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Clock-comparison experiments are among the sharpest existing tests of Lorentz symmetry in matter. We
characterize signals in these experiments arising from modifications to electron or nucleon propagators and
involving Lorentz- and CPT-violating operators of arbitrary mass dimension. The spectral frequencies of
the atoms or ions used as clocks exhibit perturbative shifts that can depend on the constituent-particle
properties and can display sidereal and annual variations in time. Adopting an independent-particle model
for the electronic structure and the Schmidt model for the nucleus, we determine observables for a variety of
clock-comparison experiments involving fountain clocks, comagnetometers, ion traps, lattice clocks,
entangled states, and antimatter. The treatment demonstrates the complementarity of sensitivities to Lorentz
and CPT violation among these different experimental techniques. It also permits the interpretation of
some prior results in terms of bounds on nonminimal coefficients for Lorentz violation, including first
constraints on nonminimal coefficients in the neutron sector. Estimates of attainable sensitivities in future
analyses are provided. Two technical appendices collect relationships between spherical and Cartesian
coefficients for Lorentz violation and provide explicit transformations converting Cartesian coefficients in a
laboratory frame to the canonical Sun-centered frame.
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I. INTRODUCTION

Among the best laboratory tests of rotation invariance are
experiments measuring the ticking rate of a clock as its
orientation changes, often as it rotates with the Earth.
A spatial anisotropy in the laws of nature would be revealed
if the clock frequency varies in time at harmonics of the
rotation frequency. Detecting any time variation requires a
reference clock that either is insensitive to the anisotropy or
responds differently to it. Typically, the two clock frequen-
cies in these experiments are transition frequencies in atoms
or ions, and the spatial orientation of a clock is the
quantization axis established by an applied magnetic field.
These clock-comparison experiments can attain impressive
sensitivities to rotation violations, as originally shown by
Hughes et al. and Drever [1].
Rotation invariance is a key component of Lorentz

symmetry, the foundation of relativity. Tests of this symmetry
have experienced a revival in recent years, stimulated by the
possibility that minuscule violations could arise from a
unification of quantum physics with gravity such as string
theory [2]. Using techniques from different subfields of

physics, numerous searches for Lorentz violation have now
reached sensitivities to physical effects originating at the
Planck scale MP ≃ 1019 GeV [3]. Since the three boost
generators of the Lorentz group close under commutation
into the three rotation generators, any deviations from
Lorentz symmetry in nature must necessarily come with
violations of rotation invariance. Searches for rotation
violations therefore offer crucial tests of Lorentz symmetry.
In the present work, we pursue this line of reasoning by
developing and applying a theoretical treatment for the
analysis of clock-comparison experiments searching for
Lorentz violation.
To date, no compelling experimental evidence for Lorentz

violation has been adduced. Even if Lorentz violation does
occur in nature, identifying the correct realisticmodel among
a plethora of options in the absence of positive experimental
guidance seems a daunting and improbable prospect. An
alternative is instead to adopt a general theoretical framework
for Lorentz violation that encompasses specific models and
permits a comprehensive study of possible effects. Since any
Lorentz violation is expected to be small, it is reasonable to
use effective field theory [4] for this purpose. A realistic
treatment then starts from well-established physics, which
can be taken as the action formed by coupling general
relativity to the StandardModel of particle physics, and adds
all possible Lorentz-violating operators to yield the frame-
work known as the Standard-Model Extension (SME) [5,6].
Each Lorentz-violating operator in the SME is contracted
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with a coefficient that determines the magnitude of its
physical effects while preserving coordinate independence
of the theory. The operators can be classified according to
their mass dimension d, with larger values of d associated
with greater suppression at low energies. The limiting case
with d ≤ 4 is power-counting renormalizable in Minkowski
spacetime and is called the minimal SME. Since CPT
violation in effective field theory is concurrent with
Lorentz violation [5,7], the SME also characterizes general
effects from CPT violation. Experimental constraints on the
parameters of any Lorentz-violating model that is consistent
with realistic effective field theory can be found by identify-
ing the model parameters with specific SME coefficients and
their known constraints [3,8].
Signals arising from Lorentz and CPT violation are

predicted by the minimal SME to appear in clock-
comparison experiments with atoms or ions [9]. The signals
include observable modifications of the spectra that can
exhibit time variations and that depend on the electron and
nucleon composition of the species used as clocks. Null
results from early clock-comparison experiments [10–13]
can be reinterpreted as bounds on coefficients for Lorentz
violation in the minimal SME [9]. Many minimal-SME
coefficients have been directly constrained in recent experi-
ments, including clock comparisons performed using a
hydrogen maser [14,15], 133Cs and 87Rb fountain clocks
[16], trapped ultracold neutrons and 199Hg atoms [17],
3He-K and 21Ne-Rb-K comagnetometers [18,19], 133Cs and
199Hg magnetometers [20], transitions in 162Dy and 164Dy
atoms [21], 129Xe and 3He atoms [22–25], and entangled
states of 40Caþ ions [26]. The results represent competitive
tests of Lorentz and CPT symmetry [3,27], and additional
constraints on minimal-SME coefficients have been
extracted by detailed theoretical analyses [28–34].
In this work, we extend the existing theoretical treatment

of Lorentz and CPT violation in clock-comparison experi-
ments to include SME operators of nonminimal mass
dimension d > 4 that modify the Dirac propagators of
the constituent electrons, protons, and neutrons in atoms
and ions. At an arbitrary given value of d, all Lorentz- and
CPT-violating operators affecting the propagation have
been identified and classified [35], which in the present
context permits a perturbative analysis of the effects of
general Lorentz and CPT violation on the spectra of the
atoms or ions used in clock-comparison experiments.
Nonminimal SME operators are of direct interest in various
theoretical contexts associated with Lorentz-violating
quantum field theories including, for instance, formal
studies of the underlying Riemann-Finsler geometry [36]
or of causality and stability [37] and phenomenological
investigations of supersymmetric models [38] or noncom-
mutative quantum field theories [39,40]. They are also of
interest in experimental searches for geometric forces, such
as torsion [41] and nonmetricity [42]. Only a comparatively
few constraints on nonminimal SME coefficients for

Lorentz violation in the electron and proton sectors have
been derived from laboratory experiments to date [35,43–
48], while the neutron sector is unexplored in the literature.
Here, we seek to improve this situation by developing
techniques for analyzing clock-comparison experiments
and identifying potential signals from nonminimal
Lorentz and CPT violation. Several clock modalities are
considered in this context for the first time, including ones
yielding measurements of nonminimal SME coefficients
from atomic fountains, comagnetometers, ion traps, lattice
clocks, and antimatter spectroscopy. We adopt existing
results to deduce numerous first constraints on nonminimal
coefficients in the neutron sector, and we estimate sensi-
tivities to electron, proton, and neutron nonminimal coef-
ficients that are attainable in future analyses.
The organization of this work is as follows. In Sec. II, we

present the theoretical techniques that enable a perturbative
treatment of the effects of Lorentz and CPT violation on
the spectra of atoms and ions. A description of the
perturbation induced by Lorentz- and CPT-violating oper-
ators of arbitrary mass dimension d is provided in Sec. II A.
The perturbative shifts in energy levels are discussed in
Sec. II B along with generic features of the resulting
spectra, and some useful formulas for subsequent calcu-
lations are derived. In Sec. II C, we consider methods for
determining expectation values of electronic states, with
emphasis on an independent-particle model. The corre-
sponding techniques for nucleon states are presented in
Sec. II D, primarily in the context of a comparatively simple
nuclear model. We then turn to evaluating the time
variations in the spectrum due to the noninertial nature
of the laboratory frame, first examining effects induced by
the rotation of the Earth about its axis in Sec. II E and next
discussing ones induced by the revolution of the Earth
about the Sun in Sec. II F. The latter section also considers
related issues associated with space-based missions.
Applications of these theoretical results in the context of

various clock-comparison experiments are addressed in
Sec. III. Searches for Lorentz and CPT violation using
fountain clocks are considered in Sec. III A, and estimates
for attainable sensitivities are obtained. Studies with
comagnetometers are investigated in Sec. III B, and first
sensitivities to many nonminimal coefficients for Lorentz
violation are deduced from existing data. Optical transi-
tions in ion-trap and lattice clocks are discussed in Sec. III
C, and potential sensitivities in available systems are
considered. Some comments about prospects for antimatter
experiments are offered in Sec. III D, where the first SME
constraints from antihydrogen spectroscopy are presented.
A summary of the work is provided in Sec. IV. Two
appendices are also included. Appendix A describes the
general relationship between spherical and Cartesian coef-
ficients for Lorentz violation and tabulates explicit expres-
sions for 3 ≤ d ≤ 8. Appendix B presents techniques for
transforming Cartesian coefficients for Lorentz violation
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from the laboratory frame to the Sun-centered frame
and collects explicit results for 3 ≤ d ≤ 8. In this work,
we use conventions and notation matching those of
Ref. [35] except as indicated. Note that natural units with
c ¼ ℏ ¼ 1 are adopted throughout.

II. THEORY

This section discusses the theoretical techniques for the
perturbative treatment of Lorentz and CPT violation in
atoms and ions. The perturbation is described using a
framework that encompasses all Lorentz-violating quantum
operators affecting the motion of the component particles in
the atom. Generic restrictions on the induced energy shifts
arising from symmetries of the system are considered. The
perturbative calculation of the energy shift is formulated,
and expressions useful for application to experiments are
obtained. Simple models are selected for the electronic and
nuclear structure so that derivations of the relevant expect-
ation values can be performed for a broad range of atomic
species used in experiments. The conversion from the
laboratory frame to the Sun-centered frame is provided,
accounting both for the rotation of the Earth about its axis
and for the revolution of the Earth about the Sun at first
order in the boost parameter.

A. Description of the perturbation

The experiments of interest here involve comparisons of
transitions in atoms or ions, seeking shifts in energy levels
due to Lorentz and CPT violation. All possible shifts are
controlled by SME coefficients, which can be viewed as a
set of background fields in the vacuum. The energy-level
shifts arise from the coupling of these background fields to
the elementary particles and interactions comprising the
atom or ion. An exact theoretical treatment of the shifts is
prohibitive. However, since any Lorentz and CPT violation
is small, a perturbative analysis is feasible and sufficient to
establish the dominant effects.
From the perspective of perturbation theory, the inter-

action between the electrons and the protons inside an atom
or ion has some common features with the interaction
between the nucleons inside the nucleus. In both cases, the
magnitude jpj of the momentum p of a fermion of flavor w
in the zero-momentum frame is smaller than its rest mass
mw. One consequence is that the dominant contribution due
to a perturbation added to the Hamiltonian of the system
can be obtained by expanding the perturbation in terms of
the ratio jpj=mw, keeping only leading terms in the power
series. In most cases, it suffices to treat the system as
effectively nonrelativistic. Another feature of interest is that
the energy per particle due to the interaction between the
nucleons and the interaction between the electrically
charged particles in the bound states is comparable to
the nonrelativistic kinetic energy of the particles. The
nonrelativistic kinetic energy is second order in the ratio

jpj=mw, so the corrections to the propagation of the
particles at order ðjpj=mwÞ0 and ðjpj=mwÞ1 and at leading
order in Lorentz violation dominate any effects due to
Lorentz-violating operators coupled to the interactions
between the fermions.
With these considerations in mind, it is reasonable to

proceed under the usual assumption that the dominant
Lorentz-violating shifts of the spectrum of the atom or ion
arise from corrections to the propagation of the constituent
particles. For most purposes, these particles can be taken as
electrons e, protons p, and neutrons n, so that w takes the
values e, p, and n. Applications to exotic atoms or ions can
be accommodated by extending appropriately the values of
w. The relevant Lorentz-violating terms in the Lagrange
density are then quadratic in the fermion fields for the
constituent particles. All terms of this type have been
classified and enumerated [35], and applications to hydro-
gen and hydrogen-like systems have been established [43].
For convenience, we reproduce in this section the key
results relevant in the present context.
For a Dirac fermion ψw of flavor w and mass mw, all

quadratic terms in the Lagrange density L can be expressed
as [35]

L ⊃
1

2
ψwðγμi∂μ −mw þ Q̂wÞψw þ H:c: ð1Þ

Here, Q̂w is a spinor matrix describing modifications of
the standard fermion propagator, including all Lorentz-
invariant and Lorentz-violating contributions obtained by
contracting SME coefficients with operators formed from
derivatives i∂μ. The matrix Q̂w can be decomposed in a
basis of Dirac matrices and can be converted to momentum
space with the identification i∂μ → pμ. Individual oper-
ators with definite mass dimension d in the Lagrange
density incorporate d − 3 momentum factors, and the
corresponding SME coefficients have dimension 4 − d.
The Lagrange density (1) has been extended to include
operators at arbitrary d in the photon sector [45,49,50].
Analogous constructions exist for the neutrino [51] and
gravity [52] sectors.
For present purposes, the SME coefficients can be

assumed uniform and time independent within the solar
system [5] and so can be taken as constants when specified
in the canonical Sun-centered frame [53]. Using standard
procedures, an effective nonrelativistic one-particle
Hamiltonian that includes the leading-order correction
due to Lorentz- and CPT-violation to the propagation of
a fermion of flavor w can be derived from the Lagrange
density (1). This Hamiltonian can be separated into the
conventional Hamiltonian for a free nonrelativistic fermion
and a perturbation term δhNRw containing the Lorentz- and
CPT-violating contributions. The perturbation δhNRw is thus
a 2 × 2matrix, with each component being a function of the
momentum operator and independent of the position. It can
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be expanded in terms of the identity matrix and the vector
σ ¼ ðσ1; σ2; σ3Þ of Pauli matrices. For convenience, this
expansion can be performed using a helicity basis instead
of a Cartesian one. The corresponding three basis vectors
can be taken as ϵ̂r ¼ p̂≡ p=jpj and ϵ̂� ¼ ðθ̂� iϕ̂Þ= ffiffiffi

2
p

,
where θ̂ and ϕ̂ are the usual unit vectors for the polar angle
θ and azimuthal angle ϕ in momentum space, with
p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. In this helicity basis,
the perturbation δhNRw takes the form [35]

δhNRw ¼ hw0 þ hwrσ · ϵ̂r þ hwþσ · ϵ̂− þ hw−σ · ϵ̂þ; ð2Þ
where hw0 contains spin-independent effects and the
remaining terms describe spin-dependent ones.
Many experiments searching for Lorentz and CPT

violation focus on testing the rotation subgroup of the
Lorentz group. To facilitate the analysis of rotation proper-
ties, it is useful to express the components hw0, hwr, hw� of
the perturbation in spherical coordinates. It is opportune to
express the spherical decomposition of the operators in the
perturbation δhNRw in terms of spin-weighted spherical
harmonics sYjmðp̂Þ of spin weight s, as these harmonics
capture in a comparatively elegant form the essential
properties of the perturbation under rotations. The usual
spherical harmonics are spin-weighted harmonics with
spin-weight s ¼ 0, Yjmðθ;ϕÞ≡ 0Yjmðθ;ϕÞ. Definitions
and some useful features of spin-weighted spherical har-
monics are presented in Appendix A of Ref. [50].
In terms of the spherical decomposition, the components

of the perturbation (2) can be expanded as

hw0 ¼ −
X
kjm

jpjk0Yjmðp̂ÞVw
NR
kjm ð3Þ

for the spin-independent terms, and

hwr ¼ −
X
kjm

jpjk0Yjmðp̂ÞT w
NRð0BÞ
kjm ;

hw� ¼
X
kjm

jpjk�1Yjmðp̂ÞðiT w
NRð1EÞ
kjm � T w

NRð1BÞ
kjm Þ ð4Þ

for the spin-dependent ones. The coefficients Vw
NR
kjm,

T w
NRðqPÞ
kjm , where qP takes values 0B, 1B, or 1E, are

nonrelativistic spherical coefficients for Lorentz violation.
These effective coefficients are linear combinations of SME
coefficients for Lorentz violation that emerge naturally in
the nonrelativistic limit of the one-particle Hamiltonian
obtained from the Lagrange density (1).
For applications, it is useful to perform a further

decomposition of the components of the perturbation
Hamiltonian according to their CPT handedness. In par-
ticular, each nonrelativistic spherical coefficient can be
separated into two pieces characterized by the CPT
handedness of the corresponding operator. This decom-
position can be expressed as [35]

Vw
NR
kjm ¼ cwNRkjm − awNRkjm;

T w
NRðqPÞ
kjm ¼ gw

NRðqPÞ
kjm −Hw

NRðqPÞ
kjm ; ð5Þ

where the a- and g-type coefficients are contracted with
CPT-odd operators and the c- and H-type coefficients with
CPT-even ones. The notation here parallels the standard
assignments in the minimal SME [5]. Each nonrelativistic
coefficient on the right-hand side of this equation can be
expressed as a sum of SME coefficients in the Lagrange
density, suitably weighted by powers of mw. The explicit
expressions for these sums are given in Eqs. (111) and
(112) of Ref. [35]. The allowed ranges of values for the
indices k, j,m and the numbers of independent components
for each coefficient are listed in Table IVof Ref. [35]. Note
that in the present work we follow the convention of
Ref. [43] and adopt the subscript index k instead of n, to
avoid confusion with the principal quantum number of the
atom or ion.
Given the perturbation δhNRw affecting the propagation of

each fermion in an atom or ion, we can formally express the
perturbation δhatom of the system as a whole as

δhatom ¼
X
w

XNw

a¼1

ðδhNRw Þa; ð6Þ

where a ¼ 1;…; Nw labels the fermions of given flavor w
in the atom or ion. The Lorentz-violating operators con-
sidered in this work are functions of the momentum and the
spin of the particle, so ðδhNRw Þa ¼ δhNRw ðpa; σaÞ depends on
the momentum operator pa and the spin operator σa for the
ath fermion. Each term ðδhNRw Þa is understood to be the
tensor product of the perturbation (2) acting on the states of
the ath fermion of flavor w with the identity operator acting
on the Hilbert space of all other fermions. Note that the
index a is tied to the momentum and spin, whereas the
index w controlling the flavor of the particle is contained in
the coefficient for Lorentz violation. Note also that the
perturbation (6) can be separated according to operator
flavor as

δhatom ¼ δhatome þ δhatomp þ δhatomn ; ð7Þ

where δhatomw is the sum of all operators of flavor w that
contribute to δhatom. For example, the expression for δhatome

is given by δhatome ¼ PNe
a¼1 ðδhNRe Þa, where a ranges over

the Ne electrons in the atom.

B. Energy shifts

The corrections to the spectrum of the atom or ion due to
Lorentz and CPT violation can be obtained from the
perturbation δhatom using the Raleigh-Schrödinger pertur-
bation theory. At first order, the shift of an energy level is
obtained from the matrix elements of the perturbation
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evaluated in the subspace spanned by the degenerate
unperturbed energy eigenstates, as usual. In typical appli-
cations of relevance here, the degeneracy in the energy
levels is lifted by an external field such as an applied
magnetic field. In this scenario, the first-order shift of an
energy level is obtained from the expectation value of the
perturbation with respect to the unperturbed state. Since the
exact unperturbed energy states for multielectron atoms or
ions are typically unknown, approximations to these states
must be used to obtain the first-order Lorentz-violating
shift of the spectrum. However, the symmetries of the
unperturbed system place restrictions on the expectation
values of the perturbation. In this section, we describe some
of these constraints and establish the general form of the
perturbative energy shifts.
Assuming that the degeneracy of the energy levels is

broken by an applied magnetic field, parity is a symmetry
of the system and so the states of the atom or ion must be
parity eigenstates. As a result, the expectation values of
parity-odd operators with respect to parity eigenstates must
vanish, so only parity-even operators can affect the spec-
trum. This prevents some terms in the perturbation δhatom
from contributing to the energy shift. Each operator in the
spherical decomposition (3) and (4) of the perturbation
δhatom is either odd or even under parity, with handedness
determined by the indices j and k of the corresponding
coefficient for Lorentz violation. The coefficients awNRkjm
and cwNRkjm can contribute to energy shift at first-order in
perturbation theory only for even values of j and k, while

the coefficients gw
NRðqBÞ
kjm and Hw

NRðqBÞ
kjm can contribute only

if j is odd and k even.
Another constraint arises from time-reversal invariance

and the Wigner-Eckart theorem [54], and it concerns the
expectation value in any angular-momentum eigenstate of
Lorentz-violating operators controlled by spin-dependent
coefficients with P ¼ E. It can be shown that this expect-
ation value must vanish when the Lorentz-violating oper-
ators transform as spherical operators under rotations
generated by the angular-momentum operator [43], which
is the case for the perturbation δhatom of interest here. As a
result, none of the spin-dependent coefficients with P ¼ E
contribute to the perturbative shift of the spectrum for any
values of k and j. This result applies for all atoms and ions
considered in the present work.
In the absence of Lorentz violation, the total angular

momentum F of the atom or ion commutes with the
Hamiltonian of the system. When a magnetic field B ¼
BB̂ is applied, the rotational symmetry is broken. If the
perturbative shift due to the magnetic field is smaller than
the hyperfine structure, both the quantum number F
corresponding to F and the quantum number mF corre-
sponding to F · B̂ can be approximated as good quantum
numbers. Suppose the states jα0mFi represent a basis of
eigenstates of the Hamiltonian, where α0 is a set of quantum

numbers including F that together with mF forms a
complete set of quantum numbers. Using the Wigner-
Eckart theorem, the energy shift due to the propagation
of the fermions in the atom or ion can then be written as

δϵ ¼ hα0mFjδhatomjα0mFi ¼
X
j

Aj0hFmFj0jFmFi; ð8Þ

where hj2m2j3m3jj1m1i denote Clebsch-Gordan coeffi-
cients. The factors Aj0 ¼ Aj0ðα0Þ are independent of mF.
The sum over j in Eq. (8) involves the index j labeling the
coefficients for Lorentz violation in δhatom, in parallel with
the sums over j in Eqs. (3) and (4). Note that the Clebsch-
Gordan coefficient hFmFj0jFmFi vanishes when j > 2F,
implying that no operator with j > 2F contributes to the
energy shift.
To find useful expressions for the factors Aj0, we make

some additional assumptions that are broadly valid for the
systems considered in this work. Except where stated
otherwise, we suppose that both the magnitude J of the
total angular momentum J of the electrons and the
magnitude I of the nuclear spin I are good quantum
numbers for the system. We also assume that the states
jα0mFi can be expressed as a tensor product jΨðα0Þi ⊗
jFmFi, where

jFmFi ¼
X
mJmI

hImIJmJjFmFijImIi ⊗ jJmJi: ð9Þ

Here, the kets jFmFi, jJmJi, and jImIi are associated with
the angular momenta F, J, and I, respectively. These states
also depend on other quantum numbers that are suppressed
in the notation. For example, the ket jFmFi depends on J,
on I, and also on other quantum numbers established by the
couplings of the orbital angular momenta and spins of the
component particles to form F. For later use, it is also
convenient to introduce the notation jα0mJi ¼ jΨðα0Þi ⊗
jJmJi and jα0mIi ¼ jΨðα0Þi ⊗ jImIi. Under these assump-
tions, we can expand the factors Aj0 appearing in Eq. (8) in
the form

Aj0 ¼ Ce
jW

e
j0 þ Cp

j W
p
j0 þ Cn

jW
n
j0; ð10Þ

where Cw
j ðFJIÞ are weights for the quantities Ww

j0ðα0Þ
containing the expectation values of δhatomw with respect to
the states jα0mJi and jα0mIi.
The analytical expressions for the factors Cw

j ðFJIÞ in
terms of Clebsch-Gordan coefficients are

Cn
j ¼ Cp

j ¼
X
mJmI

hImIJmJjFFi2
hFFj0jFFi hImIj0jImIi;

Ce
j ¼

X
mJmI

hImIJmJjFFi2
hFFj0jFFi hJmJj0jJmJi: ð11Þ
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Their numerical values can be obtained for any given
allowed values of F, J, and I. Some of the properties of
Cw
j ðFJIÞ are induced by features of the Clebsch-Gordan

coefficients. For example, Cw
0 ¼ 1 for any values of F, J,

and I because hKmK00jKmKi ¼ 1 for K equal to F, J,
or I and because

P
mJmI

hImIJmJjFFi2 ¼ 1. As another
example, Ce

jðFJIÞ ¼ 0 whenever j > 2J and Cp
j ðFJIÞ ¼

Cn
j ðFJIÞ ¼ 0 whenever j > 2I because hKmKj0jKmKi ¼

0 if j > 2K.
The explicit relationships between the expectation values

of the perturbations δhatomw and the Ww
j0ðα0Þ in Eq. (10) can

be written as

hα0mJjδhatome jα0mJi ¼
X
j

We
j0hJmJj0jJmJi;

hα0mIjδhatomp jα0mIi ¼
X
j

Wp
j0hImIj0jImIi;

hα0mIjδhatomn jα0mIi ¼
X
j

Wn
j0hImIj0jImIi: ð12Þ

These expressions are based on using the Wigner-Eckart
theorem, which is valid because the single-particle oper-
ators in the spherical decomposition of δhatom transform as
spherical operators with respect to rotations generated by I
and J. TheWw

j0 are combinations of coefficients for Lorentz
violation with expectation values of the one-particle oper-
ators in Eqs. (3) and (4). The combinations take the form

Ww
j0 ¼

X∞
k¼j−1

ðT w
NRð0BÞ
kj0 Λw

ð0BÞ
kj þ T w

NRð1BÞ
kj0 Λw

ð1BÞ
kj Þ

þ
X∞
k¼j

Vw
NR
kj0Λw

ð0EÞ
kj ; ð13Þ

where the indicated restrictions of the values of k in the
sums originate in the properties of the nonrelativistic
coefficients provided in Table IV of Ref. [35]. Generic

expressions for the quantities Λw
ðqPÞ
kj can be found in terms

of expectation values of the states jα0mJi and jα0mIi. For
the electron operators, we have

Λe
ð0BÞ
kj ¼ −

XNe

a¼1

hα0Jjjpajk0Yj0ðp̂aÞσa · p̂ajα0Ji
hJJjj0JJi ;

Λe
ð1BÞ
kj ¼

XNe

a¼1

hα0Jjjpajkþ1Yj0ðp̂aÞσa · ðϵ̂þa þ ϵ̂−aÞjα0Ji
hJJjj0JJi ;

Λe
ð0EÞ
kj ¼ −

XNe

a¼1

hα0Jjjpajk0Yj0ðp̂aÞjα0Ji
hJJjj0JJi ; ð14Þ

where the sum on a ranges over the electrons in the atom.
For the nucleon operators, we find

Λw
ð0BÞ
kj ¼ −

XNw

a¼1

hα0Ijjpajk0Yj0ðp̂aÞσa · p̂ajα0Ii
hIIjj0IIi ;

Λw
ð1BÞ
kj ¼

XNw

a¼1

hα0Ijjpajkþ1Yj0ðp̂aÞσa · ðϵ̂þa þ ϵ̂−aÞjα0Ii
hIIjj0IIi ;

Λw
ð0EÞ
kj ¼ −

XNw

a¼1

hα0Ijjpajk0Yj0ðp̂aÞjα0Ii
hIIjj0IIi ; ð15Þ

where the sum on a ranges over all particles with
flavors w ∈ fp; ng.
Explicit determination of the nonvanishing expectation

values in Eqs. (14) and (15) requires models for the
electronic states and for the nuclear states, as discussed
below in Secs. II C and II D, respectively. However, certain
components of Λw

ðqPÞ
kj vanish. We saw above that only

coefficients with even values of k can contribute due to

parity invariance. This implies that Λw
ðqPÞ
kj ðα0Þ vanishes if k

is even. For Λw
ð0BÞ
kj and Λw

ð1BÞ
kj it follows that jmust be odd,

while for Λw
ð0EÞ
kj we find j must be even. These results are a

consequence of the relationships between the indices k and
j of the nonrelativistic coefficients, as listed in Table IV
of Ref. [35].
Collecting the results discussed in this section yields a

set of constraints determining which coefficients for
Lorentz violation can affect the shift of an energy level
in an atom or ion. Table I compiles information about the
nonrelativistic spherical coefficients that can contribute to
spectral shifts. The first column of the table lists the
coefficients, which we denote generically by Kw

NR
kjm. The

flavor of the operator associated to the coefficient is
specified in the second column. The third column gives
the angular momentaK that restrict the values of the j index
on the coefficient according to the constraint 2K ≥ j. For
electron coefficients these angular momenta are the total
angular momentum F of the system and the total angular
momentum J of the electronic shells, while for nucleon
coefficients they are F and the nuclear spin I. The next two
columns provide conditions on the values of j for the cases
of integer K and of half-integer K. The value of j must be
even for coefficients in the first two rows and odd for other
coefficients. This can constrain the maximum allowed
value of j. For example, for even j and half-integer K
the equality in the condition 2K ≥ j cannot be satisfied
because 2K is odd, so the maximum allowed value of j is
2K − 1. The final column in the table displays the allowed
values of k. Note that the appearance of a coefficient in the
table is necessary but not sufficient for it to contribute to a

theoretical energy shift because some Λw
ðqPÞ
kj may vanish

for other reasons when a particular model is used to
compute the expectation values.
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C. Electron expectation values

In this section, the calculation of the electronic
expectation values (14) is discussed. The situation where
F or J vanish is considered first. We then outline an
approach to more complicated cases that is general enough
to cover systems of interest here while yielding a sufficient
approximation to the effects of Lorentz and CPT violation.
This involves modeling the electromagnetic interaction
between the electrons and the nucleus via a central
Coulomb potential and treating the repulsion between the
electrons using a mean-field approximation. The approach
provides enough information about the states jα0mJi to
permit a reasonable estimation of the perturbative energy
shift due to Lorentz- and CPT-violating effects on the
electron propagators.

1. Case F= 0 or J = 0

The ground states of many atoms and ions considered in
this work have quantum numbers F ¼ 0 or J ¼ 0. For
example, this holds for the ground state of any noble gas
and any IIB transition metal such as Hg. It also holds for the
ground states of many ions of interest, including 27Alþ,
113Cdþ, 115Inþ, 171Ybþ, and 199Hgþ. The excited states of
some systems of interest also have these quantum numbers,
such as the P0 state in 27Alþ or 115Inþ.
If either of the quantum numbersF or J vanishes, then the

electron coefficients for Lorentz violation that can contribute
to the energy shift must have j ¼ 0. These coefficients
control isotropic Lorentz- and CPT-violating effects. The
discussion in Sec. II B reveals that the only relevant isotropic
coefficients for electrons areVe

NR
k00. These special coefficients

are commonly denoted as V
∘ NR
e;k , where V

∘ NR
e;k ≡ Ve

NR
k00=

ffiffiffiffiffiffi
4π

p
.

Since only V
∘ NR
e;k can affect the energy shift, the quantities

Λe
ð0BÞ
kj and Λe

ð1BÞ
kj cannot contribute to Eq. (13) and so

become irrelevant. Moreover, when only the isotropic
coefficients for electrons can provide nonvanishing contri-

butions, we can simplify the expression (14) for Λe
ð0EÞ
k0 . The

values of the relevant Clebsch-Gordan coefficient and
spherical harmonic are hJJ00jJJi ¼ 1 and 0Y00 ¼
1=

ffiffiffiffiffiffi
4π

p
. This yields

Λe
ð0EÞ
k0 ¼ −

XNe

a¼1

1ffiffiffiffiffiffi
4π

p hjpajki; ð16Þ

where the sum on a ranges over all the electrons in the atom.
The quantities hjpajki are the expectation values of powers of
the momentum magnitude.
Denote the contribution to the energy shift due to the

electron isotropic coefficients by δϵ
∘
e. Recalling thatCw

0 ¼ 1
for any value of F, J, and I, it follows from Eqs. (8) and

(10) that δϵ
∘
e takes the simple form δϵ

∘
e ¼ We

00. Using
Eqs. (13) and (16) then yields an expression for the energy
shift due to the electron isotropic coefficients,

δϵ
∘
e ¼ −

X
q

V
∘ NR
e;2q

XNe

a¼1

hjpaj2qi; ð17Þ

where the index q is related to the index k of the coefficients
for Lorentz violation by 2q ¼ k. This enforces the con-
dition that only even values of k can contribute to the
energy shift.

2. One open subshell with one electron

For atoms or ions with all electronic subshells closed
except for a single subshell occupied by one electron, we
can find closed-form expressions for the expectation values

Λe
ðqPÞ
kj under suitable simplifying approximations. Treating

the electrons in the closed subshells as forming states with
zero total angular momentum, the value of J for the whole
system can be identified with the total angular momentum
of the electron in the open subshell. It follows that the only

contribution to Λe
ðqPÞ
kj with j ≠ 0 can arise from the valence

electron. Contributions from isotropic coefficients with
j ¼ 0 are given by Eq. (17).
The closed shells produce a spherically symmetric

electronic distribution. For present purposes, the effective
potential acting on the valence electron due to the repulsion
from the closed-shell electrons can be approximated as
central. One consequence of this is that the magnitude L of
the orbital angular momentum L of the valence electron is a
good quantum number for the system. It then becomes

TABLE I. Contributing nonrelativistic spherical coefficients.

Kw
NR
kj0 w K j values, integer K j values, half-integer K k values

Vw
NR
kj0, aw

NR
kj0, cw

NR
kj0 e F, J even, 2K ≥ j ≥ 0 even, 2K − 1 ≥ j ≥ 0 even, k ≥ j

Vw
NR
kj0, aw

NR
kj0, cw

NR
kj0 n, p F, I even, 2K ≥ j ≥ 0 even, 2K − 1 ≥ j ≥ 0 even, k ≥ j

T w
NRð0BÞ
kj0 , gw

NRð0BÞ
kj0 , Hw

NRð0BÞ
kj0

e F, J odd, 2K − 1 ≥ j ≥ 1 odd, 2K ≥ j ≥ 1 even, k ≥ j − 1

T w
NRð0BÞ
kj0 , gw

NRð0BÞ
kj0 , Hw

NRð0BÞ
kj0

n, p F, I odd, 2K − 1 ≥ j ≥ 1 odd, 2K ≥ j ≥ 1 even, k ≥ j − 1

T w
NRð1BÞ
kj0 , gw

NRð1BÞ
kj0 , Hw

NRð1BÞ
kj0

e F, J odd, 2K − 1 ≥ j ≥ 1 odd, 2K ≥ j ≥ 1 even, k ≥ j − 1

T w
NRð1BÞ
kj0 , gw

NRð1BÞ
kj0 , Hw

NRð1BÞ
kj0

n, p F, I odd, 2K − 1 ≥ j ≥ 1 odd, 2K ≥ j ≥ 1 even, k ≥ j − 1
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feasible to obtain explicit expressions for the quantities

Λe
ðqPÞ
kj defined in Eq. (14). We find

Λe
ð0EÞ
kj ¼ ij

ðj − 1Þ!!
j!!

MJ
j

ΛJ
j
hjpjki;

Λe
ð0BÞ
kj ¼ ij−1

j!!
ðj − 1Þ!!M

J
jΛJ

j hjpjki;

Λe
ð1BÞ
kj ¼ ij−1

2J þ 1

L − J
MJ

jΛJ
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!!ðj − 2Þ!!

2ðjþ 1Þ!!ðj − 1Þ!!

s
hjpjki:

ð18Þ
In this equation, p is the momentum of the valence electron,
and we define

MJ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4πð2J þ 1Þ

s
;

ΛJ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J þ jÞ!!ð2J − j − 1Þ!!
ð2J − jÞ!!ð2J þ jþ 1Þ!!

s
: ð19Þ

Note that the spin-independent operators in Eq. (3)
transform as spherical operators with respect to rotations
generated by L, which suffices to exclude contributions
from Ve

NR
kjm to the energy shift when j > 2L. However, this

requirement is already implied in the present context by the
condition 2J − 1 ≥ j presented in Table I, because the
lowest value of L for a given J is L ¼ J − 1=2.
The results (18) can be applied to alkali-metal atoms and

to singly ionized alkaline-earth ions. In both cases, the
electrons in the closed subshells belong to closed shells, so
the approximations made above are comparatively good.
This can be illustrated by comparing our results with
detailed calculations for specific states of particular sys-
tems. For example, consider the numerical results presented
in Table 1 of Ref. [55] for the D3=2 and D5=2 states in Caþ,
Baþ, and Ybþ. The table provides the reduced matrix
elements of the operator

Tð2Þ
0 ¼ −

ffiffiffiffiffiffiffiffi
16π

5

r
jpj20Y20ðp̂Þ; ð20Þ

calculated using several many-body techniques and defined
in terms of Wigner 3-j symbols instead of Clebsch-Gordan
coefficients. The ratio of the reduced matrix elements for
the two states D3=2 and D5=2 is 0.77 for Caþ and 0.79 for
Baþ. Converting the notation appropriately, we find that
Eq. (18) predicts a ratio of 0.76 for both systems, in
reasonable agreement with the many-body calculations.
However, for Ybþ the results obtained in Ref. [55] give a
ratio of 0.82, revealing a greater deviation from our
prediction. This is unsurprising because in this ion some
electrons in a closed subshell lie outside the closed shells,
so the accuracy of our approximation is expected to be
reduced.

The results (17) and (18) involve expectation values of
powers of the magnitude of the electron momentum. An
analytical evaluation of these expectation values is imprac-
tical, even for comparatively simple cases such as the
expectation values hjpjki for a valence electron. Numerical
methods can be adopted to resolve this issue, in conjunction
with techniques such as a self-consistent mean-field
approximation. However, the principle goal of this work
is to serve as a guide to search for Lorentz and CPT
violation. In this context, a precise determination of these
expectation values is often inessential. For example, some
transitions studied here are hyperfine or Zeeman transi-
tions. These involve two levels with similar momentum
expectation values, and the difference leaves unaffected the
qualitative form of experimental signals for Lorentz and
CPT violation. For these and many other transitions,
estimates of the expectation values of the electron momen-
tum suffice as a guide to the sensitivity of experiments
across a broad range of systems. An accurate determination
of the expectation values relevant to a given experimental
setup may become useful once enough data are collected
and a detailed analysis is being performed to extract the
coefficients for Lorentz violation. For a few transitions used
in experiments, estimates may be inadequate even as a
guide to the sensitivity. For example, for optical transitions
the difference between the expectation values in the two
states can be significant and must be included in the
treatment, as described in Sec. III C below.
For atoms or ions with more than one electron in an open

subshell, it is typically infeasible to obtain closed-form
expressions like Eqs. (17) and (18). These systems can have
substantial many-body effects, and their treatment requires
a more sophisticated and individualized approach.
Investigations of such systems are likely also to be of interest
in searches for Lorentz and CPT violation, but a discussion
along these lines lies beyond the scope of this work.

D. Nucleon expectation values

Next, we turn to the evaluation of the nucleon expectation
values (15). The simplest situation arises when F or I
vanishes, for which a compact expression for the energy
shift can be presented. For more complicated scenarios, a
model accounting for the strong nuclear interactions is
required. The central effective potential and mean-field
approximation used above for the electronic structure are
inappropriate to describe thenucleon interactions. Instead,we
adopt here a simple nuclear shellmodel that permits analytical

evaluation of thequantitiesΛw
ðqPÞ
kj . This enables an evaluation

of the effects of Lorentz and CPT violation from nucleon
propagators on spectral shifts in a broad range of systems.

1. Case F= 0 or I = 0

A number of atoms or ions have either vanishing total
angular momentum F ¼ 0 or vanishing nuclear spin I ¼ 0.
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The latter situation arises in nuclei with an even number of
neutrons and an even number of protons. In these cases,
independently of the nuclear model adopted, the energy
shift δϵw due to a nucleon of flavor w ¼ p or n receives
contributions only from isotropic coefficients for Lorentz
violation. The arguments here parallel those in Sec. II C 1.

Introducing the special isotropic coefficients V
∘ NR
w;k≡

Vw
NR
k00=

ffiffiffiffiffiffi
4π

p
, the expression for δϵ

∘
w is found to be

δϵ
∘
w ¼ −

X
q¼0

V
∘ NR
w;2q

XNw

a¼1

hjpaj2qi; ð21Þ

where the sum over a spans the Nw nucleons of flavor w in
the nucleus. Like the electron case, this isotropic shift can
also affect other energy levels having F ≠ 0 or I ≠ 0
through its contribution to Eq. (13).

2. Schmidt model for one unpaired nucleon

The Schmidt model [56,57] offers a comparatively
simple description of a broad range of nuclei. The model
assumes a shell structure for the nucleus in which any pair
of nucleons of a given flavor combines to form states with
total angular momentum equal to zero. If only one unpaired
nucleon exists in the nucleus, then it is treated as a single-
particle state with total angular momentum equal to the spin
I of the nucleus. The magnitude L of the orbital angular
momentum of the unpaired nucleon is treated as a good
quantum number. The model can be expected to deviate
significantly from observation for nuclei lying away from a
magic number.
Mathematically, the Schmidt model represents a setup

equivalent to the one described in Sec. II C 2 for a valence
electron outside closed subshells. The contribution to the
perturbative energy shift involving isotropic coefficients is
obtained from Eq. (21). When j > 0, the expressions for

the quantities Λw
ðqPÞ
kj can be calculated in closed form and

are given by

Λw
ð0EÞ
kj ¼ ij

ðj − 1Þ!!
j!!

MI
j

ΛI
j
hjpjki;

Λw
ð0BÞ
kj ¼ ij−1

j!!
ðj − 1Þ!!M

I
jΛI

jhjpjki;

Λw
ð1BÞ
kj ¼ ij−1

2I þ 1

L − I
MI

jΛI
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!!ðj − 2Þ!!

2ðjþ 1Þ!!ðj − 1Þ!!

s
hjpjki;

ð22Þ

where p is the linear momentum of the unpaired nucleon of
flavor w. The factors MI

j and ΛI
j are defined as

MI
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4πð2I þ 1Þ

s
;

ΛI
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2I þ jÞ!!ð2I − j − 1Þ!!
ð2I − jÞ!!ð2I þ jþ 1Þ!!

s
: ð23Þ

The primary advantage of the Schmidt model in the
present context is its application to a broad range of systems
for which the quantities Λw

ðqPÞ
kj can be evaluated using

Eq. (22). The model has previously been used to determine
signals arising from Lorentz- and CPT-violating operators
in the minimal SME for numerous experiments comparing
atomic or ionic transitions [9]. A significant limitation of
the Schmidt model in this respect is that only one flavor of
nucleon is assumed to contribute to transitions in any given
atom or ion, which implies the corresponding experiment is
sensitive only to coefficients for Lorentz violation in that
flavor sector. A more realistic treatment can be expected to
reveal dependence on coefficients for both values of w.
This was illustrated in Ref. [9] using more detailed
wave functions for the nuclei of 7Li and 9Be. Recently,
calculations using semiempirical models [32] and many-
body methods [58] have obtained improved values for the

coefficients Λw
ðqPÞ
kj , particularly for the coefficient Λw

ð0EÞ
22 .

These improved values emphasize the disadvantages of
using a single-valence model to study Lorentz- and CPT-
violating effects involving the nucleus. Nonetheless, to
maintain generality in this work and to permit the dis-
cussion of a broad range of atoms and ions, we adopt the
Schmidt model throughout, commenting where appropriate
on the likely consequences of using improved nuclear
modeling. We remark also that it suffices to estimate the
expectation values of the magnitude of the linear nucleon
momentum for all experiments considered here because no
nuclear transitions are involved.

E. Energy shift at zeroth boost order

In any Cartesian inertial frame within the solar system,
the coefficients for Lorentz violation can reasonably be
taken as constant in both time and space [5,6]. However, the
energy shift (8) is calculated in a laboratory frame.
Laboratories on the surface of the Earth or on orbiting
satellites generically correspond to noninertial frames, so
most coefficients appearing in Eq. (8) vary with time due
to the laboratory rotation and boost [59]. Moreover, the
explicit forms of the coefficients for Lorentz violation differ
in distinct inertial frames. To permit meaningful compari-
son of different experiments, experimental coefficient
values must therefore be reported in a canonical inertial
frame. The standard frame adopted in the literature for this
purpose is the Sun-centered celestial-equatorial frame [53],
with Cartesian coordinates denoted ðT; X; Y; ZÞ. In this
frame, the origin of the time coordinate T is defined as the
vernal equinox 2000. The X axis points from the location of
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the Earth at this equinox to the Sun, the Z axis is aligned
with the Earth’s rotation axis, and the X, Y, Z axes form a
right-handed coordinate system. The Sun-centered frame is
appropriate for reporting measurements of coefficients
because it is inertial to an excellent approximation over
the time scale of typical experiments.
The observer Lorentz transformation Λμ

νðθ; βÞ between
the laboratory frame and the Sun-centered frame can be
expressed as the composition of an observer rotation
Rμ

νðθÞ with an observer boost Bμ
νðβÞ,

Λμ
νðθ; βÞ ¼ Rμ

αðθÞBα
νðβÞ: ð24Þ

The boost parameter β is the velocity of the laboratory
frame with respect to the Sun-centered frame, while the
rotation parameter θ fixes the relative orientation between
the laboratory frame and the frame obtained via the boost.
The magnitude β of β is small compared to the speed of
light. For example, the speed of the Earth in the Sun-
centered frame in natural units is β ≃ 10−4. At zeroth order
in β the boost transformation is simply the identity map, so
the Lorentz transformation between the two frames
becomes a pure rotation. In this section, we consider the
energy shift (8) at zeroth boost order. Effects at linear boost
order are discussed in Sec. II F.
In the laboratory frame, only the nonrelativistic coef-

ficientsKw
NR;lab
kjm for Lorentz andCPT violation withm ¼ 0

contribute to the energy shift. At zeroth boost order and
for a laboratory on the Earth, these coefficients can be
converted to coefficients Kw

NR;Sun
kjm in the Sun-centered

frame via

Kw
NR;lab
kj0 ¼

X
m

eimω⊕TLdj0mð−ϑÞKw
NR;Sun
kjm : ð25Þ

Here, ϑ is the angle between the applied magnetic field and
the Earth’s rotation axis Z, and the quantities djmm0 are the
little Wigner matrices given in Eq. (136) of Ref. [50]. The
conversion (25) reveals the time variations of the labora-
tory-frame coefficients, which occur at harmonics of the
Earth’s sidereal frequency ω⊕ ≃ 2π=ð23 h 56 minÞ. The
local sidereal time TL is a convenient local Earth sidereal
time with origin chosen as the time when the magnetic field
lies in the XZ plane in the Sun-centered frame. This choice
yields the comparatively simple expression (25). For some
applications below it is preferable instead to adopt a
different local sidereal time T⊕, which is associated with
the laboratory frame introduced in Ref. [53] and has as
origin the time at which the tangential velocity of the
laboratory frame points along the Y axis. The relationship
between TL and T⊕ is

ω⊕T⊕ ¼ ω⊕TL − φ; ð26Þ

where φ is the angle between the X axis and the projection
of the magnetic field on the XY plane at T⊕ ¼ 0. Note that
both TL and T⊕ are offset from the standard time T in the
Sun-centered frame by an amount that depends on the
longitude of the laboratory, given explicitly for T⊕ in
Eq. (43) of Ref. [45].
The factors Aj0 ≡ Alab

j0 appearing in Eq. (8) are defined in
the laboratory frame. They transform in the same way
under rotations as the nonrelativistic coefficients for
Lorentz violation, so we can convert them to factors
ASun
j0 defined in the Sun-centered frame via the relation

Alab
j0 ¼

X
m

eimω⊕T⊕dj0mð−ϑÞASun
jm : ð27Þ

The energy shift (8) can therefore be expressed in the Sun-
centered frame as

δϵ ¼
X
jm

dðjÞ
0jmjð−ϑÞhFmFj0jFmFi

× ½ReASun
jjmj cos ðjmjω⊕T⊕Þ

− ImSun
jjmj sin ðjmjω⊕T⊕Þ�; ð28Þ

thereby explicitly demonstrating the time variation of the
spectrum of the atom or ion at harmonics of the sidereal
frequency ω⊕.
For any m, a given factor ASun

jjmj contains coefficients for
Lorentz violation labeled with the same index j. However,
as summarized in Table I, only restricted values of j for
nonrelativistic coefficients can contribute to a specific
energy shift. Since the highest harmonic that can contribute
to the sidereal variation is determined by the maximum
value of jmj, which in turn is fixed by the largest allowed
value of the index j, we can use the information in Table I
to deduce constraints on the possible harmonics contrib-
uting to the time variation of any particular energy level.
Table II summarizes these constraints for various condi-
tions on the quantum numbers F, J, and I. The first column
of the table lists the conditions, while the second column
displays the range of allowed values of jmj, which
corresponds to the possible harmonics of ω⊕ that can
appear. For example, the first row of the table shows that
the time variation of an energy level with quantum numbers
F ¼ 3, I ¼ 7=2, and J ¼ 3=2 can in principle contain up to
the sixth harmonic of ω⊕. Note, however, that special

TABLE II. Possible harmonics of ω⊕ at zeroth boost order.

Conditions on F, J, I Possible harmonics

F ≤ J or F ≤ I or both 2F ≥ jmj ≥ 0

F ≥ J, F ≥ I, J ≥ I 2J ≥ jmj ≥ 0

F ≥ J, F ≥ I, I ≥ J 2I ≥ jmj ≥ 0
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circumstances might contrive to lower the maximum
harmonic affecting a given transition frequency. For exam-
ple, a factor ASun

jjmj might vanish identically, or the two

energy levels involved in the transition might have identical
contributions at a particular harmonic so that the transition
frequency is unaffected. Note also that time variations at
higher harmonics than those displayed in Table II can
become allowed when effects at linear or higher order in the
boost are incorporated, but any such variations are sup-
pressed by powers of the boost.

F. Energy shift at linear boost order

Since the magnitude of the boost between the laboratory
frame and the Sun-centered frame is small, it is reasonable
to expand the boost transformation Bμ

νðβÞ of Eq. (24) in
powers of the relative speed β. In this section, we consider
contributions to the energy shift that appear at linear order
in the boost. At this order, the components of the observer
Lorentz transformation Λμ

νðθ; βÞ take the form

Λ0
T ¼ 1; Λ0

J ¼−βJ; Λj
T ¼−Rj

JβJ; Λj
J ¼Rj

J;

ð29Þ

where lowercase and uppercase indices represent spatial
Cartesian coordinates in the laboratory frame and in the
Sun-centered frame, respectively.
Given an expression for the energy shift in the laboratory

frame in terms of spherical coefficients for Lorentz viola-
tion, converting to the Sun-centered frame at linear boost
order can be performed in two steps. First, the spherical
coefficients in the laboratory frame can be rewritten in
terms of Cartesian coefficients in the same frame. The
transformation (29) can then be applied to express the
Cartesian coefficients in the laboratory frame in terms of
Cartesian coefficients in the Sun-centered frame.
Explicit expressions relating spherical coefficients to

Cartesian coefficients in any inertial frame are given in
Appendix A. To implement the conversion to the Sun-
centered frame, note that only spherical coefficients for
Lorentz violation with m ¼ 0 contribute to the energy shift
(8) in the laboratory frame. This implies that all uncon-
tracted spatial indices on the corresponding Cartesian
coefficients are in the x3 direction. The relevant part of
the rotation matrix Rj

J converting the Cartesian compo-
nents between the laboratory frame and the Sun-centered
frame therefore involves the row R3

J. This row can be
viewed as the components of a unit vector along x3. Since
by construction this is the quantization axis of the atom or
ion, which points in the direction B̂ of the applied magnetic
field, it follows that R3

J ¼ B̂J.
To illustrate this idea with an example, consider the

spherical coefficient gð4Þð1BÞ210 given in the laboratory frame.
From Appendix A we see that the spherical coefficient

gð4Þð1BÞ210 is proportional to the combination g̃ð4Þj3jeff of
Cartesian coefficients in the laboratory frame. This combi-

nation can be converted to Cartesian coefficients g̃ð4Þμναeff;rot in
the rotated frame as

g̃ð4Þj3jeff ¼ Rj
KR3

LRj
Mg̃

ð4ÞKLM
eff;rot ¼ R3

Kg̃
ð4ÞJKJ
eff;rot ¼ g̃ð4ÞJKJeff;rot B̂

K;

ð30Þ

where the second equality follows from the iden-
tity Rj

KRj
L ¼ δKL.

The above discussion shows that the number of factors of
B̂J appearing in a given term contributing to the energy
shift at linear boost order is determined by the index
structure of the corresponding coefficient for Lorentz
violation. To keep the explicit tables appearing in
Sec. III of reasonable size, we limit attention below to
Lorentz- and CPT-violating operators of mass dimension
d ≤ 8. Expressions relating all the corresponding Cartesian
coefficients in the laboratory frame to those in the Sun-
centered frame at linear boost order are given in
Appendix B. Inspection of these results reveals that the
form of the shift δν in a transition frequency for an atom or
ion takes the generic form

δν ¼
X8
d¼3

X5
s¼0

VðdÞJJ1…Js B̂J1…B̂JsβJ ð31Þ

at linear boost order, where the quantities VðdÞJJ1…Js are
linear combinations of Cartesian coefficients for Lorentz
violation in the Sun-centered frame. The explicit forms of β
and B̂ in this equation depend on the choice of laboratory
frame. We consider here in turn two types of laboratory, one
located on the surface of the Earth and another on a
spacecraft orbiting the Earth.
For a laboratory on the surface of the Earth, the boost

velocity β in Eq. (31) can be taken as

β ¼ β⊕ þ βL; ð32Þ

where β⊕ is the instantaneous Earth orbital velocity in the
Sun-centered frame and βL is the instantaneous tangential
velocity of the laboratory relative to the Earth’s rotation
axis. Approximating the Earth’s orbit as circular, the
velocity β⊕ can be written as

β⊕ ¼ β⊕ sinΩ⊕TX̂−β⊕ cosΩ⊕TðcosηŶþ sinηẐÞ; ð33Þ

where β⊕ ≃ 10−4 is the Earth’s orbital speed, Ω⊕ ≃
2π=ð365.26 dÞ is the Earth’s orbital angular frequency,
and η ≃ 23.4° is the angle between the XY plane and the
Earth’s orbital plane. Also, treating the Earth as spherical,
the tangential velocity βL takes the form
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βL ¼ −βL sinω⊕T⊕X̂ þ βL cosω⊕T⊕Ŷ; ð34Þ

where βL ≈ r⊕ω⊕ sin χ is determined by the colatitude χ of
the laboratory the radius r⊕ of the Earth, and the sidereal
frequency ω⊕. The unit vector B̂ in Eq. (31) can conven-
iently be expressed in an instantaneous Earth-centered
coordinate system with axes parallel to those of the Sun-
centered frame,

B̂ ¼ sinϑ cos ðω⊕T⊕ þ φÞX̂
þ sin ϑ sin ðω⊕T⊕ þ φÞŶ þ cosϑẐ; ð35Þ

where ϑ and φ are the polar and azimuthal angles of the
magnetic field at T⊕ ¼ 0.
Next, consider a laboratory located on a space-based

platform orbiting the Earth. Examples include experiments
on board the International Space Station (ISS) such as the
Atomic Clock Ensemble in Space (ACES) [60] and the
Quantum Test of the Equivalence Principle and Space Time
(QTEST) [61], or dedicated missions searching for Lorentz
violation such as the Space-Time Explorer and Quantum
Equivalence Space Test (STE-QUEST) [62] and the Boost
Symmetry Test (BOOST) [63]. We adopt the coordinates
depicted in Fig. 2 of Ref. [64]. Assuming for definiteness a
trajectory with negligible eccentricity, the parameters for the
orbit are the mean orbital radius rs, the mean orbital angular
speedωs, the angle ζ between the satellite orbital axis and the
Earth’s rotation axis, and the azimuthal angle α between the
Earth and satellite orbital planes. In this scenario, the boost
velocity β in Eq. (31) can be written as the vector sum

β ¼ β⊕ þ βs ð36Þ

of the Earth’s orbital velocity β⊕ in the Sun-centered frame
and the satellite velocity βs relative to an instantaneous Earth-
centered frame. Explicitly, the components of the satellite
velocity βs in the Sun-centered frame take the form

βs ¼

0
B@

−βs cos α sinωsTs − βs cos ζ sinα cosωsTs

−βs sinα sinωsTs þ βs cos α cos ζ cosωsTs

βs sin ζ cosωsTs

1
CA;

ð37Þ

where βs ¼ rsωs and the local satellite time Ts has origin
fixed as the satellite crosses the equatorial plane on an
ascending orbit. Obtaining also an explicit expression for the
unit vector B̂ in Eq. (31) requires a further specification of the
orientationof the space-based laboratory relative to theEarth.
For example, when this orientation is fixed then an instanta-
neous satellite frame can be defined with x axis pointing
radially towards the Earth and z axis aligned along βs. The
components of the corresponding unit spatial vectors x̂s, ŷs,
ẑs can be expressed in the Sun-centered frame as

x̂s¼

0
B@
−cosαcosωsTsþ cosζ sinαsinωsTs

−sinαcosωsTs− cosαcosζ sinωsTs

−sinζ sinωsTs

1
CA;

ŷs≡βs× x̂s
βs

¼

0
B@

sinαsinζ

−cosαsinζ

cosζ

1
CA;

ẑs¼
βs
βs
: ð38Þ

Using this basis, the direction B̂ of the magnetic field in the
space-based experiment can be expressed as

B̂ ¼ sin θs cosϕsx̂s þ sin θs sinϕsŷs þ cos θsẑs; ð39Þ

where cos θs ¼ βs · B̂=βs and cosϕs ¼ x̂s · B̂.

III. APPLICATIONS

In this section, we comment on some applications of the
formulas derived above. Many existing searches for
Lorentz and CPT violation are based on the study of
transitions in fountain clocks, in comagnetometers, and in
trapped ions or lattice clocks. Each of these experimental
approaches is considered in turn. We present expressions
relevant to the analysis of data from a variety of experi-
ments, and we estimate the attainable sensitivities to
coefficients for Lorentz violation along with actual con-
straints from existing data where possible.

A. Fountain clocks

Fountain clocks using 133Cs atoms have been widely
adopted as primary time and frequency standards. The
standard transition in these clocks, jF ¼ 3; mF ¼ 0i ↔
jF ¼ 4; mF ¼ 0i, is insensitive to the Lorentz- and CPT-
violating spectral shifts discussed above. This implies that
the 133Cs frequency standard can be used as a reference in
experimental studies searching for Lorentz violation, in
parallel with the hydrogen-maser standard [43]. Searches
for violations of Lorentz and CPT symmetry using a 133Cs
fountain clock can instead be performed by studying the
frequencies νmF

for transitions jF ¼ 3; mFi ↔ jF ¼ 4; mFi
with mF ≠ 0. These transitions are individually sensitive to
the linear Zeeman shift, and hence their precision is limited
by systematic effects. However, the systematics can be
significantly reduced by measuring the observable νc ¼
νþ3 þ ν−3 − 2ν0 [16,65].
The total electronic angular momentum for the states

with mF ¼ �1 is J ¼ 1=2. Consulting Table I reveals that
only electron operators with j ≤ 1 can in principle shift the
frequencies ν�3. However, the observable νc remains
unaffected by these shifts. To evaluate the nucleon con-
tributions to νc we adopt the Schmidt model as discussed
above, in which the nuclear spin I ¼ 7=2 of 133Cs is
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assigned to the unpaired proton. With this assumption,
the Lorentz-violating shift δνc of the observable νc is
given by

2πδνc ¼ −
3

14

ffiffiffi
5

π

r
ðhjpj2iVp

NR
220

þ hjpj4iVp
NR
420

Þ

þ 45

77
ffiffiffi
π

p hjpj4iVp
NR
440

; ð40Þ

where p is the momentum of the valence proton. Note that
the results presented in Refs. [16,65] based on the minimal
SME analysis in Ref. [9] can be recovered from the above
expression by excluding contributions from nonminimal
Lorentz-violating operators. In practice, this corresponds to
making the replacements

Vp
NR
220

→
1

3mp

ffiffiffiffiffiffi
4π

5

r
ð3cpð4Þzz − cp

ð4Þ
jj Þ;

Vp
NR
420

→ 0; Vp
NR
440

→ 0 ð41Þ

in Eq. (40).
To convert the above expression to the Sun-centered

frame, consider first the frequency shift δνc;0 at zeroth
boost order. Applying the transformation rule (25) for
nonrelativistic coefficients to the result (40) yields a
somewhat lengthy form for δνc;0 in the Sun-centered
frame. The result is presented in tabular form in
Table III. In each row of the table, the first entry contains
the harmonic dependence on the sidereal frequency ω⊕
and the local sidereal time TL. The second entry
describes the dependence on the orientation of the
magnetic field in the laboratory frame. The third entry
provides the relevant expectation value of the proton
momentum magnitude jpj, while the fourth entry con-
tains the numerical factor and the coefficient for Lorentz
violation. To obtain the frequency shift δνc;0, it suffices
to multiply the columns and add the rows in the table.
For example, the contributions to δνc;0 from the first and
second rows are

−
3

56

ffiffiffi
5

π

r
hjpj2iVp

NR;Sun
220 −

9

56

ffiffiffi
5

π

r
cos 2ϑhjpj2iVp

NR;Sun
220 :

ð42Þ

Note that the corresponding expression for δνc;0 in
the minimal SME can be obtained by making the
replacements

Vp
NR;Sun
4jm → 0;

Vp
NR;Sun
220 → −

1

3m2
p

ffiffiffiffiffiffi
4π

5

r
c̃p

ð4Þ
Q ;

ReVp
NR;Sun
221 → −

1

m2
p

ffiffiffiffiffiffi
2π

15

r
c̃p

ð4Þ
Y ;

ImVp
NR;Sun
221 →

1

m2
p

ffiffiffiffiffiffi
2π

15

r
c̃p

ð4Þ
X ;

ReVp
NR;Sun
222 →

1

m2
p

ffiffiffiffiffiffi
2π

15

r
c̃pð4Þ− ;

ImVp
NR;Sun
222 → −

1

m2
p

ffiffiffiffiffiffi
2π

15

r
c̃p

ð4Þ
Z ð43Þ

in the entries in the fourth column of Table III.
Next, consider the contribution to the frequency shift

δνc;1 at linear order in the boost. Applying the trans-
formation (29) to Eq. (40) and writing the result in the form
(31) yields

2πδνc;1 ¼
X
d

hjpj2i
m5−d

p
ðVðdÞJ

Cs;2β
J þ VðdÞJKL

Cs;2 B̂KB̂LβJÞ

þ
X
d

hjpj4i
m7−d

p
ðVðdÞJ

Cs;4β
J þ VðdÞJKL

Cs;4 B̂KB̂LβJÞ

þ
X
d

hjpj4i
m7−d

p
VðdÞJKLMN
Cs;4 B̂KB̂LB̂MB̂NβJ: ð44Þ

Expressions for the quantities VðdÞJJ1…Js
Cs;k in terms of the

effective Cartesian coefficients can be deduced from the
results presented in Appendix B and are displayed in
Table IV for mass dimensions 5 ≤ d ≤ 8. In each row of

this table, the first entry lists a specific quantity VðdÞJJ1…Js
Cs;k ,

while the second entry gives its expression as a combina-
tion of effective Cartesian coefficients in the Sun-
centered frame.
Note that the minimal-SME limit of the result (44) can be

obtained by setting to zero all the quantities VðdÞJJ1…Js
Cs;k

except for

Vð4ÞJ
Cs;2 ¼ −

2

7
cp

ð4ÞTJ
eff ; Vð4ÞJKL

Cs;2 ¼ 6

7
cp

ð4ÞTK
eff δJL; ð45Þ

where the coefficients cð4Þμνeff are defined as the symmetric
combination 1

2
ðcð4Þμν þ cð4ÞνμÞ, as in Ref. [35]. In contrast

to the minimal-SME case, the nonminimal terms introduce
sidereal variations incorporating the third, fourth, and fifth
harmonics of the sidereal frequency. For example, the
contribution to δνc;1 from the fifth harmonic is given by
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TABLE III. Frequency shift δνc;0 at zeroth boost order.

ω⊕TL ϑ hjpjki Coefficient

1 1 hjpj2i − 3
56

ffiffi
5
π

q
Vp

NR;Sun
220

1 cos 2ϑ hjpj2i − 9
56

ffiffi
5
π

q
Vp

NR;Sun
220

1 1 hjpj4i − 3
56

ffiffi
5
π

q
Vp

NR;Sun
420 þ 405

4928
ffiffi
π

p Vp
NR;Sun
440

1 cos 2ϑ hjpj4i − 9
56

ffiffi
5
π

q
Vp

NR;Sun
420 þ 225

1232
ffiffi
π

p Vp
NR;Sun
440

1 cos 4ϑ hjpj4i 225
704

ffiffi
π

p Vp
NR;Sun
440

sinω⊕TL sin 2ϑ hjpj2i 3
14

ffiffiffiffi
15
2π

q
ImVp

NR;Sun
221

sinω⊕TL sin 2ϑ hjpj4i 3
14

ffiffiffiffi
15
2π

q
ImVp

NR;Sun
421 − 45

616

ffiffi
5
π

q
ImVp

NR;Sun
441

sinω⊕TL sin 4ϑ hjpj4i − 45
176

ffiffi
5
π

q
ImVp

NR;Sun
441

cosω⊕TL sin 2ϑ hjpj2i − 3
14

ffiffiffiffi
15
2π

q
ReVp

NR;Sun
221

cosω⊕TL sin 2ϑ hjpj4i − 3
14

ffiffiffiffi
15
2π

q
ReVp

NR;Sun
421 þ 45

616

ffiffi
5
π

q
ReVp

NR;Sun
441

cosω⊕TL sin 4ϑ hjpj4i 45
176

ffiffi
5
π

q
ReVp

NR;Sun
441

sin 2ω⊕TL 1 hjpj2i 3
28

ffiffiffiffi
15
2π

q
ImVp

NR;Sun
222

sin 2ω⊕TL cos 2ϑ hjpj2i − 3
28

ffiffiffiffi
15
2π

q
ImVp

NR;Sun
222

sin 2ω⊕TL 1 hjpj4i 3
28

ffiffiffiffi
15
2π

q
ImVp

NR;Sun
422 − 135

1232

ffiffiffiffi
5
2π

q
ImVp

NR;Sun
442

sin 2ω⊕TL cos 2ϑ hjpj4i − 3
28

ffiffiffiffi
15
2π

q
ImVp

NR;Sun
422 − 45

308

ffiffiffiffi
5
2π

q
ImVp

NR;Sun
442

sin 2ω⊕TL cos 4ϑ hjpj4i 45
176

ffiffiffiffi
5
2π

q
ImVp

NR;Sun
442

cos 2ω⊕TL 1 hjpj2i − 3
28

ffiffiffiffi
15
2π

q
ReVp

NR;Sun
222

cos 2ω⊕TL cos 2ϑ hjpj2i 3
28

ffiffiffiffi
15
2π

q
ReVp

NR;Sun
222

cos 2ω⊕TL 1 hjpj4i − 3
28

ffiffiffiffi
15
2π

q
ReVp

NR;Sun
422 þ 135

1232

ffiffiffiffi
5
2π

q
ReVp

NR;Sun
442

cos 2ω⊕TL cos 2ϑ hjpj4i 3
28

ffiffiffiffi
15
2π

q
ReVp

NR;Sun
422 þ 45

308

ffiffiffiffi
5
2π

q
ReVp

NR;Sun
442

cos 2ω⊕TL cos 4ϑ hjpj4i − 45
176

ffiffiffiffi
5
2π

q
ReVp

NR;Sun
442

sin 3ω⊕TL sin 2ϑ hjpj4i − 45
88

ffiffiffiffi
5
7π

q
ImVp

NR;Sun
443

sin 3ω⊕TL sin 4ϑ hjpj4i 45
176

ffiffiffiffi
5
7π

q
ImVp

NR;Sun
443

cos 3ω⊕TL sin 2ϑ hjpj4i 45
88

ffiffiffiffi
5
7π

q
ReVp

NR;Sun
443

cos 3ω⊕TL sin 4ϑ hjpj4i − 45
176

ffiffiffiffi
5
7π

q
ReVp

NR;Sun
443

sin 4ω⊕TL 1 hjpj4i − 135
352

ffiffiffiffiffiffi
5

14π

q
ImVp

NR;Sun
444

sin 4ω⊕TL cos 2ϑ hjpj4i 45
88

ffiffiffiffiffiffi
5

14π

q
ImVp

NR;Sun
444

sin 4ω⊕TL cos 4ϑ hjpj4i − 45
352

ffiffiffiffiffiffi
5

14π

q
ImVp

NR;Sun
444

cos 4ω⊕TL 1 hjpj4i 135
352

ffiffiffiffiffiffi
5

14π

q
ReVp

NR;Sun
444

cos 4ω⊕TL cos 2ϑ hjpj4i − 45
88

ffiffiffiffiffiffi
5

14π

q
ReVp

NR;Sun
444

cos 4ω⊕TL cos 4ϑ hjpj4i 45
352

ffiffiffiffiffiffi
5

14π

q
ReVp

NR;Sun
442
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2πδνc;1;5ω⊕
¼ 1

16
βLsin4ϑ

X
d

hjpj4i
m7−d

p

× ½sin 5ω⊕Tð10VðdÞXXXYY
Cs;4

− VðdÞXXXXX
Cs;4 − 5VðdÞXYYYY

Cs;4 Þ
þ cos 5ω⊕Tð5VðdÞXXXXY

Cs;4

− 10VðdÞXXYYY
Cs;4 þ VðdÞYYYYY

Cs;4 Þ� ð46Þ

and is suppressed by the boost factor βL, in agreement with
the discussion following Eq. (28).
Taken together, the above results permit estimates of the

potential sensitivity to Lorentz and CPT violation that is
attainable in experiments with 133Cs fountain clocks via
studies of sidereal and annual variations. Adopting as a
benchmark the measurements of minimal-SME coefficients
reported in Ref. [65], it is reasonable to expect sensitivities
in the Sun-centered frame of the orders of magnitude listed
in Table V. The first four lines of this table provides
estimated sensitivities to the nonrelativistic coefficients
Vp

NR
k2m, while the remainder of the table concerns the

effective Cartesian coefficients VðdÞJ
Cs;k. For the entries

involving the latter, the uncontracted Cartesian spatial
index J represents any of the possible values X, Y, Z.
These estimated attainable sensitivities are competitive, so

extracting real constraints from data would be of definite
interest.
Further developments of these results are also possible.

Corrections at second boost order that are sensitive to
isotropic coefficients in the minimal SME are analyzed in
Ref. [65]. Generalizing this analysis to the nonminimal
sector is a worthwhile open project. Another line of
reasoning extending the above results would involve
replacing the Schmidt model with a more realistic nuclear
model for the 133Cs nucleus. In the minimal SME, this
replacement reveals that neutron Lorentz-violating oper-
ators with j ¼ 2 also contribute to the frequency shift,
thereby leading to constraints on coefficients for Lorentz
violation in the neutron sector [65]. For the nonrelativistic
coefficients, the neutron-sector corrections can be incorpo-
rated into the expressions given above via the replacement

Vp
NR
22m → Vp

NR
22m þ 0.021Vn

NR
22m: ð47Þ

We can therefore estimate the attainable sensitivities to
these neutron-sector coefficients by reducing by about 2
orders of magnitude the corresponding proton-sector esti-
mates given in Table V. Note that neutron Lorentz-violating
operators with j ¼ 2, k ¼ 4 or with j ¼ 4 may also affect
the energy shift, but this possibility remains unexplored in
the literature to date.
Atomic clocks placed on orbiting satellites or other

spacecraft offer qualitatively different experimental oppor-
tunities for studying Lorentz and CPT symmetry. Since
typical space missions involve different clock trajectories
than those relevant to Earth-based laboratories, they pro-
vide access to different combinations of coefficients for
Lorentz violation [64]. For example, the orbital plane of
space-based laboratories like the International Space

TABLE IV. The quantities VðdÞJJ1…Js
Cs;k for 5 ≤ d ≤ 8.

VðdÞJJ1…Js
Cs;k Combination

Vð5ÞJ
Cs;2

3
7
ðapð5ÞJKK

eff þ 2ap
ð5ÞJTT
eff Þ

Vð5ÞJJ1J2
Cs;2

− 9
7
ðapð5ÞJJ1J2eff þ 2δJJ1ap

ð5ÞTTJ2
eff Þ

Vð6ÞJ
Cs;2

− 12
7
ðcpð6ÞJTKK

eff þ cp
ð6ÞJTTT
eff Þ

Vð6ÞJJ1J2
Cs;2

36
7
ðcpð6ÞJTJ1J2eff þ δJJ1cp

ð6ÞTTTJ2
eff Þ

Vð7ÞJ
Cs;2

10
7
ð3apð7ÞJTTKK

eff þ 2ap
ð7ÞJTTTT
eff Þ

Vð7ÞJJ1J2
Cs;2

− 30
7
ð3apð7ÞJTTJ1J2eff þ 2δJJ1ap

ð7ÞTTTTJ2
eff Þ

Vð7ÞJ
Cs;4

60
77
ðapð7ÞJKKLL

eff þ 4ap
ð7ÞJTTKK
eff Þ

Vð7ÞJJ1J2
Cs;4

− 540
77

ðapð7ÞJTTJ1J2eff þ δJJ1ap
ð7ÞTTJ1KK
eff Þ

− 270
77

ap
ð7ÞJJ1J2KK
eff

Vð7ÞJJ1J2J3J4
Cs;4

150
77

ðapð7ÞJJ1J2J3J4eff þ 4δJJ1ap
ð7ÞTTJ2J3J4
eff Þ

Vð8ÞJ
Cs;2

− 30
7
ð2cpð8ÞJTTTKK

eff þ cp
ð8ÞJTTTTT
eff Þ

Vð8ÞJJ1J2
Cs;2

90
7
ð2cpð8ÞJTTTJ1J2eff þ δJJ1cp

ð8ÞTTTTTJ2
eff Þ

Vð8ÞJ
Cs;4

− 360
77

ðcpð8ÞJTKKLL
eff þ 2cp

ð8ÞJTTTKK
eff Þ

Vð8ÞJJ1J2
Cs;4

1620
77

ðcpð8ÞJTTTJ1J2eff þ δJJ1cp
ð8ÞTTTJ2KK
eff Þ

þ 1620
77

cp
ð8ÞJTJ1J2KK
eff

Vð8ÞJJ1J2J3J4
Cs;4

− 900
77

cp
ð8ÞJTJ1J2J3J4
eff − 1800

77
δJJ1cp

ð7ÞTTTJ2J3J4
eff

TABLE V. Potential sensitivities to coefficients in the Sun-
centered frame from sidereal and annual variations in a 133Cs
fountain clock.

Coefficient Sensitivity

japNR221j, jcpNR221j 10−24 GeV−1

japNR421j, jcpNR421j 10−22 GeV−3

japNR222j, jcpNR222j 10−24 GeV−1

japNR422j, jcpNR422j 10−22 GeV−3

jcpð4ÞTJeff j 10−20

japð5ÞTTJeff j, japð5ÞKKJ
eff j 10−20 GeV−1

jcpð6ÞTTTJeff j, jcpð6ÞTKKJ
eff j 10−21 GeV−2

japð7ÞTTTTJeff j, japð7ÞTTKKJ
eff j 10−21 GeV−3

japð7ÞKKLLJ
eff j 10−18 GeV−3

jcpð8ÞTTTTTJeff j, jcpð8ÞTTTKKJ
eff j 10−21 GeV−4

jcpð8ÞTKKLLJ
eff j 10−19 GeV−4
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Station (ISS) is inclined relative to the equatorial plane and
precesses, thereby sampling orientation-dependent effects
in a unique way. The satellite orbital velocity can also
exceed the rotational velocity of the Earth, which
can enhance some signals for Lorentz violation and can
permit faster data accumulation. For instance, the period of
the ISS is approximately 92 minutes, so over 15 orbits are
completed during a sidereal day.
A 133Cs cold-atom clock is a component of the ACES

platform on the ISS [60]. The proposed STE-QUEST
mission [62] may also involve a 133Cs clock. Frequency
data obtained from operating a 133Cs clock in the spin-
polarized mode can be converted to the Sun-centered frame
using Eqs. (36)–(39) or similar expressions, leading to
bounds on combinations of coefficients for Lorentz viola-
tion that are inaccessible to Earth-based experiments. For
example, Table III shows that the coefficients Vp

NR
kj0

produce no sidereal effects in an Earth-based laboratory,
but they can be measured on a space platform.
Fountain clocks using 87Rb atoms have been considered as

interesting alternatives for a primary frequency standard
[66,67] and for studying Lorentz symmetry via the proposed
space-based mission QTEST [61]. A double 133Cs and 87Rb
fountain clock has been used to search for Lorentz and CPT
violation [16,65]. Like its 133Cs and H analogues, the 87Rb
clock transition jF ¼ 1; mF ¼ 0i ↔ jF ¼ 2; mF ¼ 0i is
insensitive to Lorentz and CPT violation and can thus be
used as a reference in experiments. However, the frequencies
νRbmF

associated with the transitions jF¼1;mFi↔ jF¼2;mFi
with mF ≠ 0 do experience Lorentz- and CPT-violating
shifts. The systematics associated with the linear Zeeman
shift can in this case be reduced by considering the
observable νRbc ¼ νRbþ1 þ νRb−1 − 2νRb0 . Coefficients in the
electron sector leave νRbc unaffected. In the context of
the Schmidt model the valence nucleon is a proton with
spin I ¼ 3=2, so the shift δνRbc in the observable νRbc depends
on coefficients for Lorentz violation in the proton sector. We
find

2πδνRbc ¼ −
1ffiffiffiffiffiffi
5π

p ðhjpj2iVp
NR
220

þ hjpj4iVp
NR
420

Þ: ð48Þ

Since the nuclear spin of 87Rb is smaller than that of 133Cs,
fewer coefficients appear in Eq. (48) than in Eq. (40). All
results for 133Cs fountains discussed in thepresent section can
be transcribed to results for 87Rb fountains by matching the
changes between Eqs. (40) and (48).

B. Comagnetometers

Comagnetometers form another category of sensitive
tools used for studies of Lorentz and CPT symmetry. High-
sensitivity searches for Lorentz and CPT violation in both
sidereal and annual variations have been achieved using
129Xe-3He comagnetometers [22–25]. The experiments

compared the angular frequencies ωXe and ωHe of
Larmor transitions in the ground states of 129Xe and 3He
atoms by measuring the observable

ω ¼ ωHe −
γHe
γXe

ωXe; ð49Þ

which is insensitive to the linear Zeeman shift. Here, γXe is
the gyromagnetic ratio for the ground state of 129Xe and γHe
is that for the ground state of 3He.
Since the total electronic angular momentum of the noble

gases in the ground state is J ¼ 0, the Larmor transitions
are unaffected by electron coefficients for Lorentz viola-
tion. The contributions from the nucleon coefficients can be
estimated using the Schmidt model, in which the nuclear
spin I ¼ 1=2 of each species is assigned to the unpaired
neutron. The analysis in Sec. II then yields the Lorentz-
violating shift δω of the observable ω as

δω ¼ −
1ffiffiffiffiffiffi
3π

p
X2
q¼0

�
hjpj2qiHe −

γHe
γXe

hjpj2qiXe
�

× ðT n
NRð0BÞ
ð2qÞ10 þ 2T n

NRð1BÞ
ð2qÞ10 Þ; ð50Þ

evaluated in the laboratory frame. In this expression,
hjpjkiHe and hjpjkiXe are the expectation values of the
Schmidt neutron in 3He and 129Xe. These quantities can
reasonably be taken as roughly the same order of magni-
tude, hjpjkiHe ∼ hjpjkiXe, so the shift δω can be written as

δω ¼
X2
q¼0

�
γHe
γXe

− 1

� hjpj2qiffiffiffiffiffiffi
3π

p ðT n
NRð0BÞ
ð2qÞ10 þ 2T n

NRð1BÞ
ð2qÞ10 Þ:

ð51Þ

This result reduces to the minimal-SME expressions
presented in Refs. [22–25] based on the theoretical treat-
ment of Ref. [9], by taking the limit

T n
NRð0BÞ
010 þ 2T n

NRð1BÞ
010 → 2

ffiffiffiffiffiffi
3π

p
b̃n3;

T n
NRð0BÞ
210 þ 2T n

NRð1BÞ
210 → 0;

T n
NRð0BÞ
410 þ 2T n

NRð1BÞ
410 → 0; ð52Þ

as expected.
Conversion of Eq. (51) to the Sun-centered frame reveals

the time variations in the observable ω. At zeroth boost
order, the nonminimal terms produce time variations at the
first harmonic of the sidereal frequency, which can be
explicitly obtained using Eq. (25). We can then translate
existing bounds on the minimal SME coefficients b̃nX and
b̃nY obtained from studies of this harmonic to constraints on
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nonminimal coefficients for Lorentz violation. For this
purpose, it suffices to implement the identifications

b̃nX → −
1ffiffiffiffiffiffi
6π

p
X2
q¼0

hjpj2qiRe½T n
NRð0BÞ
ð2qÞ11 þ 2T n

NRð1BÞ
ð2qÞ11 �;

b̃nY →
1ffiffiffiffiffiffi
6π

p
X2
q¼0

hjpj2qiIm½T n
NRð0BÞ
ð2qÞ11 þ 2T n

NRð1BÞ
ð2qÞ11 � ð53Þ

on existing minimal-SME limits. For example, the bound
on the coefficient b̃n⊥ reported in Ref. [25] then yields the
constraint

���X2
q¼0

hjpj2qiðT n
NRð0BÞ;Sun
ð2qÞ11 þ 2T n

NRð1BÞ;Sun
ð2qÞ11 Þ

���
< 3.7 × 10−33 GeV ð54Þ

at the one sigma level. Following the standard procedure
in the literature of taking one coefficient to be nonzero
at a time [3], we find the maximal sensitivities to non-
relativistic coefficients shown in Table VI. These are
the first constraints on neutron nonrelativistic coefficients
in the literature. They correspond to substantially greater
sensitivities to Lorentz andCPT violation than those attained
to date on electron or proton nonrelativistic coefficients, and
they exceed even the comparatively tight constraints
on muon nonminimal coefficients obtained from laboratory
measurements of the muon anomalous magnetic moment
[68,69].
At linear boost order in the Sun-centered frame, the

Lorentz-violating shift δω1 in ω follows the generic
structure (31) and can be written as

δω1 ¼
X8
d¼3

X2
q¼0

�
γHe
γXe

− 1

� hjpj2qi
m3þ2q−d

n
TðdÞJK
HeXe;ð2qÞB̂

JβK: ð55Þ

The quantities TðdÞJK
HeXe;k are the linear combinations

of effective Cartesian coefficients displayed in Table VII.
In this table, parentheses around indices are understood
to represent symmetrization with a suitable factor,

e.g., g̃n
ð4ÞJðTKÞ
eff ¼ ðg̃nð4ÞJTKeff þ g̃n

ð4ÞJKT
eff Þ=2!. Also, repeated

dummy indices are understood to be summed,

e.g., H̃n
ð5ÞTJTJ
eff ¼ H̃n

ð5ÞTXTX
eff þ H̃n

ð5ÞTYTY
eff þ H̃n

ð5ÞTZTZ
eff .

The explicit form of the result (55) can be displayed
by substituting Eqs. (32)–(35) given in Sec. II F for
the boost velocity of the laboratory and for the direction
of the magnetic field. This ensuing expression takes
the form

TABLE VI. Constraints on the moduli of the real and imaginary
parts of neutron nonrelativistic coefficients determined from
129Xe-3He comparisons using Eq. (54).

Coefficient K Constraint on jReKj; jImKj
Hn

NRð0BÞ;Sun
011 , gn

NRð0BÞ;Sun
011

<4 × 10−33 GeV

Hn
NRð1BÞ;Sun
011 , gn

NRð1BÞ;Sun
011

<2 × 10−33 GeV

Hn
NRð0BÞ;Sun
211 , gn

NRð0BÞ;Sun
211

<4 × 10−31 GeV−1

Hn
NRð1BÞ;Sun
211 , gn

NRð1BÞ;Sun
211

<2 × 10−31 GeV−1

Hn
NRð0BÞ;Sun
411 , gn

NRð0BÞ;Sun
411

<4 × 10−29 GeV−3

Hn
NRð1BÞ;Sun
411 , gn

NRð1BÞ;Sun
411

<2 × 10−29 GeV−3

TABLE VII. The quantities TðdÞJK
HeXe;k for 3 ≤ d ≤ 8.

TðdÞJK
HeXe;k Combination

Tð3ÞJK
HeXe;0

−2H̃n
ð3ÞJK
eff

Tð4ÞJK
HeXe;0 4g̃n

ð4ÞJðTKÞ
eff

Tð5ÞJK
HeXe;0

−6H̃n
ð5ÞJðTTKÞ
eff

Tð6ÞJK
HeXe;0 8g̃n

ð6ÞJðTTTKÞ
eff

Tð7ÞJK
HeXe;0

−10H̃n
ð7ÞJðTTTTKÞ
eff

Tð8ÞJK
HeXe;0 12g̃n

ð8ÞJðTTTTTKÞ
eff

Tð5ÞJK
HeXe;2

− 4
3
H̃n

ð5ÞTLTL
eff δJK − 4H̃n

ð5ÞJðTTKÞ
eff − 2H̃n

ð5ÞJðLLKÞ
eff

Tð6ÞJK
HeXe;2 2g̃n

ð6ÞTLTTL
eff δJK þ 8g̃n

ð6ÞJðTTTKÞ
eff þ 8g̃n

ð6ÞJðTLLKÞ
eff

Tð7ÞJK
HeXe;2

− 8
3
H̃n

ð7ÞTLTTTL
eff δJK − 40

3
H̃n

ð7ÞJðTTTTKÞ
eff − 20H̃n

ð7ÞJðTTLLKÞ
eff

Tð8ÞJK
HeXe;2

10
3
g̃n

ð8ÞTLTTTTL
eff δJK þ 20g̃n

ð8ÞJðTTTTTKÞ
eff þ 40g̃n

ð8ÞJðTTTLLKÞ
eff

Tð7ÞJK
HeXe;4

− 8
5
H̃n

ð7ÞTLTMML
eff δJK − 8H̃n

ð7ÞJðTTLLKÞ
eff − 2H̃n

ð7ÞJðLLMMKÞ
eff

Tð8ÞJK
HeXe;4 4g̃n

ð8ÞTMTTLLM
eff δJK þ 24g̃n

ð8ÞJðTTTLLKÞ
eff þ 12g̃n

ð8ÞJðTLLMMKÞ
eff
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δω1 ¼ β⊕ sin ϑλ⊕ þ βL cos ϑλL þ β⊕ cos ϑ cos ðΩ⊕TÞλcΩ þ β⊕ cosϑ sin ðΩ⊕TÞλsΩ þ βL cosϑ cos ðω⊕T⊕Þλcω
þ βL cosϑ sin ðω⊕T⊕Þλsω þ β⊕ sinϑ cos ðω⊕T⊕Þ cos ðΩ⊕TÞλcωcΩ þ β⊕ sin ϑ sin ðω⊕T⊕Þ cos ðΩ⊕TÞλsωcΩ
þ β⊕ sinϑ cos ðω⊕T⊕Þ sin ðΩ⊕TÞλcωsΩ þ β⊕ sinϑ sin ðω⊕T⊕Þ sin ðΩ⊕TÞλsωsΩ þ βL sin ϑ cos ð2ω⊕T⊕Þλc2ω
þ βL sinϑ sin ð2ω⊕T⊕Þλs2ω; ð56Þ

where the twelve quantities λ� with subscripts � ranging
over the values⊕, L, cΩ, sΩ, cω, sω, cωcΩ, sωcΩ, cωsΩ,
sωsΩ, c2ω; s2ω can be decomposed in terms of quantities

λðdÞk� with fixed values of k and d via the relation

λ� ¼
X8
d¼3

X2
q¼0

�
γHe
γXe

− 1

� hjpj2qi
m3þ2q−d

n
λðdÞð2qÞ� : ð57Þ

Expressions for the quantities λðdÞkÞ� in terms of TðdÞJK
HeXe;k are

given in Table VIII.
An experiment using a dual 129Xe-3He maser to study

sidereal variations in the observable ω at different times of
the year was performed at the Harvard-Smithsonian Center
for Astrophysics [23]. In this experiment, the magnetic
field was oriented west to east, corresponding to ϑ ¼ 0° and
ϕ ¼ 90°. We can use the bounds on δω1 reported in
Ref. [23] to determine limits on nonminimal effective
Cartesian coefficients for the neutron. The published
analysis neglected contributions proportional to the labo-
ratory velocity βL in the Sun-centered frame, so we can
deduce the four bounds

λcωcΩ ¼ ð−3.9� 3.5Þ × 10−27 GeV;

λcωsΩ ¼ ð0.7� 6.3Þ × 10−27 GeV;

λsωsΩ ¼ ð−6.3� 6.7Þ × 10−27 GeV;

λsωcΩ ¼ ð−3.9� 2.8Þ × 10−27 GeV: ð58Þ

Note that the dependence of the quantities λ� on the angle ϕ
means that these bounds hold only at ϕ ¼ 90°. Using the
results in Tables VII and VIII and the bounds (58), we can
extract maximal sensitivities to many nonminimal effective
Cartesian coefficients for the neutron. These constraints are
listed in Table IX. They are the first of their kind reported in
the literature for neutrons.
Improvements over the results in Table IX are within

reach of existing experiments. The sensitivity recently
attained in the Heidelberg apparatus described in
Ref. [25] represents a gain of about 2 orders of magnitude,
so sufficient sidereal data accumulated at the annual
frequency with this apparatus could in principle better
the constraints in Table IX by a similar factor. Moreover,
with the sidereal data already in hand, the time variations at
the second harmonic of the sidereal frequency appearing in
Eq. (56) could in principle be studied and would be

TABLE VIII. The quantities λðdÞk� in terms of TðdÞJK
HeXe;k.

λðdÞk� Combination

λðdÞk⊕ cosϕTðdÞ½XY�
HeXe;ð2qÞ þ 1

2
sinϕðTðdÞXX

HeXe;k þ TðdÞYY
HeXe;kÞ

λðdÞkL TðdÞZX
HeXe;k

λðdÞkcΩ
−ðcos ηTðdÞZY

HeXe;k þ sin ηTðdÞZZ
HeXe;kÞ

λðdÞksΩ TðdÞZX
HeXe;k

λðdÞkcω TðdÞZY
HeXe;k

λðdÞksω
−TðdÞZX

HeXe;k

λðdÞkc2ω cosϕTðdÞðXYÞ
HeXe;k þ sinϕ 1

2
ðTðdÞYY

HeXe;k − TðdÞXX
HeXe;kÞ

λðdÞks2ω
− sinϕTðdÞðXYÞ

HeXe;k − cosϕ 1
2
ðTðdÞYY

HeXe;k − TðdÞXX
HeXe;kÞ

λðdÞkcΩsω cos ηðsinϕTðdÞXY
HeXe;k − cosϕTðdÞYY

HeXe;kÞ þ sin ηðsinϕTðdÞXZ
HeXe;k − cosϕTðdÞYZ

HeXe;kÞ
λðdÞkcΩcω

− sin ηðcosϕTðdÞXZ
HeXe;k þ sinϕTðdÞYZ

HeXe;kÞ − cos ηðcosϕTðdÞXY
HeXe;k þ sinϕTðdÞYY

HeXe;kÞ
λðdÞksΩsω cosϕTðdÞYX

HeXe;k − sinϕTðdÞXX
HeXe;k

λðdÞksΩcω sinϕTðdÞYX
HeXe;k þ cosϕTðdÞXX

HeXe;k

V. ALAN KOSTELECKÝ and ARNALDO J. VARGAS PHYS. REV. D 98, 036003 (2018)

036003-18



expected to yield additional measurements of interest.
Although this signal is suppressed by about 2 orders of
magnitude compared to annual-variation effects, the greater
sensitivity of the Heidelberg apparatus suggests constraints
of the same order of magnitude as those in Table IX could
be obtained. Note also that direct measurements of the
annual modulation would lead to new constraints on SME

coefficients, as sidereal variations are insensitive to the
combinations λcΩ and λsΩ even when monitored throughout
the year.
Another avenue offering potential improvements is the

adoption of better nuclear models beyond the Schmidt
model. These techniques have already been used to show
that contributions from proton coefficients to Eq. (51) are

TABLE IX. Constraints on the moduli of neutron effective Cartesian coefficients determined from 129Xe-3He comparisons using
Eq. (58).

Coefficient Constraint Coefficient Constraint

H̃n
ð5ÞXðTXTÞ
eff

<1 × 10−27 GeV−1
g̃n

ð6ÞXðTXTTÞ
eff

<9 × 10−28 GeV−2

H̃n
ð5ÞXðTYTÞ
eff

<8 × 10−28 GeV−1
g̃n

ð6ÞXðTYTTÞ
eff

<7 × 10−28 GeV−2

H̃n
ð5ÞXðTZTÞ
eff

<2 × 10−27 GeV−1
g̃n

ð6ÞXðTZTTÞ
eff

<2 × 10−27 GeV−2

H̃n
ð5ÞYðTXTÞ
eff

<8 × 10−28 GeV−1
g̃n

ð6ÞYðTXTTÞ
eff

<6 × 10−28 GeV−2

H̃n
ð5ÞYðTYTÞ
eff

<8 × 10−28 GeV−1
g̃n

ð6ÞYðTYTTÞ
eff

<7 × 10−28 GeV−2

H̃n
ð5ÞYðTZTÞ
eff

<2 × 10−27 GeV−1
g̃n

ð6ÞYðTZTTÞ
eff

<2 × 10−27 GeV−2

H̃n
ð5ÞXðJXJÞ
eff

<4 × 10−25 GeV−1
g̃n

ð6ÞXðJXJTÞ
eff

<9 × 10−26 GeV−2

H̃n
ð5ÞXðJYJÞ
eff

<3 × 10−25 GeV−1
g̃n

ð6ÞXðJYJTÞ
eff

<7 × 10−26 GeV−2

H̃n
ð5ÞXðJZJÞ
eff

<6 × 10−25 GeV−1
g̃n

ð6ÞXðJZJTÞ
eff

<2 × 10−25 GeV−2

H̃n
ð5ÞYðJXJÞ
eff

<2 × 10−25 GeV−1
g̃n

ð6ÞYðJXJTÞ
eff

<2 × 10−25 GeV−2

H̃n
ð5ÞYðJYJÞ
eff

<3 × 10−25 GeV−1
g̃n

ð6ÞYðJYJTÞ
eff

<7 × 10−26 GeV−2

H̃n
ð5ÞYðJZJÞ
eff

<6 × 10−25 GeV−1
g̃n

ð6ÞYðJZJTÞ
eff

<2 × 10−25 GeV−2

H̃n
ð5ÞTJTJ
eff

<6 × 10−25 GeV−1 g̃n
ð6ÞTJTJT
eff

<5 × 10−25 GeV−2

H̃n
ð7ÞXðTXTTTÞ
eff

<8 × 10−28 GeV−3
g̃n

ð8ÞXðTXTTTTÞ
eff

<7 × 10−28 GeV−4

H̃n
ð7ÞXðTYTTTÞ
eff

<6 × 10−28 GeV−3
g̃n

ð8ÞXðTYTTTTÞ
eff

<5 × 10−28 GeV−4

H̃n
ð7ÞXðTZTTTÞ
eff

<2 × 10−27 GeV−3
g̃n

ð8ÞXðTZTTTTÞ
eff

<1 × 10−27 GeV−4

H̃n
ð7ÞYðTXTTTÞ
eff

<6 × 10−28 GeV−3
g̃n

ð8ÞYðTXTTTTÞ
eff

<5 × 10−28 GeV−4

H̃n
ð7ÞYðTYTTTÞ
eff

<6 × 10−28 GeV−3
g̃n

ð8ÞYðTYTTTTÞ
eff

<5 × 10−28 GeV−4

H̃n
ð7ÞYðTZTTTÞ
eff

<2 × 10−27 GeV−3
g̃n

ð8ÞYðTZTTTTÞ
eff

<1 × 10−27 GeV−4

H̃n
ð7ÞXðJXJTTÞ
eff

<4 × 10−26 GeV−3
g̃n

ð8ÞXðJXJTTTÞ
eff

<2 × 10−26 GeV−4

H̃n
ð7ÞXðJYJTTÞ
eff

<3 × 10−26 GeV−3
g̃n

ð8ÞXðJYJTTTÞ
eff

<1 × 10−26 GeV−4

H̃n
ð7ÞXðJZJTTÞ
eff

<7 × 10−26 GeV−3
g̃n

ð8ÞXðJZJTTTÞ
eff

<4 × 10−26 GeV−4

H̃n
ð7ÞYðJXJTTÞ
eff

<3 × 10−26 GeV−3
g̃n

ð8ÞYðJXJTTTÞ
eff

<1 × 10−26 GeV−4

H̃n
ð7ÞYðJYJTTÞ
eff

<3 × 10−26 GeV−3
g̃n

ð8ÞYðJYJTTTÞ
eff

<1 × 10−26 GeV−4

H̃n
ð7ÞYðJZJTTÞ
eff

<7 × 10−26 GeV−3
g̃n

ð8ÞYðJZJTTTÞ
eff

<3 × 10−26 GeV−4

H̃n
ð7ÞTJTJTT
eff

<2 × 10−25 GeV−3 g̃n
ð8ÞTJTJTTT
eff

<4 × 10−25 GeV−4

H̃n
ð7ÞXðJXJKKÞ
eff

<4 × 10−23 GeV−3
g̃n

ð8ÞXðJXJTKKÞ
eff

<7 × 10−24 GeV−4

H̃n
ð7ÞXðJYJKKÞ
eff

<3 × 10−23 GeV−3
g̃n

ð8ÞXðJYJTKKÞ
eff

<5 × 10−24 GeV−4

H̃n
ð7ÞXðJZJKKÞ
eff

<7 × 10−23 GeV−3
g̃n

ð8ÞXðJZJTKKÞ
eff

<1 × 10−23 GeV−4

H̃n
ð7ÞYðJXJKKÞ
eff

<3 × 10−23 GeV−3
g̃n

ð8ÞYðJXJTKKKÞ
eff

<5 × 10−24 GeV−4

H̃n
ð7ÞYðJYJKKÞ
eff

<3 × 10−23 GeV−3
g̃n

ð8ÞYðJYJTKKÞ
eff

<5 × 10−24 GeV−4

H̃n
ð7ÞYðJZJKKÞ
eff

<7 × 10−23 GeV−3
g̃n

ð8ÞYðJZJTKKÞ
eff

<1 × 10−23 GeV−4

H̃n
ð7ÞTJTJKK
eff

<6 × 10−23 GeV−3
g̃n

ð8ÞTJTJTKK
eff

<2 × 10−23 GeV−4

LORENTZ AND CPT TESTS WITH CLOCK-COMPARISON … PHYS. REV. D 98, 036003 (2018)

036003-19



significant, being suppressed only by a factor of about 5
for coefficients with k ¼ 0 [30]. If a similar relationship
for coefficients with k ¼ 2, 4 can be demonstrated, then
the constraints on the neutron coefficients listed in
Tables VI and IX could be extended to bounds on the
corresponding proton coefficients by multiplying by a
factor of 5. This would represent a striking gain in
sensitivity to the proton nonrelativistic coefficients com-
pared to the existing results obtained using data from a
hydrogen maser [43].
Other comagnetometers can also be used to test Lorentz

and CPT symmetry and may offer sensitivities to addi-
tional coefficients. One potential example is the
21Ne-Rb-K comagnetometer described in Ref. [19], which
is designed to extend the reach achieved earlier by a 3He-K
self-compensating comagnetometer [18]. The addition of
21Ne to the system is of particular interest here because the
nuclear spin of 21Ne is I ¼ 3=2 and so this comagne-
tometer can access more coefficients for Lorentz violation.
A glance at Table I reveals that there are prospects for
measuring the coefficients with j ¼ 2 and j ¼ 3. The
underlying physics of this comagnetometer system differs
significantly from that of the other systems discussed in
this work, so the results obtained in Sec. II cannot be
directly applied to estimate sensitivities. However, some of
the bounds presented in Ref. [19] can be converted to
constraints on nonrelativistic coefficients for the neutron
by applying the relationship (43) between the nonrelativ-

istic coefficients and the coefficients cð4Þμν . Table X lists
the corresponding maximal sensitivities achieved,
which are the first of this kind in the literature. As before,
these results can be expected to extend to constraints
on nonrelativistic coefficients for the proton because
nuclear models beyond the Schmidt model are known
to allow contributions from proton operators to Lorentz-
violating expectation values with j ¼ 2 [33]. It is also
plausible that a similar situation holds for coefficients with
j ¼ 3. All these interesting issues are open for future
investigation.

C. Trapped ions and lattice clocks

The stability and accuracy of optical frequency standards
currently exceeds the performance of fountain clocks. It is
thus natural to consider the prospects for testing Lorentz
and CPT symmetry using optical transitions. However,
sensitivities to many coefficients for Lorentz violation
depend on the absolute uncertainty of the frequency
measurement rather than on its relative precision. As the
absolute uncertainties of fountain clocks still surpass those
of optical clocks, the advantages of the latter lie primarily in
their ability to access distinct Lorentz- and CPT-violating
effects. In particular, optical clocks offer sensitivities to
coefficients for Lorentz violation in the electron sector that
are unattainable in other clock-comparison experiments. In
this section, we study sensitivities to electron coefficients in
trapped-ion and lattice optical clocks. Since any signals
from proton and neutron coefficients are better accessed via
other techniques, we disregard nucleon contributions in
what follows.
The transition 1S0-3P0 is commonly used in optical

frequency standards. It has been studied with trapped ions,
including 27Alþ [70–73] and 115Inþ [74–76], and also in the
context of optical lattice clocks based on 87Sr [77–82],
171Yb [83–86], and 199Hg [87–89]. For this transition, the
total electronic angular momentum of the two states
involved is J ¼ 0, so only isotropic electron Lorentz-
violating operators can contribute. The Lorentz-violating
shift δν in the transition frequency ν therefore involves only
coefficients with jm ¼ 00. In the independent-particle
model discussed in Sec. II C, the shift in the laboratory
frame is given by

2πδν ¼ −
1ffiffiffiffiffiffi
4π

p ðΔp2Ve
NR
200 þ Δp4Ve

NR
400Þ; ð59Þ

where Δpk is the difference in the expectation values hjpjki
of the energy levels involved in the transition.
Some optical frequency standards involve transitions

between energy levels with J ≠ 0. For example, the
transition 2S1=2-2D5=2 is used as a frequency standard in
ion-trap clocks based on 40Caþ [90–93] and 88Srþ [94–96].
For these systems, certain systematic effects can be mini-
mized by measuring transitions involving different Zeeman
sublevels. These techniques typically also eliminate sensi-
tivity to some Lorentz-violating effects, as is to be expected
given that the coefficients for Lorentz violation behave in
many ways as effective external fields.
One common technique to remove the linear Zeeman

shift of the clock transition is averaging over the Zeeman
pair 2S1=2;1=2 − 2D5=2;mJ

and 2S1=2;−1=2 − 2D5=2;−mJ
.

Similarly, the electric quadrupole shift can be removed
by averaging over three different Zeeman pairs.
Implementing this process eliminates any contributions
from Lorentz-violating operators with j ≠ 0 at linear order
in perturbation theory, due to the identity

TABLE X. Constraints on neutron nonrelativistic coefficients
determined using data from the 21Ne-Rb-K comagnetometer.

Coefficient Constraint

ReanNR221, Recn
NR
221

−ð3.3� 3.0Þ × 10−29 GeV−1

ImanNR221, ImcnNR221 −ð1.9� 2.3Þ × 10−29 GeV−1

ReanNR222, Recn
NR
222 ð1.0� 1.2Þ × 10−29 GeV−1

ImanNR222, ImcnNR222 ð0.83� 0.96Þ × 10−29 GeV−1

ReanNR421, Recn
NR
421

−ð3.7� 3.4Þ × 10−27 GeV−3

ImanNR421, ImcnNR421 −ð2.2� 2.6Þ × 10−27 GeV−3

ReanNR422, Recn
NR
422 ð1.1� 1.3Þ × 10−27 GeV−3

ImanNR422, ImcnNR422 ð0.9� 1.1Þ × 10−27 GeV−3
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X5=2
mj¼−5=2

�
5

2
mJj0j

5

2
mJ

�
¼ 6δj0: ð60Þ

As a result, the Lorentz- and CPT-violating frequency shift
δν measurable in these systems is still given by Eq. (59),
despite the nonzero value of J.
Another technique to remove the quadrupole shift uses

instead two Zeeman pairs to interpolate the value of the
frequency at m2

J ¼ 35=12, which corresponds to zero
quadrupole shift because the shift is proportional to
35=12 −m2

J. This method eliminates contributions involv-
ing coefficients for Lorentz violation with j ¼ 2, but it
retains contributions with j ¼ 4. In this scenario, the
Lorentz- and CPT-violating shift (59) is replaced by the
expression

2πδν ¼ −
1ffiffiffiffiffiffi
4π

p ðΔp2Ve
NR
200 þ Δp4Ve

NR
400Þ

þ 7

27
ffiffiffi
π

p hjpj4iVe
NR
440; ð61Þ

where the expectation value hjpj4i is evaluated in the
state 2D5=2.
The clock transition 2S1=2ðF ¼ 0Þ-2D3=2ðF ¼ 2Þ with

ΔmF ¼ 0 in 171Ybþ has also been used as a frequency
standard [97,98]. In the context of the independent-particle
model described in Sec. II C, the Lorentz- and CPT-
violating frequency shift δν for this system is given in
the laboratory frame by

2πδν ¼ −
1ffiffiffiffiffiffi
4π

p ðΔp2Ve
NR
200 þ Δp4Ve

NR
400Þ

þ 1

2
ffiffiffiffiffiffi
5π

p ðhjpj2iVe
NR
420 þ hjpj4iVe

NR
420Þ; ð62Þ

where the expectation value hjpj4i is evaluated in the state
2D3=2. However, to suppress the contribution from the
electric quadrupole shift, an averaging of the frequency
over three orthogonal directions of the magnetic field is
performed. This procedure suppresses the contribution
from coefficients with j ¼ 2. As a result, in the limit that
the three directions are exactly orthogonal, the shift (62)
reduces to the expression (59).
Other frequency standards are provided by the electric

octopole transitions in 171Ybþ [98,99] and 199Hgþ
[100,101]. The clock transition used in these systems is
the transition ΔmF ¼ 0, which is insensitive to B-type
coefficients for Lorentz violation. As before, the contribu-
tion to the Lorentz- and CPT-violating frequency shift δν
arising from coefficients with j ¼ 0 is given by Eq. (59).
The contribution from coefficients with j ¼ 2 is again
eliminated by the averaging procedure over three different
directions of the magnetic field, which is designed to cancel

the electric quadrupole shift. It is conceivable that coef-
ficients with j ¼ 4 contribute to the frequency shift, but
establishing this lies outside our present scope.
The coefficients in the above expressions are in the

laboratory frame and hence may vary with time. In
converting to the Sun-centered frame, the isotropic fre-
quency shift (59) receives contributions that depend on the
boost velocity of the laboratory frame. At linear boost
order, we find that the shift δν1 is given by

2πδν1 ¼ −
X
d;k

Δpkffiffiffiffiffiffi
4π

p ½β⊕ sinΩ⊕TV
ðdÞX
e;k

− β⊕ cosΩ⊕Tðcos ηVðdÞY
e;k þ sin ηVðdÞZ

e;k Þ
þ βLðcosω⊕T⊕V

ðdÞY
e;k − sinω⊕T⊕V

ðdÞX
e;k Þ�; ð63Þ

where expressions for the quantities VðdÞJ
e;k in terms of

effective Cartesian coefficients are given in Table XI.
The result (63) predicts annual and sidereal variations of

the transition frequency, which can in principle be detected
by comparison to a reference. Since optical clocks can
outperform other frequency standards, an effective way to
search for the effects predicted by Eq. (63) is to compare
two optical clocks and search for a sidereal or annual
modulation of their frequency difference. For systems with
long-term stability, studying annual variations is preferable
because the speed β⊕ is typically about 2 orders of
magnitude bigger than βL. Note also that the two clocks
can be located in different laboratories. Using Eq. (63), we
see that the annual and sidereal modulations of the
frequency difference between clocks A and B are given by

2πδνAB ¼
X
d;k

Δpk
B − Δpk

Affiffiffiffiffiffi
4π

p ½β⊕ sinΩ⊕TV
ðdÞX
e;k

− β⊕ cosΩ⊕Tðcos ηVðdÞY
e;k þ sin ηVðdÞZ

e;k Þ�

þ
X
d;k

Δpk
BβL;B − Δpk

AβL;Affiffiffiffiffiffi
4π

p ðcosω⊕T⊕V
ðdÞY
e;k

− sinω⊕T⊕V
ðdÞX
e;k Þ; ð64Þ

TABLE XI. The quantities VðdÞJ
e;k for 5 ≤ d ≤ 8.

VðdÞJ
e;k Combination

Vð5ÞJ
e;2

−2að5ÞJTTeff − að5ÞJKK
eff

Vð6ÞJ
e;2 4cð6ÞJTTTeff þ 4cð6ÞJTKK

eff

Vð7ÞJ
e;2

− 10
3
ð2að7ÞJTTTTeff þ 3að7ÞJTTKK

eff Þ
Vð8ÞJ
e;2 10cð8ÞJTTTTTeff þ 20cð8ÞJTTTKK

eff

Vð7ÞJ
e;4

−að7ÞJKKLL
eff − 4að7ÞJTTKK

eff

Vð8ÞJ
e;4 6cð8ÞJTKKLL

eff þ 12cð8ÞJTTTKK
eff
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whereΔpk
A is the expectation value hjpjki for the transitions

in clock A, βL;A is the speed of the laboratory containing
clock A, and Δpk

B, βL;B are defined similarly for clock B.
Several laboratories have the potential to compare two

clocks at the same location, searching for the effects
predicted in Eq. (64) in a scenario with βL;A ¼ βL;B. For
example, scanning the literature cited above suggests that
comparisons of any two lattice clocks based on 87Sr, 171Yb,
or 199Hg could in principle be performed at Rikagaku
Kenkyūsho (RIKEN) in Japan. Similarly, 87Sr and 199Hg
lattice clocks can be compared at the Système de Référence
Temps-Espace (SYRTE) in France, ones based on 87Sr and
171Yb can be compared at the National Metrology Institute
of Japan (NMIJ), and the 27Alþ ion clock could be
compared to the 171Yb lattice clock at the National
Institute of Standards and Technology (NIST) in the
United States. Many individual comparisons between
clocks located at different institutions are also possible
in principle, by using Eq. (64) with βL;A ≠ βL;B. Moreover,
some Lorentz- and CPT-violating effects that are absent in
Eq. (64) and hence cannot be studied with any of these
clock combinations might become accessible given
suitable care for the treatment of systematics and its
implication for cancellations of signals. Some examples
of such experiments with clocks at a single location
might include comparison of the 88Srþ and 171Ybþ ion
clocks at the National Physical Laboratory (NPL) in
England, the 87Sr lattice clock and the 171Ybþ ion clock
at the Physikalisch-Technische Bundesanstalt (PTB) in
Germany, or the 27Alþ and 199Hgþ ion clocks at NIST.
A qualitatively different approach to testing Lorentz and

CPT symmetry is to create an entangled state andmonitor its
time evolution. In Ref. [26], the entangled state combines the
states ðj�5=2ij∓ 5=2i þ j�1=2ij∓ 1=2iÞ= ffiffiffi

2
p

of two
40Caþ ions, where the kets jmFi represent the mF Zeeman
level of the energy state 2D5=2. The experimental observable
f̄ is obtained by averaging the energy difference between the
product states j�5=2ij∓ 5=2i and j�1=2ij∓ 1=2i.
Following the approach in Sec. II C, we assign angular

momenta J ¼ 5=2 and L ¼ 2 to the valence electron. The
Lorentz- and CPT-violating shift δf of the observable f̄ in
the laboratory frame is found to be

2πδf̄ ¼ 18

7
ffiffiffiffiffiffi
5π

p ðhjpj2iVe
NR
220 þ hjpj4iVe

NR
420Þ

þ 1

7
ffiffiffi
π

p hjpj4iVp
NR
440

: ð65Þ

This expression has a structure similar to that of the
frequency shift (40) in fountain clocks, so we can adapt
the results presented in Sec. III A to convert the expression
(65) to the Sun-centered frame. The expression for the
shift δf̄0 at zeroth boost order is therefore given by Table III
with the replacements

Vp
NR
k2m → −

12

5
Ve

NR
k2m; Vp

NR
k4m →

11

45
Ve

NR
k4m: ð66Þ

At linear boost order, the contribution δf̄1 is

2πδf̄1 ¼
X
d

hjpj2i
m5−d

p
ðVðdÞJ

Ca;2β
J þ VðdÞJKL

Ca;2 B̂KB̂LβJÞ

þ
X
d

hjpj4i
m7−d

p
ðVðdÞJ

Ca;4β
J þ VðdÞJKL

Ca;4 B̂KB̂LβJÞ

þ
X
d

hjpj4i
m7−d

p
VðdÞJKLMN
Ca;4 B̂KB̂LB̂MB̂NβJ; ð67Þ

where expressions for the quantities VðdÞJJ1…Js
Ca;k in terms of

effective Cartesian coefficients are displayed in Table XII.
For the nonminimal terms considered in this work, the

result (67) incorporates time variation at the first five
harmonics of the sidereal frequency along with annual
variations. At the sidereal frequency, the dominant con-
tributions to the variations in the first four harmonics are
given by Table III with the substitutions (66). The variation
at the fifth harmonic is suppressed by βL, and it is given by

Eq. (46) with the replacement VðdÞJ…K
Cs;k → VðdÞJ…K

Ca;k . Using
these results, we can estimate the sensitivities of the 40Caþ
experiment [26] to the nonrelativistic coefficients.
Table XIII displays these sensitivities. In deriving them,
we take hjpj2i ∼ 10−11 GeV2 and hjpj4i ∼ 10−22 GeV4. We
also suppose the experimental reach is 0.03 Hz. With
sufficient stability and data collection over a long time

TABLE XII. The quantities VðdÞJJ1…Js
Ca;k for 5 ≤ d ≤ 8.

VðdÞJJ1…Js
Ca;k Combination

Vð5ÞJ
Ca;2

− 36
35
ðaeð5ÞJKK

eff þ 2ae
ð5ÞJTT
eff Þ

Vð5ÞJJ1J2
Ca;2

108
35

ðaeð5ÞJJ1J2eff þ 2δJJ1ae
ð5ÞTTJ2
eff Þ

Vð6ÞJ
Ca;2

144
35

ðceð6ÞJTKK
eff þ ce

ð6ÞJTTT
eff Þ

Vð6ÞJJ1J2
Ca;2

− 432
35

ðceð6ÞJTJ1J2eff þ δJJ1ce
ð6ÞTTTJ2
eff Þ

Vð7ÞJ
Ca;2

− 24
7
ð3aeð7ÞJTTKK

eff þ 2ae
ð7ÞJTTTT
eff Þ

Vð7ÞJKL
Ca;2

72
7
ð3apð7ÞJTTJ1J2eff þ 2δJJ1ap

ð7ÞTTTTJ2
eff Þ

Vð7ÞJ
Ca;4

− 10
7
ðaeð7ÞJKKLL

eff þ 4ae
ð7ÞJTTKK
eff Þ

Vð7ÞJJ1J2
Ca;4 8ðaeð7ÞJTTJ1J2eff þ δJJ1ae

ð7ÞTTJ2KK
eff Þ þ 4ae

ð7ÞJJ1J2KK
eff

Vð7ÞJJ1J2J3J4
Ca;4

10
21
ðaeð7ÞJJ1J2J3J4eff þ 4δJJ1ae

ð7ÞTTJ2J3J4
eff Þ

Vð8ÞJ
Ca;2

72
7
ð2ceð8ÞJTTTKK

eff þ ce
ð8ÞJTTTTT
eff Þ

Vð8ÞJJ1J2
Ca;2

− 216
7
ð2ceð8ÞJTTTJ1J2eff þ δJJ1ce

ð8ÞTTTTTJ2
eff Þ

Vð8ÞJ
Ca;4

60
7
ðceð8ÞJTKKLL

eff þ 2ce
ð8ÞJTTTKK
eff Þ

Vð8ÞJJ1J2
Ca;4

−24ðceð8ÞJTTTJ1J2eff þδJJ1ce
ð8ÞTTTJ2KK
eff Þ−24ceð8ÞJTJ1J2KK

eff

Vð8ÞJJ1J2J3J4
Ca;4

− 20
7
ðceð8ÞJTJ1J2J3J4eff − 2δJJ1ce

ð7ÞTTTJ2J3J4
eff Þ
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period, constraints could also be placed on coefficients for
Lorentz violation associated with the annual variation
signal predicted by Eq. (67).
Related experiments have been proposed using Zeeman

transitions of theF7=2 state in Ybþ [55]. Experiments using a
dynamical decoupling technique have also been proposed for
a broad class of trapped ions and lattice clocks [102]. All are
expected to permit significant improvements over existing

constraints on the coefficients cð4Þμν . The energy shift produced
by these minimal-SME coefficients can be generalized to
incorporate also the contributions from the nonminimal
coefficients Ve

NR
22m in the nonrelativistic limit. The proposed

experiments can therefore be expected to yield substantial
improvements over the estimated sensitivities to the coef-
ficients aeNR22m and ceNR22m given in Table XIII.

D. Antimatter clocks

In this final section on applications, we offer some
comments about the prospects for spectroscopic experiments
using antimatter. Comparisons of the properties ofmatter and
antimatter are of particular interest for testing the CPT
symmetry of quantum field theory. The line of reasoning
outlined in the Introduction reveals that effective field theory
also provides the general model-independent framework for
analyzing antimatter systems, so the results of experiments
testing CPT symmetry can be expressed in a model-
independent way as constraints on SME coefficients.
A diverse set of such constraints has already been

obtained via precision spectroscopy of positrons and
antiprotons confined in a Penning trap [45–47,103–105].
Studying antimatter instead of antiparticles offers advan-
tages in searches for CPT violation [43,106], and several
collaborations are developing techniques for the precision
spectroscopy of antihydrogen. Recently, the Antihydrogen
Laser Physics Apparatus (ALPHA) Collaboration has
measured the antihydrogen ground-state hyperfine transi-
tions [107] and the 1S-2S transition [108], heralding
an era of precision antimatter spectroscopy. Other collab-
orations pursuing this goal include the Atomic Spectro-
scopy and Collisions Using Slow Antiprotons (ASACUSA)
Collaboration [109,110], and the Antihydrogen Trap
(ATRAP) Collaboration [111]. Experiments investigating
the gravitational response of antihydrogen are also
being developed, including the Antihydrogen Experi-
ment: Gravity, Interferometry, Spectroscopy (AEGIS)

Collaboration [112], the ALPHA Collaboration [113],
and the Gravitational Behavior of Antihydrogen at Rest
(GBAR) Collaboration [114], and the corresponding tech-
niques may also enhance future spectroscopic studies of
antihydrogen.
One signal for nonzero CPT violation would be a

measured difference Δν̄1S2S ≡ ν1S2S − ν̄1S2S between the
resonance frequency ν1S2S of the 1S-2S transition in
hydrogen and the analogous resonance frequency ν̄1S2S
in antihydrogen. Performing a general analysis in the
context of effective field theory [43] reveals that
CPT-violating effects contributing to a nonzero value of
Δν̄1S2S can be classified as spin independent or spin
dependent and as isotropic or anisotropic, and they can
exhibit time variations induced by the noninertial nature of
the experimental laboratory. It turns out that the spin-
dependent effects are more readily studied using ground-
state hyperfine transitions, while the time variations are
better explored by directly studying modulations of ν̄1S2S.
However, the difference Δν̄1S2S is particularly sensitive to
isotropic, spin-independent, and time-constant CPT viola-

tion controlled by the coefficients a
∘NR
e;2 , a

∘NR
e;4 , a

∘NR
p;2, a

∘NR
p;4. An

explicit expression for Δν̄1S2S in terms of these coefficients
is given by Eq. (86) of Ref. [43], with the correction 8 → 16
in the denominator. Note that these nonrelativistic coef-
ficients incorporate effects from CPT-violating operators
of arbitrary mass dimension [35].
Based on an analysis that assumes no spin-, geometry-, or

time-dependent CPT violation, the ALPHA Collaboration
reported agreement between the 1S-2S resonance frequen-
cies of hydrogenandantihydrogen at a precisionof2 × 10−12

[108]. We can therefore deduce the constraint����a∘NRe;2 þ a
∘NR
p;2 þ

67

12
ðαmrÞ2ða∘NRe;4 þ a

∘NR
p;4Þ

���� < 1 × 10−9 GeV−1;

ð68Þ

where α is the fine-structure constant and mr is the reduced
mass of hydrogen. The result (68) represents the first
constraint on SME coefficients extracted from antihydrogen
spectroscopy. Table XIV lists the corresponding maximal
sensitivities obtainedby taking each coefficient to be nonzero
in turn, following the standard procedure in the literature [3].
Note that several factors currently limit the precision of the
measurement of ν̄1S2S, including the comparatively smaller

TABLE XIII. Potential sensitivities to coefficients in the Sun-
centered frame from sidereal variations in entangled 40Caþ ions.

Coefficient Sensitivity

jaeNR22mj, jceNR22mj 10−14 GeV−1

jaeNR42mj, jceNR42mj 10−3 GeV−3

jaeNR44mj, jceNR44mj 10−3 GeV−3

TABLE XIV. Constraints on electron and proton nonrelativistic
coefficients determined from 1S-2S hydrogen and antihydrogen
spectroscopy.

Coefficient Constraint

ja∘NRe;2 j, ja∘NRp;2j 1 × 10−9 GeV−1

ja∘NRe;4 j, ja∘NRp;4j 14 GeV−3
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number and higher temperature of atoms in antihydrogen
experiments relative to hydrogen ones. However, there is
every reason to expect improvements in the future. One
proposal along these lines is to trap the ultracold antiatoms
from the GBAR antihydrogen beam in an optical lattice
[115], which could enable measurements of the 1S-2S
transition in antihydrogen at a level approaching the pre-
cision of 4.2 × 10−15 already obtained with hydrogen [116].
Other signals for CPT violation can appear in compar-

isons of the hyperfine structure of hydrogen and antihy-
drogen [43,106]. High-precision measurements of the
hyperfine transition of hydrogen can be obtained using a
hydrogen maser [117], but these methods are impractical
for antihydrogen due, for example, to collisions with the
walls in the maser bulb. One different approach already
realized by the ALPHA Collaboration is to perform hyper-
fine spectroscopy on trapped antihydrogen [107]. An
alternative option being pursued by the ASACUSA
Collaboration involves using instead an antihydrogen beam
[110]. Testing the latter method with hydrogen has dem-
onstrated a precision only 3 orders of magnitude below that
achieved via the hydrogen maser. The prospects are
excellent for further substantial improvements in hyperfine
spectroscopy using advanced tools such as ultracold anti-
hydrogen beams, and perhaps ultimately adapting tech-
niques similar to those used for atomic fountain clocks.
In the longer term, antiatom spectroscopy could con-

ceivably evolve to include also experiments with heavier
antiatoms. The simplest candidate system is antideuterium,
which has the antideuteron as its nucleus. Unlike antipro-
tonic deuterium, antideuterium is expected to be stable and
is therefore in principle a candidate for precision spectros-
copy and hence for CPT tests. Deuterium spectroscopy is
known to be many orders of magnitude more sensitive than
hydrogen spectroscopy to certain kinds of Lorentz and
CPT violation [43], and the same arguments hold for the
comparative sensitivities of antideuterium and antihydro-
gen spectroscopy. The production of a single heavier
antiion is also of real interest, as it could in principle be
confined in an ion trap and repeatedly interrogated to
perform high-precision spectroscopy.
Whatever the future of antimatter experiments with

heavier systems than antihydrogen, the theoretical treat-
ments presented in Sec. II and in Ref. [43] can readily be
adapted to antiatoms and antiions. In particular, the
expression for the shift in an energy level of an antiatom
or antiion can be obtained from the corresponding expres-
sion for an atom or ion by implementing the substitutions

awNRjkm → −awNRjkm; cwNRjkm → cwNRjkm;

Hw
NRðsBÞ
jkm → −Hw

NRðsBÞ
jkm ; gw

NRðsBÞ
jkm → gw

NRðsBÞ
jkm ð69Þ

for the SME coefficients. For example, an expression for
the frequency shift δνD̄ of the nL-n0L0 transition in
antideuterium due to isotropic Lorentz and CPT violation

can be obtained from the corresponding expression for the
shift δνD in deuterium given as Eq. (103) of Ref. [43],
yielding the result

2πδνD̄ ¼ m̄rffiffiffi
π

p ðεn0 − εnÞ
�
V̄e

NR
200 þ

1

4
ðV̄p

NR
200

þ V̄n
NR
200Þ

þ hp2
p̄ d̄
iðV̄p

NR
400

þ V̄n
NR
400Þ

	

−
2m̄2

rffiffiffi
π

p
�
ε2n0

�
8n0

2L0 þ 1
− 3

�
− ε2n

�
8n

2Lþ 1
− 3

�	

×

�
V̄e

NR
400 þ

1

16
ðV̄p

NR
400

þ V̄n
NR
400Þ

�
; ð70Þ

where V̄w
NR
kjm ¼ cwNRkjm þ awNRkjm, m̄r is the reduced mass of

antideuterium, εn ≡ −α2m̄r=2n2, and hp2
p̄ d̄
i ≃ 104 MeV2.

IV. SUMMARY

This work studies Lorentz and CPT violation in clock-
comparison experiments by incorporating effects on elec-
tron and nucleon propagators arising from SME operators
of arbitrary mass dimension d. It begins with a discussion
of theoretical issues in Sec. II. The general Lagrange
density (1) for a fermion propagating in the presence of
arbitrary Lorentz and CPT violation implies the perturba-
tive result (2) for the corresponding nonrelativistic one-
particle Hamiltonian. Combining the expressions for the
constituent particles yields the Hamiltonian (6) for an atom
or ion, which is the basis for our analysis of clock-
comparison experiments.
The experimental observables are transition frequencies in

atoms or ions. The Lorentz- and CPT-violating signals in
these frequencies can be calculated from the perturbative
shifts (8) in energy levels. These shifts involve products of
Clebsch-Gordan coefficients with expectation values of the
perturbative Hamiltonian. The symmetries of the system
imply that contributions to the energy shifts can arise only
from specific nonrelativistic spherical coefficients for Lorentz
violation, as listed in Table I. Explicit computation of the
expectation values requires modeling the electronic and
nuclear states. Our approach for electrons adopts the inde-
pendent-particle model described in Sec. II C, while for the
nucleus we use the Schmidt model as discussed in Sec. II D.
A laboratory on the surface of the Earth or on an orbiting

satellite typically represents a noninertial frame. As a result,
most SME coefficients measurable in the laboratory acquire
a dependence on time due to the laboratory rotation and
boost relative to the canonical Sun-centered frame, which is
an approximately inertial frame over the experimental
timescale. Determining the time dependence induced by
the rotation of the Earth is the subject of Sec. II E. This
treatment is extended in Sec. II F to include effects at linear
order in the Earth’s boost as it orbits the Sun. The time
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dependence in a space-based laboratory arising from the
orbital motion of a satellite is also discussed.
The application of our results to the analysis of clock-

comparison experiments is described in Sec. III. We first
consider fountain clocks, deriving expressions for the
frequency shift in terms of coefficients expressed in the
Sun-centered frame. At zeroth boost order the frequency
shift is given in Table III, while at linear boost order it is
given by Eq. (44) and the entries in Table IV. Estimates for
attainable sensitivities to SME coefficients using existing
devices are provided in Table V. The discussion covers both
133Cs and 87Rb fountain clocks, and it is also applicable to
clocks located on a space-based platform. The primary
sensitivity in these systems is to coefficients for Lorentz
violation in the proton sector.
We next consider the prospects for using comagnetom-

eters to search for nonminimal violations of Lorentz and
CPT symmetry. The methodology developed in Sec. II is
well suited for application to investigations using 129Xe and
3He atoms as comagnetometers. Within the nuclear model
adopted here, the Lorentz- and CPT-violating signals are
affected predominantly by SME coefficients in the neutron
sector. In Sec. III B, we determine the shift in the
experimental frequency observable at zeroth boost order
and extract the bound (54) by extending to arbitrary d the
known results for the minimal SME. This leads to the
constraints on neutron nonrelativistic coefficients listed in
Table VI. We also establish the Lorentz- and CPT-violating
shift at linear boost order, using existing data to place
constraints on neutron effective Cartesian coefficients in
Table IX. Other comagnetometers can also place competi-
tive limits on the neutron sector of the SME. We derive a
partial map from known minimal-SME bounds to non-
minimal coefficients, which permits using data from a
21Ne-Rb-K comagnetometer to place the additional con-
straints on the neutron sector given in Table X. All these
constraints on neutron coefficients for Lorentz violation are
the first of their kind reported in the literature.
As another application, we consider the attainable reach in

clock-comparison experiments using trapped ions and lattice
clocks. In this case, interesting sensitivities are in principle
attainable to coefficients for Lorentz violation in the electron
sector. Various transitions are considered for a range of atoms
and ions. The expression (64) is found to describe the annual
and sidereal modulations of the frequency difference
between two clocks, including ones located in distinct
laboratories. In this section, we also consider tests of
Lorentz and CPT symmetry based on studying the time
evolution of an entangled state. The shift in the experimental
frequency observable is determined at both zeroth and first
boost order and is used to estimate attainable sensitivities to
electron nonrelativistic coefficients, as listed in Table XIII.
Our final application considers the prospects for experi-

ments using antimatter. Signals for Lorentz and CPT
violation in antihydrogen have previously been investigated

theoretically both in theminimal SME [106] and allowing for
nonminimal terms of arbitrary mass dimension [43]. These
treatments are combined with recent spectroscopic measure-
ments of the 1S-2S transition in antihydrogen to extract first
constraints on SME coefficients from this system, summa-
rized in Table XIV. We also propose that in the long term it
may become feasible to perform experiments with heavier
antiatoms and antiions, with options possibly including the
precision spectroscopy of antideuterium or of trapped anti-
ions. A technique is presented to convert theoretical results
for frequency shifts in atoms or ions to the corresponding
ones in antiatoms or antiions.
The two appendices following the present summary collect

some results that are useful in handling coefficients for
Lorentz violation. Appendix A includes relations connecting
spherical and Cartesian coefficients and provides explicit
expressions between them for the cases 3 ≤ d ≤ 8.
Appendix B discusses the transformation between the labo-
ratory frame and theSun-centered frameand tabulates explicit
results connectingCartesian coefficients in the two frames for
the cases 3 ≤ d ≤ 8. The results in these appendices are
generally applicable and so have implications extending
outside the analysis of clock-comparison experiments.
Throughout this work, we have noted possibilities for

pursuing investigations that go beyond our present scope
while remaining within the context of Lorentz- and CPT-
violating corrections to the propagators of the constituents of
atoms and ions. In principle, our scope could also be
extended by incorporating effects arising from other SME
sectors. For instance, the Maxwell equations acquire mod-
ifications due to Lorentz and CPT violation in the pure-
photon sector. Including these might further enhance the
reach of clock-comparison experiments, though in practice
most relevant photon-sector coefficients are already tightly
bounded from analyses of other systems [3,118,119]. Effects
involving U(1)-covariant Lorentz- and CPT-violating cou-
plings between photons and fermions are of interest as well,
with only a few SME coefficients currently constrained by
experiment [3,45,120].One could also envisage the inclusion
of SME effects arising in the strong, electroweak, or
gravitational sectors, although some of these are expected
either to be suppressed or to be more readily studied by other
means. An exception might be countershaded Lorentz and
CPT violation [121], for which unexpectedly large effects
can appear in the context of special measurements. For
example, sensitivity to countershaded coefficients has been
demonstrated using atom interferometry, which can be
interpreted in terms of clock comparisons [122].
Overall, the content of this paper provides a broad

methodology for exploring Lorentz and CPT symmetry
using clock-comparison experiments. While our treatment
has yielded many first constraints, numerous coefficients
for Lorentz violation are unmeasured to date. The striking
potential sensitivities attainable either from reanalysis of
existing data or in future searches suggest that further work
with clock-comparison experiments remains one of the
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most interesting prospects for uncovering these novel
physical effects in nature.
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APPENDIX A: RELATION BETWEEN
SPHERICAL AND CARTESIAN COEFFICIENTS

This Appendix presents relationships between spherical
coefficients and effective Cartesian coefficients and tabu-
lates explicit results for d ≤ 8. We focus on spherical
coefficients for Lorentz violation with even k and
m ¼ 0, which are centrally relevant to analyses of clock-

comparison experiments. The coefficients T ðdÞð1EÞ
kjm control-

ling spin-dependent operators of the E type are disregarded
here as they leave unaffected the energy shifts. As else-
where in this work, we follow Ref. [35] in using the symbol
V with appropriate subscripts and superscripts to indicate
the difference of c- and a-type coefficients and T to
indicate the difference of g- and H-type coefficients.

For instance, VðdÞ
kjm represents the difference VðdÞ

kjm ¼
cðdÞkjm − aðdÞkjm. The spherical coefficients are assigned indices
kj0, while t, x, y, z are used for specific index values on the
effective Cartesian coefficients in a chosen frame. Dummy
spatial Cartesian indices are represented by l, m, n, and

repeated Cartesian indices are summed. For example, cð4Þlleff

represents the sum cð4Þlleff ¼ cð4Þxxeff þ cð4Þyyeff þ cð4Þzzeff .
The single-particle Hamiltonian can be decomposed in

either the spherical or the Cartesian bases. The connection
between these decompositions is presented in Sec. IV of
Ref. [35]. Consider first the spin-independent component
of the Hamiltonian. The corresponding match between the
Cartesian and spherical bases is fixed by

V̂ðdÞμ
eff pμ ¼ VðdÞμα1α2…αd−3

eff pμpα1pα2…pαd−3

¼
X
kjm

Ed−2−k
0 jpjkYjmðp̂ÞVðdÞ

kjm; ðA1Þ

where pμ ¼ ðE0;−pÞ. Using the orthogonality of the
spherical harmonics, the connection between the
Cartesian and spherical terms can be written asZ

dΩY�
jmðp̂ÞV̂ðdÞμ

eff pμ ¼
Xd−2
k¼j

Ed−2−k
0 jpjkVðdÞ

kjm; ðA2Þ

where dΩ is the differential element of solid angle in
momentum space. The upper and lower bounds for the
summation index k are determined by the spherical-index
relations listed in Table III of Ref. [35].

Using Eq. (A2), we can extract explicit expressions for
the spin-independent spherical coefficients in terms of
effective Cartesian coefficients. Table XV contains the
results for spherical coefficients with 3 ≤ d ≤ 8, m ¼ 0,
even values of j in the range 0 ≤ j ≤ k, and even values of k
in the range 0 ≤ k ≤ d − 2. The table consists of two pairs
of columns. In each pair, the first entry in a given row lists a
spherical coefficient, while the second entry provides its
equivalent as a linear combination of effective Cartesian
coefficients.
Next, we consider the spin-dependent part of the single-

particle Hamiltonian. For the component involving only the
coefficients T ðdÞð0BÞ

kjm , the relation between the Cartesian and
spherical terms is

˜̂T
ðdÞμt
eff pμ ¼ T̃ ðdÞμtα1α2…αd−3

eff pμpα1pα2…pαd−3

¼
X
kjm

Ed−3−k
0 jpjkþ1ðkþ 1ÞYjmðp̂ÞT ðdÞð0BÞ

kjm : ðA3Þ

Using orthonormality of the spherical harmonics then
yields

Z
dΩY�

jmðp̂Þ ˜̂T
ðdÞμt
eff pμ ¼

Xd−3
k¼j−1

Ed−3−k
0 jpjkþ1ðkþ 1ÞT ðdÞð0BÞ

kjm

ðA4Þ

between effective Cartesian coefficients and spherical
coefficients. This result permits the extraction of explicit
expressions for the spin-dependent spherical coefficients

T ðdÞð0BÞ
kjm as linear combinations of effective Cartesian

coefficients. Table XVI contains these expressions for

spherical coefficients T ðdÞð0BÞ
kjm with 3 ≤ d ≤ 8, m ¼ 0,

odd values of j in the range 0 ≤ j ≤ kþ 1, and even
values of k in the range 0 ≤ k ≤ d − 3. The structure of this
table parallels that of Table XV.
Determining the spherical coefficients T ðdÞð1BÞ

kjm in terms
of effective Cartesian coefficients requires more work

because the relation containing T ðdÞð1BÞ
kjm also incorporates

the coefficients T ðdÞð0BÞ
kjm . We find

Z
dΩ ˜̂T

ðdÞjν
eff ϵ̂jþpν1Y

�
jmðp̂Þ

¼
Xd−2
k¼j−1

Ed−2−k
0 jpjk

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

2

r
T ðdÞð0BÞ

kjm

þ T ðdÞð1BÞ
kjm þ iT ðdÞð1EÞ

kjm

�
; ðA5Þ

where ϵ̂� ¼ ðθ̂� iϕ̂Þ= ffiffiffi
2

p
. This result links three types of

spherical coefficients with the effective Cartesian coeffi-
cients. It can be disentangled first by eliminating the
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TABLE XV. Relations between spherical coefficients VðdÞ
kj0 and effective Cartesian coefficients for 3 ≤ d ≤ 8.

Spherical Cartesian Spherical Cartesian

að3Þ000

ffiffiffiffiffi
4π

p
að3Þteff cð6Þ400

1
5

ffiffiffiffiffi
4π

p
cð6Þllmm
eff

að5Þ000

ffiffiffiffiffi
4π

p
að5Þttteff cð6Þ220 4

ffiffi
π
5

p ð3cð6Þttzzeff − cð6Þttmm
eff Þ

að5Þ200

ffiffiffiffiffi
4π

p
að5Þtlleff cð6Þ420

4
7

ffiffi
π
5

p ð3cð6Þllzzeff − cð6Þllmm
eff Þ

að5Þ220

ffiffiffiffi
4π
5

q
ð3að5Þtzzeff − að5Þtlleff Þ cð6Þ440

ffiffiffiffi
4π

p
21

ð7cð6Þzzzzeff − 6cð6Þzzlleff Þ þ
ffiffiffiffi
4π

p
35

cð6Þmmll
eff

að7Þ000

ffiffiffiffiffi
4π

p
að7Þttttteff cð8Þ000

ffiffiffiffiffi
4π

p
cð8Þtttttteff

að7Þ200
10
3

ffiffiffiffiffi
4π

p
að7Þtttlleff cð8Þ200 5

ffiffiffiffiffi
4π

p
cð8Þttttlleff

að7Þ400

ffiffiffiffiffi
4π

p
að7Þtmmll
eff cð8Þ400 3

ffiffiffiffiffi
4π

p
cð8Þttmmll
eff

að7Þ220
4
3

ffiffiffiffiffi
5π

p ð3að7Þtttzzeff − að7Þtttmm
eff Þ cð8Þ600

1
7

ffiffiffiffiffi
4π

p
cð8Þnnllmm
eff

að7Þ420
4
7

ffiffiffiffiffi
5π

p ð3að7Þtllzzeff − að7Þtllmm
eff Þ cð8Þ220 2

ffiffiffiffiffi
5π

p ð3cð8Þttttzzeff − cð8Þttttmm
eff Þ

að7Þ440

ffiffiffiffiffiffiffi
100π

p
21

ð7að7Þtzzzzeff − 6að7Þtzzlleff Þ þ
ffiffiffiffi
4π

p
7
að7Þtmmll
eff cð8Þ420

12
7

ffiffiffiffiffi
5π

p ð3cð8Þttllzzeff − cð8Þttllmm
eff Þ

cð4Þ000

ffiffiffiffiffi
4π

p
cð4Þtteff cð8Þ620

2
21

ffiffiffiffiffi
5π

p ð3cð8Þnnllzzeff − cð8Þnnllmm
eff Þ

cð4Þ200
1
3

ffiffiffiffiffi
4π

p
cð4Þlleff cð8Þ440

ffiffiffiffiffiffiffi
100π

p
7

ð7cð8Þttzzzzeff − 6cð8Þttzzlleff Þ þ 3
ffiffiffiffi
4π

p
7
cð8Þttmmll
eff

cð4Þ220
2
3

ffiffi
π
5

p ð3cð4Þzzeff − cð4Þlleff Þ cð8Þ640

ffiffiffiffiffiffiffi
100π

p
77

ð7cð8Þmmzzzz
eff − 6cð8Þmmzzll

eff Þ þ
ffiffiffiffi
4π

p
77

3cð8Þnnmmll
eff

cð6Þ000

ffiffiffiffiffi
4π

p
cð6Þtttteff cð8Þ660

ffiffiffiffi
4π

p
231

ð231cð8Þzzzzzzeff − 5cð8Þnnmmll
eff Þ

cð6Þ200 2
ffiffiffiffiffi
4π

p
cð6Þttlleff þ

ffiffiffiffiffiffiffi
100π

p
11

ðcð8Þzzmmll
eff − 3cð8Þzzzzmm

eff Þ

TABLE XVI. Relations between spherical coefficients T ðdÞð0BÞ
kj0 and effective Cartesian coefficients for 3 ≤ d ≤ 8.

Spherical Cartesian Spherical Cartesian

Hð3Þð0BÞ
010

ffiffiffiffi
4π
3

q
H̃ð3Þtz

eff
gð4Þð0BÞ010

ffiffiffiffi
4π
3

q
g̃ð4Þtzteff

Hð5Þð0BÞ
010

ffiffiffiffi
4π
3

q
H̃ð5Þtztt

eff
gð6Þð0BÞ010

ffiffiffiffi
4π
3

q
g̃ð6Þtzttteff

Hð5Þð0BÞ
210

1
15

ffiffiffiffi
4π
3

q
ð2H̃ð5Þtllz

eff þ H̃ð5Þtzll
eff Þ gð6Þð0BÞ210

1
5

ffiffiffiffi
4π
3

q
ð2g̃ð6Þtltlzeff þ g̃ð6Þtztlleff Þ

Hð5Þð0BÞ
230

2
15

ffiffi
π
7

p ð5H̃ð5Þtzzz
eff − H̃ð5Þtzll

eff Þ − 4
15

ffiffi
π
7

p
H̃ð5Þtllz

eff gð6Þð0BÞ230
2
5

ffiffi
π
7

p ð5g̃ð6Þtztzzeff − g̃ð6Þtztlleff Þ − 4
5

ffiffi
π
7

p
g̃ð6Þtltlzeff

Hð7Þð0BÞ
010

ffiffiffiffi
4π
3

q
H̃ð7Þtztttt

eff
gð8Þð0BÞ010

ffiffiffiffi
4π
3

q
g̃ð8Þtzttttteff

Hð7Þð0BÞ
210

2
5

ffiffiffiffi
4π
3

q
ð2H̃ð7Þtmttmz

eff þ H̃ð7Þtzttmm
eff Þ gð8Þð0BÞ210

2
3

ffiffiffiffi
4π
3

q
ð2g̃ð8Þtmtttmz

eff þ g̃ð8Þtztttmm
eff Þ

Hð7Þð0BÞ
410

2
175

ffiffiffiffiffi
3π

p ð4H̃ð7Þtmmllz
eff þ H̃ð7Þtzllmm

eff Þ gð8Þð0BÞ410
2
35

ffiffiffiffiffi
3π

p ð4g̃ð8Þtmtmllz
eff þ g̃ð8Þtztllmm

eff Þ
Hð7Þð0BÞ

230
4
5

ffiffi
π
7

p ð5H̃ð7Þtzttzz
eff − H̃ð7Þtzttmm

eff Þ − 8
5

ffiffi
π
7

p
H̃ð7Þtmttmz

eff gð8Þð0BÞ230
4
3

ffiffi
π
7

p ð5g̃ð8Þtztttzzeff − g̃ð8Þtztttmm
eff Þ− 8

3

ffiffi
π
7

p
g̃ð8Þtmtttmz
eff

Hð7Þð0BÞ
430

4
45

ffiffi
π
7

p ð3H̃ð7Þtzmmzz
eff þ 2H̃ð7Þtmmzzz

eff Þ
− 4

75

ffiffi
π
7

p ð4H̃ð7Þtmmllz
eff þ H̃ð7Þtzmmll

eff Þ
gð8Þð0BÞ430

4
9

ffiffi
π
7

p ð3g̃ð8Þtztmmzz
eff þ 2g̃ð8Þtmtmzzz

eff Þ
− 4

15

ffiffi
π
7

p ð4g̃ð8Þtmtmllz
eff þ g̃ð8Þtztmmll

eff Þ
Hð7Þð0BÞ

450
2
15

ffiffiffiffi
π
11

p ð3H̃ð7Þtzzzzz
eff − 2H̃ð7Þtzmmzz

eff Þ
þ 2

105

ffiffiffiffi
π
11

p ð4H̃ð7Þtmmllz
eff þ H̃ð7Þtzmmll

eff Þ
− 8

45

ffiffiffiffi
π
11

p
H̃ð7Þtmmzzz

eff

gð8Þð0BÞ450
2
3

ffiffiffiffi
π
11

p ð3g̃ð8Þtztzzzzeff − 2g̃ð8Þtztmmzz
eff Þ

þ 2
21

ffiffiffiffi
π
11

p ð4g̃ð8Þtmtmllz
eff þ g̃ð8Þtztmmll

eff Þ
− 8

9

ffiffiffiffi
π
11

p
g̃ð8Þtrtrzzzeff
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T ðdÞð0BÞ
kjm via Eq. (A4) and then by grouping the remaining

terms according to powers of the momentum magnitude.
The point is that the E-type and B-type coefficients are
proportional to distinct powers of the momentum when j is
fixed. For example, if j is odd then the terms involving
B-type and E-type coefficients can only contain even and
odd powers of the momentum magnitude, respectively.
For the particular case with m ¼ 0, the spherical coef-

ficients and the spin-weighted harmonics are all real
numbers. It is therefore useful to separate the real and
imaginary parts of Eq. (A5). The real part isZ

dΩ ˜̂T
ðdÞjν
eff θ̂jpν1Yj0ðp̂Þ

¼
Xd−2
k¼j−1

Ed−2−k
0 jpjkð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
T ðdÞð0BÞ

kj0 þ
ffiffiffi
2

p
T ðdÞð1BÞ

kj0 Þ;

ðA6Þ

and it contains only B-type coefficients. The imaginary part
of Eq. (A5) is given by

Z
dΩ ˜̂T

ðdÞjν
eff ϕ̂jpν1Yj0ðp̂Þ ¼

ffiffiffi
2

p Xd−2
k¼j

Ed−2−k
0 jpjkT ðdÞð1EÞ

kj0

ðA7Þ

and contains only E-type coefficients. By combining
Eqs. (A2) and (A6), we can extract explicit expressions

for the coefficients T ðdÞð1BÞ
kjm in terms of effective Cartesian

components. Table XVII contains the results for spherical

coefficients with 4 ≤ d ≤ 8, m ¼ 0, odd values of j in the
range 0 ≤ j ≤ k − 1, and even values of k in the range
0 ≤ k ≤ d − 2. The structure of this table again follows that
of Table XV.

APPENDIX B: TRANSFORMATIONS
TO THE SUN-CENTERED FRAME

Constraints on the coefficients for Lorentz violation are
commonly reported in the Sun-centered frame [3]. This
Appendix describes the conversion of coefficients for
Lorentz violation in a laboratory frame into combinations
of coefficients in the Sun-centered frame, including effects at
zeroth and linear boost order. The primary focus here is on
effective Cartesian coefficients, which are better suited for
boost analyses. We use Greek indices to denote spacetime
indices and Latin indices to represent spatial components.
Generic indices in the laboratory frame are represented by
lowercase letters, while indices in the Sun-centered frame are
represented by uppercase ones. For definiteness, we label
Cartesian components in the laboratory frame by 0,1,2,3 and
assume that the Lorentz transformation is given by Eq. (29)
with R3

J ¼ B̂J. Cartesian components in the Sun-centered
frame are denoted by T, X, Y, Z, and contractions of spatial
uppercase indices imply summation over components in the
Sun-centered frame.
Consider first the effective Cartesian coefficients asso-

ciated with spin-independent Lorentz and CPT violation.
The expressions for these effective Cartesian coefficients in
the laboratory frame in terms of effective Cartesian coef-
ficients in the Sun-centered frame can be reconstructed at
linear boost order from the information contained in
Table XVIII. The table limits attention to coefficients in

TABLE XVII. Relations between spherical coefficients T ðdÞð1BÞ
kj0 and effective Cartesian coefficients for 3 ≤ d ≤ 8.

Spherical Cartesian Spherical Cartesian

Hð5Þð1BÞ
210

2
3

ffiffi
π
3

p ð3H̃ð5Þnztn
eff − H̃ð5Þtnnz

eff Þ þ 2
3

ffiffi
π
3

p
H̃ð5Þtznn

eff gð8Þð1BÞ210
5
3

ffiffi
π
3

p ð4g̃ð8Þtztttmm
eff − 4g̃ð8Þtmtttmz

eff Þ þ 5
ffiffi
π
3

p
g̃ð8Þmzttttm
eff

Hð7Þð1BÞ
210 4

ffiffi
π
3

p ðH̃ð7Þtzttnn
eff − H̃ð7Þtnttnz

eff Þ þ 4
ffiffi
π
3

p
H̃ð7Þnztttn

eff gð8Þð1BÞ410
4
5

ffiffiffiffiffi
3π

p ðg̃ð8Þtztllmm
eff − g̃ð8Þtmtmllz

eff Þ þ 2
ffiffiffiffiffi
3π

p
g̃ð8Þmzttmll
eff

Hð7Þð1BÞ
410

4
25

ffiffiffiffiffi
3π

p ðH̃ð7Þtzllnn
eff − H̃ð7Þtnnllz

eff Þ þ 4
5

ffiffiffiffiffi
3π

p
H̃ð7Þnztnll

eff gð8Þð1BÞ610
1
7

ffiffiffiffiffi
3π

p
g̃ð8Þmzmnnll
eff

Hð7Þð1BÞ
430

2
5

ffiffiffiffi
6π
7

q
ð5H̃ð7Þnztnzz

eff þ H̃ð7Þtznnzz
eff Þ

− 2
5

ffiffiffiffi
6π
7

q
ðH̃ð7Þtnnzzz

eff þ H̃ð7Þnztnll
eff Þ

þ 2
25

ffiffiffiffi
6π
7

q
ðH̃ð7Þtnnllz

eff − H̃ð7Þtznnll
eff Þ

gð8Þð1BÞ430

ffiffiffiffi
6π
7

q
ð5g̃ð8Þmzttmzz

eff þ 2g̃ð8Þtztmmzz
eff Þ

−
ffiffiffiffi
6π
7

q
ð2g̃ð8Þtmtmzzz

eff þ g̃ð8Þmzttmll
eff Þ

þ 2
5

ffiffiffiffi
6π
7

q
ðg̃ð8Þtmtmllz

eff − g̃ð8Þtztmmll
eff Þ

gð4Þð1BÞ210

ffiffi
π
3

p
g̃ð4Þnzneff gð8Þð1BÞ630

1
3

ffiffiffiffi
2π
21

q
ð5g̃ð8Þmzmllzz

eff − g̃ð8Þmzmllnn
eff Þ

gð6Þð1BÞ210

ffiffiffiffi
4π
3

q
ðg̃ð6Þtztnneff − g̃ð6Þtntnzeff Þ þ ffiffiffiffiffi

3π
p

g̃ð6Þnzttneff
gð8Þð1BÞ650

1
3

ffiffiffiffi
5π
33

q
ð3g̃ð8Þmzmzzzz

eff − 2g̃ð8Þmzmllzz
eff Þ

þ 1
21

ffiffiffiffi
5π
33

q
g̃ð8Þmzmllnn
eff

gð6Þð1BÞ410
1
5

ffiffiffiffiffi
3π

p
g̃ð6Þnznmm
eff

gð6Þð1BÞ430
1
5

ffiffiffiffi
3π
14

q
ð5g̃ð6Þlzlzzeff − g̃ð6Þlzlnneff Þ
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TABLE XVIII. Relations between spin-independent Cartesian coefficients in laboratory and Sun-centered frames for 3 ≤ d ≤ 8.

Laboratory Factor Sun-centered Laboratory Factor Sun-centered

að3Þ0eff
1 að3ÞTeff cð6Þ0000eff

1 cð6ÞTTTTeff

−βJ að3ÞJeff
−4βJ cð6ÞTTTJeff

að5Þ000eff
1 að5ÞTTTeff cð6Þ00jjeff

1 cð6ÞTTJJeff

−3βJ að5ÞTTJeff
−2βJ cð6ÞTTTJeff

að5Þ0jjeff
1 að5ÞTKK

eff
−2βJ cð6ÞTKKJ

eff

−2βJ að5ÞTTJeff cð6Þ0033eff
B̂J1 B̂J2 cð6ÞTTJ1J2eff

−βJ að5ÞKKJ
eff

−2B̂J1 B̂J2βJ cð6ÞTJ1J2Jeff

að5Þ033eff
B̂J1 B̂J2 að5ÞTJ1J2eff

−2B̂J1 B̂ · β cð6ÞTTTJ1eff

−B̂J1 B̂J2βJ að5ÞJ1J2Jeff cð6Þjjkkeff
1 cð6ÞKKLL

eff

−2B̂J1 B̂ · β að5ÞTTJ1eff
−4βJ cð6ÞTKKJ

eff

að7Þ00000eff
1 að7ÞTTTTTeff cð6Þ33jjeff

B̂J1 B̂J2 cð6ÞKKJ1J2
eff

−5βJ að7ÞTTTTJeff
−2B̂J1 B̂J2βJ cð6ÞTJ1J2Jeff

að7Þ000jjeff
1 að7ÞTTTKK

eff
−2B̂J1 B̂ · β cð6ÞTKKJ1

eff

−2βJ að7ÞTTTTJeff cð6Þ3333eff
B̂J1 B̂J2 B̂J3 B̂J4 cð6ÞJ1J2J3J4eff

−3βJ að7ÞTTKKJ
eff

−4B̂J1 B̂J2 B̂J3 B̂ · β cð6ÞTJ1J2J3eff

að7Þ00033eff
B̂J1 B̂J2 að7ÞTTTJ1J2eff cð8Þ000000eff

1 cð8ÞTTTTTTeff

−3B̂J1 B̂J2βJ að7ÞTTJ1J2Jeff
−6βJ cð8ÞTTTTTJeff

−2B̂J1 B̂ · β að7ÞTTTTJ1eff cð8Þ0000jjeff
1 cð8ÞTTTTKK

eff

að7Þ0jjkkeff
1 að7ÞTKKLL

eff
−2βJ cð8ÞTTTTTJeff

−4βJ að7ÞTTKKJ
eff

−4βJ cð8ÞTTTKKJ
eff

−βJ að7ÞKKLLJ
eff cð8Þ000033eff

B̂J1 B̂J2 cð8ÞTTTTJ1J2eff

að7Þ0jj33eff
B̂J1 B̂J2 að7ÞTKKJ1J2

eff
−4βJB̂J1 B̂J2 cð8ÞTTTJJ1J2eff

−2B̂J1 B̂J2βJ að7ÞTTJ1J2Jeff
−2B̂J1 B̂ · β cð8ÞTTTTTJ1eff

−2B̂J1 B̂ · β að7ÞTTKKJ1
eff cð8Þ00jjkkeff

1 cð8ÞTTKKLL
eff

−B̂J1 B̂J2βJ3 að7ÞKKJ1J2J3
eff

−4βJ cð8ÞTTTKKJ
eff

að7Þ03333eff
B̂J1 B̂J2 B̂J3 B̂J4 að7ÞTJ1J2J3J4eff

−2βJ cð8ÞTKKLLJ
eff

−B̂J1 B̂J2 B̂J3 B̂J4βJ að7ÞJ1J2J3J4Jeff cð8Þ00jj33eff
B̂J1 B̂J2 cð8ÞTTKKJ1J2

eff

−4B̂J1 B̂J2 B̂J3 B̂ · β að7ÞTTJ1J2J3eff
−2βJB̂J1 B̂J2 cð8ÞTTTJJ1J2eff

cð4Þ00eff
1 cð4ÞTTeff

−2βJB̂J1 B̂J2 cð8ÞTKKJ1J2J
eff

−2βJ cð4ÞTJeff
−2B̂J1 B̂ · β cð8ÞTTTKKJ1

eff

cð4Þjjeff
1 cð4ÞKK

eff cð8Þ003333eff
B̂J1 B̂J2 B̂J3 B̂J4 cð8ÞTTJ1J2J3J4eff

−2βJ cð4ÞTJeff
−2B̂J1 B̂J2 B̂J3 B̂J4βJ cð8ÞTJ1J2J3J4Jeff

cð4Þ33eff
B̂J1 B̂J2 cð4ÞJ1J2eff

−4B̂J1 B̂J2 B̂J3 B̂ · β cð8ÞTKKJ1J2J3
eff

−2B̂J1 B̂ · β cð4ÞTJ1eff
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the laboratory frame that contribute to the spherical
coefficients with 3 ≤ d ≤ 8 discussed in Appendix A,
which are the ones relevant to the clock-comparison
experiments analyzed in this work. The table contains
two triplets of columns. In each triplet, the first column lists
the Cartesian components of interest in the laboratory
frame. Entries in the second column are factors involving
the boost −βJ and the direction B̂J of the magnetic field.
The third column lists the relevant Cartesian components in
the Sun-centered frame. The expression converting a given
coefficient from the laboratory frame to the Sun-centered
frame is obtained by multiplying the entries in the second
and third columns and adding the associated rows. For
example, the first two rows of the table generate the

equation að3Þteff ¼ að3ÞTeff − βJað3ÞJeff . Using the contents of this
table and the results in Appendix A, it is straightforward to
convert spin-independent spherical coefficients in the
laboratory frame to effective Cartesian coefficients in the
Sun-centered frame at linear boost order.
To analyze the experiments discussed in this work,

it is useful to find analogous expressions converting
the nonrelativistic coefficients for Lorentz violation to the
Sun-centered frame. The nonrelativistic coefficients are
combinations of spherical coefficients for Lorentz violation
of arbitrary mass dimension, as illustrated in Eqs. (111) and
(112) of Ref. [35]. All the spherical coefficients contrib-
uting to a particular nonrelativistic coefficient behave the
same way under rotations, so at zeroth boost order the
conversion between frames is given by the comparatively
simple result (25). However, the spherical coefficients
transform differently under boosts, so converting non-
relativistic coefficients at linear boost order becomes
involved. In contrast, the effective Cartesian coefficients
have comparatively simple transformations under boosts
and so are better suited for studying boost effects.
To circumvent this issue, we limit attention here

to terms involving effective Cartesian coefficients that
contribute at zeroth order in jpj=mw, which yields the
dominant contributions at linear boost order and suffices
for the experimental analyses of interest. With this
assumption, the spin-independent nonrelativistic coefficients
VNR
kjm in the laboratory frame are expressed in terms of

spherical coefficients as

VNR
kjm ≈

X
d

md−3−k
ψ VðdÞ

kjm: ðB1Þ

The spherical coefficients can thenbe translated into effective
Cartesian coefficients in the laboratory frame using the
results in Appendix A. To perform the conversion between
the laboratory frame and the Sun-centered frame, we note
that any nonrelativistic coefficient KNR

kjm can be expanded to
linear boost order as

KNR
kjm ≈KNR

kjmjβJ¼0 þ
�∂KNR

kjm

∂βJ
����
βJ¼0

�
βJ: ðB2Þ

For all coefficients, the zeroth-order term is givenbyEq. (25).
At linear boost order, we are interested in the contribu-

tion VNR
kj0ðOðβÞÞ to the nonrelativistic spin-independent

coefficients with m ¼ 0. Decomposing this contribution
as a polynomial in the unit vector B̂J along the magnetic
field yields the result

VNR
kj0ðOðβÞÞ ¼

�∂VNR
kj0

∂βJ
����
βJ¼0

�
βJ

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2jþ 1

s
md−k−3

�X8
d¼3

VðdÞJ
kj βJ

þ
X8
d¼5

VðdÞJJ1J2
kj βJB̂J1B̂J2

þ
X8
d¼7

VðdÞJJ1J2J3J4
kj βJB̂J1B̂J2B̂J3B̂J4

	
: ðB3Þ

The quantities VðdÞJJ1…Jn
kj with d − 3 − k < 0 vanish. For

3 ≤ d ≤ 8, Table XIX provides explicit expressions for

many nonvanishing VðdÞJJ1…Jn
kj in terms of combinations of

effective Cartesian coefficients in the Sun-centered frame.

TABLE XIX. The quantities VðdÞJK…M
kj for 5 ≤ d ≤ 8.

VðdÞJK…M
kj Combination

Vð5ÞJ
20

−2að5ÞTTJeff − að5ÞKKJ
eff

Vð6ÞJ
20 4cð6ÞTTTJeff þ 4cð6ÞTKKJ

eff

Vð7ÞJ
20

− 10
3
ð2að7ÞTTTTJeff þ 3að7ÞTTKKJ

eff Þ
Vð8ÞJ
20 10cð8ÞTTTTTJeff þ 20cð8ÞTTTKKJ

eff

Vð7ÞJ
40

−að7ÞLLKKJ
eff − 4að7ÞTTKKJ

eff

Vð8ÞJ
40 6cð8ÞTLLKKJ

eff þ 12cð8ÞTTTKKJ
eff

Vð5ÞJJ1J2
22

−3að5ÞJJ1J2eff − 6δJJ1að5ÞTTJ2eff

Vð6ÞJJ1J2
22 12cð6ÞTJJ1J2eff þ 12δJJ1cð6ÞTTTJ2eff

Vð7ÞJJ1J2
22

−30að7ÞTTJJ1J2eff − 20δJJ1að7ÞTTTTJ2eff

Vð8ÞJJ1J2
22 60cð8ÞTTTJJ1J2eff þ 30δJJ1cð8ÞTTTTTJ2eff

Vð7ÞJJ1J2
42

− 60
7
ðað7ÞTTJJ1J2eff þ δJJ1að7ÞTTLLJ2eff Þ

− 30
7
að7ÞLLJJ1J2

Vð8ÞJJ1J2
42

180
7
ðcð8ÞTTTJJ1J2eff þ cð8ÞTKKJJ1J2

eff Þ
þ 180

7
δJJ1cð8ÞTTTKKJ2

eff

Vð7ÞJJ1J2J3J4
44

−5ðδJJ1að7ÞTTJ2J3J4eff þ að7ÞJJ1J2J3J4eff Þ
Vð8ÞJJ1J2J3J4
44 60δJJ1cð8ÞTTTJ2J3J4eff þ 30cð8ÞTJJ1J2J3J4eff
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The other quantities of relevance can be obtained from
entries in this table using the relations

VðdÞJ
22 ¼ −VðdÞJ

20 ; VðdÞJ
42 ¼ −

10

7
VðdÞJ
40 ;

VðdÞJ
44 ¼ 3

7
VðdÞJ
40 ; VðdÞJJ1J2

44 ¼ −VðdÞJJ1J2
42 : ðB4Þ

With the above results for spin-independent coefficients
in hand, we next consider spin-dependent effects. The
relations connecting the sets of spin-dependent effective
Cartesian coefficients in the laboratory frame and the Sun-
centered frame up to linear boost order can be found using
the information in Tables XX and XXI. These tables restrict

attention to coefficients with 3 ≤ d ≤ 6 and 7 ≤ d ≤ 8,
respectively, which are the ones of relevance to our analysis
of clock-comparison experiments. Each table contains two
triplets of columns, and each triplet has the same structure
as that of Table XVIII. Taking products of the second and
third entries in a row and summing over rows relevant to the
chosen laboratory-frame coefficient yields the desired
equation converting the effective Cartesian coefficients
from the laboratory to the Sun-centered frame, as before.
In parallel with the above discussion for spin-indepen-

dent effects, the analysis of experiments is facilitated by
translating nonrelativistic coefficients for Lorentz violation
in the laboratory frame to expressions involving effective
Cartesian coefficients in the Sun-centered frame. Adopting
the assumptions leading to Eq. (B1), the spin-dependent

TABLE XX. Relations between spin-dependent Cartesian coefficients in laboratory and Sun-centered frames for 3 ≤ d ≤ 6.

Laboratory Factor Sun-centered Laboratory Factor Sun-centered

H̃ð3Þ03
eff

B̂J1 H̃ð3ÞTJ1
eff g̃ð6Þ03000eff

B̂J1 g̃ð6ÞTJ1TTTeff

B̂J1βJ H̃ð3ÞJ1J
eff

4B̂J1βJ g̃ð6ÞJ1ðTTTJÞeff

H̃ð5Þ0300
eff

B̂J1 H̃ð5ÞTJ1TT
eff g̃ð6Þ0j0j3eff

B̂J1 g̃ð6ÞTKTKJ1
eff

3B̂J1βJ H̃ð5ÞJ1ðTTJÞ
eff

B̂J1βJ g̃ð6ÞJTTTJ1eff

H̃ð5Þj30j
eff

B̂J1 H̃ð5ÞKJ1TK
eff

2B̂J1βJ g̃ð6ÞKðJTKÞJ1
eff

2B̂J1βJ H̃ð5ÞJ1ðJTÞT
eff

B̂ · β g̃ð6ÞKTTTK
eff

B̂J1βJ H̃ð5ÞJ1KKJ
eff g̃ð6Þ030jjeff

B̂J1 g̃ð6ÞTJ1TKK
eff

B̂ · β H̃ð5ÞTKTK
eff

2B̂J1βJ g̃ð6ÞJ1TTTJeff

H̃ð5Þ0jj3
eff

B̂J1 H̃ð5ÞTKKJ1
eff

2B̂J1βJ g̃ð6ÞJ1ðTJÞKK
eff

B̂J1βJ H̃ð5ÞJTTJ1
eff g̃ð6Þj300jeff

B̂J1 g̃ð6ÞKJ1TTK
eff

B̂J1βJ H̃ð5ÞKJKJ1
eff

2B̂J1βJ g̃ð6ÞJ1KTJK
eff

B̂ · β H̃ð5ÞKTKT
eff

2B̂J1βJ g̃ð6ÞJ1ðJTÞTTeff

H̃ð5Þ03jj
eff

B̂J1 H̃ð5ÞTJ1KK
eff

B̂ · β g̃ð6ÞTKTTK
eff

2B̂J1βJ H̃ð5ÞJ1TTJ
eff g̃ð6Þj3jkkeff

B̂J1 g̃ð6ÞJJ1JKK
eff

B̂J1βJ H̃ð5ÞJ1JKK
eff

4B̂J1βJ g̃ð6ÞJ1ðKTKJÞ
eff

H̃ð5Þ0333
eff

B̂J1 B̂J2 B̂J3 H̃ð5ÞTJ1J2J3
eff

B̂ · β g̃ð6ÞTKKLL
eff

2B̂J1 B̂J2 B̂ · β H̃ð5ÞJ1TTJ2
eff g̃ð6Þ03033eff

B̂J1 B̂J2 B̂J3 g̃ð6ÞTJ1TJ2J3eff

B̂J1 B̂J2 B̂J3βJ H̃ð5ÞJ1JJ2J1
eff

2B̂J1 B̂J2 B̂ · β g̃ð6ÞJ1TTTJ2eff

g̃ð4Þ030eff
B̂J1 g̃ð4ÞTJ1Teff

2B̂J1 B̂J2 B̂J3βJ g̃ð6ÞJ1ðTJÞJ2J3eff

2B̂J1βJ g̃ð4ÞJ1ðTJÞeff g̃ð6jl3j33eff
B̂J1 B̂J2 B̂J3 g̃ð6ÞKJ1KJ2J

eff

g̃ð4Þj3jeff
B̂J1 g̃ð4ÞKJ1K

eff
−3B̂J1 B̂J2 B̂ · β g̃ð6ÞKðJ1TJ2ÞK

eff

2B̂J1βJ g̃ð4ÞJ1ðTJÞeff
2B̂J1 B̂J2 B̂J3βJ g̃ð6ÞJ1ðTJÞJ2J3eff

B̂ · β g̃ð4ÞTKK
eff
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TABLE XXI. Relations between spin-dependent Cartesian coefficients in laboratory and Sun-centered frames for 7 ≤ d ≤ 8.

Laboratory Factor Sun-centered Laboratory Factor Sun-centered

H̃ð7Þ030000
eff

B̂J1 H̃ð7ÞTJ1TTTT
eff g̃ð8Þ0300000eff

B̂J1 g̃ð8ÞTJ1TTTTTeff

5B̂J1βJ H̃ð7ÞJ1ðJTTTTÞ
eff

6B̂J1βJ g̃ð8ÞJ1ðTTTTTJÞeff

H̃ð7Þ0j00j3
eff

B̂J1 H̃ð7ÞTKTTKJ1
eff g̃ð8Þ0j000j3eff

B̂J1 g̃ð8ÞTKTTTKJ1
eff

B̂J1βJ H̃ð7ÞJTTTTJ1
eff

B̂ · β g̃ð8ÞKTTTTTK
eff

3B̂J1βJ H̃ð7ÞKðJTTÞKJ1
eff

B̂J1βJ g̃ð8ÞJTTTTTJ1eff

B̂ · β H̃ð7ÞKTTTTK
eff

4B̂J1βJ g̃ð8ÞKðJTTTÞJ1Keff

H̃ð7Þ0300jj
eff

B̂J1 H̃ð7ÞTJ1TTKK
eff g̃ð8Þ03000jjeff

B̂J1 g̃ð8ÞTJ1TTTKK
eff

2B̂J1βJ H̃ð7ÞJ1TTTTJ
eff

2B̂J1βJ g̃ð8ÞJ1TTTTTJeff

3B̂J1βJ H̃ð7ÞJ1ðJTTÞKK
eff

4B̂J1βJ g̃ð8ÞJ1ðJTTTÞKK
eff

H̃ð7Þj3000j
eff

B̂J1 H̃ð7ÞKJ1TTTK
eff g̃ð8Þj30000jeff

B̂J1 g̃ð8ÞKJ1TTTTK
eff

2B̂J1βJ H̃ð7ÞJ1ðJTÞTTT
eff

2B̂J1βJ g̃ð8ÞJ1ðJTÞTTTTeff

3B̂J1βJ H̃ð7ÞJ1KTTJK
eff

4B̂J1βJ g̃ð8ÞJ1KTTTKJ
eff

B̂ · β H̃ð7ÞTKTTTK
eff

B̂ · β g̃ð8ÞTKTTTTK
eff

H̃ð7Þj30jkk
eff

B̂J1 H̃ð7ÞJJ1TJKK
eff g̃ð8Þj300jkkeff

B̂J1 g̃ð8ÞJJ1TTJKK
eff

2B̂J1βJ H̃ð7ÞJ1ðJTÞTKK
eff

B̂ · β g̃ð8ÞTKTTKLL
eff

B̂J1βJ H̃ð7ÞJ1KJKLL
eff

4B̂J1βJ g̃ð8ÞJ1ðJTKKÞTT
eff

2B̂J1βJ H̃ð7ÞJ1KTTKJ
eff

2B̂J1βJ g̃ð8ÞJ1KTJKLL
eff

B̂ · β H̃ð7ÞTKTKJJ
eff g̃ð8Þ030jjkkeff

B̂J1 g̃ð8ÞTJ1TKKJJ
eff

H̃ð7Þ03jjkk
eff

B̂J1 H̃ð7ÞTJ1KKLL
eff

4B̂J1βJ g̃ð8ÞJ1TTTJKK
eff

B̂J1βJ H̃ð7ÞJ1JLLKK
eff

2B̂J1βJ g̃ð8ÞJ1ðJTÞLLKK
eff

4B̂J1βJ H̃ð7ÞJ1TTJKK
eff g̃ð8Þ0j0jkk3eff

B̂J1 g̃ð8ÞTKTKLLJ1

H̃ð7Þ0jjkk3
eff

B̂J1 H̃ð7ÞTKKJJJ1
eff

B̂ · β g̃ð8ÞKTTTKLL
eff

B̂J1βJ H̃ð7ÞLJLKKJ1
eff

2B̂J1βJ g̃ð8ÞKðJTÞKLLJ1
eff

−3B̂J1βJ H̃ð7ÞTðKKJÞJ1T
eff

−3B̂J1βJ g̃ð8ÞTðKKJÞTTJ1
eff

B̂ · β H̃ð7ÞKTTKLL
eff g̃ð8Þj300j33eff

B̂J1 B̂J2 B̂J3 g̃ð8ÞKJ1TTKJ2J3
eff

H̃ð7Þ030033
eff

B̂J1 B̂J2 B̂J3 H̃ð7ÞTJ1TTJ2J3
eff

2B̂J1 B̂J2 B̂J3βJ g̃ð8ÞJ1KTJ2KJ3
eff

3B̂J1 B̂J2 B̂J3βJ H̃ð7ÞJ1ðJTTÞJ2J3
eff

−3B̂J1 B̂J2 B̂ · β g̃ð8ÞKðJ1J2TÞTTK
eff

2B̂J1 B̂J2 B̂ · β H̃ð7ÞJ1TTTTJ2
eff

2B̂J1 B̂J2 B̂J3βJ g̃ð8ÞJ1ðJTÞTTJ2J3eff

H̃ð7Þj30j33
eff

B̂J1 B̂J2 B̂J3 H̃ð7ÞKJ1TKJ2J3
eff g̃ð8Þ0j0j333eff

B̂J1 B̂J2 B̂J3 g̃ð8ÞTKTKJ1J2J3
eff

2B̂J1 B̂J2 B̂J3βJ H̃ð7ÞJ1ðJTÞTJ2J3
eff

3B̂J1 B̂J2 B̂ · β g̃ð8ÞKTTTKJ1J2
eff

B̂J1 B̂J2 B̂J3βJ H̃ð7ÞJ1KJKJ2J3
eff

B̂J1 B̂J2 B̂J3βJ g̃ð8ÞJTTTJ1J2J3eff

−3B̂J1 B̂J2 B̂ · β H̃ð7ÞKðTJ1J2ÞTK
eff

2B̂J1 B̂J2 B̂J3βJ g̃ð8ÞKðJTÞKJ1J2J3
eff

(Table continued)
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nonrelativistic coefficients can be approximated in terms of
spherical coefficients as

T NRð0BÞ
kjm ≈

X
d

md−3−k
ψ ðkþ 1ÞT ðdÞð0BÞ

kjm ;

T NRð1BÞ
kjm ≈

X
d

md−3−k
ψ

�
T ðdÞð1BÞ

kjm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

2

r
T ðdÞð0BÞ

kjm

�
:

ðB5Þ

The spherical coefficients can then in turn be converted to
effective Cartesian coefficients using the results in
Appendix A. The conversion can be implemented to linear
boost order via Eq. (B2), where the zeroth-order term is
again given by Eq. (25).
At linear boost order, the relevant spin-dependent non-

relativistic coefficients T NRðqBÞ
kj0 ðOðβÞÞ have m ¼ 0.

Expanding them in powers of the unit vector B̂J along
the magnetic field, we obtain

T NRðqBÞ
kj0 ðOðβÞÞ¼

�∂T NRðqBÞ
kj0

∂βJ
����
βJ¼0

�
βJ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4π

2jþ1

s
md−k−3

�X8
d¼3

TðdÞJJ1
sB;kj β

JB̂J1

þ
X8
d¼5

TðdÞJJ1J2J3
sB;kj βJB̂J1B̂J2B̂J3

þ
X8
d¼7

TðdÞJJ1J2J3J4J5
sB;kj βJB̂J1B̂J2B̂J3B̂J4B̂J5

	
;

ðB6Þ

where the quantities TðdÞJJ1…Jn
sB;kj with d − 3 − k < 0 vanish.

Explicit expressions for nonvanishing TðdÞJJ1…Jn
0B;kj in terms

of effective Cartesian coefficients in the Sun-centered
frame can be found in the first two columns of
Table XXII and by using the relations

TðdÞJJ1
0B;23 ¼ −TðdÞJJ1

0B;21 ; TðdÞJJ1
0B;43 ¼ −

14

9
TðdÞJJ1
0B;41 ;

TðdÞJJ1J2J3
0B;45 ¼ −TðdÞJJ1J2J3

0B;43 ; TðdÞJJ1
0B;45 ¼ 5

9
TðdÞJJ1
0B;41 : ðB7Þ

The nonvanishing quantities TðdÞJJ1…Jn
1B;kj are compiled in the

second pair of columns of Table XXII.
In working with these results, the reader is cautioned that

the coefficients T NRð0BÞ
kjm and T NRð1BÞ

kjm with j ¼ kþ 1 are
linearly dependent at zeroth order in jpjw=mw because the

spherical coefficients T ðdÞð1BÞ
kjm vanish for j ¼ kþ 1. One

implication of this, for instance, is the existence of the
relationships

TðdÞJJ1
1B;kðkþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2

2ðkþ 1Þ

s
TðdÞJJ1
0B;kðkþ1Þ;

TðdÞJJ1J2J3
1B;kðkþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2

2ðkþ 1Þ

s
TðdÞJ1J2J3
0B;kðkþ1Þ;

TðdÞJJ1J2J3J4J5
1B;kðkþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2

2ðkþ 1Þ

s
TðdÞJ1J2J3J4J5
0B;kðkþ1Þ ðB8Þ

that link the quantities with subscripts 0B and 1B.

TABLE XXI. (Continued)

Laboratory Factor Sun-centered Laboratory Factor Sun-centered

H̃ð7Þ0jj333
eff

B̂J1 B̂J2 B̂J3 H̃ð7ÞTKKJ1J2J3
eff g̃ð8Þ030jj33eff

B̂J1 B̂J2 B̂J3 g̃ð8ÞTJ1TKKJ2J3
eff

3B̂J1 B̂J2 B̂ · β H̃ð7ÞKTTKJ1J2
eff

2B̂J1 B̂J2 B̂ · β g̃ð8ÞJ1TTTJ2KK
eff

B̂J1 B̂J2 B̂J3βJ H̃ð7ÞJTTJ1J2J3
eff

2B̂J1 B̂J2 B̂J3βJ g̃ð8ÞJ1TTTJ2J3Jeff

B̂J1 B̂J2 B̂J3βJ H̃ð7ÞKJKJ1J2J3
eff

2B̂J1 B̂J2 B̂J3βJ g̃ð8ÞJ1ðJTÞJ2J3KK
eff

H̃ð7Þ03jj33
eff

B̂J1 B̂J2 B̂J3 H̃ð7ÞTJ1KKJ2J3
eff g̃ð8Þ0300033eff

B̂J1 B̂J2 B̂J3 g̃ð8ÞTJ1TTTJ2J3eff

2B̂J1 B̂J2 B̂ · β H̃ð7ÞJ1TTJ2KK
eff

4B̂J1 B̂J2 B̂J3βJ g̃ð8ÞJ1ðTTTJÞJ2J3eff

2B̂J1 B̂J2 B̂J3βJ H̃ð7ÞJ1TTJJ2J3
eff

2B̂J1 B̂J2 B̂ · β g̃ð8ÞJ1TTTTTJ2eff

B̂J1 B̂J2 B̂J3βJ H̃ð7ÞJ1JKKJ2J3
eff g̃ð8Þ0303333eff

B̂J1 B̂J2 B̂J3 B̂J4 B̂J5 g̃ð8ÞTJ1TJ2J3J4J5eff

2B̂J1 B̂J2 B̂J3 B̂J4 B̂J5βJ g̃ð8ÞJ1ðJTÞJ2J3J4J5eff

4B̂J1 B̂J2 B̂J3 B̂J4 B̂ · β g̃ð8ÞJ1TTTJ2J3J4eff
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TABLE XXII. The quantities TðdÞJK…M
0B;kj and TðdÞJK…M

1B;kj for 3 ≤ d ≤ 8.

TðdÞJK…M
0B;kj Combination TðdÞJK…M

1B;kj Combination

Tð3ÞJJ1
0B;01

−H̃ð3ÞJ1J
eff Tð5ÞJJ1

1B;21
− 1

5
ð15H̃ð5ÞJ1ðJTTÞ

eff þ 2H̃ð5ÞTðJ1JÞT
eff

Tð4ÞJJ1
0B;01 2g̃ð4ÞJ1ðJTÞeff þ6H̃ð5ÞJ1ðJKKÞ

eff − 2H̃ð5ÞKðJ1JÞK
eff

Tð5ÞJJ1
0B;01

−3H̃ð5ÞJ1ðJTTÞ
eff þ6H̃ð5ÞTKTK

eff δJJ1Þ
Tð6ÞJJ1
0B;01 4g̃ð6ÞJ1ðJTTTÞeff Tð6ÞJJ1

1B;21
1
10
ð60g̃ð6ÞJ1ðJTTTÞeff þ 12g̃ð6ÞTðJ1JÞTTeff

Tð7ÞJJ1
0B;01

−5H̃ð7ÞJ1ðJTTTTÞ
eff þ48g̃ð6ÞJ1ðTJKKÞ

eff − 18g̃ð6ÞKðJ1JTÞK
eff

Tð8ÞJJ1
0B;01 6g̃ð8ÞJ1ðJTTTTTÞeff þ21g̃ð6ÞTKTTK

eff δJJ1Þ
Tð5ÞJJ1
0B;21

1
5
ð3H̃ð5ÞJðJ1KKÞ

eff þ 4H̃ð5ÞTðJ1JÞT
eff Tð7ÞJJ1

1B;21
− 2

5
ð25H̃ð7ÞJ1ðTTTTJÞ

eff þ 6H̃ð7ÞTðJ1JÞTTT
eff

þ2H̃ð5ÞTKTK
eff δJJ1Þ þ30H̃ð7ÞJ1ðTTJKKÞ

eff − 12H̃ð7ÞKðTTJJ1ÞK
eff

Tð6ÞJJ1
0B;21

− 3
5
ð3g̃ð6ÞJðJ1KKÞT

eff þ 4g̃ð6ÞTðJ1JÞTTeff þ8H̃ð7ÞTKTTTK
eff δJJ1Þ

þ3g̃ð6ÞTðJ1KKÞJ
eff þ 2g̃ð6ÞTKTTK

eff δJJ1Þ Tð8ÞJJ1
1B;21

1
2
ð30g̃ð8ÞJ1ðJTTTTTÞeff þ 8g̃ð8ÞTðJ1JÞTTTTeff

Tð7ÞJJ1
0B;21

6
5
ð3H̃ð7ÞJðJ1KKÞTT

eff þ 6H̃ð7ÞTðJ1KKÞTJ
eff þ48g̃ð8ÞJ1ðTTTJKKÞ

eff − 20g̃ð8ÞKðJ1JTTTÞK
eff

þ4H̃ð7ÞTðJ1JÞTTT
eff þ 2H̃ð7ÞTKTTTK

eff δJJ1Þ þ9g̃ð8ÞTKTTTTK
eff δJJ1Þ

Tð8ÞJJ1
0B;21

−2ð3g̃ð8ÞJðJ1KKÞTTT
eff þ 9g̃ð8ÞTðJ1KKÞTTJ

eff Tð7ÞJJ1
1B;41

− 3
35
ð70H̃ð7ÞJ1ðJTTKKÞ

eff − 4H̃ð7ÞKðJJ1ÞKLL
eff

þ4g̃ð8ÞTðJ1JÞTTTTeff þ 2g̃ð8ÞTKTTTTK
eff δJJ1Þ þ15H̃ð7ÞJ1ðJLLKKÞ

eff þ 8H̃ð7ÞTðJJ1LLÞT
eff

Tð7ÞJJ1
0B;41

3
35
ð16H̃ð7ÞTðJ1JKKÞT

eff þ 5H̃ð7ÞJðJ1KKLLÞ
eff þ16H̃ð7ÞTKKLLT

eff δJJ1Þ
þ4H̃ð7ÞTKKLLT

eff δJJ1Þ Tð8ÞJJ1
1B;41

3
7
ð18g̃ð8ÞJ1ðJTKKLLÞ

eff − 2g̃ð8ÞKðJJ1TÞKLL
eff

Tð8ÞJJ1
0B;41

− 3
7
ð16g̃ð8ÞTðJ1JKKÞTT

eff þ 5g̃ð8ÞJðJ1KKLLÞT
eff þ8g̃ð8ÞTðKKJ1JÞTT

eff þ 42g̃ð8ÞJ1ðJLLTTTÞeff

þ5g̃ð8ÞTðJ1KKLLÞJ
eff þ 4g̃ð8ÞTKKLLTT

eff δJJ1Þ þ9g̃ð8ÞTKKLLTT
eff δJJ1Þ

Tð5ÞJJ1J2J3
0B;23 H̃ð5ÞJJ1J2J3

eff þ 2δJJ1H̃ð5ÞTJ2TJ3
eff Tð7ÞJJ1

1B;43

ffiffi
6

p
15
ð15H̃ð7ÞJ1ðJKKTTÞ

eff

Tð6ÞJJ1J2J3
0B;23 6ðg̃ð6ÞJ1ðJTÞJ2J3eff − δJJ1 g̃ð6ÞTJ2J3TTeff Þ −2H̃ð7ÞKðJJ1ÞKLL

eff þ 5H̃ð7ÞJ1ðJLLKKÞ
eff

Tð7ÞJJ1J2J3
0B;23

−18H̃ð7ÞJ1ðJTTÞJ2J3
eff þ 12δJJ1H̃ð7ÞTJ2J3TTT

eff −4H̃ð7ÞTðJJ1LLÞT
eff þ 2H̃ð7ÞTKKLLT

eff δJJ1Þ
Tð8ÞJJ1J2J3
0B;23 40g̃ð8ÞJ1ðJTTTÞJ2J3eff Tð8ÞJJ1

1B;43
− 1ffiffi

6
p ð12g̃ð8ÞJ1ðJTKKLLÞ

eff

−20δJJ1 g̃ð8ÞTðJ2J3ÞTTTTeff þ6g̃ð8ÞKðJJ1TÞKLL
eff − 8g̃ð8ÞTðKKJ1JÞTT

eff

Tð7ÞJJ1J2J3
0B;43

2
9
ð8H̃ð7ÞTðJJ1J2J3ÞT

eff þ 5H̃ð7ÞJðJ1J2J3KKÞ
eff þ18g̃ð8ÞJ1ðJLLTTTÞeff þ g̃ð8ÞTKKLLTT

eff δJJ1Þ
þ12δJJ1H̃ð7ÞTðJ2J3KKÞT

eff Þ Tð7ÞJJ1J2J3
1B;43

ffiffi
6

p
9
ð12H̃ð7ÞKðJJ1J2J3ÞK

eff

Tð8ÞJJ1J2J3
0B;43

− 10
9
ð8g̃ð8ÞTðJJ1J2J3ÞTTeff þ5H̃ð7ÞJðJ1J2J3KKÞ

eff − 27H̃ð7ÞJ1ðJTTÞJ2J3
eff

þ5g̃ð8ÞJðJ1J2J3KKÞT
eff þ 5g̃ð8ÞTðJ1J2J3KKÞJ

eff
−4H̃ð7ÞTðJJ1J2J3ÞT

eff

þ12δJJ1 g̃ð7ÞTðJ2J3KKÞTT
eff Þ þ12δJJ1H̃ð7ÞTðJ2J3KKÞT

eff

Tð7ÞJJ1J2J3J4J5
0B;45 H̃ð7ÞJJ1J2J3J4J5

eff þ δJJ1H̃ð7ÞTJ2J3J4J5T
eff þ36δJJ1H̃ð7ÞKðJ2J3TTÞK

eff )

Tð8ÞJJ1J2J3J4J5
0B;45

−5ðg̃ð8ÞJJ1J2J3J4J5Teff þ g̃ð8ÞTJ1J2J3J4J5Jeff Tð8ÞJJ1J2J3
1B;43

− 5

3
ffiffi
6

p ð10g̃ð8ÞKðJJ1J2J3TÞK
eff

þ4δJJ1 g̃ð8ÞTJ2J3J4J5TTeff Þ −8g̃ð8ÞTðJJ1J2J3ÞTTeff − 24g̃ð8ÞJ1ðJKKTÞJ2J3
eff

−36g̃ð8ÞJ1ðJTTTÞJ2J3eff

þ24δJJ1 g̃ð8ÞTðJ2J3KKÞTT
eff

þ45δJJ1 g̃ð8ÞKðJ2J3TTTÞK
eff )
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