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Recently, there has been significant interest in understanding the macroscopic quantum transport in a
many-body system of chiral fermions. A natural framework for describing such a system that is generally
out of equilibrium is the transport equation for its phase space distribution function. In this paper, we obtain
a complete solution of the covariant chiral transport for massless fermions, by starting from the general
Wigner function formalism and carrying out a complete and consistent semiclassical expansion up to ÔðℏÞ
order. In particular, we clarify certain subtle and confusing issues surrounding the Lorentz noninvariance
and frame dependence associated with the three-dimensional chiral kinetic theory. We prove that such
frame dependence is uniquely and completely fixed by an unambiguous definition of the ÔðℏÞ correction to
the distribution function in each reference frame.
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I. INTRODUCTION

The many-body physics of massless fermions has
attracted significant interest in a wide range of commun-
ities, from condensed matter physics to high-energy heavy
ion collisions. In particular, the microscopic quantum
anomaly of such chiral fermions can induce highly non-
trivial macroscopic transport phenomena, such as the
notable example of the chiral magnetic effect (CME)
[1–4] as well as the chiral vortical effect [5–7]. These
effects have been extensively studied using various many-
body theoretical tools [5,8–19]. Enthusiastic efforts have
also been made to experimentally measure such anomalous
chiral transport effects, both in the so-called Dirac or Weyl
semimetals and in the so-called quark-gluon plasma created
via heavy ion collisions. For reviews on recent develop-
ments, see, e.g., Refs. [20–24].
An important aspect of the many-body theory for

anomalous chiral transport is to describe the out-of-
equilibrium situation. The natural framework is the kinetic
theory based on transport equations for the phase space
distribution function of such a system. Different from usual
classical kinetic theory [25], a proper description of the

chiral fermions must account for intrinsic quantum and
relativistic effects. A lot of progress has been achieved
lately to develop such a chiral kinetic theory; see, e.g.,
Refs. [26–40]. There also exist a lot of phenomenological
interest and attempts to study anomalous chiral transport in
the out-of-equilibrium setting [41–50]. The transport theory
of chiral fermions, however, bears unusual subtlety and
poses a number of challenges, particularly related to
Lorentz invariance and frame dependence. A resolution
was developed in the three-dimensional (3D) formulation
of chiral kinetic theory [29,30,35], but the origin of such
issues remains cloudy. It is highly desirable to develop a
transport theory of chiral fermions in a completely covar-
iant fashion and to identify the precise reason of these
complications.
A natural approach is to derive the quantum transport

equation for chiral fermions in the well-known Wigner
function formalism by a systematic semiclassical expansion
in terms of ℏ [51–56]. We shall adopt this approach in the
present paper. We will systematically derive the chiral
transport equations for a general out-of-equilibrium system
of collisionless massless fermions, under external electro-
magnetic fields that are generally space-time dependent.
The starting point is the Wigner function and the kinetic
equation for Winger function and its 16 components, such
as the vector Vμ, axial vector Aμ, scalar F, pseudoscalar
P, and antisymmetry tensor Lμν. These 16 components
would be decoupled for the chiral fermion system. We will
focus on the set of equations for vectorVμ and axial vector
Aμ components. By carrying out the semiclassical expan-
sion for all the operators and functions, one can then derive
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a covariant set of chiral transport equations to ℏ order. In
particular, this detailed derivation will allow a clear under-
standing, within a totally covariant framework, of the origin
for the rather confusing Lorentz-invariance and frame-
dependence issues as well as the emergence of the Berry
phase, Berry curvature and anomalous terms in the 3D
formulation of chiral kinetic theory. In fact, we will prove
that such frame dependence is uniquely and completely
fixed by an unambiguous definition of the ÔðℏÞ correction
to the distribution function in each reference frame.
The paper is organized as follows. In Sec. II, we briefly

review the Wigner function formalism and the kinetic
equations for the 16 components of Wigner function. In
Sec. III, these equations are decoupled and decompose to
two sets of equations for the massless case, and we focus on
the semiclassical expansion for the chiral currents. With the
obtained constraint equations, we construct the most
general solutions and discuss the frame-dependence issue.
In Sec. IV, we present the covariant chiral transport
equations as well as their 3D formulation. Finally, we
conclude the paper in In Sec. V. An Appendix is also
included to particularly prove in great technical details the
completeness and uniqueness of the found ÔðℏÞ solution to
the constraint equations, which is crucial for understanding
the frame-dependence issue.

II. QUANTUM KINETIC EQUATIONS IN THE
WIGNER FUNCTION FORMALISM

The bridge connecting quantum field theory to relativ-
istic kinetic theory is the Wigner function [55,57]. For the
Dirac field ψ with charge Q, the general gauge-invariant
Wigner operator is defined as

Ŵαβðx; pÞ ¼
Z

d4y
ð2πÞ4 e

− i
ℏp·yψ̄βðxþÞUðxþ; x−Þψαðx−Þ; ð1Þ

where α and β are spinor indices. Also, the gauge link U
between x� ¼ x� y=2 is introduced to ensure the gauge
invariance of the Wigner operator. It is defined as

Uðxþ; x−Þ ¼ Pe−
iQ
ℏ y

μ
R

1

0
dsAμðx−y

2
þsyÞ; ð2Þ

where the path-ordering operator P can be dropped for
Abelian Aμ fields. In this work, we keep the Planck
constant ℏ in various places to show the quantum effect
explicitly.
Then, one can construct the Winger function, as the

expectation value of the Wigner operator

Wαβðx; pÞ ¼ hŴαβðx; pÞi; ð3Þ

where h· · ·i means the expectation over a given quantum
state, or the average over an ensemble of quantum states.

In this work, we consider a collisionless system in a
background electromagnetic field Aμ. In this case, the
Wigner function satisfies the quantum kinetic equation [55]

ð=K −mÞWðx; pÞ ¼ 0; ð4Þ
where =K ¼ γμKμ, Kμ ¼ πμ þ 1

2
iℏ∇μ, and

πμ ¼ pμ −
1

2
Qℏj1

�
1

2
ℏΔ

�
Fμν∂p

ν ; ð5Þ

∇μ ¼ ∂μ −Qj0

�
1

2
ℏΔ

�
Fμν∂p

ν : ð6Þ

Note that in the triangle operator Δ ¼ ∂x · ∂p, ∂x acts only
on electromagnetic tensor Fμν ¼ ∂μAν − ∂νAμ, while ∂p
acts only on Wðx; pÞ. In addition, j0ðxÞ ¼ x−1 sinðxÞ and
j1ðxÞ ¼ x−2 sinðxÞ − x−1 cosðxÞ are the spherical Bessel
functions that are generated by the y integrations. In general
combining with the Maxwell equation, the quantum kinetic
equation of the Wigner function (4) is equivalent to the
QED field theory.
To connect Eq. (4) with kinetic theory, one needs to

obtain explicitly the equations of all elements of the Wigner
function, which is a 4 × 4 matrix. To do that, one can
decompose theWðx; pÞ in terms of the 16 generators of the
Clifford algebra, choosing the convention basis as follows:

Γa ¼ I; γμ; iγ5; γμγ5; σμν;

Γa ¼ I; γμ;−iγ5; γ5γμ; σμν: ð7Þ
In this basis, the Wigner function is expanded as

W ¼ 1

4

�
Fþ iγ5Pþ γμVμ þ γμγ5Aμ þ

1

2
σμνLμν

�
; ð8Þ

where these 16 components are given by

Fðx; pÞ ¼ trWðx; pÞ;
Pðx; pÞ ¼ −itr½γ5Wðx; pÞ�;
Vμðx; pÞ ¼ tr½γμWðx; pÞ�;
Aμðx; pÞ ¼ tr½γ5γμWðx; pÞ�;
Lμνðx; pÞ ¼ tr½σμνWðx; pÞ� ¼ −Lνμðx; pÞ: ð9Þ

Noting that the Wigner function satisfies Hermiticity
relations W†ðx; pÞ ¼ γ0Wðx; pÞγ0 in the same way as
the Γa’s (Γ

†
a ¼ γ0Γaγ

0), all these 16 components are real,
and they behave as the scalar, pseudoscalar, vector, axial
vector, and antisymmetric tensor, respectively, under
Lorentz transformation. Each of these 16 components is
connected with a corresponding physical quantity [51,58].
Explicitly speaking, the vector Vμ and axial vector Aμ can
be used to construct the current density Jμ, axial current
density Jμ5, and energy-momentum tensor Tμν,
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JμðxÞ ¼ hψ̄ðxÞγμψðxÞi ¼
Z

d4ptrðγμWðx; pÞÞ ¼
Z

d4pVμðx; pÞ;

Jμ5ðxÞ ¼ hψ̄ðxÞγμγ5ψðxÞi ¼ −
Z

d4ptrðγ5γμWðx; pÞÞ ¼ −
Z

d4pAμðx; pÞ;

TμνðxÞ ¼ −i
2
hψ̄ðxÞ½γμDνþ − γμDν�ψðxÞi ¼

Z
d4ppνtrðγμWðx; pÞÞ ¼

Z
d4ppνVμðx; pÞ; ð10Þ

with the covariant derivative Dμ ¼ ∂μ þ iQAμ (where Q is the charge of fermion and Aμ is the vector potential). Note that
the above definition of the energy-momentum tensor is the so-called canonical definition, which in principle should be
further symmetrized in the Lorentz indices μ and ν as is typically done in quantum field theory textbooks.
Now, we can derive the kinetic equations for these 16 coefficients explicitly. Substituting the decomposed Wigner

function (8) into Eq. (4), one obtains

0 ¼
�
γμKμFþ iγμγ5KμPþ γμγνKμVν þ γμγνγ5KμAν þ

1

2
γμσνσKμLνσ

�

−m

�
Fþ iγ5Pþ γμVμ þ γμγ5Aμ þ

1

2
σμνLμν

�
: ð11Þ

Next, we will use the properties of the γ matrices [with the metric convention gμν ¼ diagð1;−1;−1;−1Þ and the Levi-Cività
antisymmetric tensor ϵ0123 ¼ −ϵ0123 ¼ 1],

fγμ; γ5g ¼ 0; fγμ; γνg ¼ 2gμν; γμγν ¼ gμν − iσμν;

σμνγ5 ¼ i
2
ϵμνσρσσρ; γσσμν ¼ gσμγν − gσνγμ þ iϵμνσργργ5;

to cast terms with multiple γ matrices into the Γa basis:

γμγνKμVν ¼ KμVμ −
i
2
σμνðKμVν −KνVμÞ;

γμγνγ5KμAν ¼ −iðiγ5ÞKμAμ þ 1

2
ϵμνσρσ

μνKσAρ;

γμσνσKμLνσ ¼ −2iγμKνLμν þ ϵμνσργ
μγ5KνLσρ:

These relations allow us to simplify Eq. (11) as

IðKμVμ −mFÞ þ iγ5ð−iKμAν −mPÞ þ γμðKμF − iKνLμν −mVμÞ

þ γμγ5
�
iKμPþ 1

2
ϵμνσρKνLσρ −mAμ

�
þ 1

2
σμνð−iðKμVν −KνVμÞ þ ϵμνσρKσAρ −mLμνÞ ¼ 0: ð12Þ

From the orthogonality of the fΓag basis, i.e.,
trðΓaΓbÞ ¼ 4δab, one can prove that all “elements” of
the above “matrix” should be zero, i.e.,

0 ¼ KμVμ −mF; ð13Þ

0 ¼ iKμAμ þmP; ð14Þ

0 ¼ KμF − iKνLμν −mVμ; ð15Þ

0 ¼ iKμPþ 1

2
ϵμνσρKνLσρ −mAμ; ð16Þ

0 ¼ iðKμVν −KνVμÞ − ϵμνσρKσAρ þmLμν: ð17Þ

Furthermore, as Kμ ¼ πμ þ 1
2
iℏ∇μ is complex while all

components of the Wigner function are real, one could
further separate the above equations with the real and
imaginary parts. The real parts give

mF ¼ πμVμ; ð18Þ
2mP ¼ ℏ∇μAμ; ð19Þ

mVμ ¼ πμFþ 1

2
ℏ∇νLμν; ð20Þ

2mAμ ¼ −ℏ∇μPþ ϵμνσρπ
νLσρ; ð21Þ

mLμν ¼
1

2
ℏð∇μVν −∇νVμÞ þ ϵμνσρπ

σAρ; ð22Þ
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while the imaginary parts lead to

ℏ∇μVμ ¼ 0; ð23Þ

πμAμ ¼ 0; ð24Þ
1

2
ℏ∇μF ¼ πνLμν; ð25Þ

πμP ¼ −
1

4
ℏϵμνσρ∇νLσρ; ð26Þ

πμVν − πνVμ ¼
1

2
ℏϵμνσρ∇σAρ: ð27Þ

The above results are the complete quantum kinetic
equations [51–55], as shown in Eqs. (18)–(27), in terms
of the 16 components of the Wigner function that are
coupled with each other. In the next section, we will focus
on the massless case to further simplify the kinetic
equations.

III. CHIRAL TRANSPORT EQUATIONS
AND THE GENERAL SOLUTIONS

In this section, we consider a system of chiral fermions
with m ¼ 0. In this case, the quantum kinetic equations
in Eqs. (18)–(27) get partially decoupled. One can see
explicitly that they are separated into two groups: a set of
equations describing the evolution of scalar F, pseudo-
scalar P, and antisymmetry tensor Lμν components,

πμFþ 1

2
ℏ∇νLμν ¼ 0;

1

2
ℏ∇μF − πνLμν ¼ 0;

−ℏ∇μPþ ϵμνρσπ
νLρσ ¼ 0;

πμPþ 1

4
ℏϵμνρσ∇νLρσ ¼ 0; ð28Þ

and another set for vector Vμ and axial vector Aμ

components,

πμVμ ¼ 0; πμAμ ¼ 0;

ℏ∇μVμ ¼ 0; ℏ∇μAμ ¼ 0;

ℏϵμνρσ∇ρVσ ¼ 2ðπμAν − πνAμÞ;
ℏϵμνρσ∇ρAσ ¼ 2ðπμVν − πνVμÞ: ð29Þ

Noting the specific patterns of vector (scalar) and axial-
vector (pseudoscalar) terms, one could further simplify the
above two sets of equations by introducing the “chiral
basis” [34,54] via

Tχ ¼
1

2
ðFþ χPÞ;

Sμν
χ ¼ 1

2

�
Lμν þ χ

1

2
ϵμνσρLσρ

�
;

Jμ
χ ¼ 1

2
ðVμ − χAμÞ; ð30Þ

where χ ¼ �1 corresponds to the chirality of massless
fermion. In such a chiral basis, Eq. (28) can be further
decomposed, in which the right-handed (RH) and left-
handed (LH) components get decoupled:

πμTχ þ
1

2
ℏ∇νSχ

μν ¼ 0; ð31Þ

πμS
μν
χ þ 1

2
ℏ∇νTχ ¼ 0: ð32Þ

Similarly, Eq. (29) can be recast into RH and LH sectors:

ℏϵμνρσ∇ρJσ
χ ¼ −2χðπμJχ

ν − πνJ
χ
μÞ; ð33Þ

πμJχ
μ ¼ 0; ð34Þ

∇μJχ
μ ¼ 0: ð35Þ

The decoupling of the RH and LH components in these
equations reflects a basic property of massless fermions: for
the massless Dirac fermions, the RH and LH sectors can be
completely separated in the Lagrangian.
As the main purpose of this paper is to study the chiral

transport effects, we will focus on the equations for the
chiral components Jμ

χ , namely, Eqs. (33)–(35) in the
following. We note in passing that the chiral components
Jμ

χ can be directly related to the physical chiral currents:

Jμχ ¼ hψ̄ χγ
μγ5ψχi ¼

Z
d4pJμ

χ ¼ 1

2
ðJμ þ χJμ5Þ: ð36Þ

Here, ψχ ¼ Pχψ and ψ̄ χ ¼ ψ̄P−χ , with Pχ ¼ ð1þ χγ5Þ=2
being the chirality projection operators.

A. Semiclassical expansion

We now derive the chiral kinetic equation, by starting
from Eqs. (33)–(35) and utilizing the semiclassical expan-
sion method [55]. To do this, one needs to expand both
operators and Wigner function components in the evolution
equations order by order in terms of ℏ. First of all, let us
expand the operators πμ and∇μ in powers of ℏ, by using the
Taylor expansion of the spherical Bessel function j0 and j1
in terms of 1

2
ℏΔ, with j0ðxÞ ¼ 1 − x2=6þOðx4Þ and

j1ðxÞ ¼ x=3 − x3=30þOðx5Þ:
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πμ ¼ pμ −
1

2
Qℏj1

�
1

2
ℏΔ

�
Fμν∂p

ν ¼ pμ −
1

12
Qℏ2ΔFμν∂p

ν þOðℏ4Þ;

∇μ ¼ ∂μ −Qj0

�
1

2
ℏΔ

�
Fμν∂p

ν ¼ ∂μ −QFμν∂p
ν þ 1

24
Qℏ2Δ2Fμν∂p

ν þOðℏ4Þ: ð37Þ

The truncation of this expansion series would be justified
when 1

2
ℏj∂xFμν · ∂pWðx; pÞj ≪ jFμνWðx; pÞj. In other

words, the electromagnetic field Fμν and Wigner function
Wðx; pÞ should vary smoothly enough in coordinate space
x and momentum space p, respectively [55,59]. It should
be emphasized that, starting from here through the rest of
this paper, we will use the notation ∇μ to represent its
zeroth-order truncation, i.e., ∇μ → ∂μ −QFμν∂p

ν .
We next write down an expansion of Jμ

χ also in powers
of ℏ, i.e.,

Jχ;μ ¼ Jð0Þ
χ;μ þ ℏJð1Þ

χ;μ þ ℏ2Jð2Þ
χ;μ þOðℏ3Þ: ð38Þ

By substituting the operators in Eq. (37) and chiral
component in Eq. (38) into Eqs. (33)–(35), one obtains

0 ¼ ½pμJ
ð0Þ
χ;ν − pνJ

ð0Þ
χ;μ�

þ ℏ½ϵμνρσ∇ρJð0Þσ
χ þ 2χðpμJ

ð1Þ
χ;ν − pνJ

ð1Þ
χ;μÞ� þOðℏ2Þ;

ð39Þ

0 ¼ ½pμJð0Þ
χ;μ� þ ℏ½pμJð1Þ

χ;μ� þOðℏ2Þ; ð40Þ

0 ¼ ½∇μJð0Þ
χ;μ� þ ℏ½∇μJð1Þ

χ;μ� þOðℏ2Þ: ð41Þ

Just as with the strategy in perturbation theory, one can then
match the terms in the above equations at each given order
of ℏ and obtain an infinite series of equations order by
order. In this paper, we will only deal with the two leading
orders, i.e., the order ℏ0 equations and the order ℏ1

equations.
Let us first examine the zeroth-order equations:

0 ¼ pμJ
ð0Þ
χ;ν − pνJ

ð0Þ
χ;μ; ð42Þ

0 ¼ pμJð0Þ
χ;μ; ð43Þ

0 ¼ ∇μJð0Þ
χ;μ: ð44Þ

Equations (42) and (43) are the constraint conditions for the

current Jð0Þ
χ;μ; the former requires that Jð0Þ

χ;μ must be parallel

to pμ, i.e., J
ð0Þ
χ;μ ¼ pμSðx; pÞ, where S is a certain arbitrary

scalar function, and the latter further demands that
p2Sðx; pÞ ¼ 0. These conditions uniquely fix the general
form of the zeroth-order current to be

Jð0Þ
μ;χ ¼ pμf

ð0Þ
χ δðp2Þ; ð45Þ

together with the classical on-shell condition as reflected in

the delta function. Apparently, fð0Þχ is the classical phase-
space distribution function, which can be further decom-
posed as

fð0Þχ ðx; pÞ ¼
X
ϵ¼�1

θðϵp0Þfð0Þϵχ ðx; ϵpÞ; ð46Þ

where ϵ ¼ �1 corresponds to particle with positive/
negative energy.
Finally, by substituting Eq. (45) into the evolution

equation (44), one obtains the zeroth-order transport
equation,

δðp2Þpμ∇μf
ð0Þ
χ ¼ δðp2Þpμð∂μ −QFμν∂ν

pÞfð0Þχ ¼ 0; ð47Þ

which is the classical covariant Vlasov equation. Note that
in deriving the above result we have used the relations
concerning derivative terms, ∇μpμ ¼ −QFμ

μ ¼ 0 as well as

pμf
ð0Þ
χ ∇μδðp2Þ ¼ −2QpμFμνpνf

ð0Þ
χ δ0ðp2Þ ¼ 0, both van-

ishing by virtue of the antisymmetric nature of the
electromagnetic field tensor.

B. ℏ-order constraint equations and general solutions

We now move on to examine the first-order equations, as
follows:

0 ¼ ϵμνρσ∇ρJð0Þσ
χ þ 2χðpμJ

ð1Þ
χ;ν − pνJ

ð1Þ
χ;μÞ; ð48Þ

0 ¼ pμJð1Þ
χ;μ; ð49Þ

0 ¼ ∇μJð1Þ
χ;μ: ð50Þ

Here, Eq. (48) gives the connection between the zeroth and
first orders of Jμ. Noting that

∇ρJð0Þσ
χ ¼ −QFρσfð0Þχ δðp2Þ þ pσð∇ρfð0Þχ Þδðp2Þ

− 2QFρλpλpσfð0Þχ δ0ðp2Þ

and using the Schouten identity

pμϵνρσλ þ pνϵρσλμ þ pρϵσλμν þ pσϵλμνρ þ pλϵμνρσ ¼ 0;

ð51Þ
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we obtain

ϵμνρσFρλpλpσfð0Þχ δ0ðp2Þ ¼ pμF̃νσpσfð0Þχ δ0ðp2Þ − pνF̃μσpσfð0Þχ δ0ðp2Þ þ p2F̃μνf
ð0Þ
χ δ0ðp2Þ;

ϵμνρσ∇ρJð0Þσ
χ ¼ −2QF̃μνf

ð0Þ
χ δðp2Þ þ ϵμνρσpσð∇ρfð0Þχ Þδðp2Þ − 2QϵμνρσFρλpλpσfð0Þχ δ0ðp2Þ;

¼ ϵμνρσpσð∇ρfð0Þχ Þδðp2Þ − 2QðpμF̃νσ − pνF̃μσÞpσfð0Þχ δ0ðp2Þ:

Here, δ0ðp2Þ ¼ dδðp2Þ=dp2, and we have used the relation p2δ0ðp2Þ ¼ −δðp2Þ. Now, Eq. (48) becomes

ϵμνρσpσð∇ρfð0Þχ Þδðp2Þ − 2QðpμF̃νσ − pνF̃μσÞpσfð0Þχ δ0ðp2Þ ¼ −2χðpμJ
ð1Þ
ν;χ − pνJ

ð1Þ
μ;χÞ: ð52Þ

Contracting both sides of the above equation with pν and
using Eq. (49), one can derive that

p2ðQF̃μσpσfð0Þχ δ0ðp2Þ − χJð1Þ
μ;χÞ ¼ 0; ð53Þ

hence, the most general solution to the above constraint
equation can be written as

Jð1Þ
μ;χ ¼ Hμδðp2Þ þ χQF̃μνpνfð0Þχ δ0ðp2Þ: ð54Þ

In the above, the Hμ is an arbitrary Lorentz vector. By
using the second constraint (49), one arrives at

pμHμδðp2Þ ¼ 0: ð55Þ

Because of the special nature of lightlike momentum pμ ¼
ðjpj;pÞ (as mandated by the delta function), there are three
categories of vectors that can satisfy the above equation:
one parallel to pμ itself and the other two taking the form
ð0;KÞ with the spatial component satisfying K · p ¼ 0.
Thus, one can decompose Hμ into components that are
parallel/orthogonal to the momentum pμ respectively:

Hμ ¼ pμf
ð1Þ
χ þKμ: ð56Þ

Here, fð1Þχ has the natural interpretation as the first-order

correction to fð0Þχ by comparing the above with the zeroth-
order Eq. (45). To solve the orthogonal part Kμ, one can

substitute the representation of Jð1Þ
μ;χ into Eq. (52) and get

the following constraint equation for Kμ:

ϵμνρσpσð∇ρfð0Þχ Þδðp2Þ ¼ −2χðpμKν − pνKμÞδðp2Þ: ð57Þ

The most general solution of Kμ can be expressed as

Kμ ¼
χ

2p · n
ϵμνλρpνnλð∇ρfð0Þχ Þ; ð58Þ

where an arbitrary auxiliary timelike unit vector nμ

(satisfying nμnμ ¼ 1) has been introduced. It should be

noted that the above is the correct solution to the constraint
equations even for space time–dependent nμðxÞ. A detailed
proof of this solution is included in Appendix. The meaning
of nμ and the pertinent frame-dependence issue will be
discussed in the next subsection.
Finally, we can combine the solutions to the zeroth- and

first-order constraint equations and write down the follow-
ing expression of Jμ

χ up to the first order of ℏ:

Jμ
χ ¼ pμfχδðp2Þ þ ℏχQF̃μνpνf

ð0Þ
χ δ0ðp2Þ

− ℏ
χ

2p · n
ϵμνλρnνpλð∇ρf

ð0Þ
χ Þδðp2Þ: ð59Þ

Here, F̃μν ¼ 1
2
ϵμνρσFρσ is the dual tensor of Fμν. We have

introduced the distribution function fχ including ℏ-order
quantum correction,

fχ ¼ fð0Þχ þ ℏfð1Þχ ;

which can also be decomposed into positive/negative
energy parts, like Eq. (45), fχðx; pÞ ¼

P
ϵ¼�1 θðϵp0Þfϵχ ×

ðx; ϵpÞ. Now, the chiral current is given by

Jμχ ¼
Z

d4pJμ
χ ¼ Jð0Þμχ þ ℏJð1Þμχ ; ð60Þ

with the zeroth-order Jð0Þμχ and first-order Jð1Þμχ expressed as

Jð0Þμχ ¼
Z

d4ppμfð0Þχ δðp2Þ;

Jð1Þμχ ¼
Z

d4ppμfð1Þχ δðp2Þ þ χQF̃μν

Z
d4ppνf

ð0Þ
χ δ0ðp2Þ

−
χ

2
ϵμνλρnν

Z
d4p

1

p · n
pλð∇ρf

ð0Þ
χ Þδðp2Þ: ð61Þ

Similarly, one can also get the expression of the vector/axial
currents and energy-momentum tensor from Jμ

χ .
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C. Lorentz invariance and frame dependence

In the solution for Kμ in Eq. (58), an arbitrary auxiliary
quantity nμ appears to be a free choice at our disposal
without clear physical meaning. A more careful examina-
tion reveals that the quantity nμ actually plays a subtle yet
crucial role in the chiral transport, especially pertaining to
the confusing issues of Lorentz invariance and frame
dependence, which we shall discuss next.
To understand the role of nμ, let us come back to the

decomposition of Hμ in Eq. (56), i.e., Hμ ¼ pμf
ð1Þ
χ þKμ.

As already mentioned above and as discussed with great
detail in Appendix, this decomposition is subtle due to the
lightlike nature of the pμ. To unambiguously identify the
first-order correction to the distribution function, one must
demand that the part along pμ should be attributed to the

distribution term fð1Þχ while the rest should be attributed to
the Kμ term. In fact, such a requirement completely fixes

the form of Kμ. For a uniquely defined fð1Þχ , the Kμ must
take the form ð0;KÞ with the spatial component satisfying
K · p ¼ 0. Combining this requirement with Eq. (58), one
arrives at the unique choice nμ ¼ ð1; 0; 0; 0Þ and the
corresponding Kμ below:

Kμ ¼
�
0;

χ

2jpjp × ð∇⃗fð0Þχ Þ
�
: ð62Þ

This, however, is not the end of the story. While the
above construction gives well-defined fð1Þχ pμ andKμ in the
current reference frame, this decomposition is actually
frame dependent. To appreciate this less obvious subtlety,
suppose in the current frame there is a vector Kμ ¼ ð0;KÞ
that satisfies orthogonality to pμ via K · p ¼ 0. But upon
boosting into a different frame with both pμ and Kμ

transformed as Lorentz vectors into p0 and K0, one finds
that in general K0 acquires a component along p0, despite

the fact that they still satisfy K0 · p0 ¼ 0. That means one
has to redo the proper decomposition in the new reference
frame and find a different K00 ¼ ð0;K00Þ satisfying
K00 · p0 ¼ 0. This issue again arises from the lightlike
nature of pμ.
A lengthy calculation in Appendix proves that if one

boosts from the current frame to a different frame of 4-
velocity uμ (with respect to the current frame) then the Kμ

from proper decomposition in this new frame should be
precisely and uniquely given by Eq. (58) with the identi-

fication nμ → uμ, which leaves a well-defined fð1Þχ in this
new reference frame. Hence, the role of nμ now becomes
clear. This result also explicates the fact that the distribution

term fð1Þχ becomes frame dependent as well. While the
distribution function in usual transport theory is a Lorentz
scalar, here it is demonstrated clearly that in chiral transport
theory a nontrivial frame dependence of the distribution
function arises precisely at the ÔðℏÞ-order correction and in
the specific way discussed above.
In short, the Wigner function formalism is in itself totally

covariant, and it is the decomposition ofHμ that introduces

frame dependence. The unique identification of fð1Þχ

requires theKμ to contain no pμ-parallel component while
this requirement is frame dependent. For an observer with
velocity uμ ¼ nμ, Eq. (58) gives the correct Kμ. The
peculiar structure of Kμ also clarifies the frame depend-
ence of spin tensor Sμν and the side-jump effect [30,35,36].

IV. COVARIANT CHIRAL
TRANSPORT EQUATION

A. Covariant chiral transport equation

In this subsection, we focus on deriving the covariant
chiral transport equation up to ℏ order, which can be
obtained by substituting Eq. (59) into Eq. (35):

0 ¼ ∇μJ
μ
χ

¼ ∇μðpμfχδðp2ÞÞ þ ℏχQ∇μðF̃μνfð0Þχ pνδ
0ðp2ÞÞ − ℏ

χ

2
ϵμνλρ∇μ

�
1

p · n
nνpλð∇ρf

ð0Þ
χ Þδðp2Þ

�
: ð63Þ

One can further simplify the first term of the above equation as

∇μðpμfχδðp2ÞÞ ¼ δðp2Þp ·∇fχ

the second term as

∇μðF̃μνfð0Þχ pνδ
0ðp2ÞÞ ¼ −QF̃μνFμνf

ð0Þ
χ δ0ðp2Þ − 2QF̃μνpνFμλpλfð0Þχ δ00ðp2Þ þ F̃μνpνð∇μf

ð0Þ
χ Þδ0ðp2Þ

¼ −QF̃μνFμνf
ð0Þ
χ δ0ðp2Þ − 1

2
QF̃μνFμνp2fð0Þχ δ00ðp2Þ þ F̃μνpνð∇μf

ð0Þ
χ Þδ0ðp2Þ

¼ F̃μνpνð∇μf
ð0Þ
χ Þδ0ðp2Þ;
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and the third term as

ϵμνλρ∇μ

�
1

p · n
nνpλð∇ρf

ð0Þ
χ Þδðp2Þ

�
¼ 2QF̃ρλpλð∇ρf

ð0Þ
χ Þδ0ðp2Þ þ 2Q

p · n
pλF̃λνnνδ0ðp2Þp · ∇fð0Þχ

−
1

ðp · nÞ2 ½ð∂μnσÞpσ −QFμαnα�ϵμνλρnνpλð∇ρf
ð0Þ
χ Þδðp2Þ

þ 1

p · n
ϵμνλρð∂μnνÞpλð∇ρf

ð0Þ
χ Þδðp2Þ − Q

p · n
pλð∂σF̃λνÞnνð∂σ

pf
ð0Þ
χ Þδðp2Þ:

In the above steps, we have used the relation p2δ0ðp2Þ ¼ −δðp2Þ, p2δ00ðp2Þ ¼ −2δ0ðp2Þ, the Bianchi identity
∇μF̃μν ¼ ∂μF̃μν ¼ 0, and 4F̃μνpνFμαpα ¼ p2F̃μνFμν, which can be easily proved by the Schouten identity (51). Also,
we have used the following relations:

ϵμνλρð∇μ∇ρf
ð0Þ
χ Þ ¼ 1

2
ϵμνλρ½∇μ;∇ρ�fð0Þχ ¼ Qð∂σF̃νλÞ∂σ

pf
ð0Þ
χ ;

2pαϵμνλρnνpλFμα ¼ −2ðp · nÞF̃ρλpλ þ 2p2F̃ρνnν − 2pλF̃λνnνpρ:

Finally, we obtain the following covariant chiral kinetic equation as the evolution equation for the distribution function fχ
up to ℏ-order quantum correction:

0 ¼ ∇μJμ ¼ δðp2Þp · ∇fχ − ℏ
χQ
p · n

pλF̃λνnνδ0ðp2Þp ·∇fð0Þχ

þ ℏ
χ

2ðp · nÞ2 ½ð∂μnσÞpσ −QFμαnα�ϵμνλρnνpλð∇ρf
ð0Þ
χ Þδðp2Þ

− ℏ
χ

2p · n
ϵμνλρð∂μnνÞpλð∇ρf

ð0Þ
χ Þδðp2Þ þ ℏ

χQ
2p · n

pλð∂σF̃λνÞnνð∂σ
pf

ð0Þ
χ Þδðp2Þ

¼ δ

�
p2 − ℏ

χQ
p · n

pλF̃λνnν

��
p · ∇þ ℏ

χ

2ðp · nÞ2 ½ð∂μnσÞpσ −QFμαnα�ϵμνλρnνpλ∇ρ

− ℏ
χ

2p · n
ϵμνλρð∂μnνÞpλ∇ρ þ ℏ

χQ
2p · n

pλð∂σF̃λνÞnν∂σ
p

�
fχ : ð64Þ

In the last step,weused theTaylor expansion in the δ function,
and we only keep terms up to the ℏ order. One
can see from the argument of the delta function that the
energy of the chiral particle has been shifted in ℏ order,
showing the effect of quantum correction. Equation (64)
is the complete and consistent covariant chiral kinetic equa-
tion.Notably, themass shell condition in thedelta functionhas
shifted from the classical case and receives an ℏ-order
quantum correction that has the physical interpretation of
magnetization energy due to interaction between the charged

chiral fermion’smagneticmoment with the externalmagnetic
field. Again, it is worth emphasizing that the expression of
distribution function fχ , or more strictly speaking the first-
order correction fð1Þχ , depends on the choice of nμ.

B. 3D chiral kinetic equation

In this subsection, let us consider a simplified case and
take nμ as a constant-homogeneous 4-vector uμ. In this
case, Eq. (64) can be written as

0 ¼ δ

�
p2 − ℏ

χQ
p · u

ðB · pÞ
��

pρ∇ρ − ℏ
χQ

2ðp · uÞ2 ϵ
μνλρEμuνpλ∇ρ þ ℏ

χQ
2p · u

pλð∂ρBλÞ∂ρ
p

�
fχ ; ð65Þ

where we introduce the notations Eμ ¼ Fμνuν, Bμ ¼ F̃μνuν. In addition, using the relations

Fμν ¼ Eμuν − Eνuμ þ ϵμνρσuρBσ;

ϵμνλρϵραβδ ¼ δμαδνβδ
λ
δ þ δμβδ

ν
δδ

λ
α þ δμδδ

ν
αδ

λ
β − δναδ

μ
βδ

λ
δ − δνβδ

μ
δδ

λ
α − δνδδ

μ
αδλβ;
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Eq. (65) can be reduced to

0 ¼ δ

�
p2 − ℏ

χQ
p · u

ðB · pÞ
���

pρ − ℏ
χQ

2ðp · uÞ2 ϵ
μνλρEμuνpλ

�
∂ρ

þQ

�
−ðE · pÞuρ þ ðp · uÞEρ þ ϵμνρσpμuνBσ

þ ℏ
χQ

2ðp · uÞ2 ððB · pÞEρ − ðE · BÞp̄ρÞ þ ℏ
χ

2p · u
pλð∂ρBλÞ

�
∂p
ρ

�
fχ : ð66Þ

One could further simplify the above equation by choosing nμ ¼ uμ ¼ ð1; 0; 0; 0Þ, which can be achieved by a proper
Lorentz transformation. In this frame, Eμ ¼ ð0;EÞ, Bμ ¼ ð0;BÞ, p̄ρ ¼ ð0;pÞ is the 3-momentum, p · u ¼ p0 is the energy,
B · p ¼ −B · p, E · p ¼ −E · p, and E · B ¼ −E · B. From the delta function of Eq. (66), we can get the shifted energy in
the external field up to ℏ order,

p0 ¼ ϵjpjð1 − ℏϵQB · bχÞ ¼ ϵEp; Ep ¼ jpjð1 − ℏϵQB · bχÞ; ð67Þ

where bχ ¼ χ p
2jpj3 is the Berry curvature, p̂ ¼ p=jpj is the unit vector of the momentum, and ϵ ¼ �1 correspond to the

particle with positive/negative energy. With the shifted energy, the group velocity of the quasiparticle becomes

ṽ ¼ ∂Ep

∂p ¼ p̂ð1þ 2ℏϵQB · bχÞ − ℏϵQbχB: ð68Þ

Note that the on-shell condition (67) constrains the energy in Eq. (66); hence, it is no longer a free variable in the
distribution function. By integrating Eq. (66) over p0, one arrives at the following three-dimensional chiral kinetic equation:

X
ϵ¼�1

ϵEp

2

�
1

Ep
∂t þ ϵ

�
pk

E2
p
þ ℏ

χQ
2E4

p
ϵijkEipj

�
∂k

þQ

�
Ek

Ep
þ ϵϵijk

pi

E2
p
Bj − ℏϵ

χQ
2E4

p
ððB · pÞEk − ðE · BÞpkÞ − ℏ

χ

2E3
p
ð∂kB · pÞ

�
∂p
k

þQ

�
−Ek pk

E2
p
− ℏϵ

χ

2E3
p
ð∂tB · pÞ

�
∂Ep

�
fϵχðx; Ep; ϵpÞ ¼ 0: ð69Þ

By expanding various powers of the energy Ep in ℏ and keeping terms up to the first order, one obtains

X
ϵ¼�1

ϵ

2
ð1 − ℏϵQB · bχÞ

�
ð1þ ℏϵQB · bχÞ∂t þ ϵðp̂kð1þ 2ℏϵQB · bχÞ þ ℏQϵijkEibχjÞ∂k

þQ

�
Ek þ 1

ϵQ
ð∂kEpÞ þ ϵϵijkp̂iBjð1þ 2ℏϵQB · bχÞ þ ℏϵQðE ·BÞbkχ

�
∂p
k

þ ½−QEk · p̂kð1þ 2ℏϵQB · bχÞ þ ð∂tEpÞ�∂Ep

�
fϵχðx; Ep; ϵpÞ ¼ 0: ð70Þ

The next step is to turn the energy-derivative terms into the derivative terms with respect to the actual independent
variables (i.e., space-time coordinates and 3-momentum):

X
ϵ¼�1

ϵ

2
ð1 − ℏϵQB · bχÞ

�
ð1þ ℏϵQB · bχÞð∂t þ ð∂tEpÞ∂Ep

Þ

þ ϵðp̂kð1þ 2ℏϵQB · bχÞ þ ℏQϵijkEibχjÞð∂k þ ð∂kEpÞ∂Ep
Þ

þQ

�
Ek þ 1

ϵQ
ð∂kEpÞ þ ϵϵijkp̂iBjð1þ 2ℏϵQB · bχÞ − ℏϵQðE · BÞbkχ

�
ð∂p

k þ ð∂p
kEpÞ∂Ep

Þ
�
fϵχðx; Ep; ϵpÞ ¼ 0: ð71Þ
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Using the expression ṽk ¼ −∂p
kEp, Eq. (71) can be further simplified,

X
ϵ¼�1

ϵ

2
ð1 − ℏϵQB · bχÞ

�
ð1þ ℏϵQB · bχÞð∂t þ ð∂tEpÞ∂Ep

Þ

þ ϵðṽk þ ℏϵQðṽ · bχÞBk þ ℏQϵijkEibχjÞð∂k þ ð∂kEpÞ∂Ep
Þ

þQ

�
Ek þ 1

ϵQ
ð∂kEpÞ þ ϵϵijkṽiBj þ ℏϵQðE · BÞbkχ

�
ð∂p

k þ ð∂p
kEpÞ∂Ep

Þ
�
fϵχðx; Ep; ϵpÞ ¼ 0: ð72Þ

It can be seen explicitly that by employing the chain rule

½∂t þ ð∂tEpÞ∂Ep
�fϵχðt;x; Ep; ϵpÞ ¼ ∂tfϵχðt;x; ϵpÞ;

½∂k þ ð∂kEpÞ∂Ep
�fϵχðt;x; Ep; ϵpÞ ¼ ∂kfϵχðt;x; ϵpÞ;

½∂p
k þ ð∂p

kEpÞ∂Ep
�fϵχðt;x; Ep; ϵpÞ ¼ ∂p

k f
ϵ
χðt;x; ϵpÞ

one can eventually remove the energy derivative terms and obtain

X
ϵ¼�1

ϵ

�
∂t þ ϵð1 − ℏϵQB · bχÞðṽk þ ℏϵQðṽ · bχÞBk þ ℏQϵijkEibχjÞ∂k

þQð1 − ℏϵQB · bχÞ
�
Ek þ 1

ϵQ
ð∂kEpÞ þ ϵϵijkṽiBj þ ℏϵQðE ·BÞbkχ

�
∂p
k

�
fϵχðt;x; ϵpÞ ¼ 0; ð73Þ

Contracting over all of index i, j, k ¼ 1, 2, 3 and replacing p by ϵp to convert distribution of a particle with negative energy
into that of an antiparticle, we can write the chiral kinetic equation for particle and antiparticle separately,�

∂t þ
1ffiffiffiffi
G

p ðṽ þ ℏQðṽ · bχÞBþ ℏQẼ × bχÞ ·∇x þ
ϵQffiffiffiffi
G

p ðẼþ ṽ ×Bþ ℏQðẼ ·BÞbχÞ ·∇p

�
fϵχðx;pÞ ¼ 0: ð74Þ

Here,
ffiffiffiffi
G

p ¼ ð1þ ℏQbχ ·BÞ corresponds to the Jacobian, and

Ẽ ¼ E −
1

ϵQ
∇xEp; Ep ¼ jpjð1 − ℏQB · bχÞ; ṽ ¼ ∂Ep

∂p ¼ p̂ð1þ 2ℏQB · bχÞ − ℏQbχB;

where the χ denotes the chiral or the helicity and fϵχ indicates the distribution function of a given chiral particle or
antiparticle. One can also convert Eq. (74) into the equation for particles with particular helicity h≡ ϵχ,

�
∂t þ

1ffiffiffiffi
G

p ðṽ þ ℏϵQðṽ · bhÞBþ ℏϵQẼ × bhÞ · ∇x þ
ϵQffiffiffiffi
G

p ðẼþ ṽ ×Bþ ℏϵQðẼ ·BÞbhÞ ·∇p

�
fϵhðx;pÞ ¼ 0: ð75Þ

This reproduces the well-known three-dimensional chiral kinetic equation [29,35,36], with the corresponding Jacobian,
energy, group velocity given by

ffiffiffiffi
G

p
¼ ð1þ ℏϵQbh · BÞ; Ẽ ¼ E −

1

ϵQ
∇xEp;

Ep ¼ jpjð1 − ℏϵQB · bhÞ; ṽ ¼ ∂Ep

∂p ¼ p̂ð1þ 2ℏϵQB · bhÞ − ℏϵQbhB:

Therefore, the chiral kinetic equation (75) is derived from a
complete and consistent analysis of the Wigner function
formalism with the semiclassical expansion method.

V. CONCLUSION

In this paper, we have derived a covariant and complete
solution (59) for the chiral component of the Wigner

function, along with the corresponding chiral transport
equation (64) for massless Dirac fermions, by starting from
the general Wigner function formalism and carrying out a
consistent semiclassical expansion up to ÔðℏÞ order. A
detailed proof is given for the general and unique solution
of the peculiar component Kμ in the ÔðℏÞ-order chiral
component of the Wigner function. In particular, this
new analysis clarifies exactly why and how the
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Lorentz-invariance and frame-dependence issues associ-
ated with the ÔðℏÞ correction to the phase space distribu-
tion function arise within a totally covariant framework.
From the so-obtained chiral transport equation, one also
naturally derives as its consequences the 3D formulation of
chiral kinetic theory as well as many special features of
chiral fermions such as the magnetization energy shift, the
Berry curvature, chiral anomaly, CME, etc. The covariant
chiral transport theory lays a firm conceptual foundation for
describing anomalous transport in the generally nonequili-
brium systems of chiral fermions.
We end by discussing a number of extensions and

applications within the current framework. First of all, it
is of great interest to explore higher-order quantum effects
beyond just the ÔðℏÞ order, and in this regard, the Wigner
function formalism has its unique advantage. Second, it is
also highly interesting to develop the equal-time quantum
transport theory [53] for chiral fermions in this framework.
The 3D chiral kinetic theory only preserves the zeroth
moment information of the four-dimensional theory, and
there is a whole hierarchy of equations for higher moments
of the four-dimensional theory that together forms the
equal-time transport theory, which turns four-dimensional
theory into a complete initial problem and is crucial for
phenomenological applications. Furthermore, while we
focus on the vector and axial components of the Wigner
function in this paper, the other components also bear
nontrivial physical meanings for physically relevant quan-
tities such as spin density and helicity density, which could
be readily studied with the same approach as in this paper
[60]. Additionally, in the current formalism, it is relatively
straightforward to incorporate fermion collision terms by
starting from a Dirac Lagrangian including interaction
terms [51,52], which is also important for phenomenology.
Last but not least, the role of a small nonzero mass (and
generally the quantum transport of massive fermions) could
be easily explored in the Wigner function formalism along
lines similar to the present study. These problems will be
investigated in the future.
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APPENDIX: DISCUSSIONS ON Kμ

In this Appendix, we discuss the solution of Kμ

[Eq. (58)] in Sec. III A. To obtain the first-order correction
of the chiral vector, we need to solve the vector Kμ

satisfying Eq. (57),

ϵμνρσpσð∇ρfð0Þχ Þδðp2Þ ¼ −2χðpμKν − pνKμÞδðp2Þ:
ðA1Þ

Let us denote Aρ ≡ 1
2
χð∇ρfð0Þχ Þδðp2Þ and Kμ ≡Kμδðp2Þ;

the equation becomes

ϵμνρσpσAρ ¼ −ðpμKν − pνKμÞ: ðA2Þ

Noting that the Vlasov equation as in Eq. (47),

δðp2Þpμ∇μf
ð0Þ
χ ¼ 0;

requires pμAμ ¼ 0, one can derive that

pμKμ ¼ 0; AμKμ ¼ 0:

This indicates that the unknown Kμ vector is orthogonal to
two known vectors Aμ and pμ orthogonal to each other, the
latter of which is a null vector. In principle, in the 3þ 1-
dimensional space-time, there should be unique solution
of Kμ, with an undetermined component parallel to pμ.
To see this, let us first consider a simplified case: if

taking the null vector pμ ¼ ðE;E; 0; 0Þ, then one could
always write down its orthogonal vectors as

Aμ ¼ ða; a; b; cÞ; Kμ ¼ ðk; k; d; fÞ;

and A, K’s being orthogonal yields bdþ cf ¼ 0, which is
similar to the two-dimensional orthogonal condition.
Substituting this in Eq. (A2), one could find

d ¼ −c; f ¼ b:

This indicates that for any given known pμ and Aρ ≡
1
2
χð∇ρfð0Þχ Þδðp2Þ we can fix Kμ except its component

parallel to pμ. As a matter of fact, such a conclusion is
valid not only in the frame in which pμ ¼ ðE;E; 0; 0Þ but
also in any general case. Being any null vector, pμ can
always be expressed by its direction angle θ and ϕ,

pμ ¼ Eð1; sin θ cosϕ; sin θ sinϕ; cos θÞ; ðA3Þ

hence, its two orthogonal vectors can be expanded in the
corresponding basis:
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Aμ ¼ að1; sin θ cosϕ; sin θ sinϕ; cos θÞ þ bð0; cos θ cosϕ; cos θ sinϕ;− sin θÞ þ cð0;− sinϕ; cosϕ; 0Þ; ðA4Þ

Kμ ¼ kð1; sin θ cosϕ; sin θ sinϕ; cos θÞ þ dð0; cos θ cosϕ; cos θ sinϕ;− sin θÞ þ fð0;− sinϕ; cosϕ; 0Þ: ðA5Þ
To solveKμ, we introduced an arbitrary auxiliary timelike vector nμ ¼ ðnt; nx; ny; nzÞ, normalized to unity, nμnμ ¼ 1, and

constructed the solution as in Eq. (58),

Kμ ¼ ϵμνρσpνnρAσ

n · p
: ðA6Þ

First of all, let us show that Eq. (A6) gives a valid solution to Eqs. (57) and (A2). Substituting the solution in the right-hand
side of Eq. (A2), one obtains

−ðpμKν − pνKμÞ ¼
pνϵμαρσpαnρAσ

n · p
−
pμϵναρσpαnρAσ

n · p
ðA7Þ

¼ pνϵμαρσpαnρAσ

n · p
þ pνϵαρσμpαnρAσ

n · p
þ pαϵρσμνpαnρAσ

n · p
þ pρϵσμναpαnρAσ

n · p
þ pσϵμναρpαnρAσ

n · p
ðA8Þ

¼ pνϵμαρσpαnρAσ

n · p
−
pνϵμαρσpαnρAσ

n · p
þ ðp · pÞϵρσμνnρAσ

n · p
þ ðn · pÞϵσμναpαAσ

n · p
þ 0 ðA9Þ

¼ ϵμνρσpσAρ; ðA10Þ

which satisfies the equality.
Second, after some tedious but straightforward steps, one can compute the coefficients in Eq. (A5) as

d ¼ −c; ðA11Þ

f ¼ b; ðA12Þ

k ¼ bð−nx sinϕþ ny cosϕÞ − cðnx cos θ cosϕþ ny cos θ sinϕ − nz sin θÞ
p · n

: ðA13Þ

We can see explicitly that no matter what nμ field we
choose it gives the same component ofKμ orthogonal to the
momentum pμ. It shows that Eq. (58) gives a valid and
complete solution of Kμ, as long as we constrain nμ to be
timelike, which ensures p · n ≠ 0.
On the other hand, as can be seen in Eq. (A13), different

nμ influence the component parallel to pμ. To understand
the role of nμ and why it may cause ambiguity inKμ, let us

carefully consider the decomposition Hμ ≡ pμfð1Þχ þKμ,
trying to separate the vector Hμ orthogonal to pμ into two
parts. This decomposition is, however, subtle due to the
lightlike nature of p, pμpμ ¼ 0; i.e., p is “self-orthogonal.”
It is worth commenting that this lightlike feature is of
course ultimately because the chiral fermion is massless. To
avoid ambiguity of the decomposition, one can always

ensure that fð1Þχ contains all pμ-parallel components by
constraining

p0K0 −
X3
i¼1

piKi ¼ 0; p0K0 þ
X3
i¼1

piKi ¼ 0;

or equivalently

p ·K ¼ 0; K0 ¼ 0: ðA14Þ

Such a requirement can be achieved by taking nμ ¼
ð1; 0; 0; 0Þ, which yields k ¼ 0 in Eq. (A13), and

Kμ ¼ ϵμνρσpνnρð∇σf
ð0Þ
χ Þ

2χðn · pÞ
				
n¼ð1;0;0;0Þ

¼
�
0;−

χ

2jpjp × ð∇fð0Þχ Þ
�
: ðA15Þ
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For an observer in the lab frame, Eq. (A15) gives the
complete decomposition of Hμ. However, this is not the
end of the story—such a characteristic is not boost
invariant, due to the fact that the requirement of “ortho-
gonality” is not Lorentz invariant. One can find a
vector Kμ orthogonal to a null vector pμ by restricting
K0 ¼ 0, p ·K ¼ 0, but it is impossible to maintainK00 ¼
0 under arbitrary Lorentz transformation K0μ ¼ Λμ

νKν,
p0μ ¼ Λμ

νpν. To see this explicitly, for an observer moving
with velocity uμ, the transformation Λμ

ν is given by the
element in the (μþ 1)th row, (νþ 1)th column of the
matrix,

0
BBBBB@

ut −ux −uy −uz

−ux 1þ uxux
1þut

uxuy
1þut

uxuz
1þut

−uy uyux
1þut 1þ uyuy

1þut
uyuz
1þut

−uz uzux
1þut

uzuy
1þut 1þ uzuz

1þut

1
CCCCCA
; ðA16Þ

while in his local rest frame,

K00 ¼ Λ0
νK

ν ¼ χ

2jpju · p × ð∇fð0Þχ Þ

¼ χ

2jpj ðu × pÞ · ð∇fð0Þχ Þ ≠ 0: ðA17Þ

Hence, the decomposition of Hμ is frame dependent,
and one should determine fð1Þχ and Kμ differently, with
respect to different frame. As a matter of fact, for
the observer moving with velocity uμ, one can construct
Kμ as

Kμ ¼ χ

2u · p
ϵμνρσpνuρð∇σf

ð0Þ
χ Þ; ðA18Þ

where the time component of vectorK vanishes in his local
rest frame:

K00 ¼ Λ0
νKν ¼ uν

�
χ

2u · p
ϵνμρσpμuρð∇σf

ð0Þ
χ Þ

�

¼ χ

2u · p
ϵνμρσpμuνuρð∇σf

ð0Þ
χ Þ ¼ 0: ðA19Þ

Actually, it is more obvious if one expresses all quantities in
the observer’s local rest frame:

K0μ ¼ Λμ
ν

χ

2u · p
ϵνλρσpλuρð∇σf

ð0Þ
χ Þ

¼ χ

2u0 · p0 Λ
μ
νΛν

αΛλ
βΛ

ρ
κΛσ

δϵ
αβκδpλuρð∇σf

ð0Þ
χ Þ

¼ χ

2u0 · p0 ϵ
μβκδp0

βu
0
κð∇0

δf
ð0Þ
χ Þ

¼ χ

2u0 · p0 ϵ
μνρσp0

νu0ρð∇0
σf

ð0Þ
χ Þju0¼ð1;0;0;0Þ

¼
�
0;−

χ

2jp0jp
0 × ð∇0fð0Þχ Þ

�
: ðA20Þ

Consequently, one can see that constructing Kμ as in
Eq. (58) with arbitrary timelike vector nμ has the following
physical meaning: for an observer moving with velocity

uμ ¼ nμ, Kμ ≡ ϵμνρσpνnρð∇σf
ð0Þ
χ Þ

2χðn·pÞ contains no pμ-parallel com-

ponent in his local rest frame. It gives a complete decom-

position of Hμ, and fð1Þχ corresponds to the first-order
correction of the distribution function observed in this
frame. This reflects the frame dependence of spin tensor
Sμν ≡ λ

ϵμνρσpρnσ
p·n as mentioned in Refs. [29,35,36].

It is worth mentioning that Kμ in Eq. (58) is a vector
defined in the lab frame, and once n is fixed, it transforms
like a Lorentz vector under boost transformation. It has the
meaning of what is known by an observer in the lab frame
about the proper decomposition for another observer moving
with velocity n. As illustrated in Eqs. (A11)–(A13), the Kμ

vectors, corresponding to observers moving with velocities u
and v, respectively, differ with a pμ-parallel component:

Kμ
½u� −Kμ

½v� ¼
χ

2u · p
ϵμνρσpνuρð∇σf

ð0Þ
χ Þ − χ

2v · p
ϵμνρσpνvρð∇σf

ð0Þ
χ Þ ðA21Þ

¼ χ

2ðu · pÞðv · pÞ ½vαp
αϵμνρσpνuρð∇σf

ð0Þ
χ Þ − uαpαϵμνρσpνvρð∇σf

ð0Þ
χ Þ� ðA22Þ

¼ χ

2ðu · pÞðv · pÞ ½vαp
αϵμνρσpνuρð∇σf

ð0Þ
χ Þ þ uαpμϵνρσαpνvρð∇σf

ð0Þ
χ Þ þ uαpνϵρσαμpνvρð∇σf

ð0Þ
χ Þ

þ uαpρϵσαμνpνvρð∇σf
ð0Þ
χ Þ þ uαpσϵαμνρpνvρð∇σf

ð0Þ
χ Þ ðA23Þ

¼ χ

2ðu · pÞðv · pÞ ½vαp
αϵμνρσpνuρð∇σf

ð0Þ
χ Þ þ pμϵναρσpνuαvρð∇σf

ð0Þ
χ Þ þ ðp · pÞϵμρασvρuαð∇σf

ð0Þ
χ Þ

− vρpρϵμνασpνuαð∇σf
ð0Þ
χ Þ þ ϵμναρpνuαvρðp ·∇fð0Þχ Þ� ðA24Þ

¼ χϵναρσpνuαvρð∇σf
ð0Þ
χ Þ

2ðu · pÞðv · pÞ pμ: ðA25Þ
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Noting that the vector Hμ should be frame independent,

Hμ
½u� ¼ Kμ

½u� þ pμfð1Þ½u�;χ ≡Hμ
½v� ¼ Kμ

½v� þ pμfð1Þ½v�;χ ; ðA26Þ

one can explicitly see the difference between distributions observed in the u and v frames:

f½u�;χ − f½v�;χ ¼ ℏðfð1Þ½u�;χ − fð1Þ½v�;χÞ ¼ −
ℏχϵναρσpνuαvρð∇σf

ð0Þ
χ Þ

2ðu · pÞðv · pÞ : ðA27Þ
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