non-Galileon combinations of
the second order derivatives. However, the resultant
Lagrangian is Ostrogradsky ghost-free which can be seen
to satisfy the degeneracy condition. Needless to say, the
nonexistence of the ghost is not obvious even if a theory
only contains first order derivatives because one may
reduce the number of the derivatives by introducing an
auxiliary field with a Lagrangian multiplier. Nonetheless,
the metric-affine formalism could give a new understanding
of the ghost-freeness of DHOST: the non-Galileon combi-
nations of the second derivatives of DHOST are rewritten
by the first order form in the metric-affine formalism.

Although we have discussed theories up to quadratic
order in the connection in order to solve k explicitly, one
may discuss higher-order theories with respect to the
connection. The simplest theory would be the quintic
Galileon and its generalization. Other possible extensions
would be the Fab Four type Lagrangian [13]. Since the first
two terms of (4.1) are two of Fab Four, we may expect that
the last two of Fab Four

T r r I T r
f3(, X)G HPN ¢V . pV Vb, fu(p, X)G H* PR,
(6.1)

are ghost-free as well where (r} ravf is the double dual of the
Riemann curvature defined by (A27). It would be worth-
while to discuss whether the quintic Galileon and Fab Four
are still ghost-free in the metric-affine formalism, which is
left for future works.
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APPENDIX A: PROJECTIVE INVARIANT
SCALAR-TENSOR THEORIES

We consider scalar-tensor theories in the metric-affine
formalism whose action is constructed by the metric tensor

9u» the curvature tensor ;?”mﬁ, the scalar field ¢, and its
covariant derivatives. For simplicity, we only consider the
action up to quadratic in the connection. The projective
invariance leads to
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r r
L= fgle;w + g gmgyﬂR;waaqbaﬂgb

r
+ 9P ¢V R? 4,50,00,¢ + F1 + F3£§alr + F4£§alr

)

rr T T I
+ CeroehVr Uaﬂcpaﬂ/(ﬁvyvbrgﬁvpvﬂ]qﬁ 4 C2<£§a )2

r T r r
+ C3 (g#/jgmsga}/ - g/wgayg/}&)aﬂ¢au¢vavﬁ¢vyv6¢7
(A1)

where f, g1, ¢, Fa, Fa, Fy,Cy,Cy, Cy are arbitrary func-
tions of ¢ and X := ¢*0,¢0,¢. The solution of k is give by
the form (5.2) with (5.4). We note that kf{ ; are expressed in
terms of f, gy, 9, Fo, F3,F4,Cy,C3 but they have no
dependence on C;. Furthermore, we also find that the
relation between (P, Qy, Q,, ;) of the action (4.3) and
(f!gl’.gZ’F21F2’F4’C17C2’C3) where P’ Ql’ QZvai are
independent from C,. Therefore, the following Galileon
terms

// I r r r r r
eProe?PY N oV ypV VgV, V b (A2)

and

/) I r LI Lg
€aﬂ75€a/ﬂ 14 éva¢va/¢vﬂvﬂ’¢v7’vy¢ (A3)

r r
give the same result although V, V¢ is not symmetric for
the indices y and y'.

The Ostrogradsky ghost-free conditions of the action
(4.3) are given by

DO = 0, Dl - 0, D2 = O, (A4)
where
Dy = —4(a; + ay)
X [XF(2a + Xy + 4fy) =217 = 8X2f3].  (AS5)

D, = 4[X2a () + 3a) — 2f% — 4X [y
+4X7f( + ar)as + 8Xar]
—4(f +4Xfx — 6Xay)aj — 16(f + SXfx)o
+4X(3f —4Xfx)ayaz — X fo3
+32fx(f +2Xfx)a, — 16f fxa,

= 8f(f = Xfx)as + 48 f%. (A6)

D, = 412f? + 4Xfa, — X?a (o) + 3my)|as + da;
+ 4(2(12 - X(Z3 — 4fx>a% + 3X2(11(1% - 4Xf(l%
+ S(f + Xfx)a1a3 - 32fXa1a2 + 16](%((11

+32f%a, — 16f fxa. (A7)
Following the classification [25], the case
a; +a; =0, (A8)
is called class I and the case
Xf(2a; + Xay +4fx) —2f> — 8X*f% =0, f#0
(A9)

is called class II, respectively. Class I (or class II) can be
further classified into class Ia (or class Ila) if f # Xa; and
class Ib (or class IIb) if f = Xa;. A special class f = 0 is
called class III. As for the theory (A1), D; are given by

8X(C3 —4CoX)(f + 92X)*D?

Dy = — 3 . (A10)
8(C5 —8C,X X)2D?
2 X)2D?
D, = 32G,(f + 92X) , (A12)
E
where
D :=2fg—4fxgX + foxX, (A13)

E = [2f* +2:X* + fX(4g, — C3X)]
X [f2 4 (F4s— C3)g1 X* + fX{go + (Fy — C3)X}]
X [2f2 + 91X3(2F4 + C3 - 12C2X)

+ £X(2g5 + X{2F, + C3 — 12C,X}]. (Al14)

with g = (f + ¢;X)(f + ¢.X). The Ostrogradsky ghost-
free theories of (A1) are classified into four cases

classla: C, =C3 =0, (Al5)

classIla: D =0, g#0, f#0, (Al6)
classIbn1Ilb: g=0 (A17)

classIll: f =0, (A18)

which correspond to the classification of DHOST, respec-
tively. Only class Ia is obtained by eliminating the non-
Galileon terms of the derivative self-interactions of the
scalar field while other classes are obtained by tuning the
curvature couplings.
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Since the phenomenologically viable class is only class Ia
[41], we shall focus on only the case C,=C3=0. In this
case, the functions are explicitly given by

3X(gy — 2FX)?
= A Al
PR ey B
B 9(gp — 2F3X)
0, =-2f, W (A20)
_2fy (9p —2F3X)(29 — 39xX)
O = T (gt FiX%) (A21)
1 2
@ =-m = [f—fng,Xz} (A22)
4
X
[f 21X 7f(g - Ifff‘xz)} (A23)
1
% =5 [8fx9X(g+ gxX) — f(29 + 9xX)?]
247
* f9X* + Fix*’ (A24)
as = 2X2 22 (4f g — 8fxgX + fgxX)
gx (49 — 3gxX)
22X (fg+ FiX?) (A25)
where
Fy = F3(f + g1 X), Fj=Fy(f+9X)% (A26)

While the action (Al) with C, = C3 =0 contains six
independent functions f, g1, ¢», F», F3, F 4, the equivalent
action (4.3) is specified by only five combinations
f?g’F2’FI3’F£L'

We note that the double dual of the Riemann curvature,

r 1 r
GHap — Z eHro coafpo R (A27)

o, p/ o
is projective invariant although the Riemann curvature itself
is not. The Ricci scalar and the Einstein tensor are given by

r
contractions of G #F:

r r r r
R, = -G,", GH =G, M. (A28)
and then they are definitely projective invariant. Let us
assume that the nonminimal couplings between ¢ and the
curvature are given by the couplings to the double dual of
the Riemann curvature instead of the Riemann curvature.
This assumption leads to g; = g, and then the theory (A1)

with C, = C3 = 0 is reduced to (4.1).

APPENDIX B: EXPLICIT SOLUTION OF «

The solution of « to the theory (4.1) is given by the form
(5.2) with

Ko fip — F3X
1.0 2f1 = foX + 2F,X*’
— F3X
I3, =—kl,= AV 5, (B1)
’ T 2f1 = [oX +2FX
v 2f1F3 = [aF3 X+ 2f 1, FuX
ko= — n. (B2)
' F1(2f1 = f2X + 2F4X7)
ki, =0,
e fix
' fi’
kél‘,lzo’
K0, =, =X,
11 B
7 fo—2F,X
k”:— 5
, 2f1 = f2X + 2F,X
o g J2m2FX
1= Tk = — 5
2f1 = [oX +2F,X
2F X
k?lz_ 4 2 (Bg)
’ 2f1 = [oX +2F,X
Koo Jix(f2 — 2F,X)
> F12f1 = f2X +2FX%)
s a0 Jix(fa —2FX)
k3 =~k = 2\’
' T [12f1 = 2X +2F4X0)
) 2F,
k3p=— 2
' 2f1 = [2X +2F,X
k;l:O
J1f2(f2 = 2F4X)
kS 2 ;
31 2f2[f1xf2 f1f2X+2fl—f2X+2F4X2
K, = 2f2 [flez =2f1fx
+f1(f2_8f1F4_2f2F4X>) (B4)
2f | — f2X +2F, X2 |
4fxF
L S
F12f1 = f2X +2F4X7%)
and
k _ .
ki;=0 forj>2. (B6)
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