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The instant form and the front form of relativistic dynamics proposed by Dirac in 1949 can be linked by
an interpolation angle parameter δ spanning between the instant form dynamics (IFD) at δ ¼ 0 and the front
form dynamics, which is now known as the light-front dynamics (LFD) at δ ¼ π=4. We present the formal
derivation of the interpolating quantum electrodynamics (QED) in the canonical field theory approach and
discuss the constraint fermion degree of freedom, which appears uniquely in the LFD. The constraint
component of the fermion degrees of freedom in LFD results in the instantaneous contribution to the
fermion propagator, which is genuinely distinguished from the ordinary equal-time forward and backward
propagation of relativistic fermion degrees of freedom. As discussed recently, the helicity of the on-mass-
shell fermion spinors in LFD is also distinguished from the ordinary Jacob-Wick helicity in the IFD with
respect to whether the helicity depends on the reference frame or not. To exemplify the characteristic
difference of the fermion propagator between IFD and LFD, we compute the helicity amplitudes of typical
QED processes such as eþe− → γγ and eγ → eγ and present the whole landscape of the scattering
amplitudes in terms of the frame dependence or the scattering angle dependence with respect to the
interpolating angle dependence. Our analysis clarifies any conceivable confusion in the prevailing notion of
the equivalence between the infinite momentum frame approach and the LFD.
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I. INTRODUCTION

For the study of relativistic particle systems, Dirac [1]
proposed three different forms of the relativistic
Hamiltonian dynamics in 1949: i.e., the instant (x0 ¼ 0),
front (xþ ¼ ðx0þx3Þ= ffiffiffi

2
p ¼ 0), and point (xμxμ ¼ a2 > 0;

x0 > 0) forms. The instant form dynamics (IFD) of
quantum field theories is based on the usual equal time
t ¼ x0 quantization (units such that c ¼ 1 are taken here),
which provides a traditional approach evolved from the
nonrelativistic dynamics. The IFD makes a close contact
with the Euclidean space, developing temperature-
dependent quantum field theory, lattice QCD, etc. The
equal light-front time τ≡ ðtþ z=cÞ= ffiffiffi

2
p ¼ xþ quantization

yields the front form dynamics, nowadays more commonly
called light-front dynamics (LFD), which provides an
innovative approach to the study of relativistic dynamics.

The LFD works strictly in the Minkowski space, devel-
oping useful frameworks for the analyses of deep inelastic
scattering (DIS), parton distribution functions (PDFs),
deeply virtual Compton scattering (DVCS), generalized
parton distributions (GPDs), etc. The quantization in the
point form (xμxμ ¼ a2 > 0; x0 > 0) is called radial quan-
tization, and this quantization procedure has been much
used in string theory and conformal field theories [2] as
well as in hadron physics [3–5]. Among these three
forms of relativistic dynamics proposed by Dirac, how-
ever, the LFD carries the largest number (seven) of the
kinematic (or interaction independent) generators leaving
the least number (three) of the dynamic generators while
both the IFD and the point form dynamics carry six
kinematic and four dynamic generators within the total
ten Poincaré generators. Indeed, the maximum number of
kinematic generators allowed in any form of relativistic
dynamics is seven, and the LFD is the only one which
possesses this maximum number of kinematic genera-
tors. Effectively, the LFD maximizes the capacity to
describe hadrons by saving a lot of dynamical efforts in
obtaining the QCD solutions that reflect the full Poincaré
symmetries.
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We discuss in this work the correspondence between the
LFD and the IFD which has been the traditional approach,
using an interpolation angle parameter spanning between
the IFD and the LFD. There have been earlier works closely
related on this subject, using a tilted coordinate near the
light-front time axis to quantize the fields slightly away
from the light front [6–8]. In particular, the work of Ref. [8]
concerned the role of light-front zero modes in QED and
QCD with respect to the confinement and chiral symmetry
of QCD in contrast to QED. We maintain the orthogonality
of the coordinate system in the process of interpolation to
correspond the QED between the IFD and the LFD.
Although we want ultimately to obtain a general formu-
lation for the QCD, we start from a simpler theory to
discuss first the bare-bone structure that will persist even in
the more complicated theories. Starting from the scalar
field theory [9] to discuss the interpolating scattering
amplitude with only a momentum degree of freedom
(d.o.f.), we have extended the discussion to the electro-
magnetic gauge d.o.f. [10] and the on-mass-shell fermion
[11]. In particular, we discussed the link between the
Coulomb gauge in IFD and the light-front gauge in LFD
[10] and the chiral representation of the helicity spinors
interpolating between the IFD and the LFD [11]. In this
work, we entwine the fermion propagator interpolation
with our previous works of the electromagnetic gauge field
[10] and the helicity spinors [11] and fasten the bolts and
nuts necessary to launch the interpolating QED.
As we have already discussed, the prototype of QED

scattering processes “eμ → eμ” and “eþe− → μþμ−”
involving a photon propagator in our previous work
[11], we present in this work, the two-photon production
amplitude in the pair annihilation of fermion and anti-
fermion process “eþe− → γγ” as well as the Compton
scattering amplitude “eγ → eγ” involving a fermion propa-
gator. Since the effects of external fermions and bosons
have already been studied in our previous works [10,11],
we will focus on the intermediate fermion propagator in
this work.
To trace the forms of relativistic quantum field theory

between IFD and LFD, we take the following convention
of the space-time coordinates to define the interpolation
angle [9–13]:

�
xþ̂

x−̂

�
¼

�
cos δ sin δ

sin δ − cos δ

��
x0

x3

�
; ð1Þ

in which the interpolation angle is allowed to run from
0 through 45°, 0 ≤ δ ≤ π

4
. The lower index variables xþ̂

and x−̂ are related to the upper index variables as xþ̂ ¼
gþ̂ μ̂x

μ̂ ¼ Cxþ̂ þ Sx−̂ and x−̂ ¼ g−̂ μ̂xμ̂ ¼ −Cx−̂ þ Sxþ̂,
denoting C ¼ cos 2δ and S ¼ sin 2δ and realizing gþ̂ þ̂ ¼
−g−̂ −̂ ¼ cos 2δ ¼ C and gþ̂ −̂ ¼ g−̂ þ̂ ¼ sin 2δ ¼ S. All the
indices with the wide-hat notation signify the variables with

the interpolation angle δ. For the limit δ → 0, we have xþ̂ ¼
x0 and x−̂ ¼ −x3 so that we recover the usual space-time
coordinates although the z-axis is inverted, while for the
other extreme limit, δ → π

4
, we have x�̂ ¼ ðx0 � x3Þ=ffiffiffi

2
p ≡ x�, which leads to the standard light-front coordi-
nates. Since the perpendicular components remain the same
(xĵ ¼ xj; xĵ ¼ xj; j ¼ 1, 2), we will omit the “^” notation
unless necessary from now on for the perpendicular indices
j ¼ 1, 2 in a four vector. Of course, the same interpolation
applies to the four-momentum variables too as it applies to
all four vectors. The details of the relationship between the
interpolating variables and the usual space-time variables
can be seen in our previous works, Refs. [9–11].
In Ref. [10], we developed the electromagnetic gauge

field propagator interpolated between the IFD and the LFD
and found that the light-front gauge Aþ ¼ 0 in LFD is
naturally linked to the Coulomb gauge ∇ ·A ¼ 0 in IFD.
We identified the dynamical d.o.f. for the electromagnetic
gauge fields as the transverse photon fields and clarified the
equivalence between the contribution of the instantaneous
interaction and the contribution from the longitudinal
polarization of the virtual photon. Our results for the gauge
propagator and time-ordered diagrams clarified whether
one should choose the two-term form [14] or the three-term
form [15–17] for the gauge propagator in LFD. There has
been a sustained interest and discussion on this issue of the
two-term vs three-term gauge propagator in LFD [18]. Our
transverse photon propagator in LFD assumes the three-
term form, but the third term cancels the instantaneous
interaction contribution. Thus, one can use the two-term
form of the gauge propagator for the effective calculation of
amplitudes if one also omits the instantaneous interaction
from the Hamiltonian. But if one wants to show equiv-
alence to the covariant theory, all three terms should be kept
because the instantaneous interaction is a natural result of
the decomposition of Feynman diagrams, and the third term
in the propagator is necessary for the total amplitudes to be
covariant. We also see that the photon propagator was
derived according to the generalized gauge that links the
Coulomb gauge to light-front gauge, and thus, the three-
term form appears appropriate in order to be consistent with
the appropriate gauge.
In Ref. [11], we derived the generalized helicity spinor

that links the instant form helicity spinor to the light-front
helicity spinor. For a given generalized helicity spinor, the
spin direction does not coincide with the momentum
direction in general. Thus, we studied how the spin
orientation angle θs changes in terms of both δ and the
angle θ that defines the momentum direction of the particle.
In particular, the helicity in IFD depends on the reference
frame. If the observer moves faster than the positive helicity
spinor, then the direction of the momentum becomes
opposite to the spin direction, and the helicity of the spinor
flips its sign. In contrast, the helicity defined in LFD is
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independent of the reference frame. We have detailed the
increment of the angle difference θ − θs with the increment
of the interpolation angle δ in Ref. [11], which bifurcates at
a critical interpolation angle δc. We found this critical

interpolation angle δc ¼ arctanðjPjE Þ, where jPj and E are the
magnitude of the three-momentum and the energy of the
particle under investigation. The IFD and the LFD belong
separately to the two different branches bifurcated and
divided out at the critical interpolation angle δc. This
bifurcation indicates the necessity of the distinction in
the spin orientation between the IFD and the LFD and
clarifies any conceivable confusion in the prevailing notion
of the equivalence between the LFD and the infinite
momentum frame (IMF) approach [19] formulated in
the IFD.
Now that the spinor has been interpolated between IFD

and LFD, we show in this work that the covariant Feynman
propagator Σ ¼ qþm

q2−m2 of the intermediate virtual fermion
with the four momentum q and the mass m can also be
decomposed into the two interpolating time-ordered proc-
esses, one with the “forward moving” intermediate fermion
in the sense that its interpolating longitudinal momentum
q−̂ is positive, i.e., q−̂ > 0 and the other with the “backward
moving” intermediate fermion carrying the opposite sign of
−q−̂, i.e., −q−̂ < 0. The corresponding “forward” and
“backward” amplitudes are given by

ΣF ¼ 1

2Qþ̂
QF þm
qþ̂ −QFþ̂

; ΣB ¼ 1

2Qþ̂
−QB þm
−qþ̂ −QBþ̂

; ð2Þ

where

QFþ̂ ¼ −SqF−̂ þQþ̂

C
; ð3Þ

QBþ̂ ¼ −SqB−̂ þQþ̂

C
; ð4Þ

and

Qþ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cðq2⊥ þm2Þ

q
; ð5Þ

with the four momenta qF ¼ q and qB ¼ −q, which are
those of the off-shell fermion and antifermion, while QF
andQB are the corresponding on-shell four-momenta. Only
the interpolating energies of the “forward” and “backward”
moving intermediate fermions, i.e., QFþ̂ and QBþ̂ are
different from qF and qB, respectively, as given by
Eqs. (3) and (4). In the light-front limit δ → π

4
, i.e.,

C → 0, we get

ΣF;δ→π
4
¼ =qon þm

q2 −m2
; ΣB;δ→π

4
¼ γþ

2qþ
; ð6Þ

where qon is the on-shell momentum four-vector with its
spacial part equal to that of q while it satisfies the Einstein
energy-momentum relationship. Here, ΣB;δ→π

4
turns out to

be the instantaneous contribution in the light-front propa-
gator. This proves the usual light-front decomposition of
the fermion propagator given by [20]

1

=q −m
¼

P
suðq; sÞūðq; sÞ
q2 −m2

þ γþ

2qþ
; ð7Þ

where the numerator =qon þm of ΣF;δ→π
4
in Eq. (6) is

replaced by the spin sum of the on-shell spinor productP
suðq; sÞūðq; sÞ.
In the next section, Sec. II, we present the formal

derivation of the interpolating QED. We outline two
different derivations of the Feynman rules for xþ̂-ordered
diagrams formulated at any interpolation angle. The first
approach presented in Sec. IIA directly decomposes the
covariant Feynman diagram, and the second one presented
in Sec. IIB utilizes the canonical field theory and the old-
fashioned perturbation theory. We notice in particular
the constraint fermion d.o.f., which appears uniquely in the
LFD, resulting in the instantaneous contribution to the
fermion propagator. The canonical field theory is studied
for the entire range of the interpolation angle 0 ≤ δ ≤ π=4.
Equations of motion, free fields, gauge condition, energy-
momentum tensor, and angular momentum tensor are
examined, and the Hamiltonian at constant xþ̂ is found.
In Sec. III, we study the xþ̂-ordered fermion propagator in
more detail. Taking a simple example, the annihilation of
fermion and antifermion into two scalar particles, we show
the characteristic behavior of the amplitudes as the form
interpolates between IFD and LFD and also examine the
angular momentum conservation. In Sec. IV, we present the
results for the eþe− → γγ process and the Compton
scattering eγ → eγ. We compute all 16 helicity amplitudes
and discuss the frame dependence and/or the scattering
angle dependence with respect to the interpolation angle
dependence. For the eþe− → γγ amplitudes, the symmetry
between the forward and backward angle dependence is
discussed. The limit to the LFD (δ ¼ π=4) is analyzed, and
the comparison with the well-known analytic results from
the manifestly covariant calculation is presented. Summary
and conclusions follow in Sec. V. In Appendix A, we derive
Eq. (2) and present the fermion propagator in the position
space which supplements the discussion in Sec. II A. In
Appendix B, we present the derivation of interpolating
QED Hamiltonian which supplements the discussion in
Sec. II B. In Appendix C, the manifestly covariant fermion
propagator is explicitly derived from the sum of the
interpolating time-ordered fermion propagators. In
Appendix D, we discuss the noncollinear case of the
annihilation of a fermion and antifermion into two scalar
particles and provide the relation between the center of
mass scattering angle and the apparent scattering angle in a
boosted frame and correspond the angular distributions for
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the center of mass frame to the apparent angle distributions
in boosted frames. The angular distribution and the frame
dependence of the eþe− → γγ helicity amplitudes are
summarized in Appendices E and F, respectively.

II. FORMAL DERIVATION OF THE
INTERPOLATION OF QED

In our previous works, we studied in great detail the
interpolation of the photon polarization vectors, the gauge
propagator, and the on-mass-shell helicity spinors. In this
paper, we complete the interpolation of the QED theory by
providing the final piece of the entity: the interpolating
fermion propagator. The form of this interpolating fermion
propagator is derived. In Sec. II A, we decompose the
covariant Feynman diagrams into xþ̂-ordered diagrams,
from which a general set of Feynman rules for any
xþ̂-ordered scattering theory is obtained. In Sec. II B, the
canonical field theory approach is studied and the

corresponding Hamiltonian for the old fashioned perturba-
tion theory is derived.

A. Scattering theory

Following what Kogut and Soper did in their light-front
QED paper [21],1 we regard the perturbative expansion of
the S matrix in Feynman diagrams as the foundation of
quantum electrodynamics. In this section, we decompose
the covariant Feynman diagram into a sum of xþ̂-ordered
diagrams. We shall not be concerned with the convergence
of the perturbation series or the convergence and regulari-
zation of the integrals in the present work.

1. Propagator decomposition

In Ref. [10], we obtained the decomposition of the
photon propagator given by

DFðxÞμ̂ ν̂ ¼
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂Θ̂ðq−̂Þ

T μ̂ ν̂

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

p ½Θðxþ̂Þe−iqμ̂xμ̂ þ Θð−xþ̂Þeiqμ̂xμ̂ �

þ iδðxþ̂Þ
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂

nμ̂nν̂
q2−̂ þ Cq2⊥

e−iðq−̂x−̂þq⊥x⊥Þ; ð8Þ

where qþ̂ ¼ ð−Sq−̂ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cq2⊥

p
Þ=C is the interpolating on-mass-shell energy and the explicit form of T μ̂ ν̂ is given by

T μ̂ ν̂ ≡
X
λ¼�

ϵ�μ̂ðλÞϵν̂ðλÞ ¼ −gμ̂ ν̂ þ
ðq · nÞðqμ̂nν̂ þ qν̂nμ̂Þ

q2⊥Cþ q2−̂
−

Cqμ̂qν̂
q2⊥Cþ q2−̂

−
q2nμ̂nν̂

q2⊥Cþ q2−̂
ð9Þ

with the obvious familiar notation q · n ¼ qμ̂nμ̂ and
q2 ¼ qμ̂qμ̂. Here, the polarization vectors ϵμ̂ðp;�Þ are
explicitly given in Ref. [10], and T μ̂ ν̂ given by Eq. (9)
is obtained in the radiation gauge for any interpolating
angle, i.e., Aþ̂ ¼ 0 and ∂−̂A−̂ þ ∂⊥ ·A⊥C ¼ 0. As dis-
cussed in Ref. [10], our interpolating radiation gauge links
naturally the Coulomb gauge in IFD (C ¼ 1) and the light
front gauge in LFD (C ¼ 0). One should also note that
Θ̂ðq−̂Þ in Eq. (8) is the interpolating step function given by

Θ̂ðq−̂Þ ¼ Θðq−̂Þ þ ð1 − δC0ÞΘð−q−̂Þ

¼
�
1 ðC ≠ 0Þ
ΘðqþÞ ðC ¼ 0Þ ; ð10Þ

which was introduced to combine the results of C ≠ 0 and
C ¼ 0.

Similarly, the manifestly covariant Klein-Gordon propa-
gator ΔFðxÞ in the position space given by

ΔFðxÞ≡
Z

d4q
ð2πÞ4 expð−iqμ̂x

μ̂Þ i
qμ̂qμ̂−m2þ iϵ

¼
Z

d2q⊥dq−̂dqþ̂
ð2πÞ4 exp ½−iðqþ̂xþ̂ þq−̂x−̂þq⊥ ·x⊥Þ�

×
i

Cq2þ̂ þ2Sq−̂qþ̂−Cq2−̂ −q2⊥−m2þ iϵ
ð11Þ

can also be obtained by combining the results of C ≠ 0 and
C ¼ 0 with the interpolating step function Θ̂ðq−̂Þ:

ΔFðxÞ ¼
Z

d2q⊥
ð2πÞ2

Z
∞

−∞

dq−̂
2π

Θ̂ðq−̂Þ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cðq2⊥ þm2Þ

p
× ½Θðxþ̂Þe−iqμ̂xμ̂ þ Θð−xþ̂Þeiqμ̂xμ̂ �; ð12Þ

where the value of qþ̂ in the exponent is taken to be the
interpolating on-mass-shell energy, i.e.,

1Although Kogut and Soper represented their work in Ref. [21]
as the QED in the infinite momentum frame, it actually was the
formulation of QED in the light-front dynamics (LFD).
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qþ̂ ¼
8<
:
�
−Sq−̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂þCðq2⊥þm2Þ

p �
=C; for xþ̂ > 0;�

−Sq−̂ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂þCðq2⊥þm2Þ

p �
=C; for xþ̂ < 0:

The detailed derivation of Eqs. (11) and (12) will be
given in Appendix A, where the pole integration is done
explicitly.
The result for C ≠ 0, i.e., Θ̂ðq−̂Þ ¼ 1, in Eq. (12) can be

obtained by noting the two poles for qþ̂ in Eq. (11) given by

Aþ̂− iϵ0 ¼
�
−Sq−̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂þCðq2⊥þm2Þ

q �
=C− iϵ0; ð13Þ

−Bþ̂ þ iϵ0 ¼
�
−Sq−̂ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂þCðq2⊥þm2Þ

q �
=Cþ iϵ0; ð14Þ

where ϵ0 > 0. In order not to involve any contribution from
the arc in the contour integration, we evaluate the qþ̂
integral in Eq. (11) by closing the contour in the lower
(upper) half plane if xþ̂ > 0 (xþ̂ < 0). This produces the
desired decomposition for ΔFðxÞ with Θ̂ðq−̂Þ ¼ 1 in
Eq. (12) given by

ΔFðxÞ ¼
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂

1

2Qþ̂

× ½Θðxþ̂Þe−iqμ̂xμ̂ þ Θð−xþ̂Þeiqμ̂xμ̂ �; ð15Þ
where we denoted the denominator factor in Eq. (12) by
Qþ̂, i.e.,

Qþ̂ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cðq2⊥ þm2Þ

q
: ð16Þ

Note here that the integration measure in Eq. (12) is the
invariant differential surface element on the mass shell, i.e.,

Z
d2q⊥
ð2πÞ3

dq−̂
2Qþ̂ ¼

Z
d4q
ð2πÞ4 2πδðq

2 −m2Þ: ð17Þ

The result for C ¼ 0, i.e., Θ̂ðq−̂Þ ¼ ΘðqþÞ, in Eq. (12)
can also be obtained by noting the single pole for qþ̂ ¼ q−

in Eq. (11) given by

q− ¼ q2⊥ þm2

2qþ
− i

ϵ

2qþ
; ð18Þ

which should be taken in the contour integration of the
light-front energy q− variable without involving the arc
contribution in Eq. (11). Note here that this single pole
corresponds to Aþ̂ in Eq. (13) in the limit of C → 0. This
requires to close the contour in the lower (upper) half plane
of the complex q− space if xþ > 0 ðxþ < 0Þ, as we
explained essentially the same procedure for C ≠ 0 case.
Because of the rational relation between q− and qþ given

by Eq. (18), the value of qþ must be positive to keep the

q− pole in the lower half plane for xþ > 0, while the value
of qþ must be negative to keep the q− pole in the upper half
plane for xþ < 0. This leads to the result given by

ΔFðxÞ ¼
Z

d2q⊥
ð2πÞ3

Z
∞

0

dqþ
1

2qþ

× ½ΘðxþÞe−iq·x þ Θð−xþÞeiq·x�; ð19Þ

where q·x¼qþx−þðq2⊥þm2

2qþ Þx−−q⊥ ·x⊥ noting x⊥ ¼ −x⊥.
This result is identical to Eq. (12) for C ¼ 0. Thus, our
result in Eq. (12) covers both C ≠ 0 and C ¼ 0 cases
together.
As the fermion propagator in the position space can be

obtained by

SFðxÞ ¼ ði∂μ̂γμ̂ þmÞΔFðxÞ; ð20Þ

we can now use Eqs. (12) and (20) to derive a decom-
position for the fermion propagator given by

SFðxÞ¼
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂Θ̂ðq−̂Þ

1

2Qþ̂

× ½Θðxþ̂Þð=qþmÞe−iqμ̂xμ̂ þΘð−xþ̂Þð−=qþmÞeiqμ̂xμ̂ �

þ iγþ̂
Z

d2q⊥
ð2πÞ3

Z
∞

−∞
dq−̂Θ̂ðq−̂Þ

1

2Qþ̂

× ½δðxþ̂Þe−iqμ̂xμ̂ −δðxþ̂Þeiqμ̂xμ̂ �; ð21Þ

where the “þ̂” component of q takes the corresponding
pole values, as mentioned before. Here, the differentiation
of Θðxþ̂Þ and Θð−xþ̂Þ in Eq. (12) with respect to xþ̂ gives
us two terms: δðxþ̂Þe−iqμ̂xμ̂ and −δðxþ̂Þeiqμ̂xμ̂ in C ≠ 0 case,
and these two will cancel each other exactly when an
integration with respect to xþ̂ is performed as we show
explicitly in the next section, so that they do not contribute
to the Feynman rules. Therefore, we can drop them from
the decomposition. Thus, when C ≠ 0, the second line in
Eq. (21) automatically drops off, and the first line is the
whole result. However, in the C ¼ 0 case, the integration
over q− ¼ qþ (note that q−̂ is just q− without a wide-hat
when C ¼ 0) goes from 0 to ∞ instead of −∞ to ∞ as
denoted by the interpolating step function Θ̂ðq−̂Þ. Thus, the
two δðxþÞ terms resulting from differentiating the ΘðxþÞ
function do not cancel each other, and the term proportional
to δðxþÞ is left over. This term is the instantaneous
contribution unique to the LFD. Thus, when we take
C ¼ 0, our fermion propagator result given by Eq. (21)
coincides with the LF propagator previously derived by
Kogut and Soper [21],
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SFðxÞLF¼
Z

d2q⊥
ð2πÞ3

Z
∞

0

dqþ

2qþ

× ½ΘðxþÞð=qþmÞe−iq·xþΘð−xþÞð−=qþmÞeiq·x�

þ iδðxþÞγþ
Z

d2q⊥
ð2πÞ3

Z
∞

−∞

dqþ

2qþ
e−iq

þx−þiq⊥·x⊥ :

ð22Þ

Note here that the interpolating wide-hat notations are
switched to the usual light front notations.

2. Rules for x +̂ -ordered diagrams

To find the rules for xþ̂-ordered diagrams, we start with
the Feynman diagrams in coordinate space. The amplitude
for diagram shown in Fig. 1(a) for the process of eþe− →
γγ can be written as

iM ¼ ð−ieÞ2
Z

d4xd4yϵ�μ̂ðyÞ½ψ̄2ðyÞγμ̂

×SFðy − xÞγν̂ψ1ðxÞ�ϵ�ν̂ðxÞ: ð23Þ

Here, we use the plane wave solution of the Dirac equation
for the electron and the charge conjugate plane wave
solution for the positron,

ψ1ðxÞ ¼ e−ip·xuðp; sÞ; ð24Þ

ψ2ðyÞ ¼ eip
0·yvðp0; s0Þ; ð25Þ

where p and s are the momentum and spin of the fermion.
The photon wave function is

ϵμ̂ðxÞ ¼ e−ik·xϵμ̂ðk; λÞ; ð26Þ

where ϵμ̂ðk; λÞ is the polarization vector with a momentum
k and helicity λ, the explicit form of which was given
in Ref. [10].
With the change of variables

x → x; y → T ¼ y − x; ð27Þ

Eq. (23) becomes

iM ¼ ð−ieÞ2
Z

d4xd4Teiðk0−p0Þ·Tϵ�μ̂ðk0; λ0Þ½v̄ðp0; s0Þγμ̂

×SFðTÞγν̂uðp; sÞ�ϵ�ν̂ðk; λÞeiðkþk0−p−p0Þ·x:

ð28Þ

The x integration immediately gives the total energy-
momentum conservation condition. After we plug in the
decomposed SF given by Eq. (21), we finish the Tþ̂
integration using the following relations:

Z
∞

−∞
dTþ̂ΘðTþ̂ÞeiPþ̂Tþ̂ ¼ i

Pþ̂ þ iϵ
; ð29Þ

Z
∞

−∞
dTþ̂Θð−Tþ̂ÞeiPþ̂Tþ̂ ¼ −

i
Pþ̂ − iϵ

; ð30Þ

where the causality of the relativistic quantum field theory is
assuredwith the�iϵ factor for the�Tþ̂ region, respectively.
Thus, we get the interpolating energy denominator factor of

i
Piniþ̂−Pinterþ̂þiϵ for each intermediate state. For the momentum

assignment shown in Fig. 1(b),Piniþ̂ ¼ pþ̂ þ p0
þ̂ is the total

“energy” of the initial particles, and Pinterþ̂ gives the total
“energy” of the intermediate particles, which is kþ̂ þ qþ̂ þ
p0
þ̂ when yþ̂ > xþ̂ and pþ̂ − qþ̂ þ k0þ̂ when yþ̂ < xþ̂. On

the other hand, the dT−̂d2T⊥ integration gives straightfor-
wardly ð2πÞ3δðPin

−̂ − Pout
−̂ Þδ2ðPin⊥ − Pout⊥ Þ at each vertex.

Lastly, the δðTþÞ term in Eq. (21) gives an extra instanta-
neous contribution at the light front (C ¼ 0) and is easy to
calculate. Similar analysis can be done for the process of
eμ → eμ shown in Figs. 1(c) and 1(d), with the decom-
position equation of the photon propagator given by Eq. (8).
After the above analysis, with a little thought, one can

summarize and write down the rules for xþ̂-ordered
diagrams as the following:
(1) uðp; sÞ, ūðp; sÞ, vðp; sÞ, v̄ðp; sÞ, ϵμðp; λÞ, and

ϵ�μðp; λÞ for each incoming and outgoing external
line;

(2) ð=pþmÞ ¼ Σsuðp; sÞūðp; sÞ for electron propaga-
tors; ð−=pþmÞ ¼ −Σsvðp; sÞv̄ðp; sÞ for positron
propagators; T μ̂ ν̂ ≡P

λ¼�ϵ�μ̂ðλÞϵν̂ðλÞ for photon
propagators;

FIG. 1. Lowest-order tree level covariant annihilation diagram
in (a) position space and (b) momentum space. Lowest-order tree
level covariant scattering diagram in (c) position space and
(d) momentum space.
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(3) −ieγμ̂ð2πÞ3δðPin
−̂ − Pout

−̂ Þδ2ðPin⊥ − Pout⊥ Þ for each ver-
tex as shown in Fig. 2(a);

− e2
inμ̂nν̂

q2−̂ þ Cq2⊥
ð2πÞ3δðPin

−̂ − Pout
−̂ Þ

× δ2ðPin⊥ − Pout⊥ Þ � � � γμ̂ � � � γν̂ � � �

for each vertex as shown in Fig. 2(b), where q−̂, q⊥
are the total momentum transferred;

−ie2γμγþγν
1

2qþ
ð2πÞ3δðPþ

in − Pþ
outÞδ2ðPin⊥ − Pout⊥ Þ;

for each vertex as shown in Fig. 2(c) appearing only
if C ¼ 0, i.e., only in LFD, where qþ ¼ k0þ − p0þ;

(4) i
Piniþ̂−Pinterþ̂þ{ϵ for each internal line, where Pintþ̂ and
Pinterþ̂ are the sums of energies for the initial and
intermediate particles;

(5) an overall factor of ð2πÞδðPin
þ̂ − Pout

þ̂ Þ for the inter-
polating energy conservation;

(6) an integration

Z
dq⊥
ð2πÞ3

Z
∞

−∞

dq−̂
2Qþ̂ Θ̂ðq−̂Þ

for every internal propagating line, with m in
Eq. (16) being the mass of the exchanged particle.

The rules for xþ-ordered diagrams on the light front, first
derived by Kogut and Soper [21], are reproduced by taking
C ¼ 0 in the above rules. For instance, in rule 6, when
C ¼ 0, the integration limits of q−̂ ¼ q− ¼ qþ change to
ð0;∞Þ, i.e.,

Z
dq⊥
ð2πÞ3

Z
∞

0

dqþ

2qþ

for every internal line.
In Sec. II B, we develop the canonical field theory of

quantum electrodynamics in any interpolating angle. As we
will see, it reproduces the Feynman rules we obtained here.

B. Canonical field theory

1. Equations of motion

The Lagrangian density for QED is

L ¼ −
1

4
Fμ̂ ν̂Fμ̂ ν̂ þ ψ̄ðiγμ̂Dμ̂ −mÞψ ; ð31Þ

whereDμ̂ ¼ ∂μ̂ þ ieAμ̂, and Fμ̂ ν̂ ¼ ∂μ̂Aν̂ − ∂ν̂Aμ̂. The equa-
tions of motion are therefore

∂μ̂Fμ̂ ν̂ ¼ eJν̂ ¼ eψ̄γν̂ψ ; ð32Þ
ðiγμ̂∂μ̂ − eγμ̂Aμ̂ −mÞψ ¼ 0. ð33Þ

By converting the upper index components into lower
index components, Eq. (32) can be written as

ðC∂2⊥þ∂
2
−̂ÞAþ̂

¼ ðC∂þ̂ þS∂−̂Þ∂⊥ ·A⊥þð∂þ̂∂−̂ −S∂2⊥ÞA−̂ −eJþ̂: ð34Þ

Next, we apply the generalized transverse gauge
condition [10],

∂−̂A−̂ þ C∂⊥ ·A⊥ ¼ 0; ð35Þ

and Eq. (34) simplifies to

ðC∂2⊥þ∂
2
−̂ÞðCAþ̂ þSA−̂Þ¼ ðC∂2⊥þ∂

2
−̂ÞAþ̂ ¼−eJþ̂C:

ð36Þ

From Eqs. (35) and (36), we see that we can regard A1

and A2 as the two independent free components, while at
any given “time” xþ̂, A−̂ can be determined by A1, A2, and
Aþ̂ determined by A1, A2, and ψ . We may take the boundary
condition, A−̂ðxþ̂;x1;x2;þ∞Þ¼−A−̂ðxþ̂;x1;x2;−∞Þ, which
is consistent with the choice made by Kogut and Soper for
the light-front QED [21]. Then, the solution to Eq. (35) is
found as

A−̂ðxþ̂;x1;x2;x−̂Þ

¼−
1

2
C
Z

dx0−̂ϵðx−̂ −x0−̂Þ∂⊥ ·A⊥ðxþ̂;x1;x2;x0−̂Þ

¼ 1

2
C
Z

dx0−̂jx−̂ −x0−̂j∂−̂∂⊥ ·A⊥ðxþ̂;x1;x2;x0−̂Þ; ð37Þ

using the integration by parts and noting ϵðxÞ ¼ djxj
dx , i.e.,

ϵðxÞ ¼
�
1; x > 0;

−1; x < 0:

By a simple change of variables Xþ̂ ≡ xþ̂, X⊥ ≡ x⊥=
ffiffiffiffi
C

p
,

X−̂ ≡ x−̂, Eq. (36) becomes

FIG. 2. Vertices that appear in the xþ̂-ordered diagrams. When
C ≠ 0, only two kinds of vertices (a) and (b) exist. When C ¼ 0,
all three vertices (a), (b), (c) are present.
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∇̄2Aþ̂≡
�

∂
2

∂ðXiÞ2þ
∂
2

∂ðX−̂Þ2
	
Aþ̂ ¼−eJþ̂C ði¼1;2Þ; ð38Þ

which has the solution

Aþ̂ ¼ e
Z

d2X0⊥dX0−̂ Jþ̂ðX0ÞC
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX⊥−X0⊥Þ2þðX−̂ −X0−̂Þ2

p ;

ð39Þ

where the argument of Jþ̂ðX0Þ denotes the four-vector
X0μ̂ ≡ ðX0þ̂; X01; X02; X0−̂Þ ¼ ðx0þ̂; x01ffiffiffi

C
p ; x02ffiffiffi

C
p ; x0−̂Þ. In the

instant form limit (C → 1), A−̂ →A3, Aþ̂ → A0, Jþ̂ → J0

and the above solutions given by Eqs. (37) and (39)
agree with the instant form results. In the light-front
limit (C → 0), both A−̂ and Aþ̂ in Eqs. (37) and (39),
respectively, can also be easily shown to be consistent with
the light-front gauge Aþ ¼ 0 due to the apparentC factor in
the numerator.
However, we note that both Aþ̂ ¼ −SA−̂=Cþ Aþ̂=C and

A−̂ ¼ SAþ̂=C − A−̂=C carry overall 1=C factor, and thus
A− in LFD, i.e., the C → 0 limit of Aþ̂ or A−̂, does not
vanish. In fact, the Aþ̂ component satisfies the following
constraint equation without containing any time derivatives:

∇̄2

�
Aþ̂ þ SA−̂

C

	
¼ ðC∂2⊥ þ ∂

2
−̂Þ
�
Aþ̂ þ SA−̂

C

	
¼ −eJþ̂;

ð40Þ

where the three-dimensional Laplace operator reduces to a
one-dimensional operator when C ¼ 0.
From Eq. (37), we can find that the term −SA−̂=C in the

C → 0 (or S → 1) limit becomes

½−SA−̂=C�→−
1

2

Z
dx0−jx−−x0−j∂−∂⊥ ·A⊥ðxþ;x1;x2;x0−Þ:

ð41Þ

Also, from Eq. (39), we can see that the term Aþ̂=C in the
C → 0 limit becomes

½Aþ̂=C� → −
e
2

Z
dx0−jx− − x0−jJþðxþ; x1; x2; x0−Þ; ð42Þ

where the X0⊥ integration can be made straightforwardly
by realizing the suppression of X0⊥ component in the
light-front (C → 0) limit of Jþ̂ðX0Þ and assigning Y ¼
X − X0 to use

Z
d2Y⊥ 1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY⊥Þ2 þ ðY−̂Þ2

p
¼

Z
dðY⊥Þ2 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY⊥Þ2 þ ðY−̂Þ2

p ¼ −
1

2
jY−̂j ð43Þ

that becomes − 1
2
jx− − x0−j in LFD with the current

Jþðxþ; x1; x2; x0−Þ vanishing in the limit jx⊥j → ∞.
Combining Eqs. (41) and (42), we thus get the LFD result

A−ðxþ; x1; x2; x−Þ

¼ −
1

2

Z
dx0−jx− − x0−j½∂−∂⊥ ·A⊥ðxþ; x1; x2; x0−Þ

þ eJþðxþ; x1; x2; x0−ÞÞ�; ð44Þ

which was also derived in Ref. [21] except for
some superficial differences in the conventions used.
Eq. (44) was noted in Ref. [22] as well.
To simplify the notations and make the derivations easier

to follow, we may write

A−̂ðxÞ ¼ −C
∂⊥ ·A⊥ðxÞ

∂−̂
; ð45Þ

Aþ̂ðxÞ ¼ −
eJþ̂ðxÞC
C∂2⊥ þ ∂

2
−̂
; ð46Þ

instead of the explicit integral forms shown in Eqs. (37)
and (39). We also write Aþ̂ as

Aþ̂ðxÞ ¼ S
∂⊥ ·A⊥ðxÞ

∂−̂
−

eJþ̂ðxÞ
C∂2⊥ þ ∂

2
−̂
; ð47Þ

which represents Aþ̂ ¼ −SA−̂=Cþ Aþ̂=C with A−̂ and Aþ̂

given by Eqs. (37) and (39), respectively. Written in this
way, Eqs. (45)–(47) also show very clearly, that only the A1

and A2 components of Aμ̂ are the dynamical variables.
For the fermion fields, Eq. (33) can be written as

½iðγþ̂∂þ̂ þ γ−̂∂−̂ þ γ⊥ · ∂⊥Þ
− eðγþ̂Aþ̂ þ γ−̂A−̂ þ γ⊥ ·A⊥Þ −m�ψ ¼ 0; ð48Þ

where the interpolating gamma matrices satisfy the usual
Clifford algebra fγμ̂; γν̂g ¼ 2gμ̂ ν̂, and the interpolating
metric is given by

gμ̂ ν̂ ¼ gμ̂ ν̂ ¼

0
BBB@

C 0 0 S

0 −1 0 0

0 0 −1 0

S 0 0 −C

1
CCCA: ð49Þ

If C ≠ 0, Eq. (48) contains the interpolating time derivative
∂þ̂, and thus, all four components of ψ field are dynamical.
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However, if C ¼ 0, then one may notice a rather dramatic
change of two components of the ψ field from being
dynamical to the constrained components due to
fγþ; γþg ¼ γþ2 ¼ 0 as well as fγ−; γ−g ¼ γ−2 ¼ 0, while
fγþ; γ−g ¼ 2. This may be shown explicitly by writing
Eq. (48) for C ¼ 0,

½iðγþ∂þ þ γ−∂− þ γ⊥ · ∂⊥Þ
− eðγþAþ þ γ−A− þ γ⊥ ·A⊥Þ −m�ψ ¼ 0; ð50Þ

and splitting ψ into ψþ ¼ Pþψ and ψ− ¼ P−ψ with the
projection operators Pþ ¼ 1

2
γ−γþ and P− ¼ 1

2
γþγ−, i.e.,

ψ ¼ ψþ þ ψ− ¼ Pþψ þ P−ψ : ð51Þ

Then, because γþP− ¼ 0,ψ− can be determined at any light-
front time xþ through the following constraint equation:

2ði∂− − eA−Þψ− ¼ ½ði∂⊥ − eA⊥Þγ⊥ þm�γþψþ; ð52Þ

which reduces in the light-front gauge A− ¼ Aþ ¼ 0 to

2ði∂−ψ−Þ ¼ ½ði∂⊥ − eA⊥Þγ⊥ þm�γþψþ: ð53Þ

Thus, the two components of ψ given by ψ− in LFD become
constrained in the sense that the time dependence of ψ− is
provided by the other fields that satisfy the dynamic
equation with the light-front time derivative ∂þ such as
A⊥ and ψþ. No new time-dynamic information can be
provided by the constrained field ψ−. As done in Ref. [21],
wemay split this constrained fieldψ− into the “free” part ψ̃−
and the “interaction” partϒ, i.e., ψ− ¼ ψ̃− þϒ, identifying
from Eq. (53),

ψ̃− ¼ ðiγ⊥ · ∂⊥ þmÞγþψþ
2i∂−

ð54Þ

and

ϒ ¼ −eγ⊥ ·A⊥γþψþ
2i∂−

: ð55Þ

Then, as shown in Ref. [21], the light-front fermion
instantaneous diagram depicted in Fig. 2(c) corresponds
to the interaction Hamiltonian density given by ϒ̄ðiγ−∂−Þϒ.
This reveals that the instantaneous contribution to the
fermion propagator given by Eq. (22) is obtained through
the “interaction” part of the constraint field ψ−.
We may define

ψ ¼ ψ̃ þ δC0ϒ: ð56Þ

WhenC ≠ 0, ψ ¼ ψ̃ is the free fermion field. When C ¼ 0,
ψ can be split into ψ ¼ ψþ þ ψ−, where only ψþ ¼ ψ̃þ is
independent. The constraint field ψ− can be further split

into ψ− ¼ ψ̃− þϒ, where ϒ is the “interaction” part of the
field. We write ψ̃ ¼ ψ̃þ þ ψ̃−, then ψ̃ is the free part of the
field in any interpolating angle 0 ≤ δ ≤ π

4
.

We discuss this unique feature of the fermion propagator
in LFD further illustrating the old-fashioned perturbation
theory in Sec. II B 4 and presenting the physical processes
such as the electron-positron annihilation to the pair
production of two photons (eþe− → γγ) and the
Compton scattering (eγ → eγ) in Secs. III and IV.

2. Free fields

The Fourier expansion of the free fermion field ψðxÞ
takes the form

ψðxþ̂;x⊥;x−̂Þ¼
Z

d2p⊥dp−̂

ð2πÞ3ð2pþ̂Þ
×

X
s¼�1=2

½uðsÞe−ix−̂p−̂−ix⊥·p⊥bðp⊥;p−̂;s;xþ̂Þ

þvðsÞeix−̂p−̂þix⊥·p⊥d†ðp⊥;p−̂;s;xþ̂Þ�; ð57Þ

where the spinors of the particle (u) and the antiparticle (v)
satisfy the Dirac equation,

ðγμ̂pμ̂ −mÞu ¼ 0; ð58Þ

ðγμ̂pμ̂ þmÞv ¼ 0: ð59Þ

Here, we take u and v to be the generalized helicity spinors
uH and vH whose explicit expressions in the chiral basis
have been given in Ref. [11]. For simplicity, we will omit
the subscript “H” throughout this paper.
Plugging ψ given by Eq. (57) to the free Dirac equation,

ðiγμ̂∂μ̂ −mÞψðxþ̂;x⊥; x−̂Þ ¼ 0; ð60Þ

and using the relations in Eqs. (58) and (59), we find that
bðp⊥; p−̂; s; xþ̂Þ and d†ðp⊥; p−̂; s; xþ̂Þ satisfy the following
differential equations:

½iγþ̂∂þ̂ − γþ̂pþ̂�bðp⊥; p−̂; s; xþ̂Þ ¼ 0; ð61Þ

½iγþ̂∂þ̂ þ γþ̂pþ̂�d†ðp⊥; p−̂; s; xþ̂Þ ¼ 0: ð62Þ

Solving these equations, we get

bðp⊥; p−̂; s; xþ̂Þ ¼ e−ix
þ̂pþ̂bðp⊥; p−̂; s; 0Þ; ð63Þ

d†ðp⊥; p−̂; s; xþ̂Þ ¼ eix
þ̂pþ̂d†ðp⊥; p−̂; s; 0Þ: ð64Þ

Since the time dependence decouples from the rest of the
operator, we may drop the time labels and define

bðp⊥; p−̂; sÞ≡ bðp⊥; p−̂; s; 0Þ; ð65Þ
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d†ðp⊥; p−̂; sÞ≡ d†ðp⊥; p−̂; s; 0Þ: ð66Þ

Then, the free fermion field can be summarized as

ψðxÞ¼
Z

d2p⊥dp−̂

ð2πÞ32pþ̂
X

s¼�1=2

½uðsÞe−ixμ̂pμ̂bðp⊥;p−̂;sÞ

þvðsÞeixμ̂pμ̂d†ðp⊥;p−̂;sÞ�:
ð67Þ

Following a similar procedure, we can also find the free
photon field as

Aμ̂ðxÞ ¼
Z

d2p⊥dp−̂

ð2πÞ32pþ̂
X
λ¼�

ϵμ̂ðp; λÞ½e−ixμ̂pμ̂aðp⊥; p−̂; sÞ

þ eix
μ̂pμ̂a†ðp⊥; p−̂; sÞ�;

ð68Þ

where again the polarization vectors ϵμ̂ðp;�Þ are explicitly
given in Ref. [10].

3. Energy-momentum and angular momentum tensors

Using Noether’s theorem, the conserved energy-
momentum tensor and angular momentum tensor can be
written as

T μ̂
ν̂ ¼ iψ̄γμ̂∂ν̂ψ − Fμ̂ λ̂

∂ν̂Aλ̂ − gμ̂ν̂L; ð69Þ

Jλ̂μ̂ ν̂ ¼ xμ̂T λ̂
ν̂ − xν̂T λ̂

μ̂ þ Sλ̂μ̂ ν̂; ð70Þ

where

Sλ̂μ̂ ν̂ ¼ i
1

4
ψ̄γλ̂½γμ̂; γν̂�ψ þ Fλ̂

μ̂Aν̂ − Fλ̂
ν̂Aμ̂: ð71Þ

In particular, the total four-momentum and total angular
momentum given by

Pμ̂ ¼
Z

d2x⊥dx−̂Tþ̂
μ̂; ð72Þ

Mμ̂ ν̂ ¼
Z

d2x⊥dx−̂Jþ̂μ̂ ν̂ ð73Þ

are constants of motion. In particular, the kinematic
generators which do not alter the interpolating time xþ̂,
such as P1, P2, P−̂;M12;M2−̂;M1−̂, are provided by their
corresponding densities given by

Tþ̂
i ¼ iψ̄γþ̂∂iψ − ∂iAjð∂þ̂Aj − ∂

jAþ̂Þ; ð74Þ

Tþ̂
−̂ ¼ iψ̄γþ̂∂−̂ψ − ∂−̂Ajð∂þ̂Aj − ∂

jAþ̂Þ; ð75Þ

Jþ̂12 ¼ x1Tþ̂
2 − x2Tþ̂

1 þ
1

2
iψ̄γþ̂γ1γ2ψ

þ A2
∂
þ̂A1 − A1

∂
þ̂A2 þ A1

∂
2Aþ̂ − A2

∂
1Aþ̂; ð76Þ

Jþ̂1−̂¼ x1Tþ̂
−̂ −x−̂Tþ̂

1þ
1

2
iψ̄γþ̂γ1γ−̂ψ

þA−̂∂
þ̂A1−A1∂

þ̂A−̂þA1∂−̂Aþ̂−A−̂∂1Aþ̂; ð77Þ

Jþ̂2−̂¼ x2Tþ̂
−̂ −x−̂Tþ̂

2þ
1

2
iψ̄γþ̂γ2γ−̂ψ

þA−̂∂
þ̂A2−A2∂

þ̂A−̂þA2∂−̂Aþ̂−A−̂∂2Aþ̂; ð78Þ

where A−̂ and Aþ̂ are given by Eqs. (45) and (46), and thus
these operators involve only independent dynamical fields
ψ and Ajðj ¼ 1; 2Þ.
Finally, the most important operator of the theory is of

course the interpolating Hamiltonian density,

Tþ̂þ̂ ¼ ψ̄ð−iγj∂j − iγ−̂∂−̂ þmÞψ þ eAμ̂ψ̄γ
μ̂ψ

þ 1

4
Fμ̂ ν̂Fμ̂ ν̂ − Fþ̂j

∂þ̂Aj − Fþ̂ −̂
∂þ̂A−̂; ð79Þ

where the transverse index j is summed over according to
the summation convention.

4. Old-fashioned perturbation theory

With Eqs. (45)–(47), as well as Eqs. (54)–(56), we can
rewrite Tþ̂þ̂ in terms of the independent d.o.f. A1, A2, ψ̃ and
separate out the interaction part of the Hamiltonian density
from the free part. The detailed derivation is given in
Appendix B. Equation (79) becomes

H≡ Tþ̂þ̂ ¼ H0 þ V ð80Þ

with

H0 ¼ ¯̃ψð−iγj∂j − iγ−̂∂−̂ þmÞψ̃

þ 1

4
F̃μ̂ ν̂F̃μ̂ ν̂ − F̃þ̂j

∂þ̂Ãj − F̃þ̂ −̂
∂þ̂Ã−̂; ð81Þ

V ¼ eÃμ̂
¯̃ψγμ̂ψ̃ þ δC0ϒ̄ðiγ−∂−Þϒþ 1

2
eϕJþ̂; ð82Þ

where we have defined Ãμ̂ as

ðÃþ̂; Ã1; Ã2; Ã−̂Þ≡
�
S
∂⊥ ·A⊥

∂−̂
; A1; A2; A−̂

	
; ð83Þ

and
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ϕðxÞ≡Aþ̂ðxÞ− Ãþ̂ðxÞ¼
Aþ̂

C
¼−

eJþ̂ðxÞ
C∂2⊥þ∂

2
−̂

¼ e
Z

d2X0⊥dX0−̂ Jþ̂ðX0Þ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX⊥−X0⊥Þ2þðX−̂ −X0−̂Þ2

p ;

ð84Þ

where we switched the simplified notation in the second
line into the expression of integration in the third one. The
capital Xμ̂ ≡ ðxþ̂; x1ffiffiffi

C
p ; x2ffiffiffi

C
p ; x−̂Þ is introduced previously

above Eq. (38). Equation (84) may be considered as a
generalization of Eq. (4.58) in Ref. [21] for the quantization
interpolating between IFD and LFD.
We can then calculate the scattering matrix element

Sfi ¼ hfjSjii between the initial and final states jii and jfi
with the “old-fashioned” perturbation theory expansion

Sfi ¼ δfi − i2πδðPþ̂i − Pþ̂fÞ
× hfj½V þ VðPþ̂ − Pþ̂0 þ iϵÞ−1V þ � � ��jii; ð85Þ

where Pþ̂0 ¼
R
d2x⊥dx−̂H0 and V ¼ R

d2x⊥dx−̂V. This
leads to the same rules for xþ̂-ordered diagrams, which
we obtained in Sec. II A 2 by directly decomposing
the covariant Feynman diagrams. This can be seen by
calculating a few matrix elements of the interaction
Hamiltonian V.
The first term in Eq. (82) after volume integration gives

the interaction at equal interpolating time xþ̂ ¼ 0,

−iV1 ¼ −ie
Z

d2x⊥dx−̂Ãμ̂ð0;x⊥; x−̂Þ ¯̃ψð0;x⊥; x−̂Þγμ̂

× ψ̃ð0;x⊥; x−̂Þ; ð86Þ

which is the “ordinary” vertex interaction as demonstrated
in Fig. 2(a).
With Eq. (55), the second term in Eq. (82) can be shown

to provide the fermion instantaneous interaction

−iV2 ¼−
1

2
e2δC0

Z
d2x⊥dx− ¯̃ψð0;x⊥;x−ÞγiÃið0;x⊥;x−Þ

×
γþ

∂−
Ãjð0;x⊥;x−Þγjψ̃ð0;x⊥;x−Þ

¼−
1

4
e2δC0

Z
d2x⊥dx− ¯̃ψð0;x⊥;x−ÞγiÃið0;x⊥;x−Þγþ

×
Z

dx0−ϵðx− −x0−ÞÃjð0;x⊥;x0−Þγjψ̃ð0;x⊥;x0−Þ:

ð87Þ

Using

1

2

Z
dx0−ϵðx− − x0−Þe−iqþðx−−x0−Þ ¼ i

qþ
; ð88Þ

Eq. (87) can be shown to yield the vertex of Fig. 2(c), as
discussed in Ref. [21].
The third term in Eq. (82) written out in full is

−iV3 ¼
1

2
ie2

Z
d2x⊥dx−̂ψ̄ð0;x⊥;x−̂Þγþ̂ψð0;x⊥;x−̂Þ

×
1

∂2⊥Cþ∂
2
−̂
ψ̄ð0;x⊥;x−̂Þγþ̂ψð0;x⊥;x−̂Þ

¼−
1

2
ie2

Z
d2x⊥dx−̂ψ̄ð0;x⊥;x−̂Þγþ̂ψð0;x⊥;x−̂Þ

×
Z

d2X0⊥dX0−̂ ψ̄ð0;X0⊥;X0−̂Þγþ̂ψð0;X0⊥;X0−̂Þ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX⊥−X0⊥Þ2þðX−̂ −X0−̂Þ2

p :

ð89Þ

In the scaled transverse space with the variable of X⊥,
one should note that the corresponding transverse
momentum becomes

ffiffiffiffi
C

p
q⊥ due to the equality given by

q⊥ · x⊥ ¼ ffiffiffiffi
C

p
q⊥ ·X⊥. Using

Z
d2X0⊥dX0−̂ e−i½

ffiffiffi
C

p
q⊥·ðX⊥−X0⊥Þþq−̂ðX−̂−X0−̂Þ�

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX⊥ −X0⊥Þ2 þ ðX−̂ − X0−̂Þ2

p
¼ 1

Cq2⊥ þ q2−̂
; ð90Þ

where q is the momentum transfer at the vertex, as depicted
in Fig. 2(b). We find that the interaction −iV3 yields the
“Coulomb” vertices of Fig. 2(b). We note that this
interpolation result coincides with the IFD result for
C ¼ 1, where ψ ¼ ψ̃ is the free fermion field, while for
C ¼ 0, the ψ field in Eq. (89) changes naturally to ψ̃ due to
the γþ2 ¼ 0 property of the LFD, so that the ϒ field does
not contribute to the þ component of the current. The
transverse components of the momentum in Eq. (90) also
drop off naturally due to the C factor in front, reproducing
smoothly Kogut and Soper’s result in Ref. [21].
Thus, when we calculate the scattering matrix formally

in the interpolating QED, we get the same rules as we
summarized in Sec. II A 2 when we decompose the
covariant Feynman diagrams directly [23].

III. TOY CALCULATION OF e + e− ANNIHILATION
PRODUCING TWO SCALAR PARTICLES

Having laid out the foundation of interpolating QED, we
can now make some calculations. The first simple heuristic
example we consider is eþe− annihilation producing two
scalar particles. In the next section, we will consider the
typical QED process of eþe− → γγ, as well as eγ → eγ, but
for now we do not consider the photon polarization to make
things simpler. While the Feynman diagram of eþe− → γγ
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is shown in Fig. 3, the photon (γ) line should be understood
as the scalar particle line for the production process of two
scalar particles.
As mentioned in the Introduction, the covariant propa-

gator of the intermediate virtual fermion is given by

Σ ¼ =qþm
q2 −m2

: ð91Þ

In the instant form where the system evolves with ordinary
time t, this covariant Feynman amplitude can be decom-
posed into two time-ordered ones, as shown in Figs. 4(a)
and 4(b), where again the photon (γ) line should be
understood as the scalar particle line for the production
process of two scalar particles. Figures 4(a) and 4(b)
correspond to the following time-ordered amplitudes:

ΣIFD
a ¼ 1

2q0on

=qa þm
q0 − q0on

; ð92Þ

ΣIFD
b ¼ 1

2q0on

−=qb þm
−q0 − q0on

: ð93Þ

Here, qon is the momentum four vector with its spacial part
equal to that of qð¼ p1 − p3 ¼ qaÞ but satisfies the
Einstein energy-momentum relationship, and qb corre-
sponds to the negative energy (antiparticle) contribution
with qb ¼ −qa ¼ −q.

The sum of the two propagators can easily be verified to
be equal to the covariant one, Eq. (91),

ΣIFD
a þ ΣIFD

b ¼ 1

2q0on

�
=qþm
q0 − q0on

−
=qþm
q0 þ q0on

	

¼ 1

2q0on

2q0onð=qþmÞ
ðq0Þ2 − ðq0onÞ2

¼ =qþm
q2 −m2

; ð94Þ

where the on shell condition q0on ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

p
is used.

Such time-ordering also exists in the interpolating
dynamics, whose “time” means the interpolating time
xþ̂. The interpolating time-ordered diagrams are also
Figs. 4(a) and 4(b), and the propagators of the intermediate
virtual fermion for each time ordering are given by

Σa ¼
1

2Qþ̂
Qa þm
qþ̂ −Qaþ̂

ð95Þ

Σb ¼
1

2Qþ̂
−Qb þm
−qþ̂ −Qbþ̂

; ð96Þ

where Qaþ̂ and Qbþ̂ are the interpolating on-mass-shell
energy of the intermediate propagating fermion as men-
tioned in the Introduction, and again their expressions are
explicitly given by

Qaþ̂ ¼ −Sqa−̂ þQþ̂

C
; ð97Þ

Qbþ̂ ¼ −Sqb−̂ þQþ̂

C
; ð98Þ

withQþ̂ denoting the on-mass-shell value of qþ̂ as given by
Eq. (16). If the interpolating longitudinal momentum q−̂ is
positive, i.e., q−̂ > 0, then the intermediate propagating
fermion in the time-ordered amplitude in Fig. 4(a) is
“forward” moving and the corresponding time-ordered
amplitude Σa is equivalent to ΣF given by Eq. (2), while
the time-ordered amplitude in Fig. 4(b) with the “back-
ward” moving (−q−̂ < 0) intermediate fermion corre-
sponds to ΣB in the same equation, Eq. (2). Using
Eqs. (97)–(98), the sum of these two interpolating propa-
gators can also be verified to be equal to Eq. (91) as shown
in Appendix C.
When we take the limit to the LFD, i.e., δ → π

4
or C → 0,

the expressions in Eqs. (95) and (96) change to the so-
called “on-mass-shell propagating contribution” and the
“instantaneous fermion contribution”, respectively, if and
only if qþ > 0. For qþ > 0, the time-ordered diagram
shown in Fig. 4(b) has the “backward” moving intermedi-
ate fermion (for C ¼ 0, −q−̂ ¼ −qþ < 0), and the LF
energy for the intermediate virtual fermion, Qbþ̂, goes to
infinity; however the existence of the spin sum on the
numerator makes it altogether a finite result. The finite

FIG. 3. Feynman diagram for eþe− → γγ process. While this
figure is drawn for the t-channel Feynman diagram, the crossed
channel (or u channel) can be drawn by crossing the two final
state particles.

FIG. 4. Time-ordered diagrams (a) and (b) for eþe− → γγ
annihilation process. The u-channel amplitudes can be obtained
by crossing the two final state particles.
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result turns out to be the instantaneous fermion contribution
unique in the LFD as formally discussed in Sec. II. This can
be now shown explicitly as follows:

Σb;δ→π
4
¼ lim

C→0

�
1

2Qþ̂
Qb −m

qþ̂ þ Sq−̂þQþ̂
C

	

¼ lim
C→0

1

2Qþ̂
Cðγþ̂ Sq−̂þQþ̂

C − γ−̂q−̂ − γ⊥ · q⊥ −mÞ
Cqþ̂ þ Sq−̂ þQþ̂

¼ γþðq− þQþÞ
2qþðq− þQþÞ ¼

γþ

2qþ
: ð99Þ

At the same time, the first diagram shown in Fig. 4(a) turns
out to be the on-mass-shell contribution as shown explicitly
in the following:

Σa;δ→π
4
¼ lim

C→0

�
1

2Qþ̂
Qa þm
qþ̂ −Qaþ̂

	
¼ 1

2q−

Qa þm
q− −Q−

a

¼ =qon þm
2qþðq− − q−onÞ

¼ =qon þm
q2 −m2

: ð100Þ

This proves the decomposition of the covariant fermion
propagator in LFD [20] given by Eq. (7) as discussed in the
Introduction (Sec. I) as well as in the formal deriva-
tion (Sec. II).
Let us now compute the time-ordered amplitudes for the

eþe− annihilation into two scalar particles using the
interpolating formulation, which are given by

Mλ1;λ2
a ¼ v̄λ2ðp2Þ · Σa · uλ1ðp1Þ ð101Þ

and

Mλ1;λ2
b ¼ v̄λ2ðp2Þ · Σb · uλ1ðp1Þ; ð102Þ

where λ1 and λ2 represent the helicities of the initial e− and
eþ spinors, respectively, and the overall factor such as the
coupling constant e, etc., is taken to be 1. Here, Σa and Σb
are given by Eqs. (95) and (96). If q ¼ p1 − p3, then these
amplitudes are the t-channel amplitudes, which we may
denote as Mλ1;λ2

a;t and Mλ1;λ2
a;t . Similarly, if q ¼ p1 − p4,

then we may denote them as the u-channel amplitudes
Mλ1;λ2

a;u and Mλ1;λ2
b;u , respectively.

The spinors in the interpolation form were studied in
Ref. [11], and the results were given by

uðþ1=2Þ
H ðPÞ ¼

0
BBBBBBBBB@

ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂þP

sin δþcos δ

q

PR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin δþcos δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ þ P

p
ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂−P

cos δ−sin δ

q

PR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos δ−sin δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ − P

p

1
CCCCCCCCCA
;

uð−1=2ÞH ðPÞ ¼

0
BBBBBBBBB@

−PL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos δ−sin δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ − P

p
ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂−P

cos δ−sin δ

q

−PL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin δþcos δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ þ P

p
ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂þP

sin δþcos δ

q

1
CCCCCCCCCA
;

where PR ¼ P1 þ iP2 and PL ¼ P1 − iP2, and the anti-
particle spinors are obtained by charge conjugation.
To make the numerical calculations, we specify the

kinematics for the process, as shown in Fig. 5. We choose
the initial reference frame to be the eþe− center of mass
frame (CMF) and study the whole landscape of the
amplitude change under the boost operation in the ẑ
direction as well as the change of the interpolation angle
δ. The moving direction of the incoming electron is chosen
as the þẑ direction. Then, the four momenta of the initial
and final particles can be written as

p1 ¼ ðE0; 0; 0; PeÞ
p2 ¼ ðE0; 0; 0;−PeÞ
p3 ¼ ðE0; E0 sin θ; 0; E0 cos θÞ
p4 ¼ ðE0;−E0 sin θ; 0;−E0 cos θÞ: ð103Þ

In the kinematics given by Eq. (103), we note that the
intermediate propagating fermion momentum in the time-
ordered process depicted in Fig. 4(a) is given by

FIG. 5. eþe− pair annihilation process at angle θ in center of
mass frame.
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q¼p1−p3¼ð0;−E0 sinθ;0;0;Pe−E0 cosθÞ, and thus, its
light-front plus component qþ ¼ Pe − E0 cos θ can be
negative as well as positive depending on the scattering
angle θ. Thus, for the kinematic region of qþ < 0 in LFD,
the t-channel process in Fig. 4(a) corresponds to the
“backward” process ΣB although it corresponds to the
“forward” process ΣF for the kinematic region of qþ > 0.
The critical scattering angle which separates the kinematic
region between qþ > 0 and qþ < 0 can of course be
obtained by qþ ¼ 0 in the corresponding process. In the
present kinematics given by Eq. (103), the critical scatter-
ing angles for the t channel with q ¼ p1 − p3 and the u
channel with q ¼ p1 − p4 are, respectively, given by

θc;t ¼ arccos

�
Pe

E0

	
; ð104Þ

θc;u ¼ arccos

�
−
Pe

E0

	
: ð105Þ

One should realize that the same amplitude, e.g., Mλ1;λ2
a;t

given by Eq. (101) with q ¼ p1 − p3, can correspond to
either the “on-mass-shell propagating contribution” or the
“instantaneous fermion contribution” in LFD depending on
the scattering angle, e.g., θ > θc;t or θ < θc;t, respectively.
Detailed discussions on the angular distribution of each and
every helicity amplitude are presented in Appendix D,
contrasting the results between the IFD and the LFD. In
Sec. III A, we focus on the collinear scattering/annihilation
case, θ ¼ π, where the correspondence to the “on-mass-
shell propagating contribution” or the “instantaneous fer-
mion contribution” in LFD is fairly obvious, e.g.,Mλ1;λ2

a;t in
the δ → π

4
limit corresponds only to the “on-mass-shell

propagating contribution” in LFD as π > θc;t. We then
summarize the results of eþe− → two scalar particles in the
subsequent Sec. III B.

A. Collinear scattering/annihilation, θ= π

We consider here the collinear amplitude taking the
center of mass angle θ between the moving direction of an
incoming electron (particle 1) and outgoing photon (par-
ticle 3) as π, i.e., the collinear back-to-back scattering/
annihilation process. The purpose is to exhibit the essential
landscape of the helicity amplitudes depending on the
reference frame, i.e., the center-of-mass momentum in the ẑ
direction, Pz, and the interpolation angle δ. In this collinear
kinematics, the two time-ordered t-channel processes
depicted in Figs. 4(a) and 4(b) correspond to the “forward”
moving and “backward” moving processes without any
complication. Thus, the amplitudes Mλ1;λ2

a;t and Mλ1;λ2
b;t in

the δ → π
4
limit readily correspond to the “on-mass-shell

propagating contribution” and “instantaneous fermion con-
tribution” in LFD, respectively. In order not to concern
ourselves with the absolute values, we also scale all the

energy and momentum values by the electron mass, me,
and take the scalar particles as massless. For the simple
illustration, we take the initial energy of each particle as
2me, i.e., E0 ¼ 2me and Pe ¼

ffiffiffi
3

p
me.

The results of the collinear back-to-back scattering/
annihilation, i.e., θ ¼ π, are shown in Figs. 6 and 7, where
we use “þ” and “−” to denote the helicity of the initial
fermions. For example, “þ−” means that a right-handed
electron and a left-handed positron annihilate each other.
As the final state particles are scalars, they do not have
any designation of helicities. Here, t(a) means the first
time ordering of t channel, corresponding to the diagram
Fig. 4(a), t(b) means Fig. 4(b), etc. There is also the u
channel, which can be obtained by swapping the two
outgoing particles, and the two time-ordering of u channel
can be drawn in a similar way. The results of the u channel
are shown in Figs. 8 and 9. The amplitudes are plotted as a
function of Pz and δ. When δ → 0, i.e., the back ends of the
figures, the IFD results are obtained, while δ → π=4, i.e.,
the front ends of the figures, the LFD results are obtained.
The red solid line in the middle of all the figures is given by

Pz ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − CÞ

2C

r
; ð106Þ

where
ffiffiffi
s

p
is the center of mass energy. This characteristic

curve called the “J curve” has been discussed extensively in
our previous works [9–11] in conjunction with the zero
mode in the Pz → −∞ limit, where the plus component of

FIG. 6. Annihilation amplitudes for eþe− to two scalars t
channel time-ordering process-a: for (a) helicity þþ, (b) helicity
þ−, (c) helicity −þ, and (d) helicity −−.
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the light-front momentum for all the particles involved in
the scattering/annihilation process vanishes, i.e., pþ

i → 0
(i ¼ 1, 2, 3, 4). We note here that this characteristic
“J curve” corresponds to the zero of the interpolating
total longitudinal momentum, P−̂ ¼ 0. As discussed in
Ref. [11], the “J curve” sits in between the two boundaries
indicated by blue dashed lines in all of the figures,
Figs. 6–9, across which the amplitude changes abruptly.
The reason for this abrupt change, as we also discussed in
our previous spinor work [11], is because the electron and
positron moving along z direction have the speed less than
the speed of light c so that the direction of the particle
motion can be swapped to the opposite direction in the
frame which moves faster than the particle. Namely, the
helicity defined in IFD is not invariant but dependent on
the reference frame. For a given helicity amplitude in IFD,
the particle’s spin must flip when its moving direction flips
to maintain the given helicity. This results in a sudden
abrupt change in each helicity amplitude. In other words, a
different spin configuration appears going across the boun-
dary. For example, the left and right boundaries drawn in all
the panels of Fig. 6 correspond, respectively, to p1−̂¼0
(zero longitudinal interpolating momentum for the electron)
and p2−̂ ¼ 0 (zero longitudinal interpolating momentum for
the positron). The change of the helicity depending on the
reference frame has been extensively discussed in our
previous spinor work [11]. In particular, the LF helicity
of the particle moving in the −ẑ direction is opposite to the
Jacob-Wick helicity defined in the IFD. Such a swap of the

FIG. 7. Annihilation amplitudes for eþe− to two scalars t
channel time-ordering process-b for (a) helicity þþ, (b) helicity
þ−, (c) helicity −þ, and (d) helicity −−.

FIG. 8. Annihilation amplitudes for eþe− to two scalars u
channel time-ordering process-a for (a) helicity þþ, (b) helicity
þ−, (c) helicity −þ, and (d) helicity −−.

FIG. 9. Annihilation amplitudes for eþe− to two scalars u
channel time-ordering process-b: for (a) helicity þþ, (b) helicity
þ−, (c) helicity −þ and (d) helicity −−.
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helicity between the IFD and LFD for the particle moving in
the −ẑ direction has been extensively discussed in Ref. [11],
and the application in the deeply virtual Compton scattering
has been reviewed in Ref. [24]. We find indeed that the
behavior of the angle between the momentum direction and
the spin direction bifurcates at a critical interpolation angle
and the IFD and the LFD separately belong to the two
different branches bifurcated at this critical interpolation
angle. The details of the discussion on the boundaries in the
helicity amplitudes, similar to the left and right boundaries
in Fig. 6, can be found in Ref. [11] with the examples of
eμ → eμ and eþe−→ μþμ− processes. Solving the equation
p1−̂ ¼ 0, we get

tan δ ¼ −
E0Pz þ Pe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2E0Þ2 þ ðPzÞ2

p
PePz þ E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2E0Þ2 þ ðPzÞ2

p ð107Þ

for the electron, and similarly, from p2−̂ ¼ 0, we get

tan δ ¼ −
E0Pz − Pe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2E0Þ2 þ ðPzÞ2

p
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2E0Þ2 þ ðPzÞ2

p
− PePz

ð108Þ

for the positron. These two boundaries are depicted
in Fig. 10. At Pz ¼ 0, the critical interpolating angle δc
corresponding to the boundary due to the positron’s helicity
swap is given by δc ¼ tan−1ðPe=E0Þ. For E0 ¼ 2me

and Pe ¼
ffiffiffi
3

p
me, this critical value is given by δc ¼

tan−1ð ffiffiffi
3

p
=2Þ ≈ 0.713724 as one can see from Fig. 10.

The bifurcation of the two helicity branches, one belongs to
the IFD side and the other belongs to the LFD side, occurs
exactly at δ ¼ δc in the CMF (Pz ¼ 0), and the abrupt
change of the helicity amplitudes crossing from one branch
to another branch, e.g., 0 ≤ δ < δc ≈ 0.713724 and
δc ≈ 0.713724 < δ ≤ π=4, can be understood in the exam-
ple presented in Figs. 6–9 as well as in our previous works
[11]. One should note that this bifurcation of the two helicity
branches is independent of the scattering angle θ and thus,

persists even in the noncollinear helicity amplitudes that we
discuss in Appendix D.
However, one should note that the LFD result is

completely outside of these boundaries, as it appears as
a straight line on the LF end. This is due to the boost
invariance of the helicity in LFD as we emphasize in the
present work as well as in our previous works [9–11]. In
LFD, we note that the results depicted in Figs. 7 and 9
correspond to the instantaneous fermion contribution as
shown in Eq. (99). One may note [25] that the amplitude
v̄γþu vanishes for the helicity nonflip case, i.e., þþ and
−−, while it survives for the helicity flip case, i.e., þ− and
−þ. This demonstrates that the LFD (δ ¼ π=4) results of
þþ and −− helicity amplitudes,Mþ;þ

b;t ,M−;−
b;t ,M

þ;þ
b;u , and

M−;−
b;u , respectively, are zero while the LFD results of þ−

and −þ helicity amplitudes, Mþ;−
b;t , M

−;þ
b;t , M

þ;−
b;u , and

M−;þ
b;u , respectively, are nonzero as shown in Figs. 7 and 9.
For this collinear back-to-back scattering/annihilation

process, the apparent angular momentum conservation can
be rather easily seen in all of Figs. 6–9. Because the initial
electron and positron are spin 1

2
particles and the final state

particles are spinless, only the spin singlet system of the
two spin-half particles can annihilate and produce two
scalar particles in the center-of-mass frame (i.e., Pz ¼ 0)
due to the angular momentum conservation. Thus, only
when the initial particles have their spins in opposite
direction, the amplitude can be nonzero. In Figs. 6–9,
we note that the þ− and −þ helicity amplitudes between
the two blue line boundaries vanish as they correspond to
the spin triplet configuration not satisfying the angular
momentum conservation. Also, the relative sign between
the nonvanishing þþ and −− helicity amplitudes in the
same kinematic region is opposite revealing the nature of
spin singlet configuration. Moreover, these results are
consistent with the well-known symmetry based on parity
conservation that the amplitudes in helicity basis must
satisfy [24]

Mð−λ1;−λ2Þ ¼ ð−1Þ−λ1−λ2Mðλ1; λ2Þ; ð109Þ

where λ1 and λ2 are the helicities of the incoming electron
and positron.
The sum of the t-channel and u-channel amplitudes of

each initial helicity state is shown in Fig. 11. All the
symmetry that each channel and time-ordered amplitude
individually satisfy of course work in the sum of the
individual amplitude as well. Thus, again in Fig. 11, the
angular momentum conservation and the spin singlet nature
of the system are also manifest, i.e., þ− and −þ helicity
amplitudes between the two blue line boundaries vanish
and the nonvanishingþþ and−− helicity amplitudes in the
same kinematic region have an opposite sign to each other.
They are again consistent with Eq. (109).
In Figs. 6–9 and 11, we note that the IFD results in

Pz → þ∞ appear to yield the corresponding LFD results as
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15
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FIG. 10. Two boundaries.
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one can see the smooth connection of each and every
amplitude in the right region outside the right boundary.
This may suggest that the IFD result in the infinite
momentum frame (IMF) yields the LFD result. However,
one should note that the IFD results in Pz → −∞ are not
only different from the corresponding LFD results but also
incapable of achieving the LFD results as they are apart by
the two blue boundaries in between. Thus, the IMF in the
left region outside the left boundary in IFD cannot yield the
desired LFD result although the IMF in the right region
outside the right boundary may do the job. One should be
cautious in the prevailing notion of the equivalence
between the IFD at the IMF and the LFD.
Of course, if each helicity amplitude shown in Fig. 11 is

squared and summed over all four helicity states, then the
result is completely independent of Pz and δ as a flat
constant in the entire region of Pz and δ space.

B. Summary of e+ e − → two scalar particles

As we have shown in all of these results, the LFD results
are completely independent of the reference frame due to
the boost invariance while the IFD results are dependent on
the reference frame. As discussed in the previous section
(see Figs. 6–9 and 11), the LFD results are outside the spin-
flip boundary and the LF helicity of the particle moving in
the −ẑ direction is opposite to the Jacob-Wick helicity
defined in the IFD. The same characteristic behavior can be
seen also in the angular distribution of helicity amplitudes
for the noncollinear case presented in Appendix D. With

the helicity swap between the IFD and the LFD for the
particle moving in the −ẑ direction, one can see the angular
momentum conservation and the spin-singlet nature in the
LFD results. Namely, the þþ and −− LF helicity ampli-
tudes vanish at θ ¼ 0 and θ ¼ π [see, e.g., Fig. 36(a) in
Appendix D], and they are equal in the angular dependence
while the relative sign between the þ− and −þ LF helicity
amplitudes is opposite to each other in accordance with
Eq. (109).
As discussed in the collinear case, the IFD results in

Pz → −∞ does not yield the LFD results. Likewise, in the
noncollinear case shown in Appendix D, we also note that
the angular distribution of the IFD amplitudes in Pz → −∞
is opposite in sign with respect to the corresponding angular
distribution of theLFDamplitudes [see Figs. 42(a) and 42(b)
in Appendix D], let alone that each time-ordered amplitudes
of IFD inPz → −∞yields a far different angular distribution
from the corresponding LFD results (see, e.g., Figs. 40
and 41 in Appendix D). Although the angular distribution
of each IFD helicity amplitude in Pz → þ∞ is supposed
to yield the identical corresponding angular distribution
of the LFD helicity amplitude, one would need to
boost the Pz value much higher than þ15me [see e.g.,
Figs. 39(a) and 39(b) in Appendix D] in order to get indeed
the very similar profile of “on-mass-shell propagating
contribution” and the “instantaneous fermion contribution”
in LFD.
In light of this discussion on the Pz dependence, we may

comment on the validity of ongoing efforts to compute the
so-called quasi parton distributions in an infinite momen-
tum frame. While the idea to circumvent the difficulties
with the continuation of parton distribution functions
(PDFs) to the Euclidean region, namely the large momen-
tum effective theory (LaMET) [26], surged the lattice QCD
community to work on quasi-PDFs, it has been noted that
this approach encounters some problems related to the
power divergent mixing pattern of deep inelastic scattering
operators when implemented within the lattice regulariza-
tion [27]. Besides this power divergent mixing issue on
the lattice, our work indicates an importance of tracking
the direction dependence, Pz vs −Pz, in particular for the
spin-dependent amplitudes in the LaMET approach. The
numerical differences of the helicity amplitudes in IFD
appear significant between Pz > 0 and Pz < 0 for the large
jPzj values, let alone the difference between the Jacob-
Wick helicity and the LF helicity. In the LaMETapplication
of the lattice QCD computation, the gauge link direction
may be taken both in the original direction and the direction
opposite to the original direction to check numerically if
the results are consistent to each other between the two
directions. If enough boost is achieved in each of the
positive and negative directions, then the numerical results
are not only consistent to each other but also close to the
LFD result. Our work indicates an importance of checking
the direction dependence, e.g., gauge link, as numerical

FIG. 11. Total annihilation amplitudes for eþe− to two scalars
for (a) helicity þþ, (b) helicity þ−, (c) helicity −þ, and
(d) helicity −−.
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differences between Pz and −Pz results would reveal
whether the LaMET achieved enough boost or not.
In the helicity amplitude square (or probability) level, we

see the built-in t − u symmetry in the eþe− annihilation
process regardless of IFD or LFD as manifested in the θ →
π − θ symmetry of the angular distributions presented
in Appendix D [see Figs. 36(c) and 36(d) as well as
Fig. 43 in Appendix D]. We have verified that the result of
Fig. 43 in Appendix D is in exact agreement with the
analytic result of the total amplitude square for the scalar
particle pair production in eþe− annihilation given by

jMj2scalar≡
X
λ1;λ2

jMλ1;λ2
a;t þMλ1;λ2

b;t þMλ1;λ2
a;u þMλ1;λ2

b;u j2

¼2ðutþm2ð4s−5tþ3uÞ−15m4Þ
ðt−m2Þ2

þ2ðtuþm2ð4s−5uþ3tÞ−15m4Þ
ðu−m2Þ2

þ2ððsþuÞuþðsþ tÞtþ2m2ð3s− t−uÞ−30m4Þ
ðt−m2Þðu−m2Þ ;

ð110Þ

where m ¼ me and the Mandelstam variables
s ¼ ðp1 þ p2Þ2, t ¼ ðp1 − p3Þ2 and u ¼ ðp1 − p4Þ2 are
given by s ¼ 16m2

e, t ¼ ð−7þ 4
ffiffiffi
3

p
cos θÞm2

e, and u ¼
−ð7þ 4

ffiffiffi
3

p
cos θÞm2

e in CMF given by Eq. (103) with E0 ¼
2me and Pe ¼

ffiffiffi
3

p
me for our numerical calculation.

In fact, the built-in t − u symmetry in each and every
helicity amplitude square is completely independent of
the interpolation angle δ as shown in Appendix D [see
Figs. 36(c), 36(d), 39(c), 39(d), 42(c), and 42(d) in
Appendix D]. Essentially the same kind of t − u symmetry
can be found in the eþe− → γγ QED process which we now
discuss in the next section, Sec. IV.

IV. INTERPOLATING HELICITY
SCATTERING PROBABILITIES

A. e+ e− pair annihilation into two photons

Having discussed all the helicity amplitudes of the pair
production of scalar particles in eþe− annihilation, we now
look into the two photon production process in the same
initial state of eþe− annihilation. While there must be some
similarity inherited from the same initial state, there must
be also some difference in the helicity amplitudes due to the
change of the final state from the spinless pair of scalar
particles to the two real photons in QED. The identification
of the real photon helicity would require a particular
attention as it does not carry any rest mass and moves
invariantly with the speed of light. The lowest order
t-channel QED Feynman diagram is already in place as
Fig. 3, and the corresponding u-channel diagram can be
attained by swapping the two final photons in Fig. 3.

The two time-ordered diagrams in the t channel are also
displayed in Figs. 4(a) and 4(b), and the kinematic is the
same with the previous calculation illustrated in Fig. 5 and
written in the previous section in Eq. (103).
The QED helicity amplitudes Mλ1;λ2;λ3;λ4

t and Mλ1;λ2;λ3;λ4
u

with the two initial lepton helicities λ1 and λ2 and the final
two photon helicities λ3 and λ4 in t and u channels,
respectively, are now expressed with the interpolating
Lorentz indices μ̂ and ν̂ as

Mλ1;λ2;λ3;λ4
t ¼ v̄λ2ðp2Þϵλ4ν̂ ðp4Þ�γν̂Σtγ

μ̂ϵλ3μ̂ ðp3Þ�uλ1ðp1Þ;
ð111Þ

Mλ1;λ2;λ3;λ4
u ¼ v̄λ2ðp2Þϵλ3μ̂ ðp3Þ�γμ̂Σuγ

ν̂ϵλ4ν̂ ðp4Þ�uλ1ðp1Þ;
ð112Þ

where Σt and Σu are

Σt ¼
=p1 − =p3 þm

t −m2
; Σu ¼

=p1 − =p4 þm
u −m2

ð113Þ

with t ¼ ðp1 − p3Þ2 and u ¼ ðp1 − p4Þ2, and the polari-
zation vector ϵλμ̂ðPÞ is given by [10]

ϵþμ̂ ðPÞ¼−
1ffiffiffi
2

p
P

×

�
SjP⊥j;

P1P−̂ − iP2P
jP⊥j

;
P2P−̂þ iP1P

jP⊥j
;−CjP⊥j

	
;

ϵ−μ̂ ðPÞ¼
1ffiffiffi
2

p
P

×

�
SjP⊥j;

P1P−̂þ iP2P
jP⊥j

;
P2P−̂ − iP1P

jP⊥j
;−CjP⊥j

	
;

ϵ0μ̂ðPÞ¼
Pþ̂

MP

�
Pþ̂−

M2

Pþ̂ ;P1;P2;P−̂

	
; ð114Þ

with P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
−̂ þ P2⊥C

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ̂Þ2 −M2C

q
. Note that this

interpolating polarization vector ϵλμ̂ðPÞ respects the gauge

condition Aþ̂ ¼ 0 and ∂−̂A−̂ þ ∂⊥ ·A⊥C ¼ 0, which links
the light-front gauge Aþ ¼ 0 in the LFD and the Coulomb
gauge ∇ ·A ¼ 0 in IFD as discussed in Ref. [10]. For the
sake of generality, we kept here the generic fermion and
gauge boson mass as m and M, respectively. The real
photon helicity λ takes only þ or − but not 0 as M → 0
limit, and thus, there is no issue involved in taking the
massless limit. One should note that not only the final state
momenta p3 and p4 are swapped but also the QED vertices
with the γ matrices are exchanged between the t-channel
amplitude and the u-channel amplitude given by Eqs. (111)
and (112), respectively.
The symmetry of the helicity amplitudes based on the

parity conservation [24] given by Eq. (109) for the pair
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production of the scalar particles is also now extended for
the two-photon production as

M−λ1;−λ2;−λ3;−λ4 ¼ ð−1Þλ3þλ4−λ1−λ2Mλ1;λ2;λ3;λ4 ; ð115Þ

where λ3 and λ4 are the helicities of the outgoing photons
while λ1 and λ2 are the incoming electron and positron
helicities, respectively. As this symmetry works identically
for both t and u channels, the subscripts t and u in the
helicity amplitude above are suppressed in Eq. (115).
Now, recalling Eqs. (95) and (96), the time-ordered

amplitudes in the t channel can be written in short-hand
notations without specifying the helicities as

Ma;t ¼ v̄ðp2Þ=ϵðp4Þ�
�

1

2Qþ̂
t

Qa;t þm
qtþ̂ −Qa;tþ̂

	
=ϵðp3Þ�uðp1Þ;

ð116Þ

and

Mb;t ¼ v̄ðp2Þ=ϵðp4Þ�
�

1

2Qþ̂
t

−Qb;t þm
−qtþ̂ −Qb;tþ̂

	
=ϵðp3Þ�uðp1Þ;

ð117Þ

where qa;t ¼ qt ≡ p1 − p3, qb;t ¼ −qa;t ¼ −qt, and Qa;tþ̂
and Qb;tþ̂ are the interpolating on-mass-shell energy of the
intermediate propagating fermion given by

Qa;tþ̂ ¼ −Sqa;t−̂ þQþ̂
t

C
; ð118Þ

Qb;tþ̂ ¼ −Sqb;t−̂ þQþ̂
t

C
; ð119Þ

with Qþ̂
t denoting the on-mass-shell value of qþ̂t as

Qþ̂
t ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2t−̂ þ Cðq2

t⊥ þm2Þ
q

: ð120Þ

The kinematics here is of course identical to the ones given
in the last section, Sec. III, despite the explicit notations to
specify t and u channels, which now involve the swap of
not only the final state particle momenta but also the QED
photon and fermion vertices. Thus, we elaborate the
notations to designate the t and u channels more explicitly
for this section.
As the final state photonswithmomentump3 andp4must

be swapped for the u-channel amplitudes, we denote the
intermediate fermion momentum between the two photon
vertices as qu ¼ p1 − p4 and correspondingly, designate all
other time-ordered variables replacing qa;t and qb;t in the t
channel time-ordered amplitudes by qa;u ¼ qu ¼ p1 − p4

and qb;u ¼ −qa;u ¼ −qu, respectively. Consequently, the
interpolating on-mass-shell energy of the intermediate

propagating fermion Qa;uþ̂ and Qb;uþ̂ for the two time-
ordered amplitudes are also given by replacing qa;t and qb;t
by qa;u and qb;u, respectively, in Eqs. (118) and (119)

together with the replacement of Qþ̂
t in Eq. (120) by Qþ̂

u as

Qþ̂
u ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2u−̂ þ Cðq2

u⊥ þm2Þ
q

: ð121Þ

While the notations are more elaborated in this section as
described here, there is no change in the kinematics from the
ones provided in the last section, Sec. III.
To make the numerical calculations, we take the

same initial energy of each particle (i.e., Ee ¼ 2me and
Pe ¼

ffiffiffi
3

p
me) and three different reference frames [i.e.,

CMF given by Eq. (103) and boosted frames with Pz ¼
15me and Pz ¼ −15me] for the angular distribution analy-
sis of the interpolating helicity amplitudes. While we focus
on the CMF result in this section, the results in the boosted
frames (Pz ¼ 15me and Pz ¼ −15me) are summarized in
the Appendix E and the Pz dependence of the interpolating
helicity amplitudes for a particular scattering, e.g., θ ¼ π=3
case, is shown in the Appendix F.
In Fig. 12, we show the whole landscape of the

interpolation angle (δ) dependence for the angular distri-
butions of the helicity amplitudes with the notation λ1λ2 →
λ3λ4 for þþ → þþ, þþ → þ−, þþ → −þ, þþ → −−,
as well as þ− → þþ, þ− → þ−, þ− → −þ, þ− → −−
at CMF (i.e., Pz ¼ 0) in (a) Mλ1;λ2;λ3;λ4

a;t and (b) Mλ1;λ2;λ3;λ4
b;t .

The far most left two columns of Fig. 12 show the helicity
amplitudes Mþ;þ;λ3;λ4

a;t and Mþ;−;λ3;λ4
a;t with the final four

helicity configurations of the photon pairs fλ3; λ4g ¼
fþ;þg; fþ;−g; f−;þg; f−;−g but with the initial þþ
and þ− helicity configurations of eþe− pair annihilation.
While the results here are shown for the nonzero fermion
mass m ¼ me, one may check first the consistency with
chiral symmetry by taking the massless limit m → 0. We
did this check for the IFD (δ ¼ 0) amplitudes which might
be more accessible for intuitive understanding due to the
more familiar Jacob-Wick helicity used in the IFD. In the
massless limit, the chirality coincides with the helicity.
Consistency check with the chiral symmetry here is thus
equivalent to the helicity conservation of the massless
fermion fields in the electromagnetic vector coupling. For
the illustration, the IFD (δ ¼ 0) profiles of the left two
columns in Fig. 12 are shown in Fig. 13 and the corre-
sponding profiles for the massless limit of the fermion,
m → 0 limit, in Fig. 14. While the helicity amplitudes
are nonzero both for Mþ;þ;λ3;λ4

a;t and Mþ;−;λ3;λ4
a;t as shown in

Fig. 13 for m ¼ me, the helicity amplitudes Mþ;þ;λ3;λ4
a;t all

vanish for m ¼ 0 as shown in Fig. 14. One may understand
this result as a consequence of chiral symmetry and the
helicity conservation in the m ¼ 0 limit. As the electro-
magnetic interaction preserves the chirality/helicity in the
massless limit, one may understand why all the helicity
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amplitudes Mþ;þ;λ3;λ4
a;t vanish for m ¼ 0 as shown in

Fig. 14.
Having checked the consistency of our results with

respect to the chiral symmetry and helicity conservation
in the massless limit, we now turn to each individual
helicity amplitudes and examine their individual character-
istics of the angular distribution in the whole landscape of
the interpolating helicity amplitudes. The far most left
column of Fig. 12 shows the helicity amplitudesMþ;þ;λ3;λ4

a;t
with the final four helicity configurations of the photon
pairs fλ3; λ4g ¼ fþ;þg; fþ;−g; f−;þg; f−;−g but with

the same initial þþ helicity configuration of eþe− pair
annihilation. This column may be compared with Fig. 34(a)
in Appendix D which shows the helicity amplitude of the
pair production of scalar particles with the same initial þþ
helicity configuration of eþe− pair annihilation. A thin
boundary sheet at δ ¼ δc ≈ 0.713724 in CMF (Pz ¼ 0) is
shown in each and every figure of Fig. 12 to denote the
critical interpolation angle δc which separates the IFD side
and the LFD side of helicity branches. Although there are
four final helicity configurations in the photon pair pro-
duction, the basic structure of the initial þþ helicity

FIG. 12. Angular distribution of the helicity amplitudes for (a) t-channel time-ordering process a and (b) t-channel time-ordering
process b.
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configuration of eþe− pair annihilation is inherited as one
can see the clear separation of the “instantaneous fermion
contribution” from the “on-mass-shell propagating contri-
bution” in LFD with the critical angle θc;t given by
Eq. (104). As discussed in Sec. III, the critical angle θc;t
turns out to be θc;t ¼ π=6 ≈ 0.523599 for E0 ¼ 2me and
Pe ¼

ffiffiffi
3

p
me, and it is apparent that the unique feature of

LFD with respect to separation of the “instantaneous
fermion contribution” from the “on-mass-shell propagating
contribution” is persistent whether the final states are the
pair of the scalar particles or the pair of two photons. For
the photon pair production, however, a dramatic new
feature appears due to the photon polarization given by

Eq. (114). In particular, ϵλμ̂ in Eq. (114) reveals a singular
feature as δ → π=4. For λ ¼ þ as an example, at δ ¼ π=4,
i.e., in LFD, the polarization component ϵþþ ¼ − jP⊥jffiffi

2
p

Pþ

behaves as ϵþþ ¼ − sin θffiffi
2

p ð1þcos θÞ so that ϵþþ ≈ −
ffiffi
2

p
ε for θ ¼

π − ε with small ε. This explains the singular behavior near
θ ¼ π forMþ;þ;þ;þ

a;t in LFD shown in the top far left figure
of Fig. 12. For θ ≈ π, one should note that pþ

3 ≈ 0 and the
corresponding photon’s polarization component ϵþþ yields
the singular behavior exhibited in the LFD result of
Mþ;þ;þ;þ

a;t . This light-front singularity in Mþ;þ;þ;þ
a;t turns

out to be canceled by the same with the opposite sign
in Mþ;þ;þ;þ

b;u as one may see in Fig. 15. Similarly, the

FIG. 13. Helicity amplitudes for the nonzero electron mass. As the chirality is not conserved, the upper four amplitudes are not zero.

FIG. 14. Helicity amplitudes for the massless electron. When setting electron mass equal to zero, chirality is conserved. The upper four
amplitudes are zero as the initial helicity of the electron and positron are the same.
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light-front singularity appearing inMþ;þ;þ;þ
b;t for θ ≈ 0 due

to pþ
4 ≈ 0 in the (b) time-ordered process is canceled by the

same with the opposite sign in Mþ;þ;þ;þ
a;u . Thus, the

total helicity amplitude summing all the t and u channel
time-ordered amplitudes, i.e., Mþ;þ;þ;þ

a;t þMþ;þ;þ;þ
b;t þ

Mþ;þ;þ;þ
a;u þMþ;þ;þ;þ

b;u , is free from any singular behavior
as shown in Fig. 16. One may also notice that the effect of
the overall sign change between ϵþμ̂ and ϵ−μ̂ , i.e.,

ðϵþμ̂ Þ� ¼ −ϵ−μ̂ , in Eq. (114) is reflected in the negative vs
positive sign difference of the helicity amplitudes and

ultimately, the light-front singularity between Mþ;þ;þ;þ
a;t

and Mþ;þ;−;þ
a;t as shown in Fig. 12. Similar to the cancel-

lation of the light-front singularity between Mþ;þ;þ;þ
a;t and

Mþ;þ;þ;þ
a;t , the light-front singularity inMþ;þ;−;þ

a;t turns out
to be canceled by the same with the opposite sign in
Mþ;þ;−;þ

b;u as shown in Fig. 15. Again, the total helicity
amplitude summing all the t and u channel time-ordered
amplitudes, i.e., Mþ;þ;−;þ

a;t þ Mþ;þ;−;þ
b;t þ Mþ;þ;−;þ

a;u þ
Mþ;þ;−;þ

b;u , is completely free from any singular behavior
as shown in Fig. 16. However, one should also note that the

FIG. 15. Angular distribution of the helicity amplitudes for (a) u-channel time-ordering process a and (b) u-channel time-ordering
process b.
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survival of this singular behavior depends on the time
ordering of the process as well as the helicities of the
particles in the process as not only the longitudinal
component but also the transverse component of the
polarization vector also matters in affecting the removal
or survival of the singular behavior in the helicity ampli-
tude. As an example, one can see that the singular behavior
from the zero mode pþ

3 ≈ 0 for θ ≈ π is removed in
Mþ;þ;þ;−

a;t while it shows up in Mþ;þ;þ;þ
a;t and Mþ;þ;−;þ

a;t .
The reason why all of the four t-channel (a) time-ordered
helicity amplitudes (Mþ;þ;þ;þ

a;t , Mþ;þ;þ;−
a;t , Mþ;þ;−;þ

a;t ,
Mþ;þ;−;−

a;t ) with the initial þþ helicity configuration of
eþe− pair annihilation vanish for θ < θc;t ¼ π=6 ≈
0.523599 is because the region θ < θc;t ¼ π=6 ≈
0.523599 belongs to the “instantaneous fermion contribu-
tion” and v̄↑γþu↑ ¼ 0, i.e., the γþ operator of the instanta-
neous contribution in LFD cannot link between the initial
electron and positron pair with the same helicity.
Conversely, in the t-channel (b) time-ordered process,

the region of “instantaneous fermion contribution” is for
θ > θc;t ¼ π=6 ≈ 0.523599, and all of the four t-channel
(b) time-ordered helicity amplitudes (Mþ;þ;þ;þ

b;t ,Mþ;þ;þ;−
b;t ,

Mþ;þ;−;þ
b;t , Mþ;þ;−;−

b;t ) with the initial þþ helicity configu-
ration of eþe− pair annihilation vanish in the region θ >
θc;t ¼ π=6 ≈ 0.523599 as shown in Fig. 12(b). In the region
θ < θc;t ¼ π=6 ≈ 0.523599, however, these amplitudes are
nonvanishing andMþ;þ;þ;þ

b;t andMþ;þ;þ;−
b;t exhibit even the

singular behavior near θ ≈ 0 due to the pþ
4 ≈ 0 zero mode

as depicted in Fig. 12(b).
In the left column of Fig. 16, we show the helicity ampli-

tudesMþ;þ;λ3;λ4
a;t þMþ;þ;λ3;λ4

b;t þMþ;þ;λ3;λ4
a;u þMþ;þ;λ3;λ4

b;u . We
note here the IFD/LFD profile correspondence. Namely, for
the outgoing photon helicities λ3 and λ4, the IFD profile of
the incident þþ helicity amplitude corresponds to the LFD
profile of the incidentþ− helicity amplitude modulo overall
signs of the helicity amplitudes, and vice versa. While the
reason for this correspondence is partly due to the swap of
the helicity between the IFD and LFD for the incident
positron moving in the−ẑ direction, we should also note the
interesting characteristic of the outgoing real photon hel-
icities λ3 and λ4. The relationship between the LF helicity
and the Jacob-Wick helicity defined in the IFD is generally
given by a Wigner rotation [28]. For the massless particle
such as the real photon, the relationship gets particularly
simplified as unity unless the massless particle is moving
in the −ẑ direction. Thus, for the region 0 < θ < π without
involving exact boundary values of θ ¼ 0 and θ ¼ π,
the LF helicity and the Jacob-Wick helicity coincide so
that there is no difference between the LF helicity and
the Jacob-Wick helicity for the real photons. For this
reason, the helicity amplitude Mþ;þ;λ3;λ4

a;t þMþ;þ;λ3;λ4
b;t þ

Mþ;þ;λ3;λ4
a;u þMþ;þ;λ3;λ4

b;u in IFD/LFD corresponds to

Mþ;−;λ3;λ4
a;t þMþ;−;λ3;λ4

b;t þMþ;−;λ3;λ4
a;u þMþ;−;λ3;λ4

b;u in LFD/
IFD, respectively, for the region 0 < θ < π. As an exam-
ple, in Fig. 16, the correspondence between the profile of
the total amplitude Mþ;−;þ;−

a;t þMþ;−;þ;−
b;t þMþ;−;þ;−

a;u þ
Mþ;−;þ;−

b;u in LFD and the profile of the total amplitude
Mþ;þ;þ;−

a;t þMþ;þ;þ;−
b;t þMþ;þ;þ;−

a;u þMþ;þ;þ;−
b;u in IFD is

manifest. Likewise, the IFD/LFD profile correspondence
of the probability for each and every fλ3; λ4g pair of
photon helicities is self-evident as shown in Fig. 17.
For the exact boundary values θ ¼ 0 and θ ¼ π, one of

the outgoing real photons moves in the −ẑ direction and
thus, the only care that one has to take is to swap the values
of the LF helicity amplitudes according to the correspon-
dence between the LF helicity and the Jacob-Wick helicity
defined in the IFD as discussed above for the particle
moving in the −ẑ direction. For θ ¼ 0, p3 ¼ E0ð1; 0; 0; 1Þ
and p4 ¼ E0ð1; 0; 0;−1Þ in the CMF kinematics given by
Eq. (103). Thus, the Jacob-Wick helicity pair fλ3; λ4g in
IFD corresponds to the LF helicity pair fλ3;−λ4g in LFD at
exact θ ¼ 0. Likewise, the Jacob-Wick helicity pair

FIG. 16. Angular distribution of the tþ u helicity amplitudes.
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fλ3; λ4g in IFD corresponds to the LF helicity pair
f−λ3; λ4g in LFD at exact θ ¼ π. This treacherous point
of the LF helicity identification at the exact boundary
values of θ ¼ 0 and π can be analyzed with the care of
procedure in taking massless limit (M → 0) for the gauge
boson polarization vector given by Eq. (114), and the
details of analysis will be presented elsewhere. In this work,

although we keep in mind of the treacherous LF helicity
identification at the exact boundary values, we present our
work focusing on the region 0 < θ < π without involving
the exact boundary values of θ ¼ 0 and θ ¼ π.
The result of the total amplitudeMþ;−;λ3;λ4

a;t þMþ;−;λ3;λ4
b;t þ

Mþ;−;λ3;λ4
a;u þMþ;−;λ3;λ4

b;u may be further analyzed by taking a
look at each channel and time-ordered process separately
shown in Figs. 12 and 15 for the region 0 < θ < π. For
Mþ;−;λ3;λ4

a;t with the initial eþe− helicity pair fþ−g and the
final four helicity configurations of the photon pairs
fλ3; λ4g ¼ fþ;þg; fþ;−g; f−;þg; f−;−g depicted in
the second column of Fig. 12, one may compare the result
with Fig. 35(a) in Appendix D which shows the helicity
amplitude of the pair production of scalar particles with
the same initial þ− helicity configuration of eþe− pair
annihilation. Not all of the four t-channel (a) time-ordered
helicity amplitudes with the initial þ− helicity configura-
tion of eþe− pair annihilation vanish for θ < θc;t ¼ π=6 ≈
0.523599 in LFD although the region θ < θc;t ¼ π=6 ≈
0.523599 belongs to the light-front “instantaneous fermion
contribution”, because v̄↓γþu↑ ≠ 0, i.e., the γþ operator of
the instantaneous contribution in LFD can link between the
initial electron and positron pair with the opposite helicity.
For example, Mþ;−;þ;−

a;t is clearly nonzero as shown in the
second figure from the top of the second column of Fig. 12.
Depending on the final photon helicities, however, the
amplitude can still vanish as in the case of Mþ;−;−;þ

a;t and
Mþ;−;−;−

a;t . Moreover, it is interesting to note the dramatic
rise of the amplitude Mþ;−;þ;þ

a;t as the scattering/annihila-
tion process becomes collinear (θ ≈ 0) due to the light-front
zero mode pþ

4 ≈ 0 yielding nonzero finite amplitude
although the amplitude Mþ;−;þ;þ

a;t appears to vanish for
the region 0< θ< θc;t ¼ π=6≈0.523599 as depicted in the
top figure of the second column of Fig. 12. In particular, the
profile of Mþ;−;þ;−

a;t and Mþ;−;þ;−
b;t in LFD appears as

shown in Fig. 18. In LFD, as discussed previously, the
regions 0 < θ < θc;t ¼ π=6 ≈ 0.523599 and θc;t ¼ π=6 ≈
0.523599 < θ < π provide the “instantaneous fermion
contribution” and the “on-mass-shell propagating contri-
bution” for the light-front (a) time-ordered amplitude, while
the regions are swapped for the light-front (b) time-ordered
amplitude. As shown in Fig. 19, one may collect the
“instantaneous fermion contribution” and the “on-mass-
shell propagating contribution” by themselves separately to
show the combined ðaÞ þ ðbÞ time-ordered amplitude.
Whichever way we present the result, both Figs. 18
and 19 manifest the cancellation of the light-front singular
features and yield the finite total t-channel amplitude as
shown in Fig. 20. We note that the total t-channel amplitude
at θ ¼ θc;t ¼ π=6 ≈ 0.523599 is zero. As θ → θc;t, q

þ
t ¼

pþ
1 − pþ

3 → 0 and the interaction behaves as if a contact
interaction while the propagator shrinks to a point. For the
case of contact interaction, squaring the diagram can yield

FIG. 17. Angular distribution of the tþ u helicity probabilities.
The figures in the last row are the results of summing over all the
figures above each of them.
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either a fermion loop or a boson loop. Because of the ð−1Þ
factor difference between the fermion loop and the boson
loop, the only consistent value of the amplitude square
must be zero for the contact interaction. This reasoning may

offer the understanding of zero amplitude at θ ¼ θc;t ¼
π=6 ≈ 0.523599 in Fig. 20.
Likewise, the u-channel helicity amplitudes Mþ;−;λ3;λ4

a;u

and Mþ;−;λ3;λ4
b;u shown in Fig. 15 can be understood by

realizing the symmetry under the exchange of the outgoing
pair of the photons as well as the forward-backward
correspondence θ ↔ π − θ. It may not be too difficult to
see the θ ↔ π − θ correspondence between Mþ;−;�;�

a;u and
Mþ;−;�;�

a;t as well as Mþ;−;�;�
b;u and Mþ;−;�;�

b;t modulo
overall sign change of the amplitudes in the IFD side
(0 < δ < δc ≈ 0.713724). The similar correspondence
between Mþ;−;�;∓

a;u and Mþ;−;∓;�
a;t as well as Mþ;−;�;∓

b;u

and Mþ;−;∓;�
b;t can be observed without much difficulty

comparing Figs. 12 and 15. It is evident that the same
symmetry is inherited in the sumof the amplitudes presented
in Fig. 16 as one can see the θ ↔ π − θ symmetry
in the θ↔ π−θ correspondence between Mþ;�;λ3;λ4

a;t þ
Mþ;�;λ3;λ4

b;t þMþ;�;λ3;λ4
a;u þMþ;�;λ3;λ4

b;u and Mþ;�;λ4;λ3
a;t þ

Mþ;�;λ4;λ3
b;t þMþ;�;λ4;λ3

a;u þMþ;�;λ4;λ3
b;u for any photon hel-

icity λ3 and λ4. Because of Eq. (115), the same correspon-
dence applies to M−;�;λ3;λ4

a;t þM−;�;λ3;λ4
b;t þM−;�;λ3;λ4

a;u þ
M−;�;λ3;λ4

b;u and M−;�;λ4;λ3
a;t þ M−;�;λ4;λ3

b;t þ M−;�;λ4;λ3
a;u þ

M−;�;λ4;λ3
b;u as well.
The corresponding probabilities jMþ;�;λ3;λ4

a;t þ
Mþ;�;λ3;λ4

b;t þMþ;�;λ3;λ4
a;u þMþ;�;λ3;λ4

b;u j2 and jMþ;�;λ4;λ3
a;t þ

Mþ;�;λ4;λ3
b;t þMþ;�;λ4;λ3

a;u þMþ;�;λ4;λ3
b;u j2 shown in Fig. 17

of course exhibits the same symmetry with the definite
positive sign everywhere. The bottom two figures in
Fig. 17 summing the final helicities,

P
λ3;λ4 jM

þ;�;λ3;λ4
a;t þ

Mþ;�;λ3;λ4
b;t þMþ;�;λ3;λ4

a;u þMþ;�;λ3;λ4
b;u j2, exhibit the swap of

the helicity between the IFD and LFD for the particle
moving in the −ẑ direction, which we have discussed
previously. Namely, the IFD result of

P
λ3;λ4 jM

þ;�;λ3;λ4
a;t þ

Mþ;�;λ3;λ4
b;t þMþ;�;λ3;λ4

a;u þMþ;�;λ3;λ4
b;u j2 is identical to the

LFD result of
P

λ3;λ4 jM
þ;∓;λ3;λ4
a;t þMþ;∓;λ3;λ4

b;t þMþ;∓;λ3;λ4
a;u þ

Mþ;∓;λ3;λ4
b;u j2 and vice versa. By adding the two initial

helicity states as well, we may now compare our total result
with the well-known manifestly Lorentz invariant result
given by

jMðeþe− → γγÞj2 ≡ X
λ1;λ2;λ3;λ4

jMλ1;λ2;λ3;λ4
a;t þMλ1;λ2;λ3;λ4

b;t þMλ1;λ2;λ3;λ4
a;u þMλ1;λ2;λ3;λ4

b;u j2

¼ 2
X

λ2;λ3;λ4

jMþ;λ2;λ3;λ4
a;t þMþ;λ2;λ3;λ4

b;t þMþ;λ2;λ3;λ4
a;u þMþ;λ2;λ3;λ4

b;u j2

¼ 8

�
um
tm

þ tm
um

þ 2m2

�
sm

tmum
−

1

tm
−

1

um

	
− 4m4

�
1

t2m
þ 1

u2m

	�
; ð122Þ

FIG. 18. (a) Profile of the t-channel (a) time-ordered annihi-
lation amplitude in LFD for “þ− → þ−”, (b) profile of the t-
channel (b) time-ordered annihilation amplitude in LFD
for “þ− → þ−”.

FIG. 19. Time-ordered annihilation amplitudes (a) on shell and
(b) instantaneous contributions at LF for “þ− → þ−”.

FIG. 20. Sum of time-ordered annihilation amplitudes in LFD
for “þ− → þ−”.
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where sm ¼ s − 4m2, tm ¼ t −m2, um ¼ u −m2 and the
electric charge factor is taken to be one. Taking the specific
values, m ¼ me, s ¼ 16m2

e, t ¼ ð−7þ 4
ffiffiffi
3

p
cos θÞm2

e and
u ¼ −ð7þ 4

ffiffiffi
3

p
cos θÞm2

e, given just below Eq. (110) for
our numerical calculation in CMF, we find that the two
results, (a) the twice of summing the bottom two figures in
Fig. 17 and 17(b) the analytic result given by Eq. (122)
coincide each other as shown in Fig. 21. The result shown
in the left panel of Fig. 21 is of course completely
independent of the interpolation angle δ as it should be.
The analytic result in Eq. (122) is apparently symmetric
under t ↔ u exchange as it must be and gets reduced to the
well-known textbook result [29] in the massless limit
(m → 0) given by

jMðeþe− → γγÞj2 ¼ 8

�
u
t
þ t
u

	
: ð123Þ

It may be interesting to compare this result with the
massless limit of Eq. (110) for the pair production of
spinless particles (or “scalar photons”) given by

jMj2scalar ¼ 2

�
u
t
þ t
u
− 2

	
; ð124Þ

where the normalization is reduced by the factor 4 due to
the lack of final spin (or helicity) d.o.f. When t ¼ u, i.e.,
θ ¼ π=2 in the massless limit of the initial fermions, we
may note that the probability of producing two “scalar
photons” is zero while the probability of producing two real
photons is nonzero. This may be understood from the fact
that the two final “scalar photons” do not carry enough
number of d.o.f. while the real photon carries the transverse
spin-1 polarization to offer the matching of the number of
d.o.f. between the initial and final states involving both spin
singlet and triplet configurations in the annihilation/pro-
duction process.
As we have now shown that the square of the sum of all

the individual channel and time-ordered helicity amplitudes
in CMF (Pz ¼ 0) is identical to the completely Lorentz-
invariant expression in terms of the Mandelstam variables

(s, t, u), we are assured that our CMF result in Eq. (122)
must be reproduced even if each individual channel
and time-ordered helicity amplitudes are computed in
other boosted frames, e.g., Pz ¼ 15me or Pz ¼ −15me.
Nevertheless, each individual amplitudes are not boost
invariant except the LFD (δ ¼ π=4) profiles. The IFD
(δ ¼ 0) profiles in the Pz ¼ −15me are vastly different
not only from the corresponding IFD (δ ¼ 0) profiles in the
Pz ¼ 15me but also from the corresponding LFD
(δ ¼ π=4) profiles. As we have already discussed in
Sec. III, it requires a great caution in the prevailing notion
of the equivalence between the IFD in IMF and the LFD.
The results in the boosted frames (Pz ¼ 15me and
Pz ¼ −15me) are summarized in the Appendix E. We
have also shown the Pz dependence of the interpolating
helicity amplitudes for a particular scattering, e.g., θ ¼ π=3
case in the Appendix F.

B. Compton scattering

Another important physical scattering processes in QED
which involves the fermion propagator in the lowest order
is the Compton scattering eγ → eγ. Similar to the eþe− →
γγ process shown in Fig. 3, which we have extensively
discussed in the previous section, the lowest Feynman
diagrams for the Compton scattering process is shown in
Fig. 22. For the obvious reason from the Compton
kinematics and the corresponding Mandelstam variables
given by

s ¼ ðp1 þ p2Þ2 ¼ 2p1 · p2 þm2 ð125Þ

t ¼ ðp1 − p3Þ2 ¼ −2p1 · p3 þ 2m2 ð126Þ

u ¼ ðp1 − p4Þ2 ¼ −2p1 · p4 þm2; ð127Þ

we call the diagram shown in Fig. 22(a) as the s-channel
diagram and the crossed diagram in Fig. 22(b) as the
u-channel diagram.
The s-channel Feynman diagram is then equivalent to the

sum of the top two time-ordered diagrams (a) and (b) shown
in Fig. 23. Similarly, the two time-ordered diagrams for
the u channel (c) and (d) are shown in the bottom of
Fig. 23. For clarity and simplicity,we call these twou-channel

FIG. 21. eþe− → γγ (a) Sum of helicity probabilities for Pz ¼
0 (CMF), (b) result from the manifestly Lorentz invariant formula
given by Eq. (122).

FIG. 22. s-channel and u-channel Feynman diagrams for
Compton scattering.
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time-ordered diagrams as the u-channel (a) and (b) time-
ordered diagrams for the rest of presentation.
Now, the s-channel and u-channel Compton amplitudes

are given by

Mλ1;λ2;λ3;λ4
s ¼ ūλ3ðp3Þϵλ4ν̂ ðp4Þ�γν̂Σsγ

μ̂ϵλ2μ̂ ðp2Þuλ1ðp1Þ;
Mλ1;λ2;λ3;λ4

u ¼ ūλ3ðp3Þϵλ2μ̂ ðp2Þγμ̂Σuϵ
λ4
ν̂ ðp4Þ�γν̂uλ1ðp1Þ;

ð128Þ

where Σs and Σu are

Σs ¼
=qs þm
s −m2

and Σu ¼
=qu þm
u −m2

ð129Þ

with qs ¼ p1 þ p2 and s ¼ q2s , while qu ¼ p1 − p4 and
u ¼ q2u. Then, the time-ordered amplitudes of the s-channel
Compton scattering can be written in short-hand notations
without specifying the helicities as

Ma;s ¼ ūðp3Þ=ϵðp4Þ�
�

1

2Qþ̂
s

Qa;s þm
qsþ̂ −Qa;sþ̂

	
=ϵðp2Þuðp1Þ;

ð130Þ
and

Mb;s ¼ ūðp3Þ=ϵðp4Þ�
�

1

2Qþ̂
s

−Qb;s þm
−qsþ̂ −Qb;sþ̂

	
=ϵðpsÞuðp1Þ;

ð131Þ
where Qa;sþ̂ and Qb;sþ̂ are the interpolating on-mass-shell
energy of the intermediate propagating fermion given by

Qa;sþ̂ ¼ −Sqa;s−̂ þQþ̂
s

C
; ð132Þ

Qb;sþ̂ ¼ −Sqb;s−̂ þQþ̂
s

C
; ð133Þ

with qa;s ¼ qs, qb;s ¼ −qs and Qþ̂
s denoting the on-mass-

shell value of qþ̂s as

Qþ̂
s ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s−̂ þ Cðq2

s⊥ þm2Þ
q

: ð134Þ

Similarly, the time-ordered amplitudes of the u-channel
Compton scattering can be written by replacing the s-channel
variables by the corresponding u-channel variables.
In contrast to the time-ordered processes in eþe− → γγ

(see Fig. 4), the s-channel time-ordered processes (a) and
(b) in Compton scattering, eγ → eγ, involve one-particle
and five-particle Fock states, respectively, while both of the
u-channel time-ordered processes (c) and (d) in Compton
scattering involve three-particle Fock states as one can see
in Fig. 23. In particular, the one-particle intermediate
state in the s-channel time-ordered process (a) in
Compton scattering provides immediately the positivity

of qþs ¼ ðsþ q2
s⊥Þ=ðp

2
1⊥þm2

pþ
1

þ p2
2⊥
pþ
2

Þ > 0 no matter what the

kinematics are chosen. There is no need to figure out the
critical scattering angles we have obtained in the case of the
eþe− → γγ process such as Eqs. (104) and (105).
Regardless of kinematics, the Compton scattering, the
positivity of qþs > 0, allows the use of Eqs. (99) and
(100) to identify immediately the “on-mass-shell propa-
gating contribution” and the “instantaneous contribution”
in LFD as corresponding to the s-channel time-ordered
processes (a) and (b) in Fig. 23, respectively. For the
u-channel Compton scattering, however, the identification
of the “on-mass-shell propagating contribution” and the
“instantaneous contribution” in LFD depends on the
kinematics similar to the eþe− → γγ case. Nevertheless,
we note that the CMF kinematics in the Compton scattering
allows the identification of the “on-mass-shell propagating
contribution” and the “instantaneous contribution” in LFD
as corresponding to the u-channel time-ordered processes
(c) and (d) in Fig. 23, respectively, regardless of the
scattering angle. For the immediate identification of the
“on-mass-shell propagating contribution” and the “instan-
taneous contribution” in LFD both for the s and u channels
with the correspondence to the time-ordered processes
shown in Fig. 23, we choose the CMF in this work for
the rest of the discussion on the Compton scattering. The
well-known Klein-Nishina formular [30] in the target rest
frame and the Thomson limit in the low energy Compton
scattering, etc. will be discussed separately elsewhere.
The kinematics pictured in Fig. 5 can be applied in the

Compton scattering and written as the following:

FIG. 23. Time-ordered diagrams for s and u channel Compton
scattering.

INTERPOLATING QUANTUM ELECTRODYNAMICS BETWEEN … PHYS. REV. D 98, 036017 (2018)

036017-27



p1 ¼ ðE0; 0; 0; PeÞ
p2 ¼ ðPe; 0; 0;−PeÞ
p3 ¼ ðE0; Pe sin θ; 0; Pe cos θÞ
p4 ¼ ðPe;−Pe sin θ; 0;−Pe cos θÞ; ð135Þ

where Pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

e

p
. In this work, we discuss the whole

landscape of Compton scattering with respect to the
interpolation angle δ and the C.M. momentum Pz to show
the frame dependence of each and every time-ordered

scattering amplitudes in both s and u channels. For the
numerical calculation of the interpolating helicity ampli-
tudes, we scale all the energy and momentum values by the
electron mass as done previously and take m ¼ me,
E0 ¼ 2me, and θ ¼ π=3. Any further discussion such as
the angular distribution, the energy (E0) dependence, etc. in
CMF will be presented together with the discussion of the
target rest frame elsewhere as mentioned earlier.
The results of s-channel (a) and (b) as well as u-channel

(a) and (b) time-ordered helicity amplitudes are shown in
Figs. 24–27, respectively. The probabilities, or the square

FIG. 24. Compton scattering amplitudes—s channel, time-ordering (a).
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of the sum of each and every helicity amplitudes, are also
shown in Fig. 28. In all of these figures, the boundary of
bifurcated helicity branches between IFD and LFD due to
the initial electron moving in ẑ direction given by Eq. (107)
(i.e., p1−̂ ¼ 0) is denoted by the blue curve while the
characteristic “J curve” given by Eq. (106) (i.e., P−̂ ¼ 0)
existing in the frames boosted in -ẑ direction is depicted as
the red curve. It is also apparent that the relationship
between different helicity amplitudes given by Eq. (115) is
satisfied by noting that λ2 and λ4 are now the helicities of

the incoming and outgoing photons while λ1 and λ3 are
the incoming and outgoing electrons’ helicities, respec-
tively, in Eq. (115). This relationship holds as one can see
that the upper left block of 2 by 2 figures are identical to the
lower right block of 2 by 2 figures while the upper right
block of 2 by 2 figures and the lower left bock of 2 by
2 figures are same but with the opposite sign to each other.
For the square of amplitudes shown in Fig. 28, the same
correspondence holds without any sign difference as it
should be.

FIG. 25. Compton scattering amplitudes—s channel, time-ordering (b).
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Computing the s-channel (a) time-ordered diagram
shown in Fig. 23(a), we obtain the results presented in
Fig. 24 for all 16 helicity amplitudesMλ1;λ2;λ3;λ4

a;s for λi ¼ �
(i ¼ 1, 2, 3, 4). All of the LFD profiles (δ ¼ π=4) appear as
straight lines indicating the Pz independence or the frame
independence of the light-front helicity amplitudes as they
should be, while the results for all other interpolation angles
0 ≤ δ < π=4 depend on Pz, i.e., frame dependent. As
discussed earlier, the s-channel (a) time-ordered diagram
shown in Fig. 23(a) corresponds to the “on-mass-shell

propagating contribution” in LFD. However, it is remark-
able that the “on-mass-shell propagating contribution” in
LFD turned out to be absent as the values of the LFD
profiles shown in Fig. 23(a) are identically zero regardless
of the initial and final helicities. We note that this triviality
of the LFD results here is due to the fact that the initial
photon is incident in the −ẑ direction in the kinematics
chosen for this calculation [see Eq. (135)] and thus gets
only the zero mode pþ

2 ¼ 0 and p2⊥ ¼ 0. The zero-mode
contributions are apparently absent in the “on-mass-shell

FIG. 26. Compton scattering amplitudes—u channel, time-ordering (a).
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propagating contribution” in LFD. The question is then
where the nontrivial LFD result can be realized. It turns out
that the nontrivial LFD result is realized in the “instanta-
neous contribution” corresponding to the process depicted
in Fig. 23(b) for the kinematics given by Eq. (135), which
we use in the present calculation.
Figure 25 shows the results of all 16 helicity amplitudes

Mλ1;λ2;λ3;λ4
b;s for λi ¼ � (i ¼ 1, 2, 3, 4) which were obtained

by computing the s-channel (b) time-ordered diagram
shown in Fig. 23(b). The “instantaneous contribution” in

LFD corresponds the process shown in Fig. 23(b) with the
understanding of the correspondence given by

lim
C→0

�
1

2Qþ̂
s

−Qb;s þm
−qsþ̂ −Qb;sþ̂

	
¼ γþ

2qþs
; ð136Þ

where qþs ¼ ðE0 þ PeÞ=
ffiffiffi
2

p
in the kinematics provided by

Eq. (135). As mentioned above, due to the absence of the
“on-mass-shell propagating contribution” in LFD for the
s-channel in the present kinematics, the entire s-channel

FIG. 27. Compton scattering amplitudes—u channel, time-ordering (b).
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FIG. 28. Compton scattering probabilities in center of mass frame. The last row is sum over all final states for each initial state.
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contribution in LFD should be obtained from the “instanta-
neous contribution”. Because of fγþ; γþg ¼ γþ2 ¼ 0, the
only nonvanishing “instantaneous contribution” to the
s-channel helicity amplitudes in the light-front gauge
Aþ ¼ 0 are provided by only the transverse components
of the photon polarization vectors for the helicity nonflip
matrix elements between the initial and final electron
spinors generically given by

ūλ3ðp3Þ=ϵðp4Þ�
γþ

2qþs
=ϵðpsÞuλ1ðp1Þ

∼ ūλ3ðp3Þγi⊥γþγj⊥uλ1ðp1Þ
¼ 4δλ1;λ3

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
3

q
ðδij þ iϵijÞ; ð137Þ

where δij and ϵij are the two-dimensional (i; j ¼ 1; 2)
Kronecker delta and Levi-Civita symbol, respectively. As
one can see in Fig. 23(b), only the two helicity amplitudes
Mþ;þ;þ;−

b;s and M−;−;−;þ
b;s which are equal to each other

appear to be nonzero for δ ≈ π=4. Besides the caveat in
assigning the light-front helicity for the real photon moving
in the −ẑ direction, which was discussed earlier, it is
remarkable that the “instantaneous contribution” of effec-
tively only one helicity amplitude in LFD provides the
entire s-channel Compton amplitude.
Likewise, the u-channel (a) and (b) time-ordered helicity

amplitudes, Mλ1;λ2;λ3;λ4
a;u and Mλ1;λ2;λ3;λ4

b;u , for λi ¼ � (i ¼ 1,
2, 3, 4) are shown in Figs. 26 and 27, respectively. As
mentioned earlier, the u-channel time-ordered processes (c)
and (d) in Fig. 23 correspond to the “on-mass-shell
propagating contribution” and the “instantaneous contri-
bution” in LFD for the CMF kinematics. From Eq. (135),
pþ
4 ¼Peð1−cosθÞ¼ ffiffiffi

3
p

me=2≠ 0 for Pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

e

p
¼ffiffiffi

3
p

me with E0 ¼ 2me and θ ¼ π=3 and the “on-mass-shell
propagating contribution” in LFD corresponding to the
u-channel (a) time-ordered process shown in Fig. 23(c) is
nontrivial in contrast to the trivial s-channel (a) time-
ordered result. However, the “instantaneous contribution”
in LFD corresponding to the u-channel (b) time-ordered
process shown in Fig. 23(d) gets again effectively only one
helicity amplitude in LFD due to fγþ; γþg ¼ γþ2 ¼ 0 and
the light-front gauge Aþ ¼ 0 as discussed in the s-channel
“instantaneous contribution”. As one can see in Fig. 27,
only nonzero helicity amplitudes for δ ≈ π=4 areMþ;−;þ;þ

b;u

and M−;þ;−;−
b;u which are equal to each other.

Now, summing all the s-channel and u-channel time-
ordered amplitudes shown in Fig. 23 and squaring the total
amplitude, we obtain the Compton scattering probabilities
for each and every helicities shown in Fig. 28. As these
results are the helicity amplitude squares, one may regard
them as the polarization observables exhibiting the change
of the predicted magnitudes depending on the reference
frames in the range of total center of momentum −15me <
Pz < 15me from the lowest order interpolating QED

computation for the Compton scattering process in the
range of interpolation angle between IFD (δ ¼ 0) and
LFD (δ ¼ π=4). These results again alert the caution in
the prevailing notion of the equivalence between the
IMF formulated in IFD and the LFD as the IFD results
in Pz → −∞ appear incapable of achieving the LFD results
although the IFD results in large Pz > 0 seem to yield the
corresponding LFD results. As the clear differences
between the Pz → −∞ IFD and the LFD show up in level
of physical observables, one should be cautious in the
prevailing notion of the equivalence between the IFD at the
IMF and the LFD.
The sum of the probabilities over all final helicity states

for each initial helicities are shown in the last row of
Fig. 28, and the sum over initial helicity states (i.e., the sum
over all sixteen total helicity amplitude squares) turns out to
be completely independent of δ and Pz as it must be (see
Fig. 29). Indeed, this result is in complete agreement with
the well-known manifestly Lorentz invariant result given by

jMðeγ → eγÞj2 ≡ X
λ1;λ2;λ3;λ4

jMλ1;λ2;λ3;λ4
a;s þMλ1;λ2;λ3;λ4

b;s

þMλ1;λ2;λ3;λ4
a;u þMλ1;λ2;λ3;λ4

b;u j2

¼ −8
�
um
sm

þ sm
um

þ 2m2

�
tm

smum
−

1

sm
−

1

um

	

− 4m4

�
1

s2m
þ 1

u2m

	�
; ð138Þ

where sm ¼ s −m2, tm ¼ t − 4m2, um ¼ u −m2, and the
electric charge factor is taken to be one. For the kinematics
given by Eq. (135) with E0 ¼ 2me; θ ¼ π=3 and m ¼ me
used in our numerical computation, the value from the
analytic result given by Eq. (138) yields jMðeγ → eγÞj2 ¼
ð4=169Þð991 − 186

ffiffiffi
3

p Þ ≈ 15.8305 which is in precise

FIG. 29. Total probability of Compton scattering in center of
mass frame.

INTERPOLATING QUANTUM ELECTRODYNAMICS BETWEEN … PHYS. REV. D 98, 036017 (2018)

036017-33



agreement with the total probability obtained in Fig. 29. In
the high energy limit, Eq. (138) in the massless limit
(m → 0) reduces to the well-known textbook [29] Compton
result given by

jMðeγ → eγÞj2 ¼ −8
�
u
s
þ s
u

	
: ð139Þ

The crossing symmetry between the eγ → eγ process and
the eþe− → γγ process is reflected by the s ↔ t symmetry
between Eqs. (138) and (122) as well as Eqs. (139) and
(123) with the overall sign consistent to each other for the
positivity of the amplitude square.

V. SUMMARY AND CONCLUSION

In this work, we have completed the interpolation of
quantum electrodynamics between the instant form and the
front form proposed by Dirac [1] in 1949. We started from
the QED Lagrangian and presented the interpolating
Hamiltonian formulation introducing a parameter δ which
corresponds between the instant form dynamics (IFD) at
δ ¼ 0 and the front-form dynamics, which we call the light-
front dynamics (LFD) at δ ¼ π=4. Not only have we
summarized the interpolating time-ordered diagram rules
for the computation of QED processes in terms of the
interpolation angle parameter 0 ≤ δ ≤ π=4 as presented in
Sec. II, but also we have applied these rules to the typical
QED processes such as eþe− → γγ and eγ → eγ which
involve the fermion propagator beyond what we have
already presented in our previous works [10,11].
Entwining the fermion propagator interpolation with our
previous works of the interpolating helicity spinors and the
electromagnetic gauge field interpolation, we have now
fastened the bolts and nuts necessary in launching the
interpolating QED.
Our interpolating formulation reveals that there exists the

constraint fermion d.o.f. in LFD (δ ¼ π=4) distinguished
from the ordinary equal-time fermion d.o.f. The constraint
component of the fermion d.o.f. in LFD results in the
instantaneous contribution to the fermion propagator dis-
tinguished from the ordinary equal-time forward and
backward propagation of relativistic fermion d.o.f. It is
interesting to note that the manifestly covariant fermion
propagator decouples to the “on-mass-shell propagating
contribution” and the “instantaneous fermion contribution”
only in LFD but not in any other interpolating dynamics
(0 ≤ δ < π=4). The helicity of the on-mass-shell fermion
spinors in LFD is also distinguished from the ordinary
Jacob-Wick helicity in the IFD with respect to whether the
helicity depends on the reference frame or not [11].
To exemplify these distinguished features of the fermion

d.o.f. in LFD, we have computed the annihilation process
of the fermion and antifermion pair interpolating the

fermion d.o.f. between the IFD and the LFD. We presented
the leading order QED processes, (eþe− → γγ and
eγ → eγ), providing the whole landscape of helicity ampli-
tudes from the IFD to the LFD. In the cross section level,
we showed the precise agreement of our result with the
textbook formula. The helicity conservation in the chiral
limit was discussed, and the angular momentum conserva-
tion was checked in each case.
Our analysis clarifies any conceivable confusion in the

prevailing notion of the equivalence between the IMF
approach in the IFD and the LFD. By investigating the
dependence of the helicity amplitudes on the reference
frame, i.e., Pz-dependence, we find that in IFD, Pz → þ∞
and Pz → −∞ yield very different results from each other
and that one has to be very cautious about the direction of
boost in approaching to the IMF when one tries to obtain
the equivalent LFD result. In this respect, it would be
important to check the direction dependence, e.g., gauge
link, in the LaMET [26] approach as numerical difference
between Pz and −Pz results may reveal whether the
LaMET achieved enough boost or not. We have shown
that although in some cases one can indeed reproduce the
LFD result by boosting the system to the correct direction,
in some other cases a finite, large momentum boost yields
only qualitatively similar result. On the other hand, all the
helicity amplitudes in LFD are independent of the reference
frame, and certain simplifications to the theory (e.g.,
suppression of vacuum fluctuations, vanishing of a number
of diagrams, etc.) can be realized even in the rest frame of
the system. Since the helicity definition in LFD is frame
independent, no boundaries exist for the light-front helicity
amplitude. One should also note that for the massless
particle moving in the −ẑ-direction, the helicity defined in
the LFD is opposite to the Jacob-Wick helicity defined in
the IFD. Further treacherous correspondence between IFD
and LFD will be studied in our future work, extending the
interpolation to the loop-level computation and ultimately,
to the QCD.
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APPENDIX A: FERMION PROPAGATOR IN THE
POSITION SPACE

The Feynman propagator in the position space is given by

ΔFðxÞ ¼ i
Z

d4q
ð2πÞ4

e−iqμx
μ

ðq2 −m2 þ iεÞ : ðA1Þ
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In the interpolation form, it can be written as

ΔFðxÞ¼ i
Z

d2q⊥dq−̂dqþ̂
ð2πÞ4

×
e−iðqþ̂xþ̂þq−̂x−̂þq⊥x⊥Þ

ðCq2þ̂ þ2Sqþ̂q−̂ −Cq2−̂ −q2⊥−m2þ iεÞ : ðA2Þ

Solving for the quadratic expression in the denominator
of the Feynman propagator in order to separate the two
distinct poles, we have the two poles of qþ̂

qðaÞþ̂ ¼ Aþ̂ − iε0; ðA3Þ

qðbÞþ̂ ¼ −Bþ̂ þ iε0; ðA4Þ

where the real part of the two poles are defined as

Aþ̂ ≡ −
Sq−̂
C

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cðq2⊥ þm2Þ

p
C

; ðA5Þ

Bþ̂ ≡ Sq−̂
C

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cðq2⊥ þm2Þ

p
C

; ðA6Þ

and the imaginary part of the poles is given by

ε0 ≡ ε

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cðq2⊥ þm2Þ

p : ðA7Þ

Define the square root part as

Qþ̂ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−̂ þ Cðq2⊥ þm2Þ

q
: ðA8Þ

From the expressions in Eqs. (A5) and (A6), we see that
for any sign of q−̂, Aþ̂ is always positive and corresponds
to the positive energy solution, while −Bþ̂ is always
negative and corresponds to the negative energy solution.
Therefore, we see the pole structure in the qþ̂ complex
plane is that Aþ̂ − iε0, located in the fourth quadrant, and
−Bþ̂ þ iε0, located in the second quadrant.
In order to perform the integration in the “energy”

variable qþ̂ in Eq. (A2), we use the Cauchy residue
theorem. We may consider three possibilities: xþ̂ > 0,
xþ̂ < 0, and xþ̂ ¼ 0. We now analyze these three situations
case by case.
For xþ̂ > 0, this implies that in order to have a

converging exponential factor in the integrand, we must
have Imqþ̂ < 0. This means that the semicircle CR that
closes the contour must be located in the lower half of the
complex qþ̂ plane in a clockwise direction. A closed
contour in this sense encloses the pole qþ̂ ¼ Aþ̂ − iε0.
We thus have for this case,

I
dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ

¼ lim
R→∞

�Z þR

−R

dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ

þ
Z
CR

dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ


: ðA9Þ

The left-hand side of Eq. (A9) is (by Cauchy’s theorem)
equal to −iResðAþ̂ − iε0Þ, where the minus sign is due to
the clockwise direction of the closed contour. Since the arc
contribution in the limit R → ∞ goes to zero, in this limit,
we have

Z þ∞

−∞

dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂ −Aþ̂ þ iε0Þðqþ̂ þ Bþ̂ − iε0Þ

¼ −i
e−iAþ̂xþ̂

CðAþ̂ þ Bþ̂Þ
; ðxþ̂ > 0Þ: ðA10Þ

For xþ̂ < 0, this implies that in order to have a
converging exponential factor in the integrand, we must
have Imqþ̂ > 0. This means that the semicircle CR that
closes the contour must now be located in the upper half of
the complex qþ̂ plane in a counterclockwise direction. A
closed contour in this sense encloses now the pole
qþ̂ ¼ −Bþ̂ þ iε0. We thus have for this case,

I
dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ

¼ lim
R→∞

�Z þR

−R

dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ

þ
Z
CR

dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ


: ðA11Þ

The left-hand side of Eq. (A11) is (by Cauchy’s theorem)
equal toþiResð−Bþ̂ þ iε0Þ, where the plus sign now is due
to the counterclockwise direction of the closed contour.
Since the arc contribution in the limit R → ∞ goes to zero,
in this limit, we now have

Z þ∞

−∞

dqþ̂
ð2πÞ

e−iqþ̂x
þ̂

Cðqþ̂ −Aþ̂ þ iε0Þðqþ̂ þ Bþ̂ − iε0Þ

¼ þi
eiBþ̂xþ̂

Cð−Bþ̂ −Aþ̂Þ
; ðxþ̂ < 0Þ: ðA12Þ

In this last expression, we have already dropped the ε0 in the
result after the qþ̂ integration and put a reminder that this
result is now valid for the specific case of xþ̂ < 0.
For xþ̂ ¼ 0, the main converging factor in the integrand

becomes one, that is, e0 ¼ 1. We have therefore
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I
dqþ̂
ð2πÞ

1

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ

¼ lim
R→∞

�Z þR

−R

dqþ̂
ð2πÞ

1

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ

þ
Z
CR

dqþ̂
ð2πÞ

1

Cðqþ̂−Aþ̂ þ iε0Þðqþ̂ þBþ̂− iε0Þ


: ðA13Þ

Although for this case the exponential factor in the
integrand is absent, the denominator of the integrand has
enough powers in qþ̂ to make the arc contribution go to
zero when R → ∞. Therefore, closing the contour from
below, that is, with CR in the clockwise direction. This
encloses the pole qþ̂ ¼ Aþ̂ − iε0, and we get
Z þ∞

−∞

dqþ̂
ð2πÞ

1

Cðqþ̂ −Aþ̂ þ iε0Þðqþ̂ þ Bþ̂ − iε0Þ
¼ −i

CðAþ̂ þ Bþ̂Þ
¼ −

i

2Qþ̂ ; ðxþ̂ ¼ 0Þ: ðA14Þ

Closing the contour in the counterclockwise direction,
we enclose the other pole, qþ̂ ¼ Bþ̂ þ iε0, and we obtain
Z þ∞

−∞

dqþ̂
ð2πÞ

1

2Qþ̂ðqþ̂ −Aþ̂ þ iε0Þðqþ̂ þ Bþ̂ − iε0Þ
¼ þi

Cð−Bþ̂ −Aþ̂Þ
¼ −

i

2Qþ̂ ; ðxþ̂ ¼ 0Þ: ðA15Þ

Thus, both circulations yield the same answer, as it should
and serve as a check for our results.
Finally, the overall result for the Feynman propagator is

given by

ΔFðxÞ ¼
Z

d2q⊥
ð2πÞ2

Z þ∞

−∞

dq−̂
ð2πÞ

1

2Qþ̂

×
�
Θðxþ̂Þe−iðAþ̂xþ̂þq−̂x

−̂þq⊥·x⊥Þ

þ Θð−xþ̂ÞeiðBþ̂xþ̂þq−̂x−̂þq⊥·x⊥Þg; ðA16Þ

where we have made the variable shifts

q⊥ → −q⊥; ðA17Þ

q−̂ → −q−̂; ðA18Þ

in the second term, which are possible because the
integration ranges for these variables are from −∞
to þ∞.
When C ¼ 0, however, the denominator of the Feynman

propagator is a linear expression in qþ̂ ¼ qþ ¼ q− instead
of a quadratic one; thus, it has only one pole

q−on ¼
q2⊥ þm2

2qþ
− i

ε

2qþ
: ðA19Þ

Thus when qþ > 0, the pole is located in the fourth
quadrant of the q− complex plane, and to make sure the
arc contribution is zero, when xþ > 0, one has to close the
contour from below, while when xþ < 0, one needs to
close the contour from above, and it gives no contribution
since there is no pole in the upper half plane. Similarly,
when qþ < 0, the pole is located in the second quadrant of
the q− complex plane, and to make sure the arc contri-
bution is zero, when xþ > 0, one has to close the contour
from below, which again gives no contribution because
there is no pole in the lower half plane, while when
xþ < 0, one needs to close the contour from above,
catching the pole there. Thus, the light-front-time (xþ)
ordering imposes a clear cut on the signs of qþ and
consequently, on q− due to the sign correlation between
them, so that when xþ > 0, qþ and q− must both be
positive; on the other hand, when xþ < 0, qþ and q− must
both be negative. As a result, the integration ranges of the
momentum variables in the two time orderings are not
both ð−∞;þ∞Þ, but are ð0;þ∞Þ for the forward time and
ð−∞; 0Þ for the backward time.

Doing the pole integration, we get in the light front,

ΔFðxÞ ¼
Z

d2q⊥
ð2πÞ2

�
ΘðxþÞ

Z þ∞

0

dqþ

ð2πÞj2qþj e
−iðq−onxþþqþx−þq⊥·x⊥Þ þ Θð−xþÞ

Z
0

−∞

dqþ

ð2πÞj2qþj e
−iðq−onxþþqþx−þq⊥·x⊥Þ




¼
Z

d2q⊥
ð2πÞ2

�
ΘðxþÞ

Z þ∞

0

dqþ

ð2πÞj2qþj e
−iðq−onxþþqþx−þq⊥·x⊥Þ þ Θð−xþÞ

Z þ∞

0

dqþ

ð2πÞj2qþj e
iðq−onxþþqþx−þq⊥·x⊥Þ



: ðA20Þ

Using the interpolating step function given in Eq. (10) in Sec. II A 1, we can combine the results and write as follows:

ΔFðxÞ ¼
Z

d2q⊥
ð2πÞ2

Z þ∞

−∞

dq−̂
ð2πÞ

1

2Qþ̂ Θ̂ðq−̂ÞfΘðxþ̂Þe−iAμ̂xμ̂ þ Θð−xþ̂ÞeiBμ̂xμ̂g; ðA21Þ
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where we have introduced the shorthand notation

Aμ̂ ≡ ðAþ̂; q1; q2; q−̂Þ !C→0ðq−on; q1; q2; qþÞ ðA22Þ

Bμ̂ ≡ ðBþ̂; q1; q2; q−̂Þ !C→0ðq−on; q1; q2; qþÞ: ðA23Þ

The explicit form of the Feynman propagator is given by [31]

ΔFðxÞ ¼ −
1

4π
δðx2Þ þ m

8π
ffiffiffiffiffi
x2

p Θðx2ÞfJ1ðm
ffiffiffiffiffi
x2

p
Þ − iN1ðm

ffiffiffiffiffi
x2

p
Þg − im

4π2
ffiffiffiffiffiffiffiffi
−x2

p Θð−x2ÞK1ðm
ffiffiffiffiffiffiffiffi
−x2

p
Þ

¼ −
1

4π

�
δðx2Þ þ im

π

K1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iε

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−x2 þ iε
p



; ðA24Þ

where J1ðzÞ, N1ðzÞ, and K1ðzÞ are, respectively, the
Bessel, Neumann, and Hankel functions of order 1, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 þ iε

p
¼ i

ffiffiffiffiffi
x2

p
, for x2 > 0. Note here that the argu-

ment of the Hankel function is imaginary.
To derive the fermion propagator, we need to apply the

Dirac operator on it,

SFðxÞ ¼ ðiγþ̂∂þ̂ þ iγ−̂∂−̂ þ iγ⊥ · ∂⊥ þmÞΔFðxÞ; ðA25Þ

where ΔFðxÞ is given by Eq. (A21). We obtain

SFðxÞ¼
Z

d2q⊥
ð2πÞ2

Z þ∞

−∞

dq−̂
ð2πÞð2Qþ̂ÞΘ̂ðq−̂Þ

×fΘðxþ̂Þð=AþmÞe−iAμ̂xμ̂ þΘð−xþ̂Þð−=BþmÞeiBμ̂xμ̂

þ iγþ̂δðxþ̂Þðe−iAμ̂xμ̂ − eiBμ̂xμ̂Þg: ðA26Þ

Then, going back to the momentum space, we note
that when Θ̂ðq−̂Þ ¼ 1, i.e., the integration of q−̂ goes from
−∞ to þ∞, the two δðxþ̂Þ terms cancel each other
exactly when a spatial integration is performed, while for
Θ̂ðq−̂Þ ¼ ΘðqþÞ, they do not cancel, and an “instantaneous
contribution” is leftover. We finally get

ΣFðqÞ≡ iSFðqÞ¼ i
Z

d4xSFðxÞeiqμ̂xμ̂

¼

8>>><
>>>:

1

2Qþ̂

�
Qaþm
qþ̂−Qaþ̂

þ −Qbþm
−qþ̂−Qbþ̂

	
; ðC≠ 0Þ;

1

2qþ
=qonþm
q− −q−on

þ γþ

2qþ
; ðC¼ 0Þ

;

ðA27Þ

where Qa ≡ =A and Qb ≡ =B are defined in Eqs. (A22)
and (A23), respectively, while Qaþ̂ ≡Aþ̂ and Qbþ̂ ≡ Bþ̂
are defined in Eqs. (A5) and (A6), respectively. Thus, we
get the time-ordered propagators given in the main text.

APPENDIX B: DERIVATION OF
INTERPOLATING QED HAMILTONIAN

In this Appendix, we show how the Hamiltonian in
Sec. II B 4 is derived and how the consistency with the LFD
formulation presented by Kogut and Soper [21] can be seen.
We start from the interpolating QED Hamiltonian

density, as given in Eq. (79),

H ¼ ψ̄ð−iγj∂j − iγ−̂∂−̂ þmÞψ þ eAμ̂ψ̄γ
μ̂ψ

þ 1

4
Fμ̂ ν̂Fμ̂ ν̂ − Fþ̂j

∂þ̂Aj − Fþ̂ −̂
∂þ̂A−̂: ðB1Þ

Consider the first two terms of Eq. (B1), i.e., fermion and
fermion—gauge boson interaction terms. According to the
definition of free and constrained photon fields, Eqs. (83)
and (84), the first two terms can be written as

Hf ¼ ψ̄ð−i∂−̂γ−̂ − i∂jγjþmÞψþeÃμ̂ψ̄γ
μ̂ψþeϕJþ̂: ðB2Þ

Separating ψ ¼ ψ̃ þ δC0ϒ for any general interpolation
angle, we write

Hf ¼ ð ¯̃ψ þ δC0ϒ̄Þð−i∂−̂γ−̂ − i∂jγj þmÞðψ̃ þ δC0ϒÞ
þ eÃμ̂ð ¯̃ψ þ δC0ϒ̄Þγμ̂ðψ̃ þ δC0ϒÞ þ eϕJþ̂: ðB3Þ

The ϒ field exists only in the exact light front, where we
can make use of the identity given in Ref. [21],

ψ̄ ½ði∂j − eAjÞγj −m�ψ ¼ −2ψ̄ði∂−γ−Þψ : ðB4Þ

Recalling in the light front we can separate the fermion
field into the free one and constrained one ψ ¼ ψþ þ ψ− ¼
ψ̃þ þ ψ− with γþψ− ¼ γ−ψþ ¼ 0 and ψ− ¼ ψ̃− þϒ
with ψ̃− and ϒ given by Eqs. (54) and (55), respectively,
one realizes that identity (B4) consists of four different
identities

¯̃ψði∂jγj −mÞψ̃ ¼ −2 ¯̃ψði∂−γ−Þψ̃ ; ðB5Þ
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−eAjð ¯̃ψγjϒþ ϒ̄γjψ̃Þ ¼ −2ϒ̄ði∂−γ−Þϒ; ðB6Þ

¯̃ψði∂jγj −mÞϒþ ϒ̄ði∂jγj −mÞψ̃
¼ − ¯̃ψði∂−γ−Þϒ̃ − ϒ̄ði∂−γ−Þψ̃ ; ðB7Þ

and

−eAj
¯̃ψγjψ̃ ¼ − ¯̃ψði∂−γ−Þϒ̃ − ϒ̄ði∂−γ−Þψ̃ : ðB8Þ

The term ϒ̄½ði∂j − eAjÞγj −m�ϒ on the left-hand side
vanishes due to γþ2 ¼ 0.
Noticing the fact that the transverse and mass compo-

nents of the ϒ̄ −ϒ terms vanish, we can expand Eq. (B3) as

Hf ¼ ¯̃ψð−i∂−̂γ−̂ − i∂jγjþmÞψ̃
þδC0

h
¯̃ψð−i∂−γ−Þϒþ ϒ̄ð−i∂−γ−Þψ̃

þ ¯̃ψð−i∂jγjþmÞϒþ ϒ̄ð−i∂jγjþmÞψ̃
þ ϒ̄ð−i∂−γ−Þϒ
þeÃj

¯̃ψγjϒþeÃjϒ̄γjψ̃
i

þeÃμ̂
¯̃ψγμ̂ψ̃þeϕJþ̂: ðB9Þ

The first term is the free Hamiltonian Hf;0 ¼
¯̃ψð−i∂−̂γ−̂ − i∂jγj þmÞψ̃ , which can be reduced in the
LFD toHf;0 ¼ ¯̃ψði∂−γ−Þψ̃ due to identity (B5). The second
and third lines of Eq. (B9) cancel each other due to the
identity (B7). The fifth line of Eq. (B9) is equal to −2 times
the fourth line due to identity (B6). Thus, Eq. (B9) reduces to

Hf ¼ ¯̃ψð−i∂−̂γ−̂ − i∂jγj þmÞψ̃ þ eÃμ̂
¯̃ψγμ̂ψ̃

þ δC0ϒ̄ði∂−γ−Þϒþ eϕJþ̂: ðB10Þ
The rest of the Hamiltonian is the gauge boson part

Hg ¼
1

4
Fμ̂ ν̂Fμ̂ ν̂ − Fþ̂j

∂þ̂Aj − Fþ̂ −̂
∂þ̂A−̂; ðB11Þ

and similarly, we want to separate it into the free part and
the constraint part.

Hg ¼ Hfree
g þHconstraint

g ; ðB12Þ
where

Hfree
g ¼ 1

4
F̃μ̂ ν̂F̃μ̂ ν̂ − F̃þ̂j

∂þ̂Ãj − F̃þ̂ −̂
∂þ̂Ã−̂; ðB13Þ

and F̃μ̂ ν̂ is defined in terms of the free photon fields as
given in Eq. (83).
Using Aμ̂ ¼ Ãμ̂ þ gμ̂þ̂ϕ and Aμ̂ ¼ Ãμ̂ þ gμ̂ þ̂ϕ, we find

Hconstraint
g ¼Hg−Hfree

g

¼1

2
ð−S∂þ̂ϕ∂−̂ϕþC∂−̂ϕ∂−̂ϕþC∂jϕ∂jϕÞ ðB14Þ

with all other terms vanished upon applying the interpo-
lation gauge condition ∂jAj ¼ − 1

C ∂−̂A−̂.
Using integration by parts,

Hconstraint
g ¼ 1

2
ϕðS∂þ̂∂−̂ − C∂−̂∂−̂ þ C∂j∂jÞϕ

¼ 1

2
ϕðC∂2⊥ þ ∂

2
−̂Þϕ ¼ −

1

2
eϕJþ̂; ðB15Þ

according to the definition of the constraint photon field ϕ
in Eq. (84).
Thus,

Hg ¼ Hfree
g −

1

2
eϕJþ̂; ðB16Þ

with Hfree
g given by Eq. (B13).

Adding the two pieces together, we can identify the free
and interaction Hamiltonian

H ¼ Hf þHg ¼ H0 þ V; ðB17Þ

where

H0 ¼ ¯̃ψð−i∂−̂γ−̂ − i∂jγj þmÞψ̃

þ 1

4
F̃μ̂ ν̂F̃μ̂ ν̂ − F̃þ̂j

∂þ̂Ãj − F̃þ̂ −̂
∂þ̂Ã−̂; ðB18Þ

and

V ¼ eÃμ̂
¯̃ψγμ̂ψ̃ þ δC0ϒ̄ði∂−γ−Þϒþ 1

2
eϕJþ̂: ðB19Þ

Thus, we get the interpolating QED Hamiltonian density
as shown in the main text Eqs. (81) and (82).

APPENDIX C: SUM OF THE INTERPOLATING
TIME-ORDERED FERMION PROPAGATORS

In this Appendix, we show how the addition of the two
time-ordered propagators gives correctly the covariant one.
We start with the expressions given in Eqs. (95) and (96):

Σa þ Σb ¼
1

2Qþ̂

�
Qa þm
qþ̂ −Qaþ̂

−
−Qb þm
qþ̂ þQbþ̂

	
¼ 1

2Qþ̂

�
CQa þ Cm

Cqþ̂ þ Sq−̂ −Qþ̂ −
−CQb þ Cm

Cqþ̂ þ Sq−̂ þQþ̂

	
; ðC1Þ

where we have used (97) and (98).
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Using the relationship between superscripts and subscripts, it can furthermore be written as

ΣaþΣb¼
1

2Qþ̂

�
CQaþCm

qþ̂−Qþ̂ −
−CQbþCm

qþ̂ þQþ̂

	
¼ C

2Qþ̂

�
γþ̂Qaþ̂ þ γ−̂q−̂þ γ⊥ ·q⊥þm

qþ̂−Qþ̂ −
−γþ̂Qbþ̂ þ γ−̂q−̂þ γ⊥ ·q⊥þm

qþ̂ þQþ̂

	
;

ðC2Þ

where it is worth paying attention to the fact that the sign is different between q and qb and we have replaced all qb’s with
q’s in the right-hand-side.
The above equation can be further simplified,

Σa þ Σb ¼
C

2Qþ̂
γþ̂ðQaþ̂ðqþ̂ þQþ̂Þ þQbþ̂ðqþ̂ −Qþ̂ÞÞ þ ðγ−̂q−̂ þ γ⊥ · q⊥ þmÞððqþ̂ þQþ̂Þ − ðqþ̂ −Qþ̂ÞÞ

ðqþ̂Þ2 − ðQþ̂Þ2

¼ C

2Qþ̂
γþ̂ðqþ̂ðQaþ̂ þQbþ̂Þ þQþ̂ðQaþ̂ −Qbþ̂ÞÞ þ 2Qþ̂ðγ−̂q−̂ þ γ⊥ · q⊥ þmÞ

ðqþ̂Þ2 − ðq2−̂ þ Cq2⊥ þ Cm2Þ

¼ C

2Qþ̂
γþ̂ðCqþ̂ þ Sq−̂Þð2Q

þ̂
C Þ þ γþ̂Qþ̂ð−2Sq−̂C Þ þ 2Qþ̂ðγ−̂q−̂ þ γ⊥ · q⊥ þmÞ

qþ̂ðCqþ̂ þ Sq−̂Þ − q−̂ðSqþ̂ − Cq−̂Þ − Cq2⊥ − Cm2

¼ Cγþ̂qþ̂ þ Cðγ−̂q−̂ þ γ⊥ · q⊥ þmÞ
Cqþ̂qþ̂ þ Cq−̂q−̂ þ Cq⊥ · q⊥ − Cm2

¼ =qþm
q2 −m2

: ðC3Þ

Thus, the total result is proved to be consistent with the Feynman propagator.

APPENDIX D: NONCOLLINEAR SCATTERING/
ANNIHILATION, 0 < θ < π, in e + e− → TWO

SCALAR PARTICLES

In this Appendix, the noncollinear helicity amplitudes
are computed by varying the center of mass angle θ for the
production of two scalar particles in eþe− annihilation
process. As discussed in Sec. III, for the noncollinear
kinematics, the same amplitude can correspond to either the
“on-mass-shell propagating contribution” or the “instanta-
neous fermion contribution” in LFD depending on the
region of the scattering angle. For example, the amplitude
Mλ1;λ2

a;t corresponds to the “instantaneous fermion contri-
bution” in LFD for the region θ < θc;t while it corresponds
to the “on-mass-shell propagating contribution” for the
region θ > θc;t, where θc;t is given by Eq. (104). For E0 ¼
2me and Pe ¼

ffiffiffi
3

p
me, θc;t ¼ π=6 and θc;u ¼ 5π=6 from

Eqs. (104) and (105), respectively. To demonstrate the
existence of this critical angle only at LFD, we may take a
look closely at each light-front helicity amplitude and
contrast its behavior with the ones off the value of
δ ¼ π=4. As an example, in Fig. 30, we show the result
of the angular distribution for the þþ helicity amplitudes:
(a) Mþ;þ

a;t , (b) Mþ;þ
a;t þMþ;þ

b;t , and (c) Mþ;þ
a;u þMþ;þ

b;u at

the exact light front, i.e., δ ¼ π=4. For Mþ;þ
a;t shown in

Fig. 30(a), the left side of θc;t ¼ π
6
≈ 0.523599 (i.e.,

θ < θc;t) is the “instantaneous fermion contribution”, and

thus, the amplitude is zero as expected from the light-front
instantaneous propagator, γþ

2qþ, due to v̄↑γþu↑ ¼ 0 [25]. On
the other hand, the right side of the critical angle (i.e.,
θ > θc;t) is the “on-mass-shell propagating contribution”
for Mþ;þ

a;t . These two distinguished contributions for θ <
θc;t and θ > θc;t yield a dramatic “cliff” feature for Mþ;þ

a;t

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0
M

, ta, Pz 0, 4

(a)
0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0
M

, t, Pz 0, 4

(b)

0.5 1.0 1.5 2.0 2.5 3.0
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1.5

1.0

0.5

M
, u, Pz 0, 4

(c)

FIG. 30. þþ annihilation helicity amplitudes for (a) Mþ;þ
a;t ,

(b) Mþ;þ
a;t þMþ;þ

b;t , and (c) Mþ;þ
a;u þMþ;þ

b;u .
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as shown in Fig. 30(a). Because of the sign change of the
intermediate fermion momentum qb ¼ −qa ¼ −q for the
other time-ordered amplitude Mþ;þ

b;t , the angle regions for
the “instantaneous fermion contribution” and the “on-mass-
shell propagating contribution” swap inMþ;þ

b;t with respect
to Mþ;þ

a;t , i.e., the right side (θ > θc;t) becomes the
“instantaneous fermion contribution” and the left side
(θ < θc;t) becomes the “on-mass-shell propagating contri-
bution” for Mþ;þ

b;t , while it was the other way around
for Mþ;þ

a;t as discussed above. The addition of the two
time-ordered amplitudes, Mþ;þ

a;t þMþ;þ
b;t , is shown in

Fig. 30(b). Since the “instantaneous fermion contribution”
for theþþ helicity amplitudes in LFD is always zero due to
v̄↑γþu↑ ¼ 0, the “on-mass-shell propagating contribution”
for Mþ;þ

b;t is rather easily figured out by subtracting the
curve depicted in Fig. 30(a) from the curve depicted in
Fig. 30(b). Essentially the same procedure of obtaining
the t-channel amplitude can be applied to the u-channel
amplitude by exchanging the two final state scalar particles,
i.e., p3 ↔ p4. Thus, q becomes p1 − p4 in the u channel
while it was p1 − p3 in the t channel, and the result of
Mþ;þ

a;u þMþ;þ
b;u is obtained as shown in Fig. 30(c).

To exhibit that the “instantaneous fermion contribution”
is the unique feature only in LFD (δ ¼ π=4), we take a look
at the interpolation angle δ dependence of the amplitude
Mþ;þ

a;t by slightly varying the scattering angle θ around the
critical angle θc;t. In Fig. 31, we show the δ dependence of
Mþ;þ

a;t at (a) θ¼θc;t−0.01≈0.513599 (b) θ¼θc;tþ0.01≈
0.533599, and (c) θ ¼ θc;t ≈ 0.523599. These three values
of the angle θ chosen for Fig. 31 correspond to slightly left
of the “cliff”, at the “cliff”, and slightly right of the “cliff” in
Fig. 30(a), respectively. Since the values of the amplitude

Mþ;þ
a;t dramatically change around the critical angle θc;t

from 0.0 on the left (θ < θc;t) to around 2.0 on the right
immediately passing the critical angle θc;t as depicted in
Fig. 30(a), we should be able to see the corresponding
dramatic change also in Fig. 31. We see indeed this
dramatic change in Fig. 312 on top of the abrupt change
of the helicity amplitude due to the bifurcation of two
helicity branches discussed above in the collinear (θ ¼ π)
helicity amplitudes as well as in our previous work [11]
extensively, one in the side of IFD and the other in the side
of LFD, divided by the critical interpolating angle δc ≈
0.713724 discussed below Eq. (108) and depicted in
Fig. 10. In Fig. 31(a), the value of the amplitude Mþ;þ

a;t

at the right end (δ ¼ π
4
) is 0.00 while the value for δc <

δ < π
4
(not including δ ¼ π

4
) is around 1.0 and falls off to get

linked to the smoothly behaving curve for the region δ < δc
that belongs to the helicity branch on the IFD side. In
Fig. 31(b), however, the value of the amplitudeMþ;þ

a;t at the
right end (δ ¼ π

4
) is around 2.00 while the value for δc <

δ < π
4
(again not including δ ¼ π

4
) is still around 1.0 and

again falls off to get linked to the smoothly behaving curve
for the region δ < δc that belongs to the helicity branch on
the IFD side. Thus, the helicity amplitude Mþ;þ

a;t does not
change much except its value at δ ¼ π=4 or at LFD. In the
region δc < δ ≤ π

4
that belongs to the helicity branch on the

LFD side, one can see the dramatic change of the helicity
amplitude at the right end point δ ¼ π=4, i.e., only at
LFD but not anywhere else. This clearly demonstrates
that the “instantaneous fermion contribution” exists only in
the LFD.
Similarly, in Fig. 32, we show the δ dependence of

the other time-ordered þþ helicity amplitude Mþ;þ
b;t at

(a) θ¼θc;t−0.01≈0.513599, (b) θ¼θc;tþ0.01≈0.533599,
and (c) θ ¼ θc;t ≈ 0.523599. As discussed earlier, the angle
regions for the “instantaneous fermion contribution” and
the “on-mass-shell propagating contribution” swap in
Mþ;þ

b;t with respect to Mþ;þ
a;t due to the sign change of

the intermediate fermion momentum qb ¼ −qa ¼ −q for
Mþ;þ

b;t , i.e., the right side (θ > θc;t) and the left side
(θ < θc;t) become the “instantaneous fermion contribution”
and the “on-mass-shell propagating contribution” for
Mþ;þ

b;t . Since the “instantaneous fermion contribution”
for the þþ helicity amplitudes in LFD is always zero
(again due to v̄↑γþu↑ ¼ 0), we now should be able to see
Mþ;þ

b;t ¼ 0 for θ > θc;t while Mþ;þ
b;t ≠ 0 for θ < θc;t in

LFD. We indeed see this expected LFD result in Fig. 32 as
the value ofMþ;þ

b;t at δ ¼ π=4 turns out to be exactly 0.0 for
θ ¼ θc;t þ 0.01 in Fig. 32(b) while it is around 2.0 for θ ¼
θc;t − 0.01 in Fig. 32(a). This dramatic change at LFD
again clearly demonstrates that the “instantaneous fermion
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FIG. 31. Interpolation angle dependence of þþ annihilation
helicity amplitudes Mþ;þ

a;t for (a) θ < θc;t, (b) θ > θc;t,
and (c) θ ¼ θc;t.

2Note that the scale of Fig. 31(b) is doubled from Figs. 31(a)
and 31(c) to fit them all in one collective figure of Fig. 31.
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contribution” exists only in the LFD. For δc < δ < π
4
(not

including δ ¼ π
4
), however, the value ofMþ;þ

b;t is around 1.0
and rises up to get linked to the smoothly behaving curve
for the region δ < δc that belongs to the helicity branch on
the IFD side. As shown in Fig. 32, the helicity amplitude
Mþ;þ

b;t does not change much except its value at δ ¼ π=4 or
at LFD.
Even more distinct feature of LFD can be noticed in

Fig. 33, where we present the þ− helicity amplitudes in
LFD (δ ¼ π=4) (a) Mþ;−

a;t , (b) M
þ;−
b;t , (c) M

þ;−
a;t þMþ;−

b;t ,
and (d) Mþ;−

a;u þMþ;−
b;u . In contrast to Mþ;þ

a;t discussed
above, the “instantaneous fermion contribution” to Mþ;−

a;t

does not vanish due to v̄↓γþu↑ ≠ 0 [25], and thus, the

amplitude shown in Fig. 33(a) gets the singularity from the
light-front instantaneous propagator, γþ

2qþ, as q
þ ¼ 0 occurs

at θ ¼ θc;t. The singularity from the same origin but with
the opposite sign due to qb ¼ −qa ¼ −q for Mþ;−

b;t shown
in Fig. 33(b) cancels the singularity shown in Fig. 33(a),
and the net result of Mþ;−

a;t þMþ;−
b;t is finite and well

behaved as shown in Fig. 33(c). It is interesting to note that
the singularities in different light-front time-ordered proc-
esses corroborate each other to cancel themselves and make
the Lorentz invariant amplitude finite and well behaved.
The crossed channel total amplitude Mþ;−

a;u þMþ;−
b;u is of

course also finite and well behaved with the apparent
symmetry θ → π − θ between the t channel and the u
channel as shown in Figs. 33(c) and 33(d).
The helicity −þ and −− amplitudes, M−;þ

a;t , M−;þ
b;t ,

M−;þ
a;u , M−;þ

b;u , M
−;−
a;t , M

−;−
b;t , M

−;−
a;u , M−;−

b;u , have all been
computed as well, and Eq. (109) based on the parity
conservation has been verified explicitly among all the
helicity amplitudes for the present eþe− scattering/annihi-
lation process. Thus, the helicity −þ and −− amplitudes
can be rather easily figured out once the helicity þþ and
þ− amplitudes are given. In Figs. 34, 35, and 36, we
provide the whole landscape of the interpolation angle (δ)
dependence for the angular distributions of the helicity þþ
and þ− amplitudes at CMF (i.e., Pz ¼ 0). In each and
every figure, the critical interpolation angle δc which
separates the IFD side and the LFD side of helicity
branches is denoted by a thin boundary sheet at δ ¼ δc ≈
0.713724 in CMF (Pz ¼ 0). In Fig. 34, we show the
angular distribution of the helicity þþ amplitudes
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FIG. 32. Interpolation angle dependence of þþ annihilation
helicity amplitudes Mþ;þ

b;t for (a) θ < θc;t, (b) θ > θc;t,
and (c) θ ¼ θc;t.
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FIG. 33. þ− annihilation helicity amplitudes for (a) Mþ;−
a;t ,

(b) Mþ;−
b;t (c) Mþ;−

a;t þMþ;−
b;t , and (d) Mþ;−

a;u þMþ;−
b;u .

FIG. 34. Angular distribution of the helicity amplitude þþ for
(a) t-channel time-ordering process a, Mþ;þ

a;t (b) t-channel time-
ordering process b, Mþ;þ

b;t (c) u-channel time-ordering process a,
Mþ;þ

a;u (d) u-channel time-ordering process b, Mþ;þ
b;u .
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(a) Mþ;þ
a;t , (b) Mþ;þ

b;t , (c) Mþ;þ
a;u , (d) Mþ;þ

b;u . Similarly, in
Fig. 35, we show the angular distribution of the helicityþ−
amplitudes (a) Mþ;−

a;t , (b) M
þ;−
b;t , (c) M

þ;−
a;u , (d) Mþ;−

b;u . At
δ ¼ π=4 (LFD), the profiles of the “instantaneous fermion
contribution” and the “on-mass-shell propagating contri-
bution” depicted in Figs. 30(a) and 33(a) are visible in

Figs. 34(a) and 35(a), respectively. Adding both t-channel
and u-channel time-ordered amplitudes all together, we get
the results shown in Fig. 36. In Figs. 36(a) and 36(b), the
sum of þþ helicity amplitude Mþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þ
Mþ;þ

a;u and the sum of þ− helicity amplitude Mþ;−
a;t þ

Mþ;−
b;t þMþ;−

a;u þMþ;−
a;u are, respectively, shown. The

corresponding amplitude squares (or probabilities) are also
shown in Figs. 36(c) and 36(d), respectively. Here, we note
a remarkable correspondence between the IFD and LFD
profiles of theþþ amplitude in Fig. 36(a) and the LFD and
IFD profiles of the þ− amplitude in Fig. 36(b) modulo the
overall signs, respectively. This remarkable correspondence
between the IFD and LFD profiles is further self-evident in
Figs. 36(c) and 36(d) as the overall sign does not matter in
the amplitude square or the probability. As discussed
earlier, the LF helicity of the particle moving in the −ẑ
direction is opposite to the Jacob-Wick helicity defined in
the IFD. Since the incident e−eþ annihilation takes place
along the z axis and the positron (eþ) is moving in the −ẑ
direction, the swap of the helicity between the IFD and
LFD for the positron can be understood as we see the IFD/
LFD profile correspondence in Fig. 36.
To examine the frame dependence of the whole land-

scape, we have computed all the helicity amplitudes
discussed above with the nonzero center of momentum
(Pz ≠ 0) as well. In particular, we took a large enough
center of momentum to pass the helicity boundaries given
by Eqs. (107) and (108) that we have discussed extensively
in Sec. III A. In Figs. 37–39, we show the results for Pz ¼
þ15me while we do it for Pz ¼ −15me in Figs. 40–42. In

FIG. 35. Angular distribution of the helicity amplitude þ− for
(a) t-channel time-ordering process a, Mþ;−

a;t (b) t-channel time-
ordering process b, Mþ;−

b;t (c) u-channel time-ordering process a,
Mþ;−

a;u (d) u-channel time-ordering process b, Mþ;−
b;u .

FIG. 36. Angular distribution of the helicity amplitudes and
probabilities: (a) Mþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þMþ;þ
a;u , (b) Mþ;−

a;t þ
Mþ;−

b;t þMþ;−
a;u þMþ;−

a;u , (c) jMþ;þ
a;t þMþ;þ

b;t þMþ;þ
a;u þMþ;þ

a;u j2,
(d) jMþ;−

a;t þMþ;−
b;t þMþ;−

a;u þMþ;−
a;u j2.

FIG. 37. Angular distribution of the helicity amplitude þþ for
(a) t-channel time-ordering process a, Mþ;þ

a;t (b) t-channel time-
ordering process b, Mþ;þ

b;t (c) u-channel time-ordering process a,
Mþ;þ

a;u (d) u-channel time-ordering process b,Mþ;þ
b;u in a positive

momentum frame.
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these figures, the whole landscapes of the interpolation
angle (δ) dependence for the angular distributions of the
helicity þþ and þ− amplitudes are presented for the
boosted frames with Pz ¼ þ15me and Pz ¼ −15me. As we

have shown in the collinear case presented in Sec. III A, no
helicity boundaries exist between IFD and LFD in the
frame with Pz ¼ þ15me while there are two distinct
helicity boundaries, one from electron and the other from

FIG. 38. Angular distribution of the helicity amplitude þ− for
(a) t-channel time-ordering process a, Mþ;−

a;t (b) t-channel time-
ordering process b, Mþ;−

b;t (c) u-channel time-ordering process a,
Mþ;−

a;u (d) u-channel time-ordering process b, Mþ;−
b;u in a positive

momentum frame.

FIG. 40. Angular distribution of the helicity amplitude þþ for
(a) t-channel time-ordering process a, Mþ;þ

a;t (b) t-channel time-
ordering process b, Mþ;þ

b;t (c) u-channel time-ordering process a,
Mþ;þ

a;u (d) u-channel time-ordering process b,Mþ;þ
b;u in a negative

momentum frame.

FIG. 39. Angular distribution of the helicity amplitudes and
probabilities: (a) Mþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þMþ;þ
a;u , (b) Mþ;−

a;t þ
Mþ;−

b;t þMþ;−
a;u þMþ;−

a;u , (c) jMþ;þ
a;t þMþ;þ

b;t þMþ;þ
a;u þMþ;þ

a;u j2,
(d) jMþ;−

a;t þMþ;−
b;t þMþ;−

a;u þMþ;−
a;u j2 in a positive momentum

frame.

FIG. 41. Angular distribution of the helicity amplitude þ− for
(a) t-channel time-ordering process a, Mþ;−

a;t (b) t-channel time-
ordering process b, Mþ;−

b;t (c) u-channel time-ordering process a,
Mþ;−

a;u (d) u-channel time-ordering process b,Mþ;−
b;u in a negative

momentum frame.
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positron [see Eqs. (107) and (108), respectively], between
IFD and LFD for Pz ¼ −15me.
For Pz ¼ þ15me, the angular distribution of the helicity

þþ amplitudes are shown in Figs. 37(a) Mþ;þ
a;t , 37(b)

Mþ;þ
b;t , 37(c) Mþ;þ

a;u , 37(d) Mþ;þ
b;u , while the angular

distribution of the helicity þ− amplitudes are shown in
Figs. 38(a) Mþ;−

a;t , 38(b) M
þ;−
b;t , 38(c) M

þ;−
a;u , 38(d) Mþ;−

b;u .
The profiles of the “instantaneous fermion contribution”
and the “on-mass-shell propagating contribution” at δ ¼
π=4 (LFD) discussed at CMF (Pz ¼ 0) survive invariantly
although significant changes for the region 0 ≤ δ < π=4 are
apparent in the landscape without any helicity boundaries
as expected in this boosted frame with Pz ¼ þ15me.
The net results adding both t-channel and u-channel
time-ordered amplitudes all together are shown in
Fig. 39. In Figs. 39(a) and 39(b), the sum of þþ helicity
amplitude Mþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þMþ;þ
a;u and the

sum of þ− helicity amplitude Mþ;−
a;t þMþ;−

b;t þMþ;−
a;u þ

Mþ;−
a;u are, respectively, shown. The corresponding ampli-

tude squares (or probabilities) are also shown in Figs. 39(c)
and 39(d), respectively.
For Pz ¼ −15me, the angular distribution of the helicity

þþ amplitudes are shown in Figs. 40(a) Mþ;þ
a;t , 40(b)

Mþ;þ
b;t , 40(c) Mþ;þ

a;u , 40(d) Mþ;þ
b;u , while the angular

distribution of the helicity þ− amplitudes are shown in
Figs. 41(a) Mþ;−

a;t , 41(b) M
þ;−
b;t , 41(c) M

þ;−
a;u , 41(d) Mþ;−

b;u .

The LFD profiles of the “instantaneous fermion contribu-
tion” and the “on-mass-shell propagating contribution” are
again invariant regardless of Pz values (Pz ¼ þ15me; 0;
−15me) exhibiting the boost invariance of the helicity
amplitudes in LFD. For the region 0 ≤ δ < π=4, however,
there appear two critical interpolating angles at δ¼ δc;e− ≈
0.55062 and δ ¼ δc;eþ ≈ 0.784165, which can be estimated
from Eqs. (107) and (108), respectively. Except the LFD
profiles, the whole landscapes of angular distributions are
dynamically varied both for 0 ≤ δ < δc;e− ≈ 0.55062 and
δc;e− ≈0.55062< δ< δc;eþ ≈0.784165 depending on the
reference frames (Pz ¼ þ15me; 0;−15me). The net results
adding both t-channel and u-channel time-ordered ampli-
tudes all together are shown in Fig. 42. In Figs. 42(a) and
42(b), the sum of þþ helicity amplitude Mþ;þ

a;t þMþ;þ
b;t þ

Mþ;þ
a;u þMþ;þ

a;u and the sum of þ− helicity amplitude
Mþ;−

a;t þMþ;−
b;t þMþ;−

a;u þMþ;−
a;u are, respectively, shown.

The corresponding amplitude squares (or probabilities) are
also shown in Figs. 42(c) and 42(d), respectively.
Finally, Fig. 43 shows the sum of the þþ and þ−

helicity amplitude squares, which is the half of the total
probability sum including −þ and −− helicity amplitude
squares in all three reference frames (Pz ¼ þ15me; 0;
−15me) discussed above. Although the individual helicity
amplitude squares in LFD (δ ¼ π=4) are independent of the
reference frames, the individual helicity amplitude squares
for 0 ≤ δ < π=4 varied depending on the reference frames
as we have seen in Figs. 36(c), 39(c), and 42(c) for
jMþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þMþ;þ
a;u j2 as well as in Figs. 36(d),

39(d), and 42(d) for jMþ;−
a;t þMþ;−

b;t þMþ;−
a;u þMþ;−

a;u j2.
For the Pz ¼ þ15me frame, there were no helicity

FIG. 43. Sum of þþ and þ− helicity probabilities for
(a) Pz ¼ þ15me, (b) Pz ¼ −15me, and (c) Pz ¼ 0 (CMF).FIG. 42. Angular distribution of the helicity amplitudes and

probabilities: (a) Mþ;þ
a;t þMþ;þ

b;t þMþ;þ
a;u þMþ;þ

a;u , (b) Mþ;−
a;t þ

Mþ;−
b;t þMþ;−

a;u þMþ;−
a;u , (c) jMþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þMþ;þ
a;u j2,

(d) jMþ;−
a;t þMþ;−

b;t þMþ;−
a;u þMþ;−

a;u j2 in a negative momentum
frame.
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boundaries and the individual helicity amplitude squares
were the same regardless of the δ values as shown in
Figs. 39(c) and 39(d). However, for the other reference
frames with Pz ¼ −15me and Pz ¼ 0 (CMF), where there
were two (δ ¼ δc;e− ≈ 0.55062 and δ ¼ δc;eþ ≈ 0.784165)
boundaries and one (δc ≈ 0.713724) boundary, respec-
tively, each individual helicity amplitude squares varied
significantly across the corresponding helicity boundaries.
However, the sum of helicity amplitude squares is com-
pletely independent of not only the interpolating angle δ but
also the reference frames as it should be. The boost-
invariant physical quantity must be of course completely
independent of the interpolation angle, regardless of IFD,
LFD, or any other dynamics in between.
While all of these figures (Figs. 37–39 for Pz ¼ þ15me

and Figs. 40–42 for Pz ¼ −15me) were depicted in terms
of the CMF angle θ, they all can be also shown in terms of
the apparent angle θapp in the boosted frame using the
relationship between θapp and θ, i.e.,

tan θapp ¼
sin θ

γðβ þ cos θÞ ¼
tan θ

γðβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2θ

p
þ 1Þ ; ðD1Þ

where the γ factor in the boosted frame is given by

γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð Pz

2E0
Þ2

q
with β ¼ ð Pz

2E0
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð Pz
2E0

Þ2
p in

terms of the total momentum Pz in the boosted frame

FIG. 44. Apparent angular distribution of the helicity amplitude
þþ for (a) t-channel a time ordering, Mþ;þ

a;t , (b) t-channel b
time ordering, Mþ;þ

b;t , (c) u-channel a time ordering, Mþ;þ
a;u ,

(d) u-channel b time ordering, Mþ;þ
b;u in a positive

momentum frame.

FIG. 45. Apparent angular distribution of the helicity
amplitude þ− for (a) t-channel a time ordering, Mþ;−

a;t ,
(b) t-channel b time ordering, Mþ;−

b;t , (c) u-channel a time
ordering, Mþ;−

a;u , (d) u-channel b time ordering, Mþ;−
b;u in a

positive momentum frame.

FIG. 46. Apparent angular distribution of the helicity ampli-
tudes and probabilities: (a) Mþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þMþ;þ
a;u ,

(b) Mþ;−
a;t þMþ;−

b;t þMþ;−
a;u þMþ;−

a;u , (c) jMþ;þ
a;t þMþ;þ

b;t þ
Mþ;þ

a;u þMþ;þ
a;u j2, (d) jMþ;−

a;t þMþ;−
b;t þMþ;−

a;u þMþ;−
a;u j2 in a

positive momentum frame.
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and the total energy 2E0 in the CMF. Reversing Eq. (D1),
we get

tan θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð Pz

2E0
Þ2

q
tan θapp þ jPzj

2E0
tan θapp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2θapp

q
1 − ð Pz

2E0
Þ2tan2θapp

:

ðD2Þ

Using Eq. (D2), we convert Figs. 37–42 plotted in the CMF
scattering angle θ to Figs. 44–49 plotted in terms of the
apparent angle viewed from the lab frame. Likewise,
Figs. 50(a) and 50(b) correspond to Figs. 43(a) and 43(b),
respectively.

FIG. 47. Apparent angular distribution of the helicity amplitude
þþ for (a) t-channel a time ordering, Mþ;þ

a;t , (b) t-channel
b time ordering, Mþ;þ

b;t , (c) u-channel a time ordering, Mþ;þ
a;u ,

(d) u-channel b time ordering, Mþ;þ
b;u in a negative momentum

frame.

FIG. 48. Apparent angular distribution of the helicity amplitude
þ− for (a) t-channel a time ordering, Mþ;−

a;t , (b) t-channel b time
ordering, Mþ;−

b;t , (c) u-channel a time ordering, Mþ;−
a;u , (d) u-

channel b time ordering, Mþ;−
b;u in a negative momentum frame.

FIG. 49. Apparent angular distribution of the helicity ampli-
tudes and probabilities: (a) Mþ;þ

a;t þMþ;þ
b;t þMþ;þ

a;u þMþ;þ
a;u ,

(b)Mþ;−
a;t þMþ;−

b;t þMþ;−
a;u þMþ;−

a;u , (c) jMþ;þ
a;t þMþ;þ

b;t þMþ;þ
a;u þ

Mþ;þ
a;u j2, (d) jMþ;−

a;t þMþ;−
b;t þMþ;−

a;u þMþ;−
a;u j2 in a negative

momentum frame.

FIG. 50. Sum of þþ and þ− helicity probabilities for
(a) Pz ¼ þ15me and (b) Pz ¼ −15me in terms of apparent angle.
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APPENDIX E: BOOSTED e+ e− → γγ
INTERPOLATING HELICITY AMPLITUDES

In this Appendix, similar to what was done in
Appendix D, we examine the frame dependence of the
whole landscape of all the angular distributions of the
helicity amplitudes discussed in Sec. IVA by computing
them with nonzero center of momentum (Pz ¼ þ15me and
pz ¼ −15me). In Figs. 51–55, we show the results for Pz ¼
þ15me while we do for Pz ¼ −15me in Figs. 56–60. As we

have seen in Appendix D, no helicity boundaries exist
between IFD and LFD in the frame with Pz ¼ þ15me
while there are two distinct helicity boundaries, one from
electron and the other from positron [see Eqs. (107) and
(108), respectively] between IFD and LFD for
Pz ¼ −15me. The sum of the 16 helicity probabilities
for Pz ¼ þ15me and Pz ¼ −15me are shown in Fig. 61,
and comparing with Fig. 21(a) shown in Sec. IVA, we can
see that the total probability is independent of reference
frame, as well as the interpolation angle, as it should be.

FIG. 51. Angular distribution of the helicity amplitudes for (a) t-channel a time ordering and (b) t-channel b time ordering.
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FIG. 52. Angular distribution of the helicity amplitudes for (a) u-channel a time ordering and (b) u-channel b time ordering.
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FIG. 53. Angular distribution of the helicity amplitudes for (a) t channel and (b) u channel.
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FIG. 54. Angular distribution of the helicity amplitudes for
tþ u amplitudes.

FIG. 55. Angular distribution of the helicity amplitudes for the
probabilities, the figures in the last row is result of summing over
all figures above it.
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FIG. 56. Angular distribution of the helicity amplitudes for (a) t-channel a time ordering and (b) t-channel b time ordering.
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FIG. 57. Angular distribution of the helicity amplitudes for (a) u-channel a time ordering and (b) u-channel b time ordering.
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FIG. 58. Angular distribution of the helicity amplitudes for (a) t channel and (b) u channel.
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FIG. 59. Angular distribution of the helicity amplitudes for
tþ u amplitudes.

FIG. 60. Angular distribution of the helicity amplitudes for the
probabilities, the figures in the last row is result of summing over
all figures above it.
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APPENDIX F: BOOST DEPENDENCE IN e+e− → γγ
INTERPOLATING HELICITY AMPLITUDES

In this Appendix, we plot the helicity amplitudes of
eþe− → γγ, as given by Eq. (111) and (112), in terms of
both the interpolation angle δ and the total momentumPz. As
was done in Sec. IVA, we take m ¼ me, E0 ¼ 2me, and
instead of looking at the angular distribution, we fix the angle
θ to be π=3. The helicity amplitudes for the t channel,
corresponding to Feynman diagram Fig. 3, with two time-
orderings shown in Fig. 4, are presented in Figs. 62 and 63,
while the u-channel helicity amplitudes are shown in Figs. 64
and 65. The probabilities, after summing both time orderings
of both channels, are shown in Fig. 66, where the last row is
the summation over all four final helicity states for each initial
state. The total probability, obtained after summing all initial
and final helicities, is shown in Fig. 67 and is independent of
boost momentum and interpolation angle.

In these figures, the boundaries of bifurcated helicity
branches between IFD and LFD due to the initial electron
and positron moving in þẑ and −ẑ directions given by
Eqs. (107) and (108) are denoted by the blue curves, while
the characteristic “J curve” given by Eq. (106) is depicted
as the red curve. It is also apparent that the relationship
between different helicity amplitudes given by Eq. (115) is
satisfied, where λ3 and λ4 are the helicities of the outgoing
photons while λ1 and λ2 are the incoming electron and
positron helicities, respectively. This relationship holds as
one can see in Figs. 62–65. Up to an overall sign difference,
the upper left 2 by 2 block is the same with the lower right 2
by 2 block, while the upper right block is the same with the
lower left block. In the right most column, however, all
figures have their signs flipped from their counterparts. For
the square of amplitudes shown in Fig. 66, the same
correspondence holds without any sign difference as it
should be.

FIG. 61. eþe− → γγ sum of helicity probabilities for (a) Pz ¼ þ15me and (b) Pz ¼ −15me.
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FIG. 62. Annihilation amplitudes—t channel, time-ordering a.

JI, LI, MA, and SUZUKI PHYS. REV. D 98, 036017 (2018)

036017-56



FIG. 63. Annihilation amplitudes—t channel, time-ordering b.
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FIG. 64. Annihilation amplitudes—u channel, time-ordering a.
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FIG. 65. Annihilation amplitudes—u channel, time-ordering b.

INTERPOLATING QUANTUM ELECTRODYNAMICS BETWEEN … PHYS. REV. D 98, 036017 (2018)

036017-59



FIG. 66. Annihilation probabilities.
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