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Recently, there has been significant interest in understanding the macroscopic quantum transport in a
many-body system of chiral fermions. A natural framework for describing such a system that is generally
out of equilibrium is the transport equation for its phase space distribution function. In this paper, we obtain
a complete solution of the covariant chiral transport for massless fermions, by starting from the general
Wigner function formalism and carrying out a complete and consistent semiclassical expansion up to O(h)
order. In particular, we clarify certain subtle and confusing issues surrounding the Lorentz noninvariance
and frame dependence associated with the three-dimensional chiral kinetic theory. We prove that such
frame dependence is uniquely and completely fixed by an unambiguous definition of the f)(fz) correction to

the distribution function in each reference frame.
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I. INTRODUCTION

The many-body physics of massless fermions has
attracted significant interest in a wide range of commun-
ities, from condensed matter physics to high-energy heavy
ion collisions. In particular, the microscopic quantum
anomaly of such chiral fermions can induce highly non-
trivial macroscopic transport phenomena, such as the
notable example of the chiral magnetic effect (CME)
[1-4] as well as the chiral vortical effect [5-7]. These
effects have been extensively studied using various many-
body theoretical tools [5,8—19]. Enthusiastic efforts have
also been made to experimentally measure such anomalous
chiral transport effects, both in the so-called Dirac or Weyl
semimetals and in the so-called quark-gluon plasma created
via heavy ion collisions. For reviews on recent develop-
ments, see, e.g., Refs. [20-24].

An important aspect of the many-body theory for
anomalous chiral transport is to describe the out-of-
equilibrium situation. The natural framework is the kinetic
theory based on transport equations for the phase space
distribution function of such a system. Different from usual
classical kinetic theory [25], a proper description of the
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chiral fermions must account for intrinsic quantum and
relativistic effects. A lot of progress has been achieved
lately to develop such a chiral kinetic theory; see, e.g.,
Refs. [26—40]. There also exist a lot of phenomenological
interest and attempts to study anomalous chiral transport in
the out-of-equilibrium setting [41-50]. The transport theory
of chiral fermions, however, bears unusual subtlety and
poses a number of challenges, particularly related to
Lorentz invariance and frame dependence. A resolution
was developed in the three-dimensional (3D) formulation
of chiral kinetic theory [29,30,35], but the origin of such
issues remains cloudy. It is highly desirable to develop a
transport theory of chiral fermions in a completely covar-
iant fashion and to identify the precise reason of these
complications.

A natural approach is to derive the quantum transport
equation for chiral fermions in the well-known Wigner
function formalism by a systematic semiclassical expansion
in terms of 7 [51-56]. We shall adopt this approach in the
present paper. We will systematically derive the chiral
transport equations for a general out-of-equilibrium system
of collisionless massless fermions, under external electro-
magnetic fields that are generally space-time dependent.
The starting point is the Wigner function and the kinetic
equation for Winger function and its 16 components, such
as the vector ’“7”, axial vector dﬂ, scalar &, pseudoscalar
P, and antisymmetry tensor Z*. These 16 components
would be decoupled for the chiral fermion system. We will
focus on the set of equations for vector 7* and axial vector
/" components. By carrying out the semiclassical expan-
sion for all the operators and functions, one can then derive
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a covariant set of chiral transport equations to 7 order. In
particular, this detailed derivation will allow a clear under-
standing, within a totally covariant framework, of the origin
for the rather confusing Lorentz-invariance and frame-
dependence issues as well as the emergence of the Berry
phase, Berry curvature and anomalous terms in the 3D
formulation of chiral kinetic theory. In fact, we will prove
that such frame dependence is uniquely and completely
fixed by an unambiguous definition of the O(#) correction
to the distribution function in each reference frame.

The paper is organized as follows. In Sec. II, we briefly
review the Wigner function formalism and the kinetic
equations for the 16 components of Wigner function. In
Sec. III, these equations are decoupled and decompose to
two sets of equations for the massless case, and we focus on
the semiclassical expansion for the chiral currents. With the
obtained constraint equations, we construct the most
general solutions and discuss the frame-dependence issue.
In Sec. IV, we present the covariant chiral transport
equations as well as their 3D formulation. Finally, we
conclude the paper in In Sec. V. An Appendix is also
included to particularly prove in great technical details the
completeness and uniqueness of the found O(#) solution to
the constraint equations, which is crucial for understanding
the frame-dependence issue.

II. QUANTUM KINETIC EQUATIONS IN THE
WIGNER FUNCTION FORMALISM

The bridge connecting quantum field theory to relativ-
istic kinetic theory is the Wigner function [55,57]. For the
Dirac field y with charge Q, the general gauge-invariant
Wigner operator is defined as

4
Woplx. p) = / %e-%ﬂ'ywﬁ<x+>v<x+,x_>wa<x_>, (1)

where a and f are spinor indices. Also, the gauge link U
between x. = x 4+ y/2 is introduced to ensure the gauge
invariance of the Wigner operator. It is defined as

U(xp,x_) = P~ Jo dshy(v=5s) 2

where the path-ordering operator P can be dropped for
Abelian A* fields. In this work, we keep the Planck
constant 7 in various places to show the quantum effect
explicitly.

Then, one can construct the Winger function, as the
expectation value of the Wigner operator

Wa/i<x7 p) = <Wa/3(x’ p>>’ (3)

where (---) means the expectation over a given quantum
state, or the average over an ensemble of quantum states.

In this work, we consider a collisionless system in a
background electromagnetic field A*. In this case, the
Wigner function satisfies the quantum kinetic equation [55]

(K=m)W(x, p) =0, (4)
where K = y*K,, K, = 7, +%mv,,, and

1 1
”ﬂ:p”_EQh.ll <§hA>FﬂV85’ (5)

Vi — 0~ Qjy (% m) Frap. ()

Note that in the triangle operator A = 0, - 9,,, 9, acts only
on electromagnetic tensor F,, = A — 9"A¥, while 0,
acts only on W(x, p). In addition, j,(x) = x~!sin(x) and
ji(x) = x%sin(x) — x~' cos(x) are the spherical Bessel
functions that are generated by the y integrations. In general
combining with the Maxwell equation, the quantum kinetic
equation of the Wigner function (4) is equivalent to the
QED field theory.

To connect Eq. (4) with kinetic theory, one needs to
obtain explicitly the equations of all elements of the Wigner
function, which is a 4 x 4 matrix. To do that, one can
decompose the W(x, p) in terms of the 16 generators of the
Clifford algebra, choosing the convention basis as follows:

T4 = Ly" iy, vy, o,
Io=1 Vs —iys, V5V Opw- (7)

In this basis, the Wigner function is expanded as

1 . 1
W= 2 (9/7 +iPP+ PV, YA, + 50'””3”,,), (8)

where these 16 components are given by

F(x,p) =uW(x, p),
P(x,p) = —itr[ysW(x, p)],
7,(x.p) = tly,W(x, p)].
d,(x, p) = telysy, W(x. p)],
Zw(x. p) =tulo,W(x, p)] = =Z,,(x,p).  (9)

Noting that the Wigner function satisfies Hermiticity
relations WT(x, p) = y"W(x, p)y° in the same way as
the T',’s (T}, = y°T",7%), all these 16 components are real,
and they behave as the scalar, pseudoscalar, vector, axial
vector, and antisymmetric tensor, respectively, under
Lorentz transformation. Each of these 16 components is
connected with a corresponding physical quantity [51,58].
Explicitly speaking, the vector V, and axial vector A, can
be used to construct the current density J#, axial current
density J%, and energy-momentum tensor T+,
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() = )Py = / & pe(p W, p)) = / & pVH(x. p).

F) = P rw) = - / & ple(5 Y W (x. p)) = — / & pti(x. p).

T (x) = S D — Dy () = / & pp (W (x, p)) = / & pp 7 (x. p), (10)

with the covariant derivative D# = o + iQA* (where Q is the charge of fermion and A* is the vector potential). Note that
the above definition of the energy-momentum tensor is the so-called canonical definition, which in principle should be
further symmetrized in the Lorentz indices x and v as is typically done in quantum field theory textbooks.

Now, we can derive the kinetic equations for these 16 coefficients explicitly. Substituting the decomposed Wigner
function (8) into Eq. (4), one obtains

1
0= (y”KW%” +irPK,2 + K7, + vy rK, o, + Ey”(;””K”SBW)
1
—m<9+ PP+ Y, +1rd, +§aﬂ”3ﬂb>. (11)

Next, we will use the properties of the y matrices [with the metric convention ¢** = diag(1, -1, —1, —1) and the Levi-Civita

antisymmetric tensor €13 = —¢j 03 = 1],
{r.ry=0.  {r.r}=20" M =gv-ic",

i
v.,5 Vo, O U . OV oV ; VO 5
O—/“ — Eeﬂ pgo_p, 4 U# — /4}/ — g 7/” _I_ leﬂ pyﬂy s

to cast terms with multiple y matrices into the I', basis:
i
KV, =K, 7" - EGﬂD(KH%U ~K, 7).
1
P77 Kt = =iliy ) Kol + = €00 K,

e’K,Z,, = 2ipK*Z,, + ¢

5 cp
wop?V' v KL

These relations allow us to simplify Eq. (11) as
(K, 7" —mF) + iy’ (—iK,&* — mP) + r*(K,F - iK*"L,, —m7,)

1 1
+ yhyd (iKﬂg’ +-e€,,,,K' FP — m&fﬂ> + Eaﬂ”(—i(KﬂV,/ -K,7,) + €, K°d* —mZ,,) = 0. (12)

2 Hvop

|
From the orthogonality of the {I,} basis, i.e.,  Furthermore, as K/ = z# —l—%ihV/‘ is complex while all
tr([',I",) = 45,,, one can prove that all “elements” of  components of the Wigner function are real, one could
the above “matrix” should be zero, i.e., further separate the above equations with the real and
imaginary parts. The real parts give

0 =K, 7" - mZ, (13)
m%F = '?,, (18)
0 = iK, " + mP, (14) 2mP = hVid,, (19)
_ g _ KV _ 1
0=K,7 - iK%, -m7,, (13) T, = mF AV L, (20)
: 1 v po
0= iK, P+ €0, K L7 —ml,. (16) 2mdl, = =iV, P + €,,,7* L, (21)
1
0=iK, 7, -K,7,) — €, KA +mZ,,. (17) mZy, = Eh(vl'%l’ =VuT) + €uapn s’ (22)
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while the imaginary parts lead to

AV, =0, (23)
2, =0, (24)

1 (@78 v
Efzvﬂj =1L, (25)

1
1,P = - 1 he,, V' L7, (26)
1

n,V,-n,7, = Ehem,,vw. (27)

The above results are the complete quantum Kkinetic
equations [51-55], as shown in Egs. (18)—(27), in terms
of the 16 components of the Wigner function that are
coupled with each other. In the next section, we will focus
on the massless case to further simplify the kinetic
equations.

III. CHIRAL TRANSPORT EQUATIONS
AND THE GENERAL SOLUTIONS

In this section, we consider a system of chiral fermions
with m = 0. In this case, the quantum kinetic equations
in Egs. (18)—(27) get partially decoupled. One can see
explicitly that they are separated into two groups: a set of
equations describing the evolution of scalar %, pseudo-
scalar &, and antisymmetry tensor Z£** components,

1
mF + 3V L, =0,
1
zhvﬂg—ﬂ gﬂl/ == O,
~hV, P + €6

Ve =0, (28)

'L =0,
1
7, P+ 1 he

Hvpo

and another set for vector ‘7,, and axial vector ,szi,,
components,

7, =0, o, =0,
AR, =0. AV, =0,
he o V'Y = 2(m, A, — m,9d,),
he VPl =2(n, 7, — 1,7 ). (29)

Noting the specific patterns of vector (scalar) and axial-
vector (pseudoscalar) terms, one could further simplify the
above two sets of equations by introducing the “chiral
basis” [34,54] via

1
&MV _1 pH 1 Hvop Qp
X _E +I§€ op |
1
T =5 (7 = yatv), (30)

where y = £1 corresponds to the chirality of massless
fermion. In such a chiral basis, Eq. (28) can be further
decomposed, in which the right-handed (RH) and left-
handed (LH) components get decoupled:

1

7, T4+ 5 AV S = 0, (31)
Uy 1

7, Sy 5 VT, = 0. (32)

Similarly, Eq. (29) can be recast into RH and LH sectors:

he;wpavpj; = —2)((”;;07)5 - ”z/j)li)’ (33)
w7 =0, (34)
Vgl = 0. (35)

The decoupling of the RH and LH components in these
equations reflects a basic property of massless fermions: for
the massless Dirac fermions, the RH and LH sectors can be
completely separated in the Lagrangian.

As the main purpose of this paper is to study the chiral
transport effects, we will focus on the equations for the
chiral components 7%, namely, Egs. (33)-(35) in the
following. We note in passing that the chiral components
J% can be directly related to the physical chiral currents:

(J* +xJ5). (36

N[ =

Sy = r'rw,) = / d*p 7Yy =

Here, y, = P,y and w, = yP_,, with P, = (1 + xy°)/2
being the chirality projection operators.

A. Semiclassical expansion

We now derive the chiral kinetic equation, by starting
from Eqs. (33)—(35) and utilizing the semiclassical expan-
sion method [55]. To do this, one needs to expand both
operators and Wigner function components in the evolution
equations order by order in terms of 7. First of all, let us
expand the operators 7* and V* in powers of #, by using the
Taylor expansion of the spherical Bessel function j, and j;
in terms of $7AA, with jo(x) =1-x2/6+ O(x*) and
J1(x) =x/3 = x3/30 + O(x°):
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1 1 1
7= p =3 Ohj) ( f‘A) FrOf = pt == OIPAF™0] + O(h*),

2

1 1
Vi = 0" — Qjp <§ hA> FrO) = 0 — QP O] + 5 QP A’ F0] + O(h). (37)

The truncation of this expansion series would be justified
when 170, F* -9,W(x,p)| < |[F*W(x,p)|. In other
words, the electromagnetic field F** and Wigner function
W(x, p) should vary smoothly enough in coordinate space
x and momentum space p, respectively [55,59]. It should
be emphasized that, starting from here through the rest of
this paper, we will use the notation V¥ to represent its
zeroth-order truncation, i.e., V¥ — 9* — QF*0F.

We next write down an expansion of #} also in powers
of A, i.e.,

Top = Fon+ 0T+ RFL +O0).  (38)

By substituting the operators in Eq. (37) and chiral
component in Eq. (38) into Egs. (33)—(35), one obtains

0 0
h \V/ (0)o 2 (1) _ (1) 0) h2
+ [e/wpo‘ j){ + )((Pﬂj){sl’ pvf){#)] + ( )’

(39)
0= [p* 750 + h[pt Feh)] + O(#2), (40)
0 = [VEZ] + h[VF 700] + O(1?). (41)

Just as with the strategy in perturbation theory, one can then
match the terms in the above equations at each given order
of 7 and obtain an infinite series of equations order by
order. In this paper, we will only deal with the two leading
orders, i.e., the order A’ equations and the order A'
equations.

Let us first examine the zeroth-order equations:

0= P,,fﬁ(,)u) - p I, (42)
0=p g, (43)
0= Vi), (44)

Equations (42) and (43) are the constraint conditions for the
current 7 )((O,l, the former requires that 7 )((0,1 must be parallel
to p,, ie., f;(fo,z = p,S(x, p), where S is a certain arbitrary
scalar function, and the latter further demands that

p*S(x, p) = 0. These conditions uniquely fix the general
form of the zeroth-order current to be

T = pufy)8(p%). (45)

together with the classical on-shell condition as reflected in

the delta function. Apparently, f )((0) is the classical phase-
space distribution function, which can be further decom-
posed as

) =0 (voep).  (46)
e==+1

where € = £1 corresponds to particle with positive/
negative energy.

Finally, by substituting Eq. (45) into the evolution
equation (44), one obtains the zeroth-order transport
equation,

S(p2) PV, ) = 8(p?)p (8, — OF, ) fY) =0,  (47)

which is the classical covariant Vlasov equation. Note that
in deriving the above result we have used the relations
concerning derivative terms, V¥p, = —QF}, = 0 as well as

pufy VH8(p?) = =20p, F*p, "8 (p*) = 0, both van-
ishing by virtue of the antisymmetric nature of the
electromagnetic field tensor.

B. 7i-order constraint equations and general solutions

We now move on to examine the first-order equations, as
follows:

0= €upe VP IV + 20 (p, I = pIL0),  (48)
_ ugl)

O0=p j)(»l“ (49)
_ wu g1

0=Vt g7, 4. (50)

Here, Eq. (48) gives the connection between the zeroth and
first orders of 7,. Noting that

Vﬂj)({())" — —QF/mf)((O>5(p2) + p”(vﬂf)((()))(s(pz)
—20F p,p°f}8 (p?)

and using the Schouten identity

pyeupo’l + puepo'ﬂﬂ + p/)eo'ﬂ;w + pﬂeﬂﬂy[) + pieﬂupo' = 0’

(51)
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we obtain

upaF o0 f 8 (p2) = puF o £ (p?) = p,Eup? Y8 (p2) + p2E,, £8 (p?),
) (0)o = 40 oo 20 o (0
e;wpo'v/j)((> = _2QF;wf)(( >5(p2) + €upeD (v/f)({ >)5(p2) - 2Q€;w/)0'Fﬂ/1p/1p f)<{ )5/(172)’
. 0 = = 5 (0
= el (V2)8(p?) = 20(puF s — PLE,o) 738 (7).

Here, &' (p?) = d&(p?)/dp?, and we have used the relation p?§'(p?) = —5(p?). Now, Eq. (48) becomes

€upol” (V2 1V8(p?) = 20(PuF o = PUEue) PO (P2) = =20(pu TS = PLT L)) (52)

Contracting both sides of the above equation with p* and
using Eq. (49), one can derive that

P(QF otV (p?) —x 70 =0; (53)

hence, the most general solution to the above constraint
equation can be written as

Iy = ,68(p*) + xOF,p £ (p?).  (54)

In the above, the #, is an arbitrary Lorentz vector. By
using the second constraint (49), one arrives at

P'#,5(p?) = 0. (55)

Because of the special nature of lightlike momentum p* =
(Ip], p) (as mandated by the delta function), there are three
categories of vectors that can satisfy the above equation:
one parallel to p, itself and the other two taking the form
(0,K) with the spatial component satisfying K-p = 0.
Thus, one can decompose #, into components that are
parallel/orthogonal to the momentum p* respectively:

%/4 :pyf)(fl)+‘%ﬂ' (56)

Here, f )((]) has the natural interpretation as the first-order

correction to f’ 5(0) by comparing the above with the zeroth-
order Eq. (45). To solve the orthogonal part %#*, one can

substitute the representation of 7 ,(,1} into Eq. (52) and get
the following constraint equation for JZ*:

€upel” (VP FNS(p?) = =20 (P, — P, T ,)S(p?). (57)

The most general solution of %, can be expressed as

_ X varap ¢0)
Fy = 2y mioP (VP f7), (58)

where an arbitrary auxiliary timelike unit vector n*
(satisfying n*n, = 1) has been introduced. It should be

[
noted that the above is the correct solution to the constraint
equations even for space time—dependent n*(x). A detailed
proof of this solution is included in Appendix. The meaning
of n* and the pertinent frame-dependence issue will be
discussed in the next subsection.

Finally, we can combine the solutions to the zeroth- and
first-order constraint equations and write down the follow-
ing expression of 7, up to the first order of #:

= pif,8(p?) + iy QF* p, 8 (p?)

X y 0
—h 2p-n e,y (V,f )8 p?). (59)
Here, F/“’ = %eﬂyﬂaF/m is the dual tensor of F**. We have

introduced the distribution function f, including %-order
quantum correction,

fo=10 +nf,

which can also be decomposed into positive/negative

energy parts, like Eq. (45), f,(x. p) = 34, 0(ep®)f5 x
(x,€ep). Now, the chiral current is given by

T = / dp gl =IO+ (60)
with the zeroth-order J\""* and first-order J|'* expressed as
1 = [ dppse%),

I = / d*pp f5(p?) + yQF™ / Epp, 8 (p?)

1
Lowen, [ @y, (61

Similarly, one can also get the expression of the vector/axial
currents and energy-momentum tensor from 7.
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C. Lorentz invariance and frame dependence

In the solution for #* in Eq. (58), an arbitrary auxiliary
quantity n* appears to be a free choice at our disposal
without clear physical meaning. A more careful examina-
tion reveals that the quantity n* actually plays a subtle yet
crucial role in the chiral transport, especially pertaining to
the confusing issues of Lorentz invariance and frame
dependence, which we shall discuss next.

To understand the role of n#, let us come back to the
decomposition of #, in Eq. (56), i.e., Z, = pﬂf;((n + Ky
As already mentioned above and as discussed with great
detail in Appendix, this decomposition is subtle due to the
lightlike nature of the p#. To unambiguously identify the
first-order correction to the distribution function, one must
demand that the part along p, should be attributed to the

distribution term f’ )((1) while the rest should be attributed to
the %, term. In fact, such a requirement completely fixes

the form of % ,. For a uniquely defined f ;((U, the %, must
take the form (0, K) with the spatial component satisfying
K - p = 0. Combining this requirement with Eq. (58), one
arrives at the unique choice n* = (1,0,0,0) and the
corresponding %, below:

%, - (o,ﬁp x (%5“))). (62)

This, however, is not the end of the story. While the
above construction gives well-defined f ;((U p, and #, in the
current reference frame, this decomposition is actually
frame dependent. To appreciate this less obvious subtlety,
suppose in the current frame there is a vector %, = (0, K)
that satisfies orthogonality to p, via K-p = 0. But upon
boosting into a different frame with both p, and %,
transformed as Lorentz vectors into p’ and #’, one finds
that in general %’ acquires a component along p’, despite

|

0=V,7

the fact that they still satisfy %’ - p’ = 0. That means one
has to redo the proper decomposition in the new reference
frame and find a different #” = (0,K”) satisfying
K” - p’ = 0. This issue again arises from the lightlike
nature of p,.

A lengthy calculation in Appendix proves that if one
boosts from the current frame to a different frame of 4-
velocity u* (with respect to the current frame) then the %,
from proper decomposition in this new frame should be
precisely and uniquely given by Eq. (58) with the identi-

fication n* — u#, which leaves a well-defined f )((1) in this
new reference frame. Hence, the role of n# now becomes
clear. This result also explicates the fact that the distribution

term f,(fl) becomes frame dependent as well. While the
distribution function in usual transport theory is a Lorentz
scalar, here it is demonstrated clearly that in chiral transport
theory a nontrivial frame dependence of the distribution

function arises precisely at the O(h)—order correction and in
the specific way discussed above.

In short, the Wigner function formalism is in itself totally
covariant, and it is the decomposition of # u that introduces

frame dependence. The unique identification of f )({1)
requires the J#* to contain no p*-parallel component while
this requirement is frame dependent. For an observer with
velocity u” = n#, Eq. (58) gives the correct F#*. The
peculiar structure of #* also clarifies the frame depend-
ence of spin tensor $** and the side-jump effect [30,35,36].

IV. COVARIANT CHIRAL
TRANSPORT EQUATION

A. Covariant chiral transport equation

In this subsection, we focus on deriving the covariant
chiral transport equation up to 7 order, which can be
obtained by substituting Eq. (59) into Eq. (35):

- 1
= VL (P"£,6(p%) + 12 QV, (P £ p,3 (p*)) = hE eV, (ﬁ m(vpf;(’))é(pz)). (63)

One can further simplify the first term of the above equation as

vﬂ(pﬂfxé(lﬂ)) = 5(P2)p : vf;(

the second term as

V(FfY p,8 (p?) = —QF*F,, 18 (p?) = 20F" p,F,p 18" (p?) + B p, (V. £0)8 (p?)

- | -
= —QFF,u 8 (p?) =5 QP Foup* 18 (p?) + F* p, (V)8 (p?)

= Fﬂypy(vﬂf)((()))(sl(pz)»
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and the third term as

1 -
W, (M mm(vpff’)a(p%) = 2077 p,(V,1")8 (p?)

1
(p-n)

1 -
o @O ) (V) = = (O F (0

p-n

In the above steps, we have used the relation p2§'(p>

V, % = 0,F" = 0, and 4F% p,F,,p® = p2FWF

%
we have used the following relations:

et (V1)

2p%e" P n,p,F

2 [(8/4’10)])6 -

1
—EG’M”[V V]

20 ) 0)
v
D )P f;{

+ on piF*n,s (p

QFpana]eﬂyipnyp/l (vpf)((O) )5(172)

Q ? F0)6(p?).

= =6(p?), p*8"(p*) = —28(p?), the Bianchi identity

which can be easily proved by the Schouten identity (51). Also,

= Q(0,F")05 fx ,

=2(p-n)FPp, +2p*Fn, = 2p,F*n,p,.

Finally, we obtain the following covariant chiral kinetic equation as the evolution equation for the distribution function f,

up to fi-order quantum correction:

)(Q

0=V, 7" =8(p)p V= 2=

X o
+ hm [(3,4"0)17 - QF,

—h

2p-n

—5<p2—fz;{—'an,1F’1”nb> {p-V—I—h

X
-n
2p

In the last step, we used the Taylor expansion in the 6 function,
and we only keep terms up to the # order. One
can see from the argument of the delta function that the
energy of the chiral particle has been shifted in 7 order,
showing the effect of quantum correction. Equation (64)
is the complete and consistent covariant chiral kinetic equa-
tion. Notably, the mass shell condition in the delta function has
shifted from the classical case and receives an A-order
quantum correction that has the physical interpretation of
magnetization energy due to interaction between the charged
|

0=o(r =02 (8- p) ) {13 22,

2(p

FMTLD5/ (p2

0 (0,m,)ps (V) )3(07) + 22

y X0
neu iﬂ((aﬂny)pﬂvp + th .

)2

)p - VY

na]S””ﬂpnypl(vﬂf)((o) )5(172)

=0, ), (031,”)8(p)

[(0,n4)P° — QF ,qn®|e"*n,p,V,,

a
2(p-n)?
m(aaﬁ”)nu@z}ff (64

I

chiral fermion’s magnetic moment with the external magnetic
field. Again, it is worth emphasizing that the expression of
distribution function f,,, or more strictly speaking the first-
order correction f 5{ , depends on the choice of n”.

B. 3D chiral kinetic equation

In this subsection, let us consider a simplified case and
take n* as a constant-homogeneous 4-vector u*. In this
case, Eq. (64) can be written as

0 E,u,p,, + 00 (0,8 }f (65)

where we introduce the notations E¥ = F*u,, B* = F**yu,. In addition, using the relations

F* = Bru¥ — EYu¥ + °u,B,,

eHvrr ¢

paps = 0ady0s + 80560 + 56,

8, — 848554 — 840451, — S5540),

036010-8
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Eq. (65) can be reduced to

0= 5(p —hﬁ(B p)){( h%))('Qu)ze*‘”/’Eﬂu,,pA)@

0 {—(E )+ (p - WEP + % p,u, B,

10

+h2(p u)?

(BB = (B-B)p°) + 5 (@) |04 [, (66)

One could further simplify the above equation by choosing n* = u* = (1,0, 0,0), which can be achieved by a proper
Lorentz transformation. In this frame, E# = (0, E), B* = (0, B), p” = (0, p) is the 3-momentum, p - u = p, is the energy,
B-p=-B:-p,E-p=-E-p,and E- B = —E - B. From the delta function of Eq. (66), we can get the shifted energy in
the external field up to 7 order,

p0:€|p|(1—h€QB-bX) = ¢E,, E,= |p|(1—h6QB-bX), (67)

where b, = x# is the Berry curvature, p = p/|p| is the unit vector of the momentum, and ¢ = +1 correspond to the
particle with positive/negative energy. With the shifted energy, the group velocity of the quasiparticle becomes
OE

V=g = D1+ 2hcQB - b,) ~ heQh,B. (68)

Note that the on-shell condition (67) constrains the energy in Eq. (66); hence, it is no longer a free variable in the
distribution function. By integrating Eq. (66) over p,, one arrives at the following three-dimensional chiral kinetic equation:

€EIJ 1 x0 -
pIESIREL <E2+h2E4 "Ewp; )0
ik Di 10
+Q|: p+€€jkE2 fl€ﬁ((B p)Ek—(EB)pk) 2E3 ((9]‘3 p) 8p
Pk € _
n Q{ P - 2Eg (0,B - p)] GE,,} £o(x, Ep, ep) = 0. (69)

By expanding various powers of the energy E, in % and keeping terms up to the first order, one obtains

3 2(1 — heQB - bl){(l +7eQB - b,)d, + e(p*(1 + 2hcQB - b)) + KO E;b, ),

e==l1

+0 [Ek + é(é‘kEp) + e€'*p,B;(1 +2heQB - b,) + heQ(E - B)bk | 0F
+ [-QE" - pi(1 +2heQB - b,) + (9,E,)|0p, }ff((x’ Ep.ep) =0. (70)

The next step is to turn the energy-derivative terms into the derivative terms with respect to the actual independent
variables (i.e., space-time coordinates and 3-momentum):

> %(1 — heQB - b){){(l +heQB - b,)(0; + (0,E,)0p, )
e==+l1

],\7 + 2fl€QB b ) + lee”kE,bw)(@k + (5kEp)8Ep)

[ akE L) + €€l p.B;(1 +2heQB - b,) — heQ(E - B)bk| (97 + (ang)aEp)}f;(x,Ep,ep):o. (71)
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Using the expression ¥, = —ang, Eq. (71) can be further simplified,

2

e==l1

S S(1-heoB- b)(){(l + heQB - b,) (0, + (9,E,),)

+ e(7* + heQ(V - b,)B* + hQe ™ E;b, ;) (Oy + (OxEy) I, )

+0 {E" + é(akEp) + e€'/*¥,B; + heQ(E - B)b% | (87 + (3ZEP)8EP)}f;(x, E,.ep) =0. (72)

It can be seen explicitly that by employing the chain rule

(01 + (0,Ep) g, |f5 (1, X, Ey, p) = ,f3 (1, %, ep),
[0k + (OkEp) Ok, 1 f5 (1, X, Ey, €p) = Oif3 (1, X, €p),
00 + (O Ey)0, 1f5 (1. X. Ey. D) = OLF5 (1, x. p)

one can eventually remove the energy derivative terms and obtain

e==*l1

Ze{a, +e(1—heQB - b,) (i + heQ(V - b,)B* + hQe*E;b, ;)0

+ Q(1 —heQB-b,) {Ek + é (0"E,) + e€/*#;B; + heQ(E - B)b)’;} o }f;(z, x,ep) = 0, (73)

Contracting over all of index i, j, k = 1, 2, 3 and replacing p by ep to convert distribution of a particle with negative energy
into that of an antiparticle, we can write the chiral kinetic equation for particle and antiparticle separately,

{8,+1(V+hQ(V-bX)B+hQE xb,) Vi +

VG

€@
VG

(E+VxB+nQ(E-B)b,)- vp}f;(x,p) =0. (74)

Here, VG = (1 +nQb, - B) corresponds to the Jacobian, and

i 1
E=E-—V,E,
€0

Ep = [p[(1-7QB-b,),

_ OE,
V== B+ 2008 b,) - hQh,B

where the y denotes the chiral or the helicity and f% indicates the distribution function of a given chiral particle or
antiparticle. One can also convert Eq. (74) into the equation for particles with particular helicity /& = €y,

{a, + L (V+heQ(V-b;,)B + heQE x b,) - V, + f/—%

VG

(E+7VxB+heQ(E-B)by,) - vp}f;(x,p) =0. (75

This reproduces the well-known three-dimensional chiral kinetic equation [29,35,36], with the corresponding Jacobian,

energy, group velocity given by

VG = (1 + heQb,,- B),

Ep = Ipl(1 - heQB -b,),  ¥—

Therefore, the chiral kinetic equation (75) is derived from a
complete and consistent analysis of the Wigner function
formalism with the semiclassical expansion method.

V. CONCLUSION

In this paper, we have derived a covariant and complete
solution (59) for the chiral component of the Wigner

. 1
E=E-—_V,E,
€Q

E, .

I

function, along with the corresponding chiral transport
equation (64) for massless Dirac fermions, by starting from
the general Wigner function formalism and carrying out a
consistent semiclassical expansion up to O(h) order. A
detailed proof is given for the general and unique solution
of the peculiar component %, in the O(h)-order chiral
component of the Wigner function. In particular, this
new analysis clarifies exactly why and how the
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Lorentz-invariance and frame-dependence issues associ-
ated with the O(#) correction to the phase space distribu-
tion function arise within a totally covariant framework.
From the so-obtained chiral transport equation, one also
naturally derives as its consequences the 3D formulation of
chiral kinetic theory as well as many special features of
chiral fermions such as the magnetization energy shift, the
Berry curvature, chiral anomaly, CME, etc. The covariant
chiral transport theory lays a firm conceptual foundation for
describing anomalous transport in the generally nonequili-
brium systems of chiral fermions.

We end by discussing a number of extensions and
applications within the current framework. First of all, it
is of great interest to explore higher-order quantum effects
beyond just the O(#) order, and in this regard, the Wigner
function formalism has its unique advantage. Second, it is
also highly interesting to develop the equal-time quantum
transport theory [53] for chiral fermions in this framework.
The 3D chiral kinetic theory only preserves the zeroth
moment information of the four-dimensional theory, and
there is a whole hierarchy of equations for higher moments
of the four-dimensional theory that together forms the
equal-time transport theory, which turns four-dimensional
theory into a complete initial problem and is crucial for
phenomenological applications. Furthermore, while we
focus on the vector and axial components of the Wigner
function in this paper, the other components also bear
nontrivial physical meanings for physically relevant quan-
tities such as spin density and helicity density, which could
be readily studied with the same approach as in this paper
[60]. Additionally, in the current formalism, it is relatively
straightforward to incorporate fermion collision terms by
starting from a Dirac Lagrangian including interaction
terms [51,52], which is also important for phenomenology.
Last but not least, the role of a small nonzero mass (and
generally the quantum transport of massive fermions) could
be easily explored in the Wigner function formalism along
lines similar to the present study. These problems will be
investigated in the future.
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APPENDIX: DISCUSSIONS ON /C#

In this Appendix, we discuss the solution of F#*
[Eqg. (58)] in Sec. III A. To obtain the first-order correction
of the chiral vector, we need to solve the vector F*
satisfying Eq. (57),

€upel” (VP FXNS(p?) = =24 (puT, = puK,)S(p?).
(A1)

Let us denote A” = %;((V/’f)((o))é(pz) and K* = #*5(p?);
the equation becomes

EprGPGAp = _(ppr - pI/K,u)' (A2)

Noting that the Vlasov equation as in Eq. (47),

0
PPVt =0,
requires p,A* = 0, one can derive that

K" =0, AK* =0.
This indicates that the unknown K* vector is orthogonal to
two known vectors A* and p* orthogonal to each other, the
latter of which is a null vector. In principle, in the 3 + 1-
dimensional space-time, there should be unique solution
of K#, with an undetermined component parallel to p*.

To see this, let us first consider a simplified case: if
taking the null vector p# = (E, E,0,0), then one could
always write down its orthogonal vectors as

A* = (a,a,b,c), K* = (k,k,d, f),

and A, K’s being orthogonal yields bd + cf = 0, which is
similar to the two-dimensional orthogonal condition.
Substituting this in Eq. (A2), one could find

This indicates that for any given known p* and A’ =
(Ve f)((o))é(pz) we can fix K* except its component
parallel to p*. As a matter of fact, such a conclusion is
valid not only in the frame in which p# = (E, E,0,0) but
also in any general case. Being any null vector, p* can
always be expressed by its direction angle ¢ and ¢,

pt = E(1,sin@cos ¢, sin @ sin ¢, cos 6); (A3)
hence, its two orthogonal vectors can be expanded in the
corresponding basis:
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A" = a(1, sin 6 cos ¢, sin @ sin ¢, cos B) + b(0, cos 8 cos ¢, cos @sin ¢, — sin O) + ¢(0, —sin ¢, cos ¢, 0), (A4)

K* = k(1,sin 0 cos ¢, sin @ sin ¢, cos ) + d(0, cos @ cos ¢, cos Osin ¢, —sin 0) + f(0, —sinp,cos ¢p,0).  (AS5)
To solve K*, we introduced an arbitrary auxiliary timelike vector n# = (n’, n*, n”, n®), normalized to unity, n'n, =1, and
constructed the solution as in Eq. (58),

vpo
e pyn,A,

K== (A6)

First of all, let us show that Eq. (A6) gives a valid solution to Egs. (57) and (A2). Substituting the solution in the right-hand
side of Eq. (A2), one obtains

a o a o
_ PiuapoP A Pu€iape P n"A

_(p/lKl/ _P,,K/) n-p n-p (A7)
_ PiCuapoP 1A | Pi€apuP"MA” | PaCpouP A | PpCoual M A% | PouapPM"A” (A8)
n-p n-p n-p n-p n-p
_ pyeﬂapapanpAo _ pveﬂapapa"pAg + (p ) p)epdwn/’A" T (n ) p)eaﬂmpaAa 10 (A9)
n-p n-p n-p n-p
= €upoP A’ (A10)
which satisfies the equality.
Second, after some tedious but straightforward steps, one can compute the coefficients in Eq. (A5) as
d= —c, (A11)
f=0, (A12)
L — b(—n*sin ¢ + n” cos ¢) — c(n* cos @ cos ¢ + n¥ cos Osin ¢p — n* sin 6) . (A13)

p-n

|
We can see explicitly that no matter what »n* field we 3 3
choose it gives the same component of K# orthogonal to the pOHO — Z pPIH =0, pOHO + Z pPIH =0,
momentum p*. It shows that Eq. (58) gives a valid and i=1 i=1
complete solution of ##, as long as we constrain n# to be
timelike, which ensures p - n # 0.
On the other hand, as can be seen in Eq. (A13), different
n* influence the component parallel to p#. To understand
the role of n* and why it may cause ambiguity in #*, let us

or equivalently

p-F=0, H0=0. (A14)

carefully consider the decomposition #Z* = p*f )((1) + FH,
trying to separate the vector %* orthogonal to p* into two ~ Such a requirement can be achieved by taking n* =
parts. This decomposition is, however, subtle due to the  (1,0,0,0), which yields k = 0 in Eq. (A13), and
lightlike nature of p, p*p, = 0;i.e., p is “self-orthogonal.”
It is worth commenting that this lightlike feature is of _ ewipn (V f(O))
course ultimately because the chiral fermion is massless. To #= oo ok

avoid ambiguity of the decomposition, one can always 2x(n- p) n=(1,0,0,0)
ensure that f;((l) contains all p*-parallel components by - <O,—Lp % (Vf)((()))). (A15)
constraining 2|p|
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For an observer in the lab frame, Eq. (A15) gives the
complete decomposition of #Z*. However, this is not the
end of the story—such a characteristic is not boost
invariant, due to the fact that the requirement of “ortho-
gonality” is not Lorentz invariant. One can find a
vector JZ* orthogonal to a null vector p# by restricting
H° =0, p- H =0, but it is impossible to maintain #'* =
0 under arbitrary Lorentz transformation #'* = Ay F",
p* = A p*. To see this explicitly, for an observer moving
with velocity u*, the transformation A} is given by the
element in the (u + 1)th row, (v + 1)th column of the
matrix,

u' —u* —uw —ut
o LHES g
y wu® 1 u’u’ wu ’ (A 1 6)
—u 1+u’ 1+u' 1+u’
SO
while in his local rest frame,
0 _ A0 X
HP =N K = 2p ‘u px(Vfl)
Lo (uxp)- (VA £0 (A17)

~ 2[p|

Hence, the decomposition of #* is frame dependent,
and one should determine f)(( and #* differently, with
respect to different frame. As a matter of fact, for
the observer moving with velocity ¥, one can construct
FH as

X
2u-p

=

&7 pu, (VoY) (A18)

where the time component of vector % vanishes in his local
rest frame:

J—  Z— X l/ NG (0)
‘%/O_AI(J)‘% _uv<2u p 1 pu p( o‘f){ )>

£ 1, (Vo f ) = 0

2u-p

VUpo
€ P pﬂu

(A19)

Actually, it is more obvious if one expresses all quantities in
the observer’s local rest frame:

HM = AL J—pe”””pmp(vgfﬁo))
— % NENENGNCAGED 2 pu, (V1)
= 2/_ p e plul (V4 1,)
:ﬁ w0 it (Ve f ) w—1.000)
= <0,—2|);/|p’ X (V’f;({()))) (A20)

Consequently, one can see that constructing %, as in
Eq. (58) with arbitrary timelike vector n* has the following
physical meaning: for an observer moving with velocity

vpo 0)

H — pH U — e ]Jbl’l/,(v,,fl )
“ nt, A = 2x(n-p)

ponent in his local rest frame. It gives a complete decom-

contains no p*-parallel com-

position of #*, and fﬂ(fl) corresponds to the first-order
correction of the distribution function observed in this
frame. This reflects the frame dependence of spin tensor
SH = Ae}ﬂ;# as mentioned in Refs. [29,35,36].

It is worth mentioning that Z* in Eq. (58) is a vector
defined in the lab frame, and once n is fixed, it transforms
like a Lorentz vector under boost transformation. It has the
meaning of what is known by an observer in the lab frame
about the proper decomposition for another observer moving
with velocity n. As illustrated in Egs. (A11)—-(A13), the #*
vectors, corresponding to observers moving with velocities u
and v, respectively, differ with a p*-parallel component:

vpe 0 X vpo 0
L%l[lu] —%ﬁ}] :2u~p€'u/ pyup(vﬂf)(( >) _2’[}'p€ﬂ/ pyv/)(vﬂf)({ >) (A21)
X " (0) o pup (0)
= Uap( eﬂyﬂo—pyu 0 vr;f - uap{ €”Wﬁpuv vo’f A22
2(up)(1}p)[ /( X ) /J( X )] ( )
X (0) (0) (0)
=—" [, p*" pu,(Vofy') + ugp' e p,v,(Vofy') + ugp? e p,v, (Vo fy")
2 )0 p) AVelr Velx oVely
+ e p,v,(Vof ) + ap”e™ p,v, (Vo ) (A23)
X o, uupo (0) vape (0) ac (0)
= [0aP " pu,(Vofy ") + P pougv,(Vofy ') + (P - P)E0,u (Vo f,
2(“[9)(’0[))[ p( X ) /)( X ) ( ) P ( X )
— 0,076 pu(V,fy)) + €% puv,(p - VI (A24)
rapoc 0
e Pttty (Voly) (A25)

2(u-p)(v-p)
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Noting that the vector Z* should be frame independent,

x =K

W _
W = g TPy, =

Ho oyl (1)
H) = Fpy + P S (A26)

one can explicitly see the difference between distributions observed in the u and v frames:

_ (1) (1)
Judw = Fle = h(f[u],)( - f[v],

_ hre g, (Vofy)
2(u-p)(v-p)

(A27)
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