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We study scalar-tensor theories respecting the projective invariance in the metric-affine formalism. The
metric-affine formalism is a formulation of gravitational theories such that the metric and the connection
are independent variables in the first place. In this formalism, the Einstein-Hilbert action has an additional
invariance, called the projective invariance, under a shift of the connection. Respecting this invariance for
the construction of the scalar-tensor theories, we find that the Galileon terms in curved spacetime are
uniquely specified at least up to quartic order which does not coincide with either the covariant Galileon or
the covariantized Galileon. We also find an action in the metric-affine formalism which is equivalent to
class 2N-I=Ia of the quadratic degenerated higher order scalar-tensor (DHOST) theory. The structure of
DHOSTwould become clear in the metric-affine formalism since the equivalent action is just linear in the
generalized Galileon terms and non-minimal couplings to the Ricci scalar and the Einstein tensor with
independent coefficients. The fine-tuned structure of DHOST is obtained by integrating out the connection.
In these theories, nonminimal couplings between fermionic fields and the scalar field may be predicted. We
discuss possible extensions which could involve theories beyond DHOST.
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I. INTRODUCTION

Einstein’s general relativity (GR) is now accepted as the
standard theory of gravity which provided an important
insight on physics: a gravitational field corresponds to a
deviation of the spacetime geometry from the flat spacetime
geometry. Although it was believed that only the (pseudo-)
Euclidean geometry is relevant to physics, the idea of GR
tells us that the Euclidean geometry is just a special case in
physical systems. GR is usually formulated in the (pseudo-)
Riemannian geometry in which all intrinsic structure of the
geometry is uniquely determined by the metric. The
Einstein equation is regarded as the equation of motion
of the metric. However, we should emphasize that the
Riemannian geometry is still a special case and there is a
more general framework of the geometry called the metric-
affine geometry (see [1,2] for reviews). The structure of the
metric-affine geometry is defined in terms of two indepen-
dent geometrical objects, the metric and the connection,
i.e., the quantities defining the inner product and the
parallel transport, respectively. Only if one assumes the
metric compatibility condition and the torsionless condition
(detailed in Sec. II), the metric-affine geometry is reduced
to the Riemannian geometry. A point is that GR formulated
in the metric-affine geometry is effectively equivalent to
GR in the Riemannian geometry in a vacuum because the

metric compatibility condition and the torsionless condition
are obtained from the equation of motion of the indepen-
dent connection [3–5]. It is important to stress that we do
not need to assume the Riemannian geometry in the first
place to obtain GR.
When one recedes from GR, however, the equivalence of

the theories in the Riemannian geometry and in the metric-
affine geometry cease to exist. A popular example of this is
metric-affine fðRÞ theories, also sometimes referred to as
Palatini fðRÞ theories [4,6] in which the resulting geometry
is either Riemann-Cartan geometry or integrable Weyl
geometry when solving the equation of the connection.
Such theories differ from their metric formalism counter-
part and have been applied in cosmological scenarios (for a
review see [7,8]). Further extending the fðRÞ theories, one
could consider metric-affine formalism in fðRμνÞ theories
[9], consider gravity coupling with the energy-momentum
tensor in fðR; TÞ theories [10] or introduce two curvature
tensor, one from the metric and the other from the
connection, in hybrid metric-Palatini gravity [11].
Another way to simply extend GR is introducing a scalar

degree of freedom (d.o.f.) that describes the gravitational
field in addition to the tensor d.o.f. This is commonly called
scalar-tensor theories. Although many of these theories
have been proposed, there are unified descriptions of the
scalar-tensor theories. The Horndeski theory [12–16] is the
most general scalar-tensor theory with the equation of
motion with at most second derivatives. The assumption on
the number of derivatives is imposed to avoid the
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Ostrogradsky ghost. However, the discovery of the
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theory [17,18]
revealed that the assumption of the derivatives is too strong
to obtain a general description of the Ostrogradsky ghost-
free theories. The currently known most general theory
with one scalar is called the degenerated higher order
scalar-tensor (DHOST) theory [19,20] (see also [21]). Note
that these theories are formulated based on the Riemannian
geometry. A little attention has been paid to scalar-tensor
theories in the metric-affine geometry.
Since the Riemannian geometry is a quite strong

assumption for the description of gravitational theories,
it would be natural to ask whether a scalar-tensor theory
can be reformulated in the metric-affine geometry as with
GR and whether there is a theory beyond DHOST or not.
We shall call gravitational theories formulated in the
Riemannian geometry the theories in the metric formalism
and those in the metric-affine geometry the theories in the
metric-affine formalism, respectively. In the metric-affine
formalism, the Einstein-Hilbert action and the standard
matter action have an additional gauge invariance, the
projective invariance, under a shift of the connection [given
by (2.16) later]. One may discuss both projective invariant
scalar-tensor theories and nonprojective invariant theories;
in the latter case, a constraint on the connection is imposed
to eliminate the projective mode [6,22]. Hence, we shall
focus on the projective invariant case in order not to impose
any assumption on the connection. If the Lagrangian does
not contain either higher order derivatives of the scalar field
or nonminimal couplings to the curvature, the Lagrangian
has no additional connection dependence and then it is
trivially projective invariant. However, the higher deriva-
tives or the non-minimal couplings yield explicit depend-
ence of the connection and it has not been known how to
construct the general projective invariant Lagrangian with
such scalar d.o.f. (see [23] for the case of nonminimal
couplings to the symmetric part of the Ricci tensor).
In the present paper, we thus discuss scalar-tensor

theories with the projective invariance. The projective
invariance leads to a restriction on the form of the higher
derivative terms of the scalar field Lagrangian. Indeed, we
find that the covariant Galileon terms are uniquely deter-
mined by the projective invariance in the metric-affine
formalism at least up to the quartic order although those in
the metric formalism are not unique. Then, a question
arises: can the projective invariance prohibit the appearance
of the Ostrogradsky ghost? Since the higher derivative
terms in the DHOST theory are fine-tuned to eliminate the
ghost, it should be interesting to seek a hidden symmetry to
protect the structure of the DHOST theory. We find a
projective invariant action in the metric-affine formalism
which is equivalent to class 2N-I=Ia of DHOST in the metric
formalism, where 2N-1 is named by [20,24] and Ia is by
[25], when we use the equation of motion of the con-
nection. The equivalent action is just linear in the Galileon

terms and the non-minimal couplings to the Ricci scalar
and the Einstein tensor with independent coefficients.
However, we also find other projective invariant terms
yielding the Ostrogradsky ghost. Therefore, the DHOST
theory can be reformulated to be projective invariant but
this symmetry cannot prohibit the appearance of the ghost.
The paper is organized as follows. In Sec. II, we review

the basic concepts of metric-affine gravity and how the
Riemannian geometry emerges from the metric-affine
geometry when casting special conditions to the connec-
tion. We will then introduce a symmetry of the connection
called projective symmetry which appears when considered
the metric-affine formalism of GR. In Sec. III, we will
formulate Galileon in metric-affine formalism and find that,
when projective invariance is assumed the Galileon terms
are uniquely determined. The equation of the connection
can be explicitly solved and then by integrating it out, we
find an effective description of metric-affine Galileon in
Riemannian geometry. In Sec. IV, we go further into
considering generalized Galileons in terms of the metric-
affine formalism and find that in an effective description of
Riemannian geometry the theory becomes a class 2N-I=Ia
DHOST theory, i.e., the theory has no Ostrogradsky ghost.
Then in Sec. V, we argue the Lagrangian cubic in the second
derivative of the scalar field. Finally, we make summary
remarks in the last Sec. VI. In Appendix A, we discuss
generic projective invariant scalar-tensor theories with at
most quadratic in the connection and show the ghost-free
conditions and the classifications of generic theories.

II. METRIC-AFFINE FORMALISM

A. Metric-affine, Riemann-Cartan,
Riemannian, and Euclidean geometries

The intrinsic structure of the metric-affine geometry is
defined in terms of the metric gμν and the connection Γμ

αβ.
We should emphasize that the connection and the metric are
independent geometrical objects in the first place. For
mathematical rigorousness of this geometry see e.g. [1].
The covariant derivatives for a vector are defined by

∇Γ αAμ ¼ ∂αAμ þ Γμ
βαA

β; ð2:1Þ

∇Γ αAμ ¼ ∂αAμ − Γβ
μαAβ: ð2:2Þ

In a manifold with a metric and a connection, there are three
tensors that characterize the geometry: Riemann curvature,
torsion, and nonmetricity. These are defined by

Rμ
Γ

ναβðΓÞ ≔ ∂αΓ
μ
νβ − ∂βΓ

μ
να þ Γμ

σαΓσ
νβ − Γμ

σβΓσ
να;

Tμ
αβ ≔ Γμ

βα − Γμ
αβ; ð2:3Þ
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Qμ
αβ ≔ ∇Γ μgαβ: ð2:4Þ

In four dimensions, the metric has 10 independent
components and the connection has 64 independent com-
ponents, respectively. To simplify the structure of the
geometry, one may assume the metric compatibility con-
dition

Qμ
αβ ¼ 0: ð2:5Þ

This condition is obtained if we demand that the inner
product of two vectors is preserved under the parallel
transport because

gμνðxþ dxÞAμ
PTðxþ dxÞBν

PTðxþ dxÞ − gμνðxÞAμðxÞBνðxÞ
¼ −QαμνAμBνdxα; ð2:6Þ

where

gμνðxþ dxÞ ¼ gμνðxÞ þ ∂αgμνðxÞdxα; ð2:7Þ

Aμ
PTðxþ dxÞ ¼ AμðxÞ − Γμ

αβðxÞAαðxÞdxβ: ð2:8Þ

When the covariant derivative is metric compatible, the
connection is called a metric connection. Then, the geom-
etry is reduced to the Riemann-Cartan geometry in which
the connection is given by

Γμ
αβ ¼

n
αβ
μ o

−
1

2
ðTμ

αβ − Tβμα þ Tαβ
μÞ; ð2:9Þ

where fαβ
μ
g is the Levi-Civita connection defined by

n
αβ
μ o

≔
1

2
gμνð∂αgβν þ ∂βgαν − ∂νgαβÞ: ð2:10Þ

Furthermore, one may assume the torsionless condition

Tμ
αβ ¼ 0; ð2:11Þ

and now parallel displacement is fully characterized by the
Riemann tensor. As a result, we obtain the Riemannian
geometry in which the connection is uniquely determined
to be the Levi-Civita connection. The 64 independent
components are now fixed and then the structure of the
geometry is determined by the metric only.
When we further assume

Rμ
Γ

ναβ ¼ 0; ð2:12Þ

the Euclidean geometry is obtained.

B. Metric-affine formalism of GR

When a gravitational theory is formulated in the
Riemannian geometry, the independent variable is the
metric only. This formalism of these gravitational theories
is called the metric formalism. However, as discussed
above, the general geometry does not require the con-
nection is given by the Levi-Civita connection. Hence, it
would be natural to promote that the metric and the
connection are independent variables in the first place
and a gravitational theory dynamically determines not only
the metric but also the connection. This is called the metric-
affine formalism.
It is known that the Einstein-Hilbert (EH) action in the

metric-affine formalism is equivalent to that in the metric
formalism in vacuum [3–5]. Let us consider the EH action

SEHðg;ΓÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LEH;

LEHðg;ΓÞ ¼
M2

pl

2
gμνR

Γ
μν ð2:13Þ

where R
Γ
μν ¼ Rα

Γ
μαν. Since the metric and the connection are

independent variables in the metric-affine formalism, the
variation of the EH action leads to two independent
equations. To take the variation, we have to take care of
the fact that the connection is not a tensor. The easiest way
is to express the connection as

Γμ
αβ ¼

n
αβ
μ o

þ κμαβ; ð2:14Þ

and to regard the distortion tensor κμαβ as the independent
variable instead of the connection itself. Then, the EH
action is rewritten by

LEHðg;ΓÞ ¼
M2

pl

2
ðRðgÞ þ καβακ

βγ
γ − καβγκβγαÞ; ð2:15Þ

where RðgÞ is the Ricci scalar constructed by the Levi-
Civita connection.
Before proceeding with the variation, we note that the

EH action has an additional gauge invariance, called the
projective invariance, under the transformation

Γμ
αβ → Γμ

αβ þ δμαUβ; ð2:16Þ
for an arbitrary vector UαðxÞ. Geometrically, the projective
transformation is a change of the connection which
preserves the geodesic equation

d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ
¼ 0 ð2:17Þ

up to the redefinition of the affine parameter λ → λ̃ðλÞ
[26,27]. Note that the general projective transformation is
given by
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Γμ
αβ → Γμ

αβ þ δμαUβ þ δμβVα; ð2:18Þ

with two arbitrary vectors Uα and Vβ. The transformation
(2.16) is a special class of the projective transformation
which also preserves the angle between two vectors under
the parallel transport since the nonmetricity tensor is
transformed as

Qμ
αβ → Qμ

αβ þ 2Uμgαβ: ð2:19Þ
In the present paper, we just call the transformation (2.16)
the projective transformation and the invariance under it the
projective invariance, respectively. For further explanation
of geometrical characteristics of projective transformation
see Sec. VI of the textbook [26].
After introducing the distortion tensor κμαβ, the projec-

tive invariance is cast in the invariance under

κμαβ → κμαβ þ δμαUβ; ð2:20Þ

which results the identity

δμα
δSEH
δκμαβ

≡ 0: ð2:21Þ

Since the distortion tensor is a non-dynamical field in the
action (2.15), the distortion tensor can be integrated out.
The variation with respect to κμαβ yields the solution,

κμαβ ¼ 0; ð2:22Þ
up to the gauge freedom. Note that, although the solution of
κμαβ is not uniquely determined due to the freedom of the
projective transformation, we just omit the gauge mode
because the gauge mode does not affect the motion of the
physical variables. As a result, the EH action in the metric-
affine formalism coincides with the EH action in the metric
formalism after integrating out the distortion tensor.

C. Coupling to matter

The equivalence between the metric-affine formalism
and the metric formalism must not be true in general if we
add either higher curvature terms or a matter field. In the
present paper, we shall consider a sufficiently low energy
scale so that higher curvature terms can be ignored, and
then only focus on the latter one, the inclusion of matter,
which enables us to integrate out the distortion tensor since
κ is still a nondynamical field.
In this section, we discuss a minimal scalar field ϕ, a

vector field Aμ, and a Dirac field ψ . We consider the action

S ¼ SEHðg;ΓÞ þ Smðg;Γ;ϕ; A;ψÞ; ð2:23Þ
where Sm is a matter action which generally contains the
connection as well as the metric. Similarly to the previous
case, we can introduce the distortion tensor,

S ¼ SEHðg; κÞ þ Smðg; κ;ϕ; A;ψÞ: ð2:24Þ

The matter fields can be a source of the distortion tensor
and then κμαβ ¼ 0 up to the gauge mode is no longer the
solution to the equation of motion, in general.
We note that the projective invariance still holds even if

we add the standard matter fields. The minimal kinetic term
of the scalar field is given by − 1

2
gμν∂μϕ∂νϕ which is

manifestly projective invariant. As for the vectors, since the
appropriate definition of the covariant field strength of the
vector field is

Fμν ≔ ∂μAν − ∂νAμ; ð2:25Þ

the vector field does not couple with the distortion tensor
and then the action of the vector field is invariant under
(2.20) which is also true for the Yang-Mills fields. One
could propose that the covariant field strength is actually
written with the covariant derivative of the connection as,

F
Γ
μν ≔ ∇Γ μAν −∇Γ νAμ: ð2:26Þ

However, first this field strength is not Uð1Þ invariant, and
second, when considered in the language of differential
forms the field strength is F ¼ dA and this in tensor form is
(2.25). For more discussion see e.g. [28,29].
While the bosonic field do not couple to the distortion

tensor, the Dirac field has a coupling to κ and thus the Dirac
field can be a source of κ. To discuss the Dirac field, we
have to introduce the tetrad eaμ and the spin connection
ωab

μ. We assume the tetrad postulate which reads that the
connection Γ and the spin connection ω represent the same
geometrical object, i.e.,

Aa
PTðxþ dxÞ ¼ eaμðxþ dxÞAμ

PTðxþ dxÞ; ð2:27Þ

where

Aa
PTðxþ dxÞ ¼ AaðxÞ − ωa

bμAbðxÞdxμ; ð2:28Þ

eaμðxþ dxÞ ¼ eaμ þ ∂αeaμðxÞdxα: ð2:29Þ

Then, the variables ðg;ΓÞ and ðe;ωÞ are related by

gμν ¼ ηabeaμebν ; ð2:30Þ

∇Γ μeaν ¼ ∂μeaν − Γα
νμeaα þ ωa

bμebν ¼ 0: ð2:31Þ

The second equation leads to that the spin connection can
be written by

ωab
μ ¼ Δab

μ þ κabμ ð2:32Þ

where Δab
μ are the Ricci rotation coefficients and
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κabμ ¼ eaαebβκ
αβ

μ: ð2:33Þ

The covariant derivative of the Dirac field ψ is then
given by

∇Γ μψ ¼
�
∂μ þ

1

8
ωab

μ½γa; γb�
�
ψ ; ð2:34Þ

where γa is the gamma matrix with fγa; γbg ¼ −2ηab.
Since ½γa; γb� is antisymmetric for the indices a, b, (2.34) is
projective invariant.
The Dirac field Lagrangian in the metric-affine geometry

may be

LD ¼ i
2
ðψ̄γμ∇Γ μψ − ð∇Γ μψ̄ÞγμψÞ −mψ̄ψ ; ð2:35Þ

or

L0
D ¼ iψ̄γμ∇Γ μψ −mψ̄ψ ; ð2:36Þ

where γμ ¼ eμaγa. Admitting the equivalence upon the
integration by parts, only difference between (2.35) and
(2.36) is the coupling to the distorsion tensor. The inter-
action terms are given by

Lint ¼ −
1

4
ϵαβγδκαβγj5δ; ð2:37Þ

and

L0
int ¼ −

1

4
ϵαβγδκαβγj5δ þ

i
2
κ½αβ�βjα; ð2:38Þ

respectively, where

jμ ¼ ψ̄γμψ ; jμ5 ¼ ψ̄γμγ
5ψ ; ð2:39Þ

with γ5 ¼ − i
4!
ϵαβγδγαγβγγγδ and ϵαβγδ is the Levi-Civita

tensor. Due to the coupling to the distortion tensor, κμαβ¼0

is not a solution if the Dirac field exists for both cases.
Then, the equivalence between the metric one and the
metric-affine one does not hold which is well known in the
context of the Einstein-Cartan-Sciama-Kibble theory.

III. GALILEON IN METRIC-AFFINE FORMALISM

In the previous section, we discussed that the standard
Lagrangian including matter as well as gravity is projective
invariant. Hence, it would be natural to ask whether a
nonstandard Lagrangian can be projective invariant or not.
We consider a scalar field and assume the projective
invariance for the construction of the scalar field Lagrangian.
In this section, we study the Galileon scalar field. In the

flat spacetime, the action of the Galileon scalar field is
specified to enjoy the Galileon invariance

ϕ → ϕþ bμxμ þ c ð3:1Þ

where bμ and c are constant parameters [30]. The flat
spacetime Lagrangian of the Galileon scalar is given by

L ¼
X5
n≥2

cn

Λ3ðn−2Þ
3

Lgal
n ð3:2Þ

with

Lgal
2 ≔ ϵαβγδϵα

0
βγδ∂αϕ∂α0ϕ; ð3:3Þ

Lgal
3 ≔ ϵαβγδϵα

0β0
γδ∂αϕ∂α0ϕ∂β∂β0ϕ; ð3:4Þ

Lgal
4 ≔ ϵαβγδϵα

0β0γ0
δ∂αϕ∂α0ϕ∂β∂β0ϕ∂γ∂γ0ϕ; ð3:5Þ

Lgal
5 ≔ ϵαβγδϵα

0β0γ0δ0∂αϕ∂α0ϕ∂β∂β0ϕ∂γ∂γ0ϕ∂δ∂δ0ϕ; ð3:6Þ

where cn are dimensionless constants and Λ3 represents the
strong coupling scale. We note that the Galileon terms can
be expressed by

Lgal
2 ¼ −6ð∂ϕÞ2; ð3:7Þ

Lgal
3 ¼ 1

2
∂μϕ∂μϕϵαβγδϵα

0
βγδ∂α0∂αϕ;

¼ −ð∂ϕÞ2□ϕ; ð3:8Þ

Lgal
4 ¼ ∂μϕ∂μϕϵαβγδϵα

0β0
γδ∂α0∂αϕ∂β0∂βϕ

¼ −2ð∂ϕÞ2½ð□ϕÞ2 − ð∂α∂βϕÞ2�; ð3:9Þ

Lgal
5 ¼ 5

2
∂μϕ∂μϕϵαβγδϵα

0β0γ0
δ∂α0∂αϕ∂β0∂βϕ∂γ0∂γϕ

¼ −
5

2
ð∂ϕÞ2½ð□ϕÞ3 − 3□ϕð∂α∂βϕÞ2 þ 2ð∂α∂βϕÞ3�;

ð3:10Þ

after taking the integration by parts. As a result, the
Galileon terms in the flat spacetime are schematically
given by

Lgal
n ¼ ϵϵð∂ϕÞ2ð∂∂ϕÞn−2

¼ ð∂ϕÞ2ϵϵð∂∂ϕÞn−2 þ total divergence: ð3:11Þ

We then consider the Galileon field in the curved
spacetime. In the metric formalism, there are two ways
to covariantize the Galileon field: the covariant Galileon
[31] and the covariantized Galileon [30], respectively. The
covariant Galileon is based on the form ð∂ϕÞ2ϵϵð∂∂ϕÞn−2,
while the covariantized Galileon is given by the form
ϵϵð∂ϕÞ2ð∂∂ϕÞn−2. The equivalence between them no
longer holds in the curved spacetime and then the covariant
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Galileon and the covariantized Galileon are different
theories. Indeed, the covariant Galileon is a theory in the
class of Horndeski theory and the covariantized Galileon is
in the class of GLPV theory, respectively.
When we consider the metric-affine formalism instead of

the metric formalism, the covariant theory must be invariant
under the projective transformation.1 Here, we assume the
Galileon terms are purely constructed by the covariant
derivatives of the scalar field and the metric, i.e.,

LgalΓ
n ¼ LgalΓ

n ðg;ϕ;∇Γ μϕ;∇
Γ
μ∇
Γ
νϕÞ: ð3:12Þ

This assumption is a minimal way to introduce derivative
interactions of a scalar field in the metric-affine formalism.
Since

∇μ
Γ ∇ν

Γ
ϕ ¼ gμαgνβ∇α

Γ ∇Γ βϕþQμνγ∇Γ γϕ

≠ gμαgνβ∇Γ α∇
Γ
βϕ; ð3:13Þ

due to the nonmetricity tensor where ∇μ
Γ

≔ gμν∇Γ ν, a

Lagrangian containing ∇μ
Γ ∇ν

Γ
ϕ implicitly contains the

nonmetricity tensor in addition to the covariant derivatives
of the scalar field, i.e.,

Lðg;ϕ;∇Γ μϕ;∇
Γ
μ∇
Γ
νϕ;∇μ

Γ ∇ν
Γ
ϕÞ¼Lðg;ϕ;∇Γ μϕ;∇

Γ
μ∇
Γ
νϕ;Qα

βγÞ:
ð3:14Þ

Supposing the minimal derivative interactions of the scalar
field (3.12), we find that the Lagrangian of the covariant
Galileon terms is uniquely specified by the projective
invariance at least up to the quartic order.
The form ϵϵð∂ϕÞ2ð∂∂ϕÞn−2 is projective invariant,

while ð∂ϕÞ2ϵϵð∂∂ϕÞn−2 is not. In this way, we obtain all
projective invariant terms which reproduce (3.3)–(3.6) by

replacing ∇μ

Γ
with ∂μ except the freedom of the integration

by parts. The projective invariant Galileon terms are

LgalΓ
2 ¼ ϵαβγδϵα

0
βγδ∇

Γ
αϕ∇

Γ
α0ϕ; ð3:15Þ

LgalΓ
3 ¼ ϵαβγδϵα

0β0
γδ∇

Γ
αϕ∇

Γ
α0ϕ∇

Γ
β∇
Γ
β0ϕ; ð3:16Þ

LgalΓ
4 ¼ ϵαβγδϵα

0β0γ0
δ∇
Γ
αϕ∇

Γ
α0ϕ∇

Γ
β∇
Γ
β0ϕ∇

Γ
γ∇
Γ
γ0ϕ; ð3:17Þ

LgalΓ
5 ¼ ϵαβγδϵα

0β0γ0δ0∇Γ αϕ∇
Γ
α0ϕ∇

Γ
β∇
Γ
β0ϕ∇

Γ
γ∇
Γ
γ0ϕ∇

Γ
δ∇
Γ
δ0ϕ;

ð3:18Þ

and

LgalΓ0
4 ¼ ϵαβγδϵα

0β0γ0
δ∇
Γ
αϕ∇

Γ
α0ϕ∇

Γ
β∇
Γ
β0ϕ∇

Γ
γ0∇

Γ
γϕ; ð3:19Þ

LgalΓ0
5 ¼ ϵαβγδϵα

0β0γ0δ0∇Γ αϕ∇
Γ
α0ϕ∇

Γ
β∇
Γ
β0ϕ∇

Γ
γ∇
Γ
γ0ϕ∇

Γ
δ0∇

Γ
δϕ;

ð3:20Þ

where we note that the second derivative has no symmetric
indices,

2∇Γ ½μ∇
Γ
ν�ϕ ¼ −Tα

μν∂αϕ ≠ 0; ð3:21Þ

and then (3.19) [and (3.20)] potentially differs from (3.17)
[and (3.18)]. However, as shown in Appendix A, (3.17)
and (3.19) give the same result and thus it is sufficient to
consider only one of them. We may conjecture that (3.18)
and (3.20) lead to the same result as well and then we shall
ignore (3.19) and (3.20). Adding the EH action, the total
action of the covariant Galileon in the metric-affine
formalism is then given by

Lðg;Γ;ϕÞ ¼ M2
pl

2
gμνR

Γ
μν þ

X5
n≥2

cn

Λ3ðn−2Þ
3

LgalΓ
n : ð3:22Þ

At least up to the quartic order, the action (3.22) is the
unique covariant Galileon theory in the metric-affine
formalism.
Just for simplicity, we consider the Galileon terms up to

n ¼ 4 hereafter. This is because the termLgalΓ
5 is cubic in the

connection and then the equation ofmotion of the connection
becomes nonlinear. We could not find an explicit solution in
the nonlinear case. On the other hand, we can find explicit
solutions of the connection up to n ¼ 4.
As performed in the previous section, we introduce the

distortion tensor κμαβ and integrate it out to obtain the
effective action of the metric formalism. The variation with
respect to κμαβ yields the solution

κμαβ ¼ −
1

M2
plð1þ 2c4X2=Λ8

2Þ

×
�
c3
Λ3
3

ðXδμβϕα − Xϕμgαβ þ 2ϕμϕαϕβÞ

þ 2c4
Λ6
3

f2XϕμðαϕβÞ − Xϕμϕαβ

þ ϕαϕβðϕμϕγ
γ − 2ϕμγϕγÞg

�
; ð3:23Þ

1Galileon terms in the metric-affine formalism were consid-
ered in [22] without respecting the projective invariance. They
instead introduce an additional constraint on the connection to
eliminate the projective mode.
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up to the gauge freedom where we have introduced the
notation ϕμ ¼ ∇μϕ;ϕμν ¼ ∇μ∇νϕ; X ¼ ϕμϕμ and ∇μ is
the covariant derivative with respect to the Levi-Civita
connection. The scale Λ2 is defined by

Λ4
2 ¼ Λ3

3Mpl: ð3:24Þ

The result explicitly shows that the distortion is no longer
zero due to the Galileon scalar field. Unlike the metric-
affine fðRÞ theories neither the torsionless condition or
metric compatibility could be obtained by a suitable fixing
of the projective gauge. Substituting it to (3.22), the
resultant action is given by

L ¼ M2
pl

2
RðgÞ þ 3ðc23 − 4c2c4ÞX3=Λ8

2

1þ 2c4X2=Λ8
2

þ 1

1þ 2c4X2=Λ8
2

�
c2L

galg
2 þ c3

Λ3
3

Lgalg
3 þ c4

Λ6
3

Lgalg
4

�
:

ð3:25Þ

where

Lgalg
2 ¼ ϵαβγδϵα

0β0
γδϕαϕα0 ; ð3:26Þ

Lgalg
3 ¼ ϵαβγδϵα

0
β0γδϕαϕα0ϕββ0 ; ð3:27Þ

Lgalg
4 ¼ ϵαβγδϵα

0β0γ0
δϕαϕα0ϕββ0ϕγγ0 : ð3:28Þ

Therefore, the covariant Galileon in the metric-affine
formalism (3.22) is not equivalent to either the covariant
Galileon or the covariantized Galileon in the metric
formalism. Although (3.25) could be approximated by
the covariantized Galileon in the scales below Λ2, the
deviation becomes relevant when

jXj ≳ Λ4
2: ð3:29Þ

The new scale Λ2 naturally arises in the covariant Galileon
in the metric-affine formalism.
We thus have three theories of Galileon: the covariant

Galileon and the covariantized Galileon in the metric
formalism, and the projective invariant Galileon in the
metric-affine formalism [or its equivalent form (3.25) after
integrating out κ]. When we ignore gravity, i.e., taking the
limit Mpl → ∞, all of them reduce to the flat Galileon;
however, they do not coincide with each other when gravity
is included.
Since the distortion tensor κ is no longer zero, the

Galileon field may nonminimally couple with the Dirac
field after the integrating out κ while ϕ does not directly
couple with the vector field. Note that the totally anti-
symmetric part of κ is zero and thus the nonminimal
coupling does not exist if the Dirac field Lagrangian is

given by (2.35). On the other hand, as for (2.36), the
interaction terms are given by2

L0
int ¼

i
M2

plð1þ 2c4X2=Λ8
2Þ
jα

×

�
3c3
2Λ3

3

Xϕα þ c4
Λ6
3

ðXϕαϕβ
β −ϕαϕβγϕβϕγÞ

�
: ð3:30Þ

The Galileon in the metric-affine formalism may predict
that the bosons (the minimal scalar and vector fields)
and the fermions have different couplings to ϕ although
depending on the definition of the Dirac field Lagrangian.

IV. GENERALIZED GALILEON IN
METRIC-AFFINE FORMALISM IS DHOST

A. Equivalent Lagrangian to class 2N-I=Ia of DHOST

In the metric formalism, the known most general frame-
work of the scalar-tensor theories without the Ostrogradsky
ghost is theDHOST theory. In theDHOST theory,we require
a fine-tuning between the coefficients in front of the non-
minimal coupling to the curvature and the higher derivatives
of the scalar field in order to eliminate the Ostrogradsky
ghost. The conditions are called the degeneracy condi-
tions [19].
In the metric-affine formalism, we find that the equiv-

alent Lagrangian to (class 2N-I=Ia of) the DHOST theory is
given by

Lðg;Γ;ϕÞ ¼ f1ðϕ;XÞgμνR
Γ
μν þ f2ðϕ;XÞGμν

Γ ∇Γ μϕ∇
Γ
νϕ

þF2ðϕ;XÞ þF3ðϕ;XÞLgalΓ
3 þF4ðϕ;XÞLgalΓ

4 ;

ð4:1Þ

where f1, f2, F2, F3, F4 are arbitrary functions of ϕ and
X ≔ gμν∂μϕ∂νϕ. The last three terms are generalization of
the Galileon terms. The first two terms are the nonminimal
couplings to the Ricci scalar and the Einstein tensor,
respectively, where the Einstein tensor is now defined by

G
Γ

αβ ≔
1

4
ϵγαμνϵγ

βμ0ν0R
Γ
μνμ0ν0 : ð4:2Þ

The action (4.1) can be thus regarded as the straightforward
generalization of the Galileon field in the metric-affine
formalism including the nonminimal couplings to the
curvature.

2When the Dirac field is introduced, Eq. (3.23) is not a solution
because the Dirac field contributes to the equation of motion of κ.
Nonetheless, in cosmological situations such that the Galileon
dominates the universe while the Dirac field can be treated as a
test field, Eq. (3.23) may be used.
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After integrating out the distortion tensor, we obtain

L ¼ fRðgÞ þ PþQ1gμνϕμν þQ2ϕ
μϕμνϕ

ν

þ Cμν;ρσϕμνϕρσ; ð4:3Þ

where

Cμν;ρσ ¼ α1gρðμgνÞσ þ α2gμνgρσ

þ 1

2
α3ðϕμϕνgρσ þ ϕρϕσgμνÞ

þ 1

2
α4ðϕρϕðμgνÞσ þ ϕσϕðμgνÞρÞ þ α5ϕ

μϕνϕρϕσ:

ð4:4Þ

The explicit form of κ is written in Appendix B. The
coefficients are given by

f ¼ f1 −
1

2
f2X; ð4:5Þ

P ¼ F2 þ
3Xðf1ϕ − F3XÞ2

2f1 − f2X þ 2F4X2
; ð4:6Þ

Q1 ¼ −2fϕ þ
4f1ðf1ϕ − F3XÞ

2f1 − f2X þ 2F4X2
; ð4:7Þ

Q2 ¼
2fϕ
X

−
4ðf1 − 3f1XÞðf1ϕ − F3XÞ
Xð2f1 − f2X þ 2F4X2Þ ; ð4:8Þ

α1 ¼ −α2 ¼ −
f2
2
−

f1ðf2 − 2F4XÞ
2f1 − f2X þ 2F4X2

; ð4:9Þ

α3 ¼ 2f2X þ 4f1F4 þ ð4f1X − f2Þðf2 − 2F4XÞ
2f1 − f2X þ 2F4X2

; ð4:10Þ

α4 ¼ −2f2X þ 2f−11 f1Xð3f1X − f2Þ
þ f−21 f1XXðf1Xf2 − 4f1f2XÞ

þ f22 − 4f1F4 − 2f2F4X
2f1 − f2X þ 2F4X2

; ð4:11Þ

α5 ¼−f−21 f1Xðf1Xf2− 4f1f2XÞ

þ 2f1Xf4f1F4þð3f1X −f2Þðf2− 2F4XÞg
f1ð2f1−f2Xþ 2F4X2Þ ; ð4:12Þ

where f1ϕ ¼ ∂f1=∂ϕ, f1X ¼ ∂f1=∂X and so on. One can
observe that (4.5)–(4.12) satisfy the degeneracy conditions.
The resultant action is class 2N-I=Ia of quadratic DHOST.
This class depends on five arbitrary functions which is
indeed the same number of the arbitrary functions of (4.1).
While the totally antisymmetric part κ½αβγ� is zero, the

antisymmetric trace κ½αβ�β is nonzero and then (4.1) yields

nonminimal couplings to the Dirac field (2.36). In this
sense, (4.1) is equivalent to class 2N-I=Ia of DHOSTonly if
we do not consider the Dirac field and (4.1) is potentially a
theory beyond DHOST due to a coupling to the Dirac field
given by (2.38). The trace of the antisymmetric part of κ is

κ½αβ�β¼−
3ðf1ϕ−F3XÞ

2f1−f2Xþ2F4X2
ϕα−

f2−2F4X
2f1−f2Xþ2F4X2

ϕαϕβ
β

−
1

2f21
ðf1Xf2Xþ6f1f1X−f1f2−2f1f2XXÞϕαβϕβ

þ 1

2f21

�
f1Xf2−2f1f2X

−
f1f4f1F4þð6f1X−f2Þðf2−2F4XÞg

2f1−f2Xþ2F4X2

�
ϕαϕβϕγϕβγ;

ð4:13Þ

which indicates that generic scalar-tensor theories may
predict the nonminimal coupling between ϕ and fermions
in the metric-affine formalism as well.
Note that the action (4.1) is not themost general projective

invariant action up to quadratic in the connection. We can
find more general Lagrangian by only assuming the projec-
tive invariance; however, such generalized theories are
suffered from theOstrogradsky instabilitywhich is discussed
in Appendix A. A typical example is a term ðLgalΓ

3 Þ2 which is
certainly projective invariant but it leads to the Ostrogradky
ghost. Therefore, we cannot unfortunately conclude that the
structure ofDHOSTis protected by the projective invariance.

B. Specific models

We shall discuss some specific models. The Galileon
field has been already discussed in the previous section.
Here, we consider nonminimal couplings to the curvature.
One of the simplest models of a nonminimal scalar field is

L ¼ M2
pl − ξϕ2

2
gμνR

Γ
μν −

1

2
ð∂ϕÞ2 − VðϕÞ: ð4:14Þ

In particular, in the case of the metric formalism, the non-
minimal coupling ξϕ2R with ξ ¼ 1=6 is known as the
conformal coupling. If the coupling ξϕ2R exists in the
metric-affine formalisms, integrating out κ, the Lagrangian
(4.14) becomes

L ¼ M2
pl − ξϕ2

2
RðgÞ −M2

pl − ξð1þ 6ξÞϕ2

2ðM2
pl − ξϕ2Þ ð∂ϕÞ2 − VðϕÞ;

ð4:15Þ

where ξ ¼ 1=6 is no longer the conformal coupling due to
the noncanonical kinetic term. A similar action was first
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considered in [32] for a torsionless case, and our results agree
with their result when transformed into the Einstein frame.
Another example is the nonminimal coupling to the

Einstein tensor,

L¼M2
pl

2
gμνR

Γ
μν −

1

2

�
gμν −

G
Γ μν

M2

�
∂μϕ∂νϕ−VðϕÞ: ð4:16Þ

In the metric formalism, the Einstein tensor coupling
Gμν∂μϕ∂νϕ is in the class of the Horndeski theory. On
the other hand, we obtain

L ¼ M2
pl

2
RðgÞ − 1

2

�
gμν −

GμνðgÞ
M2

�
∂μϕ∂νϕ − VðϕÞ

−
1

4M4M2
plð2 − X=M2M2

plÞ
Lgalg
4 ; ð4:17Þ

from (4.16) after integrating out κ, which is in the class of
the GLPV theory due to the quartic Galileon term Lgalg

4 .
A theory in the class of the DHOST theory is obtained by

considering the kinetic coupling to the curvature. For
instance, let us assume that the scalar field appears only
through X ¼ ð∂ϕÞ2 in the action. The most general action
of the form L ¼ Lðg;Γ; XÞ up to linear in the curvature is

L ¼ fðXÞgμνRΓ μν þ PðXÞ; ð4:18Þ

whose equivalent action in the metric formalism is

L ¼ fRðgÞ þ Pþ 6f2X
f

ϕαϕβϕαγϕ
γ
β; ð4:19Þ

which is in the class of the DHOST theory.
We note that (4.19) automatically has the structure

α1 ¼ α2 ¼ 0. The modified gravity theories to explain
the present cosmic accelerating expansion are strongly
constrained by the speed of gravitational wave [33,34]. In
order that the speed of the gravitational wave exactly
coincides with the speed of light, the functions in
DHOST should be f ¼ fðϕÞ and αi ¼ 0 or should be
fine-tuned to α1 ¼ α2 ¼ 0 with f ¼ fðϕ; XÞ [35–37] (see
also [38–40]). However, (4.19) does not require the fine-
tuning even with a nonminimal coupling fðXÞR since
(4.19) is obtained from the simple action (4.18) where the
“counterterm” ϕαϕβϕαγϕ

γ
β to eliminate the Ostrogradsky

ghost, which does not change the speed of gravitational
waves, is automatically obtained by integrating out the
distortion tensor in the action (4.18).

V. HIGHER ORDERS OF CONNECTION

So far, we have considered theories up to quadratic
in the connection in order to explicitly solve the equa-
tion of motion of the connection. When the Lagrangian

Lðg;Γ;ϕ;∇Γϕ;∇Γ ∇Γ ϕÞ contains terms cubic or higher in the
connection, a solution of the connection may be given by

κμαβ ¼
X∞
i;j;k

kki;jðϕ; XÞ½ð∇ϕÞið∇∇ϕÞj�μαβ; ð5:1Þ

where the label k classifies possible contractions of
ð∇ϕÞið∇∇ϕÞj with the free indices μ, α, β for the same
i and j. Up to j ¼ 1, we obtain

κμαβ ¼ k11;0gαβϕ
μ þ k21;0δ

μ
αϕβ þ k31;0δ

μ
βϕα þ k13;0ϕ

μϕαϕβ þ k11;1gαβϕ
μϕγ

γ þ k21;1gαβϕγϕ
μγ þ k31;1δ

μ
αϕβϕ

γ
γ

þ k41;1δ
μ
βϕαϕ

γ
γ þ k51;1δ

μ
αϕγϕβγ þ k61;1δ

μ
βϕ

γϕαγ þ k71;1ϕ
μϕαβ þ k81;1ϕαϕ

μ
β þ k91;1ϕβϕ

μ
α

þ k13;1gαβϕ
μϕγϕδϕγδ þ k23;1δ

μ
αϕβϕ

γϕδϕγδ þ k33;1δ
μ
βϕαϕ

γϕδϕγδ þ k43;1ϕ
μϕαϕβϕ

γ
γ

þ k53;1ϕ
μϕαϕ

γϕβγ þ k63;1ϕ
μϕβϕ

γϕαγ þ k73;1ϕαϕβϕγϕ
μγ þ k15;1ϕ

μϕαϕβϕ
γϕδϕγδ þOðϕ2

μνÞ: ð5:2Þ

Note that the expression (5.2) contains the projective mode
k21;0; k

3
1;1; k

5
1;1; k

2
3;1 and they can be removed by the projec-

tive transformation. Then, (5.2) has 17 independent terms
up to linear in the second derivative of ϕ.
Since the second derivative of the scalar field is given by

∇Γ μ∇
Γ
νϕ ¼ ϕμν − κανμϕα; ð5:3Þ

the second derivative ∇Γ μ∇
Γ
νϕ is still linear in ϕαβ if the

equation of motion of κ admits a solution

kki;j ¼ 0 for j ≥ 2: ð5:4Þ

We thus consider whether the quintic Galileon (3.22) can
admit the solution (5.4) by tuning the remaining 17
coefficients kki;0 and kki;1. After a straightforward
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calculation, we find that (3.22) does not admit the solution
(5.4) if c5 ≠ 0. This result implies that, when formally
integrating out κ, the quintic Galileon (3.22) must generate
terms more than cubic in ϕμν and then the resultant theory
cannot be in the cubic DHOST theory except for the case
when there are miracle cancellations in higher orders of
ϕμν. Therefore, it would be interesting to investigate
whether the quintic Galileon is still ghost-free even in
the metric-affine formalism which is nonetheless beyond
the scope of the present paper.

VI. SUMMARY AND DISCUSSIONS

In the present paper, we have reformulated scalar-tensor
theories in the metric formalism to those in the metric-
affine formalism and clarified the relation between them.
We assume that the Lagrangian is projective invariant and
that the scalar field does not directly couple with the non-
metricity tensor. Then, we find that the covariant Galileon
terms in the metric-affine formalism are uniquely specified
at least up to the quartic order although those in the metric
formalism are not. The covariant Galileon in the metric-
affine formalism does not coincide with either of those in
the metric formalism where the deviation becomes relevant
at the scales beyond Λ2. We then discuss a straightforward
generalization of the Galileon and obtain an equivalent
action to class 2N-I=Ia of DHOST. The equivalent action
(4.1) makes the structure of DHOST clear because it is
just linear in the generalized Galileon terms and the non-
minimal couplings to the Ricci curvature and the Einstein
tensor. We should, however, emphasize that the equivalence
between (4.1) and class 2N-I=Ia of DHOST holds only if we
ignore the fermionic fields.
An important difference between theories in the

metric formalism and in the metric-affine formalism is
the coupling to the fermions. When we a priori assume the
torsionless condition and the metric compatibility condi-
tion, i.e., κ ¼ 0, scalar-tensor theories should predict the
universal coupling to bosons and fermions. On the other
hand, as clarified in Sec. II, the standard bosonic fields do
not couple with the distortion tensor κ while the fermionic
fields couple with κ in the metric-affine formalism where
the interaction depends on the definitions of the Dirac field
Lagrangian. Although GR leads to the solution κ ¼ 0, in
general, scalar-tensor theories yield κ½αβ�β ≠ 0 and lead to
the nonminimal coupling only with the fermions in the case
of (2.36). Hence, it would be interesting to study phenom-
enological signatures of this non-minimal coupling.
The metric-affine formalism of gravity is sometimes

called the first order formalism of gravity because the
curvature is given by the first order derivative of the
connection. The Ostrogradsky ghost-freeness of (4.1) could
be understood by the fact that (4.1) does not contain second
order derivatives of the fields except the Galileon combi-
nations. To obtain the effective description of (4.1) in the

metric formalism, one should decompose the general
connection Γ to the Levi-Civita connection and the dis-
tortion tensor κ, and integrate out κ; then, the Lagrangian
(4.1) becomes to contain the non-Galileon combinations of
the second order derivatives. However, the resultant
Lagrangian is Ostrogradsky ghost-free which can be seen
to satisfy the degeneracy condition. Needless to say, the
nonexistence of the ghost is not obvious even if a theory
only contains first order derivatives because one may
reduce the number of the derivatives by introducing an
auxiliary field with a Lagrangian multiplier. Nonetheless,
the metric-affine formalism could give a new understanding
of the ghost-freeness of DHOST: the non-Galileon combi-
nations of the second derivatives of DHOST are rewritten
by the first order form in the metric-affine formalism.
Although we have discussed theories up to quadratic

order in the connection in order to solve κ explicitly, one
may discuss higher-order theories with respect to the
connection. The simplest theory would be the quintic
Galileon and its generalization. Other possible extensions
would be the Fab Four type Lagrangian [13]. Since the first
two terms of (4.1) are two of Fab Four, we may expect that
the last two of Fab Four

f3ðϕ; XÞG
Γ

μανβ∇Γ μϕ∇
Γ
νϕ∇

Γ
α∇
Γ
βϕ; f4ðϕ; XÞG

Γ
μναβR

Γ
μναβ

ð6:1Þ

are ghost-free as well where G
Γ

μανβ is the double dual of the
Riemann curvature defined by (A27). It would be worth-
while to discuss whether the quintic Galileon and Fab Four
are still ghost-free in the metric-affine formalism, which is
left for future works.
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APPENDIX A: PROJECTIVE INVARIANT
SCALAR-TENSOR THEORIES

We consider scalar-tensor theories in the metric-affine
formalism whose action is constructed by the metric tensor

gμν, the curvature tensor R
Γ

μ
ναβ, the scalar field ϕ, and its

covariant derivatives. For simplicity, we only consider the
action up to quadratic in the connection. The projective
invariance leads to
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L¼ fgμνR
Γ
μν þ g1gμαgνβR

Γ
μν∂αϕ∂βϕ

þ g2gαβgμνR
Γ
ρ
αμβ∂ρϕ∂νϕþF2 þF3L

galΓ
3 þF4L

galΓ
4

þC1ϵ
μνρσϵμ

0ν0ρ0
σ∂μϕ∂μ0ϕ∇

Γ
ν∇
Γ
ν0ϕ∇

Γ
½ρ∇

Γ
ρ0�ϕþC2ðLgalΓ

3 Þ2

þC3ðgμβgνδgαγ − gμνgαγgβδÞ∂μϕ∂νϕ∇
Γ
α∇
Γ
βϕ∇

Γ
γ∇
Γ
δϕ;

ðA1Þ

where f; g1; g2; F2; F2; F4; C1; C2; C3 are arbitrary func-
tions of ϕ and X ≔ gμν∂μϕ∂νϕ. The solution of κ is give by
the form (5.2) with (5.4). We note that kki;j are expressed in
terms of f; g1; g2; F2; F3; F4; C2; C3 but they have no
dependence on C1. Furthermore, we also find that the
relation between ðP;Q1; Q2; αiÞ of the action (4.3) and
ðf; g1; g2; F2; F2; F4; C1; C2; C3Þ where P;Q1; Q2; αi are
independent from C1. Therefore, the following Galileon
terms

ϵαβγδϵα
0β0γ0

δ∇
Γ
αϕ∇

Γ
α0ϕ∇

Γ
β∇
Γ
β0ϕ∇

Γ
γ∇
Γ
γ0ϕ ðA2Þ

and

ϵαβγδϵα
0β0γ0

δ∇
Γ
αϕ∇

Γ
α0ϕ∇

Γ
β∇
Γ
β0ϕ∇

Γ
γ0∇

Γ
γϕ ðA3Þ

give the same result although ∇Γ γ∇
Γ
γ0ϕ is not symmetric for

the indices γ and γ0.
The Ostrogradsky ghost-free conditions of the action

(4.3) are given by

D0 ¼ 0; D1 ¼ 0; D2 ¼ 0; ðA4Þ

where

D0 ≔ −4ðα1 þ α2Þ
× ½Xfð2α1 þ Xα4 þ 4fXÞ − 2f2 − 8X2f2X�; ðA5Þ

D1 ≔ 4½X2α1ðα1 þ 3α2Þ − 2f2 − 4Xfα2�α4
þ 4X2fðα1 þ α2Þα5 þ 8Xα31

− 4ðf þ 4XfX − 6Xα2Þα21 − 16ðf þ 5XfXÞα1α2
þ 4Xð3f − 4XfXÞα1α3 − X2fα23

þ 32fXðf þ 2XfXÞα2 − 16ffXα1

− 8fðf − XfXÞα3 þ 48ff2X; ðA6Þ

D2 ≔ 4½2f2 þ 4Xfα2 − X2α1ðα1 þ 3α2Þ�α5 þ 4α31

þ 4ð2α2 − Xα3 − 4fXÞα21 þ 3X2α1α
2
3 − 4Xfα23

þ 8ðf þ XfXÞα1α3 − 32fXα1α2 þ 16f2Xα1

þ 32f2Xα2 − 16ffXα3: ðA7Þ

Following the classification [25], the case

α1 þ α2 ¼ 0; ðA8Þ
is called class I and the case

Xfð2α1 þ Xα4 þ 4fXÞ − 2f2 − 8X2f2X ¼ 0; f ≠ 0

ðA9Þ

is called class II, respectively. Class I (or class II) can be
further classified into class Ia (or class IIa) if f ≠ Xα1 and
class Ib (or class IIb) if f ¼ Xα1. A special class f ¼ 0 is
called class III. As for the theory (A1), Di are given by

D0 ¼ −
8XðC3 − 4C2XÞðf þ g2XÞ2D2

E
; ðA10Þ

D1 ¼ −
8ðC3 − 8C2XÞðf þ g2XÞ2D2

E
; ðA11Þ

D2 ¼
32C2ðf þ g2XÞ2D2

E
; ðA12Þ

where

D ≔ 2fg − 4fXgX þ fgXX; ðA13Þ

E ≔ ½2f2 þ 2g22X
2 þ fXð4g2 − C3XÞ�

× ½f2 þ ðF4 − C3Þg1X3 þ fXfg2 þ ðF4 − C3ÞXg�
× ½2f2 þ g1X3ð2F4 þ C3 − 12C2XÞ
þ fXð2g2 þ Xf2F4 þ C3 − 12C2Xg�: ðA14Þ

with g ≔ ðf þ g1XÞðf þ g2XÞ. The Ostrogradsky ghost-
free theories of (A1) are classified into four cases

class Ia∶ C2 ¼ C3 ¼ 0; ðA15Þ

class IIa∶ D ¼ 0; g ≠ 0; f ≠ 0; ðA16Þ

class Ib ∩ IIb∶ g ¼ 0 ðA17Þ

class III∶ f ¼ 0; ðA18Þ

which correspond to the classification of DHOST, respec-
tively. Only class Ia is obtained by eliminating the non-
Galileon terms of the derivative self-interactions of the
scalar field while other classes are obtained by tuning the
curvature couplings.
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Since the phenomenologically viable class is only class Ia
[41], we shall focus on only the case C2¼C3¼0. In this
case, the functions are explicitly given by

P ¼ F2 þ
3Xðgϕ − 2F0

3XÞ2
8ðfgþ F0

4X
2Þ ; ðA19Þ

Q1 ¼ −2fϕ þ
gðgϕ − 2F0

3XÞ
fgþ F0

4X
2

; ðA20Þ

Q2 ¼
2fϕ
X

−
ðgϕ − 2F0

3XÞð2g − 3gXXÞ
2Xðfgþ F0

4X
2Þ ; ðA21Þ

α1 ¼ −α2 ¼
1

X

�
f −

g2

fgþ F0
4X

2

�
; ðA22Þ

α3 ¼
2

X2

�
f − 2fXX −

gðg − gXXÞ
fgþ F0

4X
2

�
; ðA23Þ

α4 ¼
1

2g2X2
½8fXgXðgþ gXXÞ − fð2gþ gXXÞ2�

þ 2g2

fgX2 þ F0
4X

4
; ðA24Þ

α5 ¼
gX

2X2g2
ð4fg − 8fXgX þ fgXXÞ

−
gXð4g − 3gXXÞ
2X2ðfgþ F0

4X
2Þ ; ðA25Þ

where

F0
3 ≔ F3ðf þ g1XÞ; F0

4 ≔ F4ðf þ g1XÞ2: ðA26Þ

While the action (A1) with C2 ¼ C3 ¼ 0 contains six
independent functions f; g1; g2; F2; F3; F4, the equivalent
action (4.3) is specified by only five combinations
f; g; F2; F0

3; F
0
4.

We note that the double dual of the Riemann curvature,

G
Γ

μναβ ≔
1

4
ϵμνρσϵαβρσR

Γ
ρσρ0σ0 ; ðA27Þ

is projective invariant although the Riemann curvature itself
is not. The Ricci scalar and the Einstein tensor are given by

contractions of G
Γ

μναβ:

gμνR
Γ
μν ¼ −G

Γ
μν

μν; G
Γ

μν ¼ Gα

Γ
μαν: ðA28Þ

and then they are definitely projective invariant. Let us
assume that the nonminimal couplings between ϕ and the
curvature are given by the couplings to the double dual of
the Riemann curvature instead of the Riemann curvature.
This assumption leads to g1 ¼ g2 and then the theory (A1)
with C2 ¼ C3 ¼ 0 is reduced to (4.1).

APPENDIX B: EXPLICIT SOLUTION OF κ

The solution of κ to the theory (4.1) is given by the form
(5.2) with

k11;0 ¼ −
f1ϕ − F3X

2f1 − f2X þ 2F4X2
;

k31;0 ¼ −k11;0 ¼
f1ϕ − F3X

2f1 − f2X þ 2F4X2
; ðB1Þ

k13;0 ¼ −
2f1F3 − f2F3X þ 2f1ϕF4X

f1ð2f1 − f2X þ 2F4X2Þ ; ðB2Þ

k11;1 ¼ 0;

k21;1 ¼ −
f1X
f1

;

k41;1 ¼ 0;

k61;1 ¼ −k21;1 ¼
f1X
f1

;

k71;1 ¼ −
f2 − 2F4X

2f1 − f2X þ 2F4X2
;

k81;1 ¼ −k71;1 ¼
f2 − 2F4X

2f1 − f2X þ 2F4X2
;

k91;1 ¼ −
2F4X

2f1 − f2X þ 2F4X2
; ðB3Þ

k13;1 ¼ −
f1Xðf2 − 2F4XÞ

f1ð2f1 − f2X þ 2F4X2Þ ;

k33;1 ¼ −k13;1 ¼
f1Xðf2 − 2F4XÞ

f1ð2f1 − f2X þ 2F4X2Þ ;

k43;1 ¼ −
2F4

2f1 − f2X þ 2F4X2
;

k53;1 ¼ 0;

k63;1 ¼
1

2f21

�
f1Xf2 − 2f1f2X þ f1f2ðf2 − 2F4XÞ

2f1 − f2X þ 2F4X2

�
;

k73;1 ¼ −
1

2f21

�
f1Xf2 − 2f1f2X

þ f1ðf22 − 8f1F4 − 2f2F4XÞÞ
2f1 − f2X þ 2F4X2

�
; ðB4Þ

k15;1 ¼ −
4f1XF4

f1ð2f1 − f2X þ 2F4X2Þ ; ðB5Þ

and

kki;j ¼ 0 for j ≥ 2: ðB6Þ
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