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Clock-comparison experiments are among the sharpest existing tests of Lorentz symmetry in matter. We
characterize signals in these experiments arising from modifications to electron or nucleon propagators and
involving Lorentz- and CPT-violating operators of arbitrary mass dimension. The spectral frequencies of
the atoms or ions used as clocks exhibit perturbative shifts that can depend on the constituent-particle
properties and can display sidereal and annual variations in time. Adopting an independent-particle model
for the electronic structure and the Schmidt model for the nucleus, we determine observables for a variety of
clock-comparison experiments involving fountain clocks, comagnetometers, ion traps, lattice clocks,
entangled states, and antimatter. The treatment demonstrates the complementarity of sensitivities to Lorentz
and CPT violation among these different experimental techniques. It also permits the interpretation of
some prior results in terms of bounds on nonminimal coefficients for Lorentz violation, including first
constraints on nonminimal coefficients in the neutron sector. Estimates of attainable sensitivities in future
analyses are provided. Two technical appendices collect relationships between spherical and Cartesian
coefficients for Lorentz violation and provide explicit transformations converting Cartesian coefficients in a
laboratory frame to the canonical Sun-centered frame.
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I. INTRODUCTION

Among the best laboratory tests of rotation invariance are
experiments measuring the ticking rate of a clock as its
orientation changes, often as it rotates with the Earth.
A spatial anisotropy in the laws of nature would be revealed
if the clock frequency varies in time at harmonics of the
rotation frequency. Detecting any time variation requires a
reference clock that either is insensitive to the anisotropy or
responds differently to it. Typically, the two clock frequen-
cies in these experiments are transition frequencies in atoms
or ions, and the spatial orientation of a clock is the
quantization axis established by an applied magnetic field.
These clock-comparison experiments can attain impressive
sensitivities to rotation violations, as originally shown by
Hughes et al. and Drever [1].

Rotation invariance is a key component of Lorentz
symmetry, the foundation of relativity. Tests of this symmetry
have experienced a revival in recent years, stimulated by the
possibility that minuscule violations could arise from a
unification of quantum physics with gravity such as string
theory [2]. Using techniques from different subfields of
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physics, numerous searches for Lorentz violation have now
reached sensitivities to physical effects originating at the
Planck scale Mp ~10'"" GeV [3]. Since the three boost
generators of the Lorentz group close under commutation
into the three rotation generators, any deviations from
Lorentz symmetry in nature must necessarily come with
violations of rotation invariance. Searches for rotation
violations therefore offer crucial tests of Lorentz symmetry.
In the present work, we pursue this line of reasoning by
developing and applying a theoretical treatment for the
analysis of clock-comparison experiments searching for
Lorentz violation.

To date, no compelling experimental evidence for Lorentz
violation has been adduced. Even if Lorentz violation does
occur in nature, identifying the correct realistic model among
a plethora of options in the absence of positive experimental
guidance seems a daunting and improbable prospect. An
alternative is instead to adopt a general theoretical framework
for Lorentz violation that encompasses specific models and
permits a comprehensive study of possible effects. Since any
Lorentz violation is expected to be small, it is reasonable to
use effective field theory [4] for this purpose. A realistic
treatment then starts from well-established physics, which
can be taken as the action formed by coupling general
relativity to the Standard Model of particle physics, and adds
all possible Lorentz-violating operators to yield the frame-
work known as the Standard-Model Extension (SME) [5,6].
Each Lorentz-violating operator in the SME is contracted
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with a coefficient that determines the magnitude of its
physical effects while preserving coordinate independence
of the theory. The operators can be classified according to
their mass dimension d, with larger values of d associated
with greater suppression at low energies. The limiting case
with d < 4 is power-counting renormalizable in Minkowski
spacetime and is called the minimal SME. Since CPT
violation in effective field theory is concurrent with
Lorentz violation [5,7], the SME also characterizes general
effects from CPT violation. Experimental constraints on the
parameters of any Lorentz-violating model that is consistent
with realistic effective field theory can be found by identify-
ing the model parameters with specific SME coefficients and
their known constraints [3,8].

Signals arising from Lorentz and CPT violation are
predicted by the minimal SME to appear in clock-
comparison experiments with atoms or ions [9]. The signals
include observable modifications of the spectra that can
exhibit time variations and that depend on the electron and
nucleon composition of the species used as clocks. Null
results from early clock-comparison experiments [10-13]
can be reinterpreted as bounds on coefficients for Lorentz
violation in the minimal SME [9]. Many minimal-SME
coefficients have been directly constrained in recent experi-
ments, including clock comparisons performed using a
hydrogen maser [14,15], '*3Cs and 3Rb fountain clocks
[16], trapped ultracold neutrons and '°°Hg atoms [17],
He-K and *'Ne-Rb-K comagnetometers [18,19], 133Cs and
19Hg magnetometers [20], transitions in '’Dy and %Dy
atoms [21], '*Xe and *He atoms [22-25], and entangled
states of **Ca™ ions [26]. The results represent competitive
tests of Lorentz and CPT symmetry [3,27], and additional
constraints on minimal-SME coefficients have been
extracted by detailed theoretical analyses [28—34].

In this work, we extend the existing theoretical treatment
of Lorentz and CPT violation in clock-comparison experi-
ments to include SME operators of nonminimal mass
dimension d > 4 that modify the Dirac propagators of
the constituent electrons, protons, and neutrons in atoms
and ions. At an arbitrary given value of d, all Lorentz- and
CPT-violating operators affecting the propagation have
been identified and classified [35], which in the present
context permits a perturbative analysis of the effects of
general Lorentz and CPT violation on the spectra of the
atoms or ions used in clock-comparison experiments.
Nonminimal SME operators are of direct interest in various
theoretical contexts associated with Lorentz-violating
quantum field theories including, for instance, formal
studies of the underlying Riemann-Finsler geometry [36]
or of causality and stability [37] and phenomenological
investigations of supersymmetric models [38] or noncom-
mutative quantum field theories [39,40]. They are also of
interest in experimental searches for geometric forces, such
as torsion [41] and nonmetricity [42]. Only a comparatively
few constraints on nonminimal SME coefficients for

Lorentz violation in the electron and proton sectors have
been derived from laboratory experiments to date [35,43—
48], while the neutron sector is unexplored in the literature.
Here, we seek to improve this situation by developing
techniques for analyzing clock-comparison experiments
and identifying potential signals from nonminimal
Lorentz and CPT violation. Several clock modalities are
considered in this context for the first time, including ones
yielding measurements of nonminimal SME coefficients
from atomic fountains, comagnetometers, ion traps, lattice
clocks, and antimatter spectroscopy. We adopt existing
results to deduce numerous first constraints on nonminimal
coefficients in the neutron sector, and we estimate sensi-
tivities to electron, proton, and neutron nonminimal coef-
ficients that are attainable in future analyses.

The organization of this work is as follows. In Sec. II, we
present the theoretical techniques that enable a perturbative
treatment of the effects of Lorentz and CPT violation on
the spectra of atoms and ions. A description of the
perturbation induced by Lorentz- and CPT-violating oper-
ators of arbitrary mass dimension d is provided in Sec. IT A.
The perturbative shifts in energy levels are discussed in
Sec. IIB along with generic features of the resulting
spectra, and some useful formulas for subsequent calcu-
lations are derived. In Sec. II C, we consider methods for
determining expectation values of electronic states, with
emphasis on an independent-particle model. The corre-
sponding techniques for nucleon states are presented in
Sec. I D, primarily in the context of a comparatively simple
nuclear model. We then turn to evaluating the time
variations in the spectrum due to the noninertial nature
of the laboratory frame, first examining effects induced by
the rotation of the Earth about its axis in Sec. Il E and next
discussing ones induced by the revolution of the Earth
about the Sun in Sec. I F. The latter section also considers
related issues associated with space-based missions.

Applications of these theoretical results in the context of
various clock-comparison experiments are addressed in
Sec. III. Searches for Lorentz and CPT violation using
fountain clocks are considered in Sec. III A, and estimates
for attainable sensitivities are obtained. Studies with
comagnetometers are investigated in Sec. III B, and first
sensitivities to many nonminimal coefficients for Lorentz
violation are deduced from existing data. Optical transi-
tions in ion-trap and lattice clocks are discussed in Sec. III
C, and potential sensitivities in available systems are
considered. Some comments about prospects for antimatter
experiments are offered in Sec. III D, where the first SME
constraints from antihydrogen spectroscopy are presented.
A summary of the work is provided in Sec. IV. Two
appendices are also included. Appendix A describes the
general relationship between spherical and Cartesian coef-
ficients for Lorentz violation and tabulates explicit expres-
sions for 3 < d < 8. Appendix B presents techniques for
transforming Cartesian coefficients for Lorentz violation
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from the laboratory frame to the Sun-centered frame
and collects explicit results for 3 < d < 8. In this work,
we use conventions and notation matching those of
Ref. [35] except as indicated. Note that natural units with
¢ = h =1 are adopted throughout.

II. THEORY

This section discusses the theoretical techniques for the
perturbative treatment of Lorentz and CPT violation in
atoms and ions. The perturbation is described using a
framework that encompasses all Lorentz-violating quantum
operators affecting the motion of the component particles in
the atom. Generic restrictions on the induced energy shifts
arising from symmetries of the system are considered. The
perturbative calculation of the energy shift is formulated,
and expressions useful for application to experiments are
obtained. Simple models are selected for the electronic and
nuclear structure so that derivations of the relevant expect-
ation values can be performed for a broad range of atomic
species used in experiments. The conversion from the
laboratory frame to the Sun-centered frame is provided,
accounting both for the rotation of the Earth about its axis
and for the revolution of the Earth about the Sun at first
order in the boost parameter.

A. Description of the perturbation

The experiments of interest here involve comparisons of
transitions in atoms or ions, seeking shifts in energy levels
due to Lorentz and CPT violation. All possible shifts are
controlled by SME coefficients, which can be viewed as a
set of background fields in the vacuum. The energy-level
shifts arise from the coupling of these background fields to
the elementary particles and interactions comprising the
atom or ion. An exact theoretical treatment of the shifts is
prohibitive. However, since any Lorentz and CPT violation
is small, a perturbative analysis is feasible and sufficient to
establish the dominant effects.

From the perspective of perturbation theory, the inter-
action between the electrons and the protons inside an atom
or ion has some common features with the interaction
between the nucleons inside the nucleus. In both cases, the
magnitude |p| of the momentum p of a fermion of flavor w
in the zero-momentum frame is smaller than its rest mass
m,,. One consequence is that the dominant contribution due
to a perturbation added to the Hamiltonian of the system
can be obtained by expanding the perturbation in terms of
the ratio |p|/m,,, keeping only leading terms in the power
series. In most cases, it suffices to treat the system as
effectively nonrelativistic. Another feature of interest is that
the energy per particle due to the interaction between the
nucleons and the interaction between the electrically
charged particles in the bound states is comparable to
the nonrelativistic kinetic energy of the particles. The
nonrelativistic kinetic energy is second order in the ratio

Ip|/m,,, so the corrections to the propagation of the
particles at order (|p|/m,,)? and (|p|/m,,)" and at leading
order in Lorentz violation dominate any effects due to
Lorentz-violating operators coupled to the interactions
between the fermions.

With these considerations in mind, it is reasonable to
proceed under the usual assumption that the dominant
Lorentz-violating shifts of the spectrum of the atom or ion
arise from corrections to the propagation of the constituent
particles. For most purposes, these particles can be taken as
electrons e, protons p, and neutrons n, so that w takes the
values e, p, and n. Applications to exotic atoms or ions can
be accommodated by extending appropriately the values of
w. The relevant Lorentz-violating terms in the Lagrange
density are then quadratic in the fermion fields for the
constituent particles. All terms of this type have been
classified and enumerated [35], and applications to hydro-
gen and hydrogen-like systems have been established [43].
For convenience, we reproduce in this section the key
results relevant in the present context.

For a Dirac fermion y,, of flavor w and mass m,,, all
quadratic terms in the Lagrange density £ can be expressed
as [35]

1. R
L35 v (r*i0, = my, + Qy )y, + He. (1)

Here, Q, is a spinor matrix describing modifications of
the standard fermion propagator, including all Lorentz-
invariant and Lorentz-violating contributions obtained by
contracting SME coefficients with operators formed from
derivatives i0,. The matrix QW can be decomposed in a
basis of Dirac matrices and can be converted to momentum
space with the identification i0, — p,. Individual oper-
ators with definite mass dimension d in the Lagrange
density incorporate d —3 momentum factors, and the
corresponding SME coefficients have dimension 4 — d.
The Lagrange density (1) has been extended to include
operators at arbitrary d in the photon sector [45,49,50].
Analogous constructions exist for the neutrino [51] and
gravity [52] sectors.

For present purposes, the SME coefficients can be
assumed uniform and time independent within the solar
system [5] and so can be taken as constants when specified
in the canonical Sun-centered frame [53]. Using standard
procedures, an effective nonrelativistic one-particle
Hamiltonian that includes the leading-order correction
due to Lorentz- and CPT-violation to the propagation of
a fermion of flavor w can be derived from the Lagrange
density (1). This Hamiltonian can be separated into the
conventional Hamiltonian for a free nonrelativistic fermion
and a perturbation term 5ANR containing the Lorentz- and
CPT-violating contributions. The perturbation AR is thus
a2 x 2 matrix, with each component being a function of the
momentum operator and independent of the position. It can
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be expanded in terms of the identity matrix and the vector
6 = (¢',6%,6) of Pauli matrices. For convenience, this
expansion can be performed using a helicity basis instead

of a Cartesian one. The corresponding three basis vectors
can be taken as &, =p =p/|p| and &, = (0 + i)/ V2,
where 6 and qAS are the usual unit vectors for the polar angle
6 and azimuthal angle ¢ in momentum space, with
p = (sinfcos ¢, sinfsin ¢, cosd). In this helicity basis,
the perturbation ShNR takes the form [35]

5h$R =hy+h,6-é +h, 6-é€ +h, o€, (2)

where 5, contains spin-independent effects and the
remaining terms describe spin-dependent ones.

Many experiments searching for Lorentz and CPT
violation focus on testing the rotation subgroup of the
Lorentz group. To facilitate the analysis of rotation proper-
ties, it is useful to express the components 4,,, h,,,, h,, of
the perturbation in spherical coordinates. It is opportune to
express the spherical decomposition of the operators in the
perturbation SANR in terms of spin-weighted spherical
harmonics (Y, (p) of spin weight s, as these harmonics
capture in a comparatively elegant form the essential
properties of the perturbation under rotations. The usual
spherical harmonics are spin-weighted harmonics with
spin-weight s =0, Y, (0,¢)=,Y,,(0,¢). Definitions
and some useful features of spin-weighted spherical har-
monics are presented in Appendix A of Ref. [50].

In terms of the spherical decomposition, the components
of the perturbation (2) can be expanded as

= _lelkOY)m(p Vijm (3)

kjm

for the spin-independent terms, and

NR(0B)
= _le|k Y]m<p)Tijm ’

kjm
NR(1E) NR(1B
W:t - ZIP‘ ilY/m(p ( ijm :l: kajm )> (4)
kjm

for the spin-dependent ones. The coefficients Vwk]m,
T NR(‘IP), where ¢P takes values 0B, 1B, or 1E, are

Wkjm
nonrelativistic spherical coefficients for Lorentz violation.
These effective coefficients are linear combinations of SME
coefficients for Lorentz violation that emerge naturally in
the nonrelativistic limit of the one-particle Hamiltonian
obtained from the Lagrange density (1).

For applications, it is useful to perform a further
decomposition of the components of the perturbation
Hamiltonian according to their CPT handedness. In par-
ticular, each nonrelativistic spherical coefficient can be
separated into two pieces characterized by the CPT
handedness of the corresponding operator. This decom-
position can be expressed as [35]

_ _NR _ . NR
Vwk‘/m Cijm aijm’
NR(gP) NR(gP) NR(¢P)
Tijm — Iwkjm - Hijm ’ (5)

where the a- and g-type coefficients are contracted with
CPT-odd operators and the c- and H-type coefficients with
CPT-even ones. The notation here parallels the standard
assignments in the minimal SME [5]. Each nonrelativistic
coefficient on the right-hand side of this equation can be
expressed as a sum of SME coefficients in the Lagrange
density, suitably weighted by powers of m,,. The explicit
expressions for these sums are given in Egs. (111) and
(112) of Ref. [35]. The allowed ranges of values for the
indices k, j, m and the numbers of independent components
for each coefficient are listed in Table IV of Ref. [35]. Note
that in the present work we follow the convention of
Ref. [43] and adopt the subscript index k instead of n, to
avoid confusion with the principal quantum number of the
atom or ion.

Given the perturbation 64\R affecting the propagation of
each fermion in an atom or ion, we can formally express the
perturbation §A*°™ of the system as a whole as

Shatom — Z Z hNR)a, (6)

where a = 1, ..., N,, labels the fermions of given flavor w
in the atom or ion. The Lorentz-violating operators con-
sidered in this work are functions of the momentum and the
spin of the particle, so (Sh\R), = 6h\R (p,, 6,) depends on
the momentum operator p, and the spin operator &, for the
ath fermion. Each term (Sh)R), is understood to be the
tensor product of the perturbation (2) acting on the states of
the ath fermion of flavor w with the identity operator acting
on the Hilbert space of all other fermions. Note that the
index a is tied to the momentum and spin, whereas the
index w controlling the flavor of the particle is contained in
the coefficient for Lorentz violation. Note also that the
perturbation (6) can be separated according to operator
flavor as

6ha[0m — 5h2[0m _|_ 5h?}[0m _|_ 5h%[0m’ (7)
where 6A2°™ is the sum of all operators of flavor w that
contribute to 4*°™, For example, the expression for SA%°™

is given by shiom = SNe (5pNR)

a=1
the N, electrons in the atom.

, where a ranges over

B. Energy shifts

The corrections to the spectrum of the atom or ion due to
Lorentz and CPT violation can be obtained from the
perturbation 0h,,, using the Raleigh-Schrodinger pertur-
bation theory. At first order, the shift of an energy level is
obtained from the matrix elements of the perturbation
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evaluated in the subspace spanned by the degenerate
unperturbed energy eigenstates, as usual. In typical appli-
cations of relevance here, the degeneracy in the energy
levels is lifted by an external field such as an applied
magnetic field. In this scenario, the first-order shift of an
energy level is obtained from the expectation value of the
perturbation with respect to the unperturbed state. Since the
exact unperturbed energy states for multielectron atoms or
ions are typically unknown, approximations to these states
must be used to obtain the first-order Lorentz-violating
shift of the spectrum. However, the symmetries of the
unperturbed system place restrictions on the expectation
values of the perturbation. In this section, we describe some
of these constraints and establish the general form of the
perturbative energy shifts.

Assuming that the degeneracy of the energy levels is
broken by an applied magnetic field, parity is a symmetry
of the system and so the states of the atom or ion must be
parity eigenstates. As a result, the expectation values of
parity-odd operators with respect to parity eigenstates must
vanish, so only parity-even operators can affect the spec-
trum. This prevents some terms in the perturbation 6/,
from contributing to the energy shift. Each operator in the
spherical decomposition (3) and (4) of the perturbation
Ohgom 18 either odd or even under parity, with handedness
determined by the indices j and k of the corresponding
coefficient for Lorentz violation. The coefficients aw}j}fn
whjy €an contribute to energy shift at first-order in
perturbation theory only for even values of j and k, while

the coefficients gwl,jjlxqm and HWI,:]};("B)

if j is odd and k even.

Another constraint arises from time-reversal invariance
and the Wigner-Eckart theorem [54], and it concerns the
expectation value in any angular-momentum eigenstate of
Lorentz-violating operators controlled by spin-dependent
coefficients with P = E. It can be shown that this expect-
ation value must vanish when the Lorentz-violating oper-
ators transform as spherical operators under rotations
generated by the angular-momentum operator [43], which
is the case for the perturbation §4*°™ of interest here. As a
result, none of the spin-dependent coefficients with P = E
contribute to the perturbative shift of the spectrum for any
values of k and j. This result applies for all atoms and ions
considered in the present work.

In the absence of Lorentz violation, the total angular
momentum F of the atom or ion commutes with the
Hamiltonian of the system. When a magnetic field B =
BB is applied, the rotational symmetry is broken. If the
perturbative shift due to the magnetic field is smaller than
the hyperfine structure, both the quantum number F
corresponding to F and the quantum number m corre-
sponding to F - B can be approximated as good quantum
numbers. Suppose the states |&'mp) represent a basis of
eigenstates of the Hamiltonian, where ¢’ is a set of quantum

and ¢

can contribute only

numbers including F that together with my forms a
complete set of quantum numbers. Using the Wigner-
Eckart theorem, the energy shift due to the propagation
of the fermions in the atom or ion can then be written as

de = (@'mp|oh™ ™o/ mp) = > Ajo(FmpjO|Fmp),  (8)
J

where (j,m,j3ms|jim,) denote Clebsch-Gordan coeffi-
cients. The factors A;y = Ajo(a’) are independent of .
The sum over j in Eq. (8) involves the index j labeling the
coefficients for Lorentz violation in §4*°™, in parallel with
the sums over j in Egs. (3) and (4). Note that the Clebsch-
Gordan coefficient (FmpjO|Fmg) vanishes when j > 2F,
implying that no operator with j > 2F contributes to the
energy shift.

To find useful expressions for the factors A ;,, we make
some additional assumptions that are broadly valid for the
systems considered in this work. Except where stated
otherwise, we suppose that both the magnitude J of the
total angular momentum J of the electrons and the
magnitude / of the nuclear spin I are good quantum
numbers for the system. We also assume that the states
|@'mp) can be expressed as a tensor product |¥(¢)) ®
|Fm), where

|Fmp) = Z<1mIJmJ‘FmF>|ImI> ® [Jmy). (9)

mymy

Here, the kets |Fmg), |Jm;), and |Im;) are associated with
the angular momenta F, J, and I, respectively. These states
also depend on other quantum numbers that are suppressed
in the notation. For example, the ket |Fm) depends on J,
on /, and also on other quantum numbers established by the
couplings of the orbital angular momenta and spins of the
component particles to form F. For later use, it is also
convenient to introduce the notation |a'm;) = |¥(d)) ®
|[Jm;) and |o'm;) = |¥(&')) ® |Im;). Under these assump-
tions, we can expand the factors A, appearing in Eq. (8) in
the form

Ajp = CiWi, + CfoO + C Wi, (10)

where C}(FJI) are weights for the quantities W (a')
containing the expectation values of 6A2°™ with respect to
the states |@'my) and |@'m;).

The analytical expressions for the factors C¥(FJI) in
terms of Clebsch-Gordan coefficients are

Im;Jm;|FF)? .
C;‘:Cf:Z—< 1Jmy|FF) (ImjO|Im,),

& (FFjO|FF)
(Im;Jm,|FF)? .
e _ N~ UmpJmy|FF)” | )
K f%;/ (FFjO|FF) {Jm;jOLIm;) (11)
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Their numerical values can be obtained for any given
allowed values of F, J, and I. Some of the properties of
CY(FJI) are induced by features of the Clebsch-Gordan
coefficients. For example, Cj = 1 for any values of F, J,
and I because (Kmyx00|Kmy) =1 for K equal to F, J,
or I and because ), ., (Im;Jm,;|FF)*> = 1. As another
example, CS(FJI) = 0 whenever j > 2J and C¥(FJI) =
C1(FJI) = 0 whenever j > 21 because (KmjO|Kmg) =
0if j > 2K.

The explicit relationships between the expectation values
of the perturbations 6A3;°" and the WY (<) in Eq. (10) can
be written as

(@/'my ko™ ' my) = > Wy (JmjOlTm,),
J

(@ my|ShE™o/my)y = > Wh (ImyjO|Imy),
J

(@my|Shaom |l my) = > W (Imy jO|Imy). (12)
J

These expressions are based on using the Wigner-Eckart
theorem, which is valid because the single-particle oper-
ators in the spherical decomposition of 4*°™ transform as
spherical operators with respect to rotations generated by I
and J. The W%, are combinations of coefficients for Lorentz
violation with expectation values of the one-particle oper-
ators in Egs. (3) and (4). The combinations take the form

" = NR(0B NR(1B 1B
Wi = Z (Tij0< )AWk] + kajo )Awl(cj ))
k=j—1

+ va}f,%/\wk, Y, (13)
=J

where the indicated restrictions of the values of k in the
sums originate in the properties of the nonrelativistic
coefficients provided in Table IV of Ref. [35]. Generic

expressions for the quantities AW,((‘jp) can be found in terms

of expectation values of the states |&’'m;) and |&'m;). For
the electron operators, we have

i a,‘lllpa|kOY]0(pa)6 pa|a,‘]>

Ay o (J71j0JT) ’
Zg /J||pa|k+1 ()(pa) a (é+a +é—a)‘(x,‘]>
e’(f e (JJ|jOJJ) ’
e AdT||pa|*oY (Do) | T
a0 _ 3o (@ lpal' Y Boled) )
i o (JJ|jOJT)

where the sum on a ranges over the electrons in the atom.
For the nucleon operators, we find

AWI(S'B) _ _N2< /I||pa|k0<YI]}()|(.ﬁa)Ga -ﬁa|a’l>’
| JOIT)
ALY Mo ([Pl 1Y 1o (Ba)oa - (€5 a+é_a)|a’1>7
pas (r1)jorr)

A 0B _ o (@ 11pal oY jo(Ba)la')
vk (11]j0I1) ’

(15)

where the sum on a ranges over all particles with
flavors w € {p, n}.

Explicit determination of the nonvanishing expectation
values in Egs. (14) and (15) requires models for the
electronic states and for the nuclear states, as discussed
below in Secs. II C and II D, respectively. However, certain
components of A, ( P) vanish. We saw above that only
coefficients with even values of k can contribute due to

parity invariance. This implies that AW,(;jP) (o) vanishes if k

is even. For Aw,(c J 5) and Awi ; B) it follows that J must be odd,

while for AWE{ i

consequence of the relationships between the indices k and
j of the nonrelativistic coefficients, as listed in Table IV
of Ref. [35].

Collecting the results discussed in this section yields a
set of constraints determining which coefficients for
Lorentz violation can affect the shift of an energy level
in an atom or ion. Table I compiles information about the
nonrelativistic spherical coefficients that can contribute to
spectral shifts. The first column of the table lists the
coefficients, which we denote generically by iC,;. The
flavor of the operator associated to the coefficient is
specified in the second column. The third column gives
the angular momenta K that restrict the values of the j index
on the coefficient according to the constraint 2K > j. For
electron coefficients these angular momenta are the total
angular momentum F of the system and the total angular
momentum J of the electronic shells, while for nucleon
coefficients they are F" and the nuclear spin /. The next two
columns provide conditions on the values of j for the cases
of integer K and of half-integer K. The value of j must be
even for coefficients in the first two rows and odd for other
coefficients. This can constrain the maximum allowed
value of j. For example, for even j and half-integer K
the equality in the condition 2K > j cannot be satisfied
because 2K is odd, so the maximum allowed value of j is
2K — 1. The final column in the table displays the allowed
values of k. Note that the appearance of a coefficient in the
table is necessary but not sufficient for it to contribute to a

theoretical energy shift because some Awgm

we find j must be even. These results are a

may vanish

for other reasons when a particular model is used to
compute the expectation values.
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TABLE I. Contributing nonrelativistic spherical coefficients.

Kl w K j values, integer K Jj values, half-integer K k values
VWZ%, aw}jjo, W}:‘j‘}) e F,J even, 2K > j >0 even, 2K —1> ;>0 even, k > j
le]j[%’ awlljjo’ wkj% n, p F, 1 even, 2K > j >0 even, 2K —1> ;>0 even, k > j
Tvv’Z%(OB>’ QWZ%(OB), HWZ%(OB) e F,J odd, 2K—-1>j>1 odd, 2K > j>1 even, k> j—1
T KO8 g NROB) gy NR(OB) n, p F, 1 odd, 2K—-1>j>1 odd, 2K > j > 1 even, k> j—1
wajl(?)(”?)’ QWZ%(]B), HWE]%(IB) e F,J odd,2K—-1>j>1 odd, 2K > j>1 even, k> j—1
7 NROP) g NR(B) g NR(1D) n, p F, 1 odd, 2K — 1> j > 1 odd, 2K > j > 1 even, k> j— 1

C. Electron expectation values

In this section, the calculation of the electronic
expectation values (14) is discussed. The situation where
F or J vanish is considered first. We then outline an
approach to more complicated cases that is general enough
to cover systems of interest here while yielding a sufficient
approximation to the effects of Lorentz and CPT violation.
This involves modeling the electromagnetic interaction
between the electrons and the nucleus via a central
Coulomb potential and treating the repulsion between the
electrons using a mean-field approximation. The approach
provides enough information about the states |a'm;) to
permit a reasonable estimation of the perturbative energy
shift due to Lorentz- and CPT-violating effects on the
electron propagators.

1. Case F=0 or J=0

The ground states of many atoms and ions considered in
this work have quantum numbers F' =0 or J = 0. For
example, this holds for the ground state of any noble gas
and any IIB transition metal such as Hg. It also holds for the
ground states of many ions of interest, including 2’Al*,
13Cd+, In*, 7yb*, and '’"Hg*. The excited states of
some systems of interest also have these quantum numbers,
such as the P state in 2’Al* or 'In*.

If either of the quantum numbers F or J vanishes, then the
electron coefficients for Lorentz violation that can contribute
to the energy shift must have j = 0. These coefficients
control isotropic Lorentz- and CPT-violating effects. The
discussion in Sec. II B reveals that the only relevant isotropic

coefficients for electrons are VXK. These spemal coefficients
o NR
are commonly denoted as V, ;, where Ve x =V IR/ VA

o

Since only V, ; can affect the energy shift, the quantities
Aei] ) and Ae,(” ) cannot contribute to Eq. (13) and so

become irrelevant. Moreover, when only the isotropic

coefficients for electrons can provide nonvanishing contri-

butions, we can simplify the expression (14) for Ae,((0 ) The

values of the relevant Clebsch-Gordan coefficient and
spherical harmonic are (JJ0O|JJ) =1 and

1/\/4z. This yields

OYOO:

eko - Z\/4—ﬂ_ Ipa ’ (16)

where the sum on a ranges over all the electrons in the atom.
The quantities {|p,,|*) are the expectation values of powers of
the momentum magnitude.

Denote the contribution to the energy shift due to the
electron isotropic coefficients by 526. Recalling that Cj = 1
for any value of F, J, and I, it follows from Egs. (8) and

(10) that 8¢, takes the simple form e, = W, Using
Egs. (13) and (16) then yields an expression for the energy
shift due to the electron isotropic coefficients,

S A SN0 (17)
q a=1

where the index ¢ is related to the index k of the coefficients
for Lorentz violation by 2qg = k. This enforces the con-
dition that only even values of k can contribute to the
energy shift.

2. One open subshell with one electron

For atoms or ions with all electronic subshells closed
except for a single subshell occupied by one electron, we
can find closed-form expressions for the expectation values
Ae,(gm under suitable simplifying approximations. Treating
the electrons in the closed subshells as forming states with
zero total angular momentum, the value of J for the whole
system can be identified with the total angular momentum

of the electron in the open subshell. It follows that the only

contribution to Aegp)

electron. Contributions from isotropic coefficients with
j =0 are given by Eq. (17).

The closed shells produce a spherically symmetric
electronic distribution. For present purposes, the effective
potential acting on the valence electron due to the repulsion
from the closed-shell electrons can be approximated as
central. One consequence of this is that the magnitude L of
the orbital angular momentum L of the valence electron is a
good quantum number for the system. It then becomes

with j # 0 can arise from the valence
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feasible to obtain explicit expressions for the quantities

Ae,i’jl.m defined in Eq. (14). We find
oy = DUM
A = ”TAT}QPW

oB) _ g J!
A ( ) =i ! ”MJJAj<|p|k>7

°kj (j—1)!
AB) _ 2L NG =2)m o)
ekj L—J 70\ 2(j+ DG —1mE

(18)

In this equation, p is the momentum of the valence electron,
and we define

[ 2j+1
M = —
/ Ar(2J + 1)

@I+ HnEI-j-1n
Afj'_\/(zj—j)n(zJ+j+1)!z' (19)

Note that the spin-independent operators in Eq. (3)
transform as spherical operators with respect to rotations
generated by L, which suffices to exclude contributions
from Vel,jjﬁl to the energy shift when j > 2L. However, this
requirement is already implied in the present context by the
condition 2J — 1 > j presented in Table I, because the
lowest value of L for a given J is L =J —1/2.

The results (18) can be applied to alkali-metal atoms and
to singly ionized alkaline-earth ions. In both cases, the
electrons in the closed subshells belong to closed shells, so
the approximations made above are comparatively good.
This can be illustrated by comparing our results with
detailed calculations for specific states of particular sys-
tems. For example, consider the numerical results presented
in Table 1 of Ref. [55] for the D5, and D5, states in Ca™*,
Ba™, and YbT. The table provides the reduced matrix
elements of the operator

2 167 N
1y = =\ P PoY o ). (20)

calculated using several many-body techniques and defined
in terms of Wigner 3-j symbols instead of Clebsch-Gordan
coefficients. The ratio of the reduced matrix elements for
the two states D3/, and Ds, is 0.77 for Ca* and 0.79 for
Ba'. Converting the notation appropriately, we find that
Eq. (18) predicts a ratio of 0.76 for both systems, in
reasonable agreement with the many-body calculations.
However, for Yb™ the results obtained in Ref. [55] give a
ratio of 0.82, revealing a greater deviation from our
prediction. This is unsurprising because in this ion some
electrons in a closed subshell lie outside the closed shells,
so the accuracy of our approximation is expected to be
reduced.

The results (17) and (18) involve expectation values of
powers of the magnitude of the electron momentum. An
analytical evaluation of these expectation values is imprac-
tical, even for comparatively simple cases such as the
expectation values {|p|*) for a valence electron. Numerical
methods can be adopted to resolve this issue, in conjunction
with techniques such as a self-consistent mean-field
approximation. However, the principle goal of this work
is to serve as a guide to search for Lorentz and CPT
violation. In this context, a precise determination of these
expectation values is often inessential. For example, some
transitions studied here are hyperfine or Zeeman transi-
tions. These involve two levels with similar momentum
expectation values, and the difference leaves unaffected the
qualitative form of experimental signals for Lorentz and
CPT violation. For these and many other transitions,
estimates of the expectation values of the electron momen-
tum suffice as a guide to the sensitivity of experiments
across a broad range of systems. An accurate determination
of the expectation values relevant to a given experimental
setup may become useful once enough data are collected
and a detailed analysis is being performed to extract the
coefficients for Lorentz violation. For a few transitions used
in experiments, estimates may be inadequate even as a
guide to the sensitivity. For example, for optical transitions
the difference between the expectation values in the two
states can be significant and must be included in the
treatment, as described in Sec. III C below.

For atoms or ions with more than one electron in an open
subshell, it is typically infeasible to obtain closed-form
expressions like Egs. (17) and (18). These systems can have
substantial many-body effects, and their treatment requires
a more sophisticated and individualized approach.
Investigations of such systems are likely also to be of interest
in searches for Lorentz and CPT violation, but a discussion
along these lines lies beyond the scope of this work.

D. Nucleon expectation values

Next, we turn to the evaluation of the nucleon expectation
values (15). The simplest situation arises when F or [
vanishes, for which a compact expression for the energy
shift can be presented. For more complicated scenarios, a
model accounting for the strong nuclear interactions is
required. The central effective potential and mean-field
approximation used above for the electronic structure are
inappropriate to describe the nucleon interactions. Instead, we
adopt here a simple nuclear shell model that permits analytical

evaluation of the quantities AW,(:;P) . This enables an evaluation

of the effects of Lorentz and CPT violation from nucleon
propagators on spectral shifts in a broad range of systems.

1. Case F=0 or I1=0

A number of atoms or ions have either vanishing total
angular momentum F = 0 or vanishing nuclear spin / = 0.
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The latter situation arises in nuclei with an even number of
neutrons and an even number of protons. In these cases,
independently of the nuclear model adopted, the energy
shift d¢,, due to a nucleon of flavor w = p or n receives
contributions only from isotropic coefficients for Lorentz

violation. The arguments here parallel those in Sec. HN% 1.
Introducing the special isotropic coefficients V,, =

V, SR /\/4r, the expression for se,, is found to be

va Z P, (21)

where the sum over a spans the N, nucleons of flavor w in
the nucleus. Like the electron case, this isotropic shift can
also affect other energy levels having F#0 or I #0
through its contribution to Eq. (13).

2. Schmidt model for one unpaired nucleon

The Schmidt model [56,57] offers a comparatively
simple description of a broad range of nuclei. The model
assumes a shell structure for the nucleus in which any pair
of nucleons of a given flavor combines to form states with
total angular momentum equal to zero. If only one unpaired
nucleon exists in the nucleus, then it is treated as a single-
particle state with total angular momentum equal to the spin
I of the nucleus. The magnitude L of the orbital angular
momentum of the unpaired nucleon is treated as a good
quantum number. The model can be expected to deviate
significantly from observation for nuclei lying away from a
magic number.

Mathematically, the Schmidt model represents a setup
equivalent to the one described in Sec. I C 2 for a valence
electron outside closed subshells. The contribution to the
perturbative energy shift involving isotropic coefficients is
obtained from Eq. (21). When j > 0, the expressions for

(qP)

the quantities A, ; ~ can be calculated in closed form and

are given by

0E (j—-npiMm
Awgq =i !

5 ! (),

A OoB) _ g

MIA((p[*).

" (=D
ag o 2dA+1 NG =2) .
Wkj -1 7 2(j+1)!!(j—1)!!<|p|>

(22)

where p is the linear momentum of the unpaired nucleon of
flavor w. The factors M} and A} are defined as

M! = ﬂ
/ 4r(21 + 1)

A,:\/@m) 121 - j= DY 23)

(21— NI+ j+ D)

The primary advantage of the Schmidt model in the
present context is its application to a broad range of systems
for which the quantities A, x; ~ can be evaluated using
Eq. (22). The model has prev1ously been used to determine
signals arising from Lorentz- and CPT-violating operators
in the minimal SME for numerous experiments comparing
atomic or ionic transitions [9]. A significant limitation of
the Schmidt model in this respect is that only one flavor of
nucleon is assumed to contribute to transitions in any given
atom or ion, which implies the corresponding experiment is
sensitive only to coefficients for Lorentz violation in that
flavor sector. A more realistic treatment can be expected to
reveal dependence on coefficients for both values of w.
This was illustrated in Ref. [9] using more detailed
wave functions for the nuclei of 'Li and “Be. Recently,
calculations using semiempirical models [32] and many-
body methods [58] have obtained improved values for the

coefficients AW,(( i P) , particularly for the coefficient AwégE).

These improved values emphasize the disadvantages of
using a single-valence model to study Lorentz- and CPT-
violating effects involving the nucleus. Nonetheless, to
maintain generality in this work and to permit the dis-
cussion of a broad range of atoms and ions, we adopt the
Schmidt model throughout, commenting where appropriate
on the likely consequences of using improved nuclear
modeling. We remark also that it suffices to estimate the
expectation values of the magnitude of the linear nucleon
momentum for all experiments considered here because no
nuclear transitions are involved.

E. Energy shift at zeroth boost order

In any Cartesian inertial frame within the solar system,
the coefficients for Lorentz violation can reasonably be
taken as constant in both time and space [5,6]. However, the
energy shift (8) is calculated in a laboratory frame.
Laboratories on the surface of the Earth or on orbiting
satellites generically correspond to noninertial frames, so
most coefficients appearing in Eq. (8) vary with time due
to the laboratory rotation and boost [59]. Moreover, the
explicit forms of the coefficients for Lorentz violation differ
in distinct inertial frames. To permit meaningful compari-
son of different experiments, experimental coefficient
values must therefore be reported in a canonical inertial
frame. The standard frame adopted in the literature for this
purpose is the Sun-centered celestial-equatorial frame [53],
with Cartesian coordinates denoted (7,X,Y,Z). In this
frame, the origin of the time coordinate 7 is defined as the
vernal equinox 2000. The X axis points from the location of
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the Earth at this equinox to the Sun, the Z axis is aligned
with the Earth’s rotation axis, and the X, Y, Z axes form a
right-handed coordinate system. The Sun-centered frame is
appropriate for reporting measurements of coefficients
because it is inertial to an excellent approximation over
the time scale of typical experiments.

The observer Lorentz transformation A%, (6, f) between
the laboratory frame and the Sun-centered frame can be
expressed as the composition of an observer rotation
R*,(0) with an observer boost B*,(f),

NL(0.8) = R*.(0)B7,(B). (24)

The boost parameter f is the velocity of the laboratory
frame with respect to the Sun-centered frame, while the
rotation parameter @ fixes the relative orientation between
the laboratory frame and the frame obtained via the boost.
The magnitude f of f is small compared to the speed of
light. For example, the speed of the Earth in the Sun-
centered frame in natural units is =~ 10™*. At zeroth order
in f the boost transformation is simply the identity map, so
the Lorentz transformation between the two frames
becomes a pure rotation. In this section, we consider the
energy shift (8) at zeroth boost order. Effects at linear boost
order are discussed in Sec. II F.

In the laboratory frame, only the nonrelativistic coef-
ficients le,j}f,;lab for Lorentz and CPT violation with m = 0
contribute to the energy shift. At zeroth boost order and
for a laboratory on the Earth, these coefficients can be

¢, NRSun 4n the Sun-centered

converted to coefficients /C,,; i

frame via

Wkjm

/Cwlljj%-'ab = Zeimw@TL dém(—S)IC P (25)

Here, 9 is the angle between the applied magnetic field and
the Earth’s rotation axis Z, and the quantities d{n , are the
little Wigner matrices given in Eq. (136) of Ref. [50]. The
conversion (25) reveals the time variations of the labora-
tory-frame coefficients, which occur at harmonics of the
Earth’s sidereal frequency wg ~2x/(23 h56 min). The
local sidereal time 7' is a convenient local Earth sidereal
time with origin chosen as the time when the magnetic field
lies in the XZ plane in the Sun-centered frame. This choice
yields the comparatively simple expression (25). For some
applications below it is preferable instead to adopt a
different local sidereal time T, which is associated with
the laboratory frame introduced in Ref. [53] and has as
origin the time at which the tangential velocity of the
laboratory frame points along the Y axis. The relationship
between T and Tg is

wgTe = wgT, — ¢, (26)

where ¢ is the angle between the X axis and the projection
of the magnetic field on the XY plane at Tg = 0. Note that
both T, and Tg are offset from the standard time 7 in the
Sun-centered frame by an amount that depends on the
longitude of the laboratory, given explicitly for Tg in
Eq. (43) of Ref. [45].

The factors A ;) = AP appearing in Eq. (8) are defined in
the laboratory frame. They transform in the same way
under rotations as the nonrelativistic coefficients for
Lorentz violation, so we can convert them to factors
Ajs.gn defined in the Sun-centered frame via the relation

Al = S eimeTa ) (~9)ASe. (27)

The energy shift (8) can therefore be expressed in the Sun-
centered frame as

de = Y dg, (=9)(FmpjO|Fmy)
jm

x [ReA% cos (|m|wgTe)

S .
—Im3% sin (|m|wgTg)]. (28)
thereby explicitly demonstrating the time variation of the
spectrum of the atom or ion at harmonics of the sidereal
frequency wg,.

For any m, a given factor AS"" contains coefficients for

Jlm|

Lorentz violation labeled with the same index j. However,
as summarized in Table I, only restricted values of j for
nonrelativistic coefficients can contribute to a specific
energy shift. Since the highest harmonic that can contribute
to the sidereal variation is determined by the maximum
value of |m|, which in turn is fixed by the largest allowed
value of the index j, we can use the information in Table I
to deduce constraints on the possible harmonics contrib-
uting to the time variation of any particular energy level.
Table II summarizes these constraints for various condi-
tions on the quantum numbers F, J, and /. The first column
of the table lists the conditions, while the second column
displays the range of allowed values of |m|, which
corresponds to the possible harmonics of wg that can
appear. For example, the first row of the table shows that
the time variation of an energy level with quantum numbers
F=3,1=17/2,and J = 3/2 can in principle contain up to
the sixth harmonic of wg. Note, however, that special

TABLE II.  Possible harmonics of ag at zeroth boost order.

Conditions on F, J, I Possible harmonics

F <Jor F <1I or both 2F > |m| >0
F>J,F>I1,J>1 27 >|m| >0
F>I,F>1,1>1J 20> |m| >0
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circumstances might contrive to lower the maximum
harmonic affecting a given transition frequency. For exam-
ple, a factor AS‘ | might vanish identically, or the two

energy levels involved in the transition might have identical
contributions at a particular harmonic so that the transition
frequency is unaffected. Note also that time variations at
higher harmonics than those displayed in Table II can
become allowed when effects at linear or higher order in the
boost are incorporated, but any such variations are sup-
pressed by powers of the boost.

F. Energy shift at linear boost order

Since the magnitude of the boost between the laboratory
frame and the Sun-centered frame is small, it is reasonable
to expand the boost transformation B#,(f) of Eq. (24) in
powers of the relative speed /. In this section, we consider
contributions to the energy shift that appear at linear order
in the boost. At this order, the components of the observer
Lorentz transformation A¥,(@,f) take the form
AOT = 1’ AOJ = _ﬂjv

AjT - _RjJﬂJ7 - RjJ?

(29)

where lowercase and uppercase indices represent spatial
Cartesian coordinates in the laboratory frame and in the
Sun-centered frame, respectively.

Given an expression for the energy shift in the laboratory
frame in terms of spherical coefficients for Lorentz viola-
tion, converting to the Sun-centered frame at linear boost
order can be performed in two steps. First, the spherical
coefficients in the laboratory frame can be rewritten in
terms of Cartesian coefficients in the same frame. The
transformation (29) can then be applied to express the
Cartesian coefficients in the laboratory frame in terms of
Cartesian coefficients in the Sun-centered frame.

Explicit expressions relating spherical coefficients to
Cartesian coefficients in any inertial frame are given in
Appendix A. To implement the conversion to the Sun-
centered frame, note that only spherical coefficients for
Lorentz violation with m = 0 contribute to the energy shift
(8) in the laboratory frame. This implies that all uncon-
tracted spatial indices on the corresponding Cartesian
coefficients are in the x* direction. The relevant part of
the rotation matrix R/; converting the Cartesian compo-
nents between the laboratory frame and the Sun-centered
frame therefore involves the row R?;. This row can be
viewed as the components of a unit vector along x3. Since
by construction this is the quantization axis of the atom or
ion, which points in the direction B of the applied magnetic
field, it follows that R, = B.

To illustrate this 1dea with an example, consider the

(4)(1B
spherical coefficient g,;, ~ given in the laboratory frame.
From Appendix A we see that the spherical coefficient

) is proportional to the combination 74" of

Cartesian coefficients in the laboratory frame. This combi-

~(4)pvar

nation can be converted to Cartesian coefficients geg; o 0

the rotated frame as

(4KLM

~(4)JKJ JKJ 3
effrot ,R’% 0 3

eff ot g eff,rot B K
(30)

géf)ﬂ] Rj R%LRJ

where the second equality follows from the iden-
tlty RJKRJL = 5KL.

The above discussion shows that the number of factors of
B’ appearing in a given term contributing to the energy
shift at linear boost order is determined by the index
structure of the corresponding coefficient for Lorentz
violation. To keep the explicit tables appearing in
Sec. III of reasonable size, we limit attention below to
Lorentz- and CPT-violating operators of mass dimension
d < 8. Expressions relating all the corresponding Cartesian
coefficients in the laboratory frame to those in the Sun-
centered frame at linear boost order are given in
Appendix B. Inspection of these results reveals that the
form of the shift év in a transition frequency for an atom or
ion takes the generic form

8 5
=N V@il Bl (31)
d=3 s=0

at linear boost order, where the quantities V(@//1--/s are

linear combinations of Cartesian coefficients for Lorentz
violation in the Sun-centered frame. The explicit forms of
and B in this equation depend on the choice of laboratory
frame. We consider here in turn two types of laboratory, one
located on the surface of the Earth and another on a
spacecraft orbiting the Earth.

For a laboratory on the surface of the Earth, the boost
velocity f in Eq. (31) can be taken as

B=Peo+BL (32)

where fig is the instantaneous Earth orbital velocity in the
Sun-centered frame and f; is the instantaneous tangential
velocity of the laboratory relative to the Earth’s rotation
axis. Approximating the Earth’s orbit as circular, the
velocity Bg can be written as

Bo = PesSinQeTX — figcos Qg T(cosn¥ +singZ),  (33)

where fg ~ 10~ is the Earth’s orbital speed, Qg =~
27/(365.26 d) is the Earth’s orbital angular frequency,
and n ~23.4° is the angle between the XY plane and the
Earth’s orbital plane. Also, treating the Earth as spherical,
the tangential velocity f; takes the form
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ﬂL = _ﬂL sin CO@T@)A( -+ ﬂL COS a)®T®?, (34)

where ) ® rgwg sin y is determined by the colatitude y of
the laboratory the radius rg of the Earth, and the sidereal
frequency wg. The unit vector B in Eq. (31) can conven-
iently be expressed in an instantaneous Earth-centered
coordinate system with axes parallel to those of the Sun-
centered frame,

B =sindcos (wgTg + @)X
+sin 9sin (wgTg + @)V +cosdZ,  (35)

where § and ¢ are the polar and azimuthal angles of the
magnetic field at 7'y = 0.

Next, consider a laboratory located on a space-based
platform orbiting the Earth. Examples include experiments
on board the International Space Station (ISS) such as the
Atomic Clock Ensemble in Space (ACES) [60] and the
Quantum Test of the Equivalence Principle and Space Time
(QTEST) [61], or dedicated missions searching for Lorentz
violation such as the Space-Time Explorer and Quantum
Equivalence Space Test (STE-QUEST) [62] and the Boost
Symmetry Test (BOOST) [63]. We adopt the coordinates
depicted in Fig. 2 of Ref. [64]. Assuming for definiteness a
trajectory with negligible eccentricity, the parameters for the
orbit are the mean orbital radius 7, the mean orbital angular
speed w,, the angle { between the satellite orbital axis and the
Earth’s rotation axis, and the azimuthal angle « between the
Earth and satellite orbital planes. In this scenario, the boost
velocity f in Eq. (31) can be written as the vector sum

of the Earth’s orbital velocity B¢, in the Sun-centered frame
and the satellite velocity f8, relative to an instantaneous Earth-
centered frame. Explicitly, the components of the satellite
velocity f; in the Sun-centered frame take the form

—pscosasinw, T, — ff,cos{ sinacosw,T

B =

—pysinasinw T, + f,cosacoscosw, Ty |,
Pysind cosw T
(37)

where f; = ryw, and the local satellite time 7'; has origin
fixed as the satellite crosses the equatorial plane on an
ascending orbit. Obtaining also an explicit expression for the
unit vector B in Eq. (31) requires a further specification of the
orientation of the space-based laboratory relative to the Earth.
For example, when this orientation is fixed then an instanta-
neous satellite frame can be defined with x axis pointing
radially towards the Earth and z axis aligned along f,. The
components of the corresponding unit spatial vectors X, ¥,
Z, can be expressed in the Sun-centered frame as

—cosacosw,T;+cossinasinw, T

X,=| —sinacosw,T;—cosacos{sinw,T; |,

—sin{sinw, T

. sinasing
o _Bixx, :
V= = | —cosasin{ |,
Bs
cos’

s _bs
Z,="" (38)
C B

Using this basis, the direction B of the magnetic field in the
space-based experiment can be expressed as

B = sin0, cos &, + sin, sin .y, +cosOz,, (39)
where cos 0, = f, - B/, and cos ¢, = %, - B.

III. APPLICATIONS

In this section, we comment on some applications of the
formulas derived above. Many existing searches for
Lorentz and CPT violation are based on the study of
transitions in fountain clocks, in comagnetometers, and in
trapped ions or lattice clocks. Each of these experimental
approaches is considered in turn. We present expressions
relevant to the analysis of data from a variety of experi-
ments, and we estimate the attainable sensitivities to
coefficients for Lorentz violation along with actual con-
straints from existing data where possible.

A. Fountain clocks

Fountain clocks using !*3Cs atoms have been widely
adopted as primary time and frequency standards. The
standard transition in these clocks, |F =3,myp =0) <
|F =4, mp = 0), is insensitive to the Lorentz- and CPT-
violating spectral shifts discussed above. This implies that
the '**Cs frequency standard can be used as a reference in
experimental studies searching for Lorentz violation, in
parallel with the hydrogen-maser standard [43]. Searches
for violations of Lorentz and CPT symmetry using a '33Cs
fountain clock can instead be performed by studying the
frequencies v,,, for transitions |F = 3, mp) < |F = 4, mp)
with mp # 0. These transitions are individually sensitive to
the linear Zeeman shift, and hence their precision is limited
by systematic effects. However, the systematics can be
significantly reduced by measuring the observable v, =
Vi3 + U_3— 21/0 [16,65]

The total electronic angular momentum for the states
with my = 1 is J = 1/2. Consulting Table I reveals that
only electron operators with j < 1 can in principle shift the
frequencies v.3. However, the observable v, remains
unaffected by these shifts. To evaluate the nucleon con-
tributions to v, we adopt the Schmidt model as discussed
above, in which the nuclear spin I = 7/2 of '33Cs is
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assigned to the unpaired proton. With this assumption,
the Lorentz-violating shift dv, of the observable v, is
given by

2y, — — 134 (PRI, 3% + PV, 35)
=l 5, (40)

where p is the momentum of the valence proton. Note that
the results presented in Refs. [16,65] based on the minimal
SME analysis in Ref. [9] can be recovered from the above
expression by excluding contributions from nonminimal
Lorentz-violating operators. In practice, this corresponds to
making the replacements

1 A
NR 4 4)
Vpazo = 3m, ?( CP£z> = Cpji )
V,,fz% -0, Vpi&) (41)
in Eq. (40).

To convert the above expression to the Sun-centered
frame, consider first the frequency shift év, at zeroth
boost order. Applying the transformation rule (25) for
nonrelativistic coefficients to the result (40) yields a
somewhat lengthy form for dv., in the Sun-centered
frame. The result is presented in tabular form in
Table III. In each row of the table, the first entry contains
the harmonic dependence on the sidereal frequency wg,
and the local sidereal time 7;. The second entry
describes the dependence on the orientation of the
magnetic field in the laboratory frame. The third entry
provides the relevant expectation value of the proton
momentum magnitude |p|, while the fourth entry con-
tains the numerical factor and the coefficient for Lorentz
violation. To obtain the frequency shift dv, , it suffices
to multiply the columns and add the rows in the table.
For example, the contributions to dv, , from the first and
second rows are

5 un 9 5 un
2RIV - oo\ cos 20V,

(42)
Note that the corresponding expression for év. in

the minimal SME can be obtained by making the
replacements

Vpél;lj}jr;Sun —)O,
1 4
NR,Sun ~ 4)
T _% \/ 5o
1 2
NR,Sun 4
Vooim @ = ——% 15 pg/)v
1 27[ @)

NR,Sun
ImV, 07" - —
p221 m 15 PX ’

1 2r
S
R VPQNZRZ " 5 p(_4)5

1 27 (4
_—JZ 43
m% 1SCPZ ( )

in the entries in the fourth column of Table III.

Next, consider the contribution to the frequency shift
ov.; at linear order in the boost. Applying the trans-
formation (29) to Eq. (40) and writing the result in the form
(31) yields

NR,Sun
ImV 5" =

2
27dv,y = Z {pl*) (Ve + v K BXBLpT)

5 d
P
4> dJ d)JKL 35K 3
S PE VL v B )
a Mp
<|I’|4 d)JJKLMN »K L M BN pl
+Zm7 VDIKLMN BK BLEMBNGT — (44)
d P

Expressions for the quantities V(Cg)ij‘ /s in terms of the

effective Cartesian coefficients can be deduced from the
results presented in Appendix B and are displayed in

Table IV for mass dimensions 5 < d < 8. In each row of

this table, the first entry lists a specific quantity V(Cs)ij‘ "J“,

while the second entry gives its expression as a combina-
tion of effective Cartesian coefficients in the Sun-
centered frame.

Note that the minimal-SME limit of the result (44) can be

obtained by setting to zero all the quantities Végil‘ s

except for

@ik 6

2 @ s

§Cpeff ) 14 ()TKyL (45)

H7 _
Vesa == = 7 Cpeft

where the coefficients cgf)” “ are defined as the symmetric

combination § (¢ + ¢ as in Ref. [35]. In contrast
to the minimal-SME case, the nonminimal terms introduce
sidereal variations incorporating the third, fourth, and fifth
harmonics of the sidereal frequency. For example, the
contribution to ov,; from the fifth harmonic is given by
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TABLE III.  Frequency shift v, at zeroth boost order.
welyL 9 (lp |k> Coefficient
NR,Sun
! ! (pP?) e
1 cos 29 (1) -2 \/Evpgz%,slm
NR,Su NR.Su
I 1 (Ip*) ~36 \/71/,,420 " +4932\/‘])1)440 "
NR.S NR.S
! cos 28 {Ipl*) \/7Vp420 . 12%%5\/’1}1:440 o
1 cos 49 (pI 753}sz%.5un
sinwg T sin 29 2 NR.Su
&L <Ip|> EI Vp221 n
sinwg T sin 29 4 NR,Su NR.Su
e (Ipl 2ImV ™" = &% \/71mVp44l' "
sinwg Ty sin49 ) 176 \/VI Vpﬂzl.slm
coswg Ty sin 29 <|p|2> 1 Revp12‘12121¢5un
coswg T sin 29 () ;_ZRGVMNZR{Sun 616 \/7R mezl,slm
cos wg T sin49 4 NR.Sun
o et 76 \/R Vpaa
i 2
sin 2w0g T/, 1 {Ip|*) glmvpngz,Sun
sin 2a)®TL cos 29 <|I7|2> EI szNsz.Sun
sin 2wg T 1 4 NR.S NR.S
e (IpF") Voi " = 135\ 2 mV iy "
sin2wg T, cos 289 <|p|4> %Imvpg}s“" 303 I VP4NA:{2_Sun
sin 2wg T cos 49 4 NR.Sun
et (Pl 176 I mV), 15"
cos2wg T, 1 (Ip? gReVpngz’S““
2
cos 20g T, cos 29 {lp|*) %Revpgfz.Sun
NR.S NR.S
cos2wg T 1 () %RGVMZZ un JF%\/%RCVMQ un
cos2wqT cos 29 4 NR.S NR.S
. (Pl 2ReV, 0y ™ + S \/5aReV pais "
cos 20T, cos 49 (Ipl*) — 1561/ 5:Re prfz'sun
sin 307, sin 28 bl iy e
sin 3wg T sin49 4 NR.S
e (P 176 I mV, 3"
cos3wgT sin 29 4 NR.S
et (Pl ReV 13"
cos3wg T, sin 49 <|p|4> 176 R Vp4N‘g,Sun
i _ 135 5 NR,S
sin4wg T, 1 (Ipl*) 3% 147:1 Voass
sind4wgT cos 29 4 NR.Sun
e (Pl 14;:1 Vpaas™
i NR.Su
sindwg T, cos 49 (lpl*) =355/ TV pass "
cosd4wgT 1 4 NR.S
e (Ipl % 147[R Vs "
4 NR,Sun
cosdwgT| cos 29 (lp|*) — o/ ReV g
cosdwg T cos 49 {p|*

NR,Sun
352 147rR VP 442
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TABLE IV. The quantities V{_3'" " for 5 < d < 8.
V(C?ij‘ s Combination
) JKK S)ITT
ngs)z %(apitt) +2a piﬁ) )
)1y (5)TTJ
Vés)éj 2 - 7( peff t+ 26'a Apeff 2)
6 12, (6)JTKK (6)JTTT
Vesa T (Cpesr peft )
A 6)JTI,J 6)TTTJ
v He 3 e, )
7NITTKK JTTTT
Vé:s)z %(3%&2 + 2a peff) )
V(CS)” o Y (3ap£“)JTTJ V2 4 osihg (7)TTTT12)
7)JKKLL 7)ITTKK
VE:s)zt gg (apirr) + 4apiﬁ‘? )
540 (7)JTTJJ, (1) TTJ, KK
VE:SW o 5 (@pep a1
270 (7)4J,J,KK
peft
Vgiihhhh 17570( pgf)fflfzf.zh 448 ¢ (7)TT/2/3/4)
30 (8)JTTTKK (S)JTTTTT
Vg)é =7 (2¢pefe t Cperr )
V2 8)JTTTJ,J 8)TTTTTI,
Vi (2, T T
360 (8)JTKKLL (8)JTTTKK
Vg?i =7 (Cpett + 2€pesr )
710 8)JTTTI,J 8)ITTI,KK
VE:s) ’ £2( pift? B Cpéff) )
+@ (8)JTJ,J,KK
peff
(8)JTJ, 02137 (TTTIyd50
Vé:sw Wl W Cper T R EeRT
4
277:51/0']*50)63 = ﬁLSln Z
d p
X [sin Swg T ( 10VCg ffXXYY
(d)XXXXX (d)XYYYY
- VCS 4 - SVCS 4 )
(d)XXXXY
+ cos SwgT(5V gy

XXYYY YYvyvyy
- 10V(Cs)4 + V(Cs)4 )] (46)

and is suppressed by the boost factor 7, in agreement with
the discussion following Eq. (28).

Taken together, the above results permit estimates of the
potential sensitivity to Lorentz and CPT violation that is
attainable in experiments with '33Cs fountain clocks via
studies of sidereal and annual variations. Adopting as a
benchmark the measurements of minimal-SME coefficients
reported in Ref. [65], it is reasonable to expect sensitivities
in the Sun-centered frame of the orders of magnitude listed
in Table V. The first four lines of this table provides
estimated sensitivities to the nonrelativistic coefficients
V,8R . while the remainder of the table concerns the

effective Cartesian coefficients Vg’?i.

involving the latter, the uncontracted Cartesian spatial
index J represents any of the possible values X, Y, Z.
These estimated attainable sensitivities are competitive, so

For the entries

extracting real constraints from data would be of definite
interest.

Further developments of these results are also possible.
Corrections at second boost order that are sensitive to
isotropic coefficients in the minimal SME are analyzed in
Ref. [65]. Generalizing this analysis to the nonminimal
sector is a worthwhile open project. Another line of
reasoning extending the above results would involve
replacing the Schmidt model with a more realistic nuclear
model for the !3°Cs nucleus. In the minimal SME, this
replacement reveals that neutron Lorentz-violating oper-
ators with j =2 also contribute to the frequency shift,
thereby leading to constraints on coefficients for Lorentz
violation in the neutron sector [65]. For the nonrelativistic
coefficients, the neutron-sector corrections can be incorpo-
rated into the expressions given above via the replacement

Vodam = Voo + 0021V, (47)
We can therefore estimate the attainable sensitivities to
these neutron-sector coefficients by reducing by about 2
orders of magnitude the corresponding proton-sector esti-
mates given in Table V. Note that neutron Lorentz-violating
operators with j = 2, k = 4 or with j = 4 may also affect
the energy shift, but this possibility remains unexplored in
the literature to date.

Atomic clocks placed on orbiting satellites or other
spacecraft offer qualitatively different experimental oppor-
tunities for studying Lorentz and CPT symmetry. Since
typical space missions involve different clock trajectories
than those relevant to Earth-based laboratories, they pro-
vide access to different combinations of coefficients for
Lorentz violation [64]. For example, the orbital plane of
space-based laboratories like the International Space

TABLE V. Potential sensitivities to coefficients in the Sun-
centered frame from sidereal and annual variations in a 133Cs
fountain clock.

Coefficient Sensitivity
—24 -1
la, 5511 lephoy 1077 GeV
—22 -3
lapi |s 1€pin 107 GeV
—24 -1
layh55]s 1epho 107 GeV
-2 -3
laphosls ek 107 GeV
4)rJ 10720
Peff |
S)TTJ 5)KKJ 10-20 GeV-!
| ]?eff | | peff |
VTTTJ 6)TKKJ —21 -2
|Cpeff l, Cpiff> | 107" GeV
(1TTTTJ (1) TTKKJ 10-2! Gev-3
| peff B ‘apeff ‘
(7)KKLLJ 10718 GeV—3
peft |
(8)TTTTTJ (8)TTTKKJ 102! Gev—*
peff ° peff |
(8)TKKLLJ 10-19 Gev—*

peff
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Station (ISS) is inclined relative to the equatorial plane and
precesses, thereby sampling orientation-dependent effects
in a unique way. The satellite orbital velocity can also
exceed the rotational velocity of the Earth, which
can enhance some signals for Lorentz violation and can
permit faster data accumulation. For instance, the period of
the ISS is approximately 92 minutes, so over 15 orbits are
completed during a sidereal day.

A 33Cs cold-atom clock is a component of the ACES
platform on the ISS [60]. The proposed STE-QUEST
mission [62] may also involve a '33Cs clock. Frequency
data obtained from operating a '3*Cs clock in the spin-
polarized mode can be converted to the Sun-centered frame
using Eqgs. (36)—(39) or similar expressions, leading to
bounds on combinations of coefficients for Lorentz viola-
tion that are inaccessible to Earth-based experiments. For

example, Table III shows that the coefficients Vpllj%

produce no sidereal effects in an Earth-based laboratory,
but they can be measured on a space platform.

Fountain clocks using 3’Rb atoms have been considered as
interesting alternatives for a primary frequency standard
[66,67] and for studying Lorentz symmetry via the proposed
space-based mission QTEST [61]. A double *3Cs and ®’Rb
fountain clock has been used to search for Lorentz and CPT
violation [16,65]. Like its '3*Cs and H analogues, the 3'Rb
clock transition |F = 1,mp=0) < |F=2,mp=0) is
insensitive to Lorentz and CPT violation and can thus be
used as a reference in experiments. However, the frequencies
i associated with the transitions |F =1,mp) <> |F=2,my)
with myp # 0 do experience Lorentz- and CPT-violating
shifts. The systematics associated with the linear Zeeman
shift can in this case be reduced by considering the
observable R° = Rb 4 R0 — 2 80 Coefficients in the
electron sector leave tR° unaffected. In the context of
the Schmidt model the valence nucleon is a proton with
spin I = 3/2, so the shift 52& in the observable LR depends
on coefficients for Lorentz violation in the proton sector. We
find

2”5VcRb = \/—*(<[I7| >Vp220 + <|IJ| ) p420) (48)

Since the nuclear spin of 8’Rb is smaller than that of '3Cs,
fewer coefficients appear in Eq. (48) than in Eq. (40). All
results for 133Cs fountains discussed in the present section can

be transcribed to results for 8’Rb fountains by matching the
changes between Eqgs. (40) and (48).

B. Comagnetometers

Comagnetometers form another category of sensitive
tools used for studies of Lorentz and CPT symmetry. High-
sensitivity searches for Lorentz and CPT violation in both
sidereal and annual variations have been achieved using
129Xe-*He comagnetometers [22-25]. The experiments

compared the angular frequencies wyx. and @y, of
Larmor transitions in the ground states of '>’Xe and *He
atoms by measuring the observable

- @ WXes (49)

7 Xe

@ = Wye

which is insensitive to the linear Zeeman shift. Here, yx. is
the gyromagnetic ratio for the ground state of '2?Xe and yy,
is that for the ground state of *He.

Since the total electronic angular momentum of the noble
gases in the ground state is J = 0, the Larmor transitions
are unaffected by electron coefficients for Lorentz viola-
tion. The contributions from the nucleon coefficients can be
estimated using the Schmidt model, in which the nuclear
spin I = 1/2 of each species is assigned to the unpaired
neutron. The analysis in Sec. II then yields the Lorentz-
violating shift dw of the observable w as

Ve
Z( (1P ﬂwlwm)
yXe
x (T, g‘:ﬁg +27 0, ) ), (50)

evaluated in the laboratory frame. In this expression,
{Ip/*)ge and (|p|*)x. are the expectation values of the
Schmidt neutron in *He and '>’Xe. These quantities can
reasonably be taken as roughly the same order of magni-
tude, (|p|*)pe ~ ([P|*)xe» sO the shift Sw can be written as

el

VXe

(Ip|*) NR(0B) NR(1B)
e (Tuiagno T 2T g0 )-

(51)

This result reduces to the minimal-SME expressions
presented in Refs. [22-25] based on the theoretical treat-
ment of Ref. [9], by taking the limit

T 427,380~ 2V,
NR(0B) NR(1B)

TﬂZlO + 27:1210 -0,
NR(0B NR(1B)

711410( )+ 27n410( -0, (52)

as expected.

Conversion of Eq. (51) to the Sun-centered frame reveals
the time variations in the observable w. At zeroth boost
order, the nonminimal terms produce time variations at the
first harmonic of the sidereal frequency, which can be
explicitly obtained using Eq. (25). We can then translate
existing bounds on the minimal SME coefficients 5% and

% obtained from studies of this harmonic to constraints on

036003-16



LORENTZ AND CPT TESTS WITH CLOCK-COMPARISON ...

PHYS. REV. D 98, 036003 (2018)

TABLE VI. Constraints on the moduli of the real and imaginary
parts of neutron nonrelativistic coefficients determined from
129Xe-3He comparisons using Eq. (54).

Coefficient K Constraint on |Re/C|, |ImKC|

H NR(0B),Sun NR(0B),Sun <4 % 10733 GeV
n0l11 > In0l1

H NR(1B),Sun NR(1B),Sun <2 % 10733 GeV
no11 » 9not1

H NR(0B).Sun NR(0B).Sun <4 x 10—31 Gev—l
n211 » 9nait
NR(IB),Sun _ NR(IB).Sun -31 -1

H,, . Gty u <2 x 107" GeV
NR(0B),Sun _ NR(0B).Sun -29 -3

H,.\ o Gnati u <4 x 107 GeV
NR(1B),S NR(1B),S —29 -3

Hn411< )Sun. gn411( ),Sun <2x 107 GeV

nonminimal coefficients for Lorentz violation. For this
purpose, it suffices to implement the identifications

2
bﬁ—)—\/—_z (pIP7)Re[T ('Y + 2T, 5 1],
q=0
2
B — wa»Pqﬂm[ wogtn +2Taogn) (53)

on existing minimal-SME limits. For example, the bound
on the coefficient l;ﬁ reported in Ref. [25] then yields the
constraint

at the one sigma level. Following the standard procedure
in the literature of taking one coefficient to be nonzero
at a time [3], we find the maximal sensitivities to non-
relativistic coefficients shown in Table VI. These are
the first constraints on neutron nonrelativistic coefficients
in the literature. They correspond to substantially greater
sensitivities to Lorentz and CPT violation than those attained
to date on electron or proton nonrelativistic coefficients, and
they exceed even the comparatively tight constraints
on muon nonminimal coefficients obtained from laboratory
measurements of the muon anomalous magnetic moment
[68,69].

At linear boost order in the Sun-centered frame, the
Lorentz-violating shift éw; in @ follows the generic
structure (31) and can be written as

P s

(YHe )
3+2q-d HeXc (29)
VXe my - (29)

The quantities Tgie)f(fk are the linear combinations

of effective Cartesian coefficients displayed in Table VII.
In this table, parentheses around indices are understood
to represent symmetrization With a suitable factor,

Bpr. (55)

- (4)J(TK - (4)JTK 4)JKT
e.g. gnéff) ) = ( niff) +gnetf )/2!. Also, repeated
dummy indices are understood to be summed,
Fr )TITI _ 7 (S)TXTX | ¢ (S)TYTY | 7 (5)TZTZ
c.g. Hngff) = Hns:ff) + Hne(:ff) + Hngff) :

The explicit form of the result (55) can be displayed

‘ Z (Ip29)( )Sun | 27— Sun) by substituting. Eqs. (32)—(35) given in Sec. I.IF for
the boost velocity of the laboratory and for the direction
of the magnetic field. This ensuing expression takes
<3.7x 107 GeV (54)  the form
TABLE VIL.  The quantities T{ine, for 3 <d <8.
Tge))J(fk Combination
e 2"
Thixeo 41&3 o
Tl ~6H,g
Tiixeo A
TSQ )J( 50 —10, gf)J(TTTTK)
i, 123,77
TSE))J(SZ _%I:Ingf)TLTLé _ 4Hneff) (TTK) _ Zﬁngf)J(LLK)
TI(.Ie)Xe.2 Zgngf)TLTTL&/K 8~né(:f) (TTTK) + 8~n£?f>1(TLLK>
Tge);(fz _g ~ ngf)TLTTTLéjK _ @Hnifg (TTTTK) 20Hn£t2 (TTLLK)
TE.[SE))J(gz %gnei)TLTTTTL(SJK +20~neﬁj(TTTTTK +40~”eff J(TTTLLK)
Tge)>1(§4 _%i_']ngf)TLTMML(s _ 8Hneff) (TTLLK) 2Hn£:ff) (LLMMK)
TI(—I e))/({:4 4§n£§f)TMTTLLM §K 12 4gn£§f> (TTTLLK) 4 12~neff)j(TLLMMK)
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TABLE VIII.  The quantities 2% in terms of T{{4X,.

ﬂid)k Combination

’12;31)]{ cos ¢THeX)iY]2q) +3singp(T de>)<(ex kT T£Ie))<e 1y

i i

Ak —(cos NTjioker + SinATiixer)

g Tiiexe

A <'d)k T(égfey k

i T;—le)Xe k

’1532,’}( cos ¢THa2X)e”I? +singy ( HeXe k TI<-Ie)Xe )

ﬂgij —sin ¢THeXe,k) —cos ¢y (ngXe k Tg—ie);((:( ©)

li,cgfw cos#(sin (},’)T](_;?;éey_k — cos ¢T](_§2;:k) -+ sinn(sin ¢T$§e , — COS ¢T§fe)§ezk)
ﬂglglkw —sinn(cos ngHg)ZZk + sin ¢T<};Q§§k — cosn(cos ¢T§;§Xek + sin ¢THeXe.k)
At €05 P Thiexe = Sin T icxon

Ak Sin BT ey + 08 BTy

dw| = Pg sin g + P cos A + fg cos I cos (QyT)Aq + Pg cos I sin (QpT)Aq + S cos §cos (wgTg)Aew
+ fr cos I sin (wgTg) A, + P sind cos (wgTg) cos (QLpT)Acwen + P sin 9sin (wgTg) cos (QgT)Aswen
+ fg sind cos (wgTq) sin (QgT) A5 + Po sinIsin (wgTg) sin (QgT)Ayso + fr sind cos LwgTe) Ao

+ pp sindsin 2wg T ) A

where the twelve quantities A, with subscripts * ranging
over the values @, L, cQ, sQ, cw, sw, cwc, swcQ, cas2,
sws€, c2w, s2w can be decomposed in terms of quantities

i@k with fixed values of k and d via the relation

PP e

3+2q —d (57)

K

d=3 VXe

Expressions for the quantities AP

given in Table VIIL

An experiment using a dual '*?Xe-*He maser to study
sidereal variations in the observable w at different times of
the year was performed at the Harvard-Smithsonian Center
for Astrophysics [23]. In this experiment, the magnetic
field was oriented west to east, corresponding to 9 = 0° and
¢ =90°. We can use the bounds on dw, reported in
Ref. [23] to determine limits on nonminimal effective
Cartesian coefficients for the neutron. The published
analysis neglected contributions proportional to the labo-
ratory velocity f; in the Sun-centered frame, so we can
deduce the four bounds

. (d)JK
in terms of THeXe’k are

(56)
Neweer = (=3.9 £ 3.5) x 10727 GeV,
Aewsa = (0.7 £6.3) x 10727 GeV,
Aws = (—6.3 £6.7) x 10727 GeV,
lsm = (-3.9+28) x 10?7 GeV. (58)

Note that the dependence of the quantities 4, on the angle ¢
means that these bounds hold only at ¢ = 90°. Using the
results in Tables VII and VIII and the bounds (58), we can
extract maximal sensitivities to many nonminimal effective
Cartesian coefficients for the neutron. These constraints are
listed in Table IX. They are the first of their kind reported in
the literature for neutrons.

Improvements over the results in Table IX are within
reach of existing experiments. The sensitivity recently
attained in the Heidelberg apparatus described in
Ref. [25] represents a gain of about 2 orders of magnitude,
so sufficient sidereal data accumulated at the annual
frequency with this apparatus could in principle better
the constraints in Table IX by a similar factor. Moreover,
with the sidereal data already in hand, the time variations at
the second harmonic of the sidereal frequency appearing in
Eq. (56) could in principle be studied and would be
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TABLE IX. Constraints on the moduli of neutron effective Cartesian coefficients determined from '>’Xe-He comparisons using

Eq. (58).

Coefficient

Constraint

Coefficient

Constraint

rr (5)X(TXT)
Hﬂeff
rr (5)X(TYT)
H"eff
I"_'I (5)X(TZT)

<1 x107% GeV~!
<8x 107 GeV~!
<2x107% GeV™!
<8x 1072 GeV~!
<8 x 10728 GeV~!
<2x107% GeV™!
<4 x107% GeV~!
<3x 107 GeV~!
<6 x 1072 GeV~!
<2x 1072 GeV~!
<3x 1072 GeV~!
<6 x 1072 GeV~!
<6x 1072 GeV~!
<8x 10728 GeV—3
<6x 1072 GeV~3
<2x107%7 GeV3
<6 x 10728 GeV~—3
<6x 10728 GeV3
<2x107% GeV3
<4 x 10726 GeV—?
<3x 1072 GeV3
<7 %1072 GeV—3
<3 x 107 GeV~3?
<3x 10726 GeV3
<7 x 10720 GeV3
<2x 107 GeV3
<4 x 1073 GeV3
<3 x 10723 GeV~—?
<7 x 10723 GeV~?
<3x 1072 GeV~?
<3x 1073 GevV—
<7 x 1073 GeV3
<6x 1073 GeV3

~ (6)X(TXTT)
neff

~ (6)X(TYTT)
neff

~ (6)X(TZTT)

Gnete

~ (6)Y(TXTT)
neff
~ (6)Y(TYTT)
neff
~ (6)Y(TZTT)
neff
~ (6)X(JXJT)
neff
~ (6)X(JYJT)
neff
~ (6)X(JZJT)
neff
~ (6)Y(JXJT)

Gnete

~ (6)Y(JYJT)
neff

~ (6)Y(JZJT)
neff

~ (6)TJTJT

Ynete

~ (8)X(TXTTTT)
neff

~ (8)X(TYTTTT)
neff

~ (8)X(TZTTTT)
neff

~ (8)Y(TXTTTT)
neff

~ (8)Y(TYTTTT)
neff

~ (8)Y(TZTTTT)
neff

~ (8)X(JXJTTT)
neff

~ (8)X(JYJTTT)

Gnese

~ (8)X(JZJTTT)
neff
~ (8)Y(JXJTTT)
neff
~ (8)Y(JYJTTT)

neft

~ (8)Y(JZJITTT)
neff

~ (8)TJTIJTTT
Ineff

~ (8)X(JXJTKK)
neff

~ (8)X(JYJTKK)
neff

- (8)X(JZJTKK)
neff

~ (8)Y(JXJTKKK)
Ineff

~ (8)Y(JYJTKK)
neff

~ (8)Y(JZJTKK)
neff

~ (8)TJTITKK
neff

<9 x 10728 GeV2
<7 x 10728 GeV~2
<2 x 10727 GeV~2
<6 x 10728 GeV~2
<7 x 10728 GeV—2
<2 x 1072 GeV—2
<9 x 1072 GeV~2
<7 x 1072 GeV—2
<2 x 107® GeV~2
<2x107% GeV2
<7 x 10726 GeV~2
<2x107% GeV2
<5x%x 1072 GeV2
<7 x 10728 GeV™
<5x 10728 GevV™
<1 x107% GeV™
<5%x 10728 GeV™
<5x 1072 GeV™
<1x107% GeV™
<2 x 1072 GeV™
<1x1072 GeV™
<4 x 1072 GeV™
<1x 1072 GeV™
<1x107% GeV™
<3 x 1072 GeV™
<4x 107 GeV™
<7 x 1072 GeV™
<5x 1072 GeV™
<1 x 1072 GeV™
<5%x 107 GeV™
<5x1072* GeV~™
<1x1072 GeV™
<2x 1072 GeV™

expected to yield additional measurements of interest.
Although this signal is suppressed by about 2 orders of
magnitude compared to annual-variation effects, the greater

sensitivity of the Heidelberg apparatus suggests constraints

of the same order of magnitude as those in Table IX could
be obtained. Note also that direct measurements of the
annual modulation would lead to new constraints on SME
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coefficients, as sidereal variations are insensitive to the
combinations 4.q and A, even when monitored throughout
the year.

Another avenue offering potential improvements is the
adoption of better nuclear models beyond the Schmidt
model. These techniques have already been used to show
that contributions from proton coefficients to Eq. (51) are
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significant, being suppressed only by a factor of about 5
for coefficients with k = 0 [30]. If a similar relationship
for coefficients with k = 2, 4 can be demonstrated, then
the constraints on the neutron coefficients listed in
Tables VI and IX could be extended to bounds on the
corresponding proton coefficients by multiplying by a
factor of 5. This would represent a striking gain in
sensitivity to the proton nonrelativistic coefficients com-
pared to the existing results obtained using data from a
hydrogen maser [43].

Other comagnetometers can also be used to test Lorentz
and CPT symmetry and may offer sensitivities to addi-
tional coefficients. One potential example is the
2INe-Rb-K comagnetometer described in Ref. [19], which
is designed to extend the reach achieved earlier by a *He-K
self-compensating comagnetometer [18]. The addition of
2INe to the system is of particular interest here because the
nuclear spin of ?!Ne is / =3/2 and so this comagne-
tometer can access more coefficients for Lorentz violation.
A glance at Table I reveals that there are prospects for
measuring the coefficients with j =2 and j= 3. The
underlying physics of this comagnetometer system differs
significantly from that of the other systems discussed in
this work, so the results obtained in Sec. II cannot be
directly applied to estimate sensitivities. However, some of
the bounds presented in Ref. [19] can be converted to
constraints on nonrelativistic coefficients for the neutron
by applying the relationship (43) between the nonrelativ-

istic coefficients and the coefficients c,(,?. Table X lists
the corresponding maximal sensitivities achieved,
which are the first of this kind in the literature. As before,
these results can be expected to extend to constraints
on nonrelativistic coefficients for the proton because
nuclear models beyond the Schmidt model are known
to allow contributions from proton operators to Lorentz-
violating expectation values with j =2 [33]. It is also
plausible that a similar situation holds for coefficients with
j =3. All these interesting issues are open for future
investigation.

TABLE X. Constraints on neutron nonrelativistic coefficients
determined using data from the 2'Ne-Rb-K comagnetometer.

Coefficient Constraint

Rea, R, Rec, YR —(3.34+3.0) x 107% GeV~!
Ima, YR, Ime, N8 —(1.9 £2.3) x 1072° GeV~!
Rea, b5, Rec, ) (1.0 £ 1.2) x 1072 GeV-!
Ima, %, Imc, 5§ (0.83 +£0.96) x 107% GeV~!
Rea, R, Rec, R —(3.7+3.4) x 10727 GeV~3
Ima, )X, Tmc,\R —(2.242.6) x 10727 GeV~3
Rea, )R, Rec,i% (1.141.3) x 10727 GeV—3
Ima, )%, Imc, )% (0.9 +1.1) x 1077 GeV—3

C. Trapped ions and lattice clocks

The stability and accuracy of optical frequency standards
currently exceeds the performance of fountain clocks. It is
thus natural to consider the prospects for testing Lorentz
and CPT symmetry using optical transitions. However,
sensitivities to many coefficients for Lorentz violation
depend on the absolute uncertainty of the frequency
measurement rather than on its relative precision. As the
absolute uncertainties of fountain clocks still surpass those
of optical clocks, the advantages of the latter lie primarily in
their ability to access distinct Lorentz- and CPT-violating
effects. In particular, optical clocks offer sensitivities to
coefticients for Lorentz violation in the electron sector that
are unattainable in other clock-comparison experiments. In
this section, we study sensitivities to electron coefficients in
trapped-ion and lattice optical clocks. Since any signals
from proton and neutron coefficients are better accessed via
other techniques, we disregard nucleon contributions in
what follows.

The transition 'S;-*P, is commonly used in optical
frequency standards. It has been studied with trapped ions,
including 2’Al* [70-73] and 'In* [74-76], and also in the
context of optical lattice clocks based on ®'Sr [77-82],
71yb [83-86], and '’Hg [87-89]. For this transition, the
total electronic angular momentum of the two states
involved is J =0, so only isotropic electron Lorentz-
violating operators can contribute. The Lorentz-violating
shift ov in the transition frequency v therefore involves only
coefficients with jm = 00. In the independent-particle
model discussed in Sec. II C, the shift in the laboratory
frame is given by

1
260 = ——— (Ap*V AR + Ap*V AR, (59)

Jan

where A pF is the difference in the expectation values (|p|*)
of the energy levels involved in the transition.

Some optical frequency standards involve transitions
between energy levels with J # 0. For example, the
transition 28 ,-*Ds, is used as a frequency standard in
ion-trap clocks based on “’Ca* [90-93] and #Sr* [94-96].
For these systems, certain systematic effects can be mini-
mized by measuring transitions involving different Zeeman
sublevels. These techniques typically also eliminate sensi-
tivity to some Lorentz-violating effects, as is to be expected
given that the coefficients for Lorentz violation behave in
many ways as effective external fields.

One common technique to remove the linear Zeeman
shift of the clock transition is averaging over the Zeeman
pair  2Sy512 = Dsjm, and Sy = Dsp -
Similarly, the electric quadrupole shift can be removed
by averaging over three different Zeeman pairs.
Implementing this process eliminates any contributions
from Lorentz-violating operators with j # O at linear order
in perturbation theory, due to the identity
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5/2 5 5

mj==5/2

As aresult, the Lorentz- and CPT-violating frequency shift
ov measurable in these systems is still given by Eq. (59),
despite the nonzero value of J.

Another technique to remove the quadrupole shift uses
instead two Zeeman pairs to interpolate the value of the
frequency at m3 =35/12, which corresponds to zero
quadrupole shift because the shift is proportional to
35/12 — m3. This method eliminates contributions involv-
ing coefficients for Lorentz violation with j =2, but it
retains contributions with j =4. In this scenario, the
Lorentz- and CPT-violating shift (59) is replaced by the
expression

1
26y = ——— (Ap*V AR + Ap*V IR )

\/4_”

+ 57 (Pl (61)

where the expectation value (|p|*) is evaluated in the
state 2Ds 5.

The clock transition S ,,(F = 0)-*Ds,,(F = 2) with
Amp =0 in '"'Yb" has also been used as a frequency
standard [97,98]. In the context of the independent-particle
model described in Sec. IIC, the Lorentz- and CPT-
violating frequency shift év for this system is given in
the laboratory frame by

2m6u = ——=(Ap* Vo5 + Ap* Vi)

\/_

2\/—(<|I’| Weano + (pI*)Veliy).  (62)

where the expectation value (|p|*) is evaluated in the state
D5 2. However, to suppress the contribution from the
electric quadrupole shift, an averaging of the frequency
over three orthogonal directions of the magnetic field is
performed. This procedure suppresses the contribution
from coefficients with j = 2. As a result, in the limit that
the three directions are exactly orthogonal, the shift (62)
reduces to the expression (59).

Other frequency standards are provided by the electric
octopole transitions in '7'Ybt [98,99] and '®Hg*
[100,101]. The clock transition used in these systems is
the transition Amjy = 0, which is insensitive to B-type
coefficients for Lorentz violation. As before, the contribu-
tion to the Lorentz- and CPT-violating frequency shift év
arising from coefficients with j = 0 is given by Eq. (59).
The contribution from coefficients with j =2 is again
eliminated by the averaging procedure over three different
directions of the magnetic field, which is designed to cancel

the electric quadrupole shift. It is conceivable that coef-
ficients with j = 4 contribute to the frequency shift, but
establishing this lies outside our present scope.

The coefficients in the above expressions are in the
laboratory frame and hence may vary with time. In
converting to the Sun-centered frame, the isotropic fre-
quency shift (59) receives contributions that depend on the
boost velocity of the laboratory frame. At linear boost
order, we find that the shift dv; is given by

(@)X

2ndv) = — [ﬂea sinQg TV,
; i

— fg cos Qg T (cos an,zy + sin nvf,zz)
+Br(coswgTeVL) —sinwgTeVii )], (63)
where expressions for the quantities Vf,zj in terms of
effective Cartesian coefficients are given in Table XI.
The result (63) predicts annual and sidereal variations of
the transition frequency, which can in principle be detected
by comparison to a reference. Since optical clocks can
outperform other frequency standards, an effective way to
search for the effects predicted by Eq. (63) is to compare
two optical clocks and search for a sidereal or annual
modulation of their frequency difference. For systems with
long-term stability, studying annual variations is preferable
because the speed fg is typically about 2 orders of
magnitude bigger than f;. Note also that the two clocks
can be located in different laboratories. Using Eq. (63), we
see that the annual and sidereal modulations of the
frequency difference between clocks A and B are given by

(d)X

Apk — ApX
2w8Uag = Z Py Pa [P sin Qg TV

ax Var

— P cos Qg T (cos an,ZY + sin nV(f,zz)]

AP%ﬂL B — AP]LBL A (d)Y
+ ’ = (coswgTgV
g,k: \/21; DD ek
— sinwgTe VYY), (64)
TABLE XI. The quantities V( for5<d<8.
Vfg] Combination
5)JTT 5)JKK
VSZ)J —2a éff) - aift?
(6)J (6)JTTT (6)JTKK
Ve‘2 4c Ceff +4c Cetf
(1)JTTTT (1)JTTKK
VSZ)J -2 (2a. + 3agy )
sz)J lociff)JTTTTT n 20C$f)JTTTKK
7)JKKLL 7)JTTKK
V(Zij _aifg - 4a£ff>
Vfi./ 60 é?f)JTKKLL I lzcgf)JTTTKK
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where ApX is the expectation value {|p|*) for the transitions
in clock A, f; A is the speed of the laboratory containing
clock A, and Ap§, ;g are defined similarly for clock B.

Several laboratories have the potential to compare two
clocks at the same location, searching for the effects
predicted in Eq. (64) in a scenario with f; , = B, . For
example, scanning the literature cited above suggests that
comparisons of any two lattice clocks based on ®Sr, 171Yb,

r '“Hg could in principle be performed at Rikagaku
Kenkyiisho (RIKEN) in Japan. Similarly, 8’Sr and '*’Hg
lattice clocks can be compared at the Systeme de Référence
Temps-Espace (SYRTE) in France, ones based on ’Sr and
171Yb can be compared at the National Metrology Institute
of Japan (NMIJ), and the %’Al" ion clock could be
compared to the '"'Yb lattice clock at the National
Institute of Standards and Technology (NIST) in the
United States. Many individual comparisons between
clocks located at different institutions are also possible
in principle, by using Eq. (64) with 8, A # f, 5. Moreover,
some Lorentz- and CPT-violating effects that are absent in
Eq. (64) and hence cannot be studied with any of these
clock combinations might become accessible given
suitable care for the treatment of systematics and its
implication for cancellations of signals. Some examples
of such experiments with clocks at a single location
might include comparison of the 3%Sr* and '"'Yb* ion
clocks at the National Physical Laboratory (NPL) in
England, the 3'Sr lattice clock and the '"'Yb* ion clock
at the Physikalisch-Technische Bundesanstalt (PTB) in
Germany, or the >’Al* and '"’Hg* ion clocks at NIST.

A qualitatively different approach to testing Lorentz and
CPT symmetry is to create an entangled state and monitor its
time evolution. In Ref. [26], the entangled state combines the
states  (|£5/2)|F 5/2) + |£1/2)|F 1/2))/v2 of two
“0Ca* ions, where the kets |m) represent the m; Zeeman
level of the energy state *Ds ;. The experimental observable
f is obtained by averaging the energy difference between the
product states |+5/2)|F 5/2) and |+1/2)|F 1/2).

Following the approach in Sec. II C, we assign angular
momenta J = 5/2 and L = 2 to the valence electron. The
Lorentz- and CPT-violating shift §f of the observable f in
the laboratory frame is found to be

27[5}7 = 7—(<|P| >Ve220 + <|I’|4> e420)

1
TvE

This expression has a structure similar to that of the
frequency shift (40) in fountain clocks, so we can adapt
the results presented in Sec. IIT A to convert the expression
(65) to the Sun-centered frame. The expression for the
shift §f, at zeroth boost order is therefore given by Table ITT
with the replacements

{p*)Vo3io- (65)

vNR

Pk2m Ve k2m> vplljzﬁn ve kdm* (66)

At linear boost order, the contribution f, is
- <Lp|2> KL K B
wfi =) g T (VESB + VES BR B

Ve + VK BRBLgY)

§

d p
4 Z <[P|4> V( )JKLMNBKBLBMBNﬂJ (67)
T— Ca4d ’
d mp
. " (d)JJ..d, .
where expressions for the quantities Veak in terms of

effective Cartesian coefficients are displayed in Table XII.

For the nonminimal terms considered in this work, the
result (67) incorporates time variation at the first five
harmonics of the sidereal frequency along with annual
variations. At the sidereal frequency, the dominant con-
tributions to the variations in the first four harmonics are
given by Table III with the substitutions (66). The variation
at the fifth harmonic is suppressed by f;, and it is given by
Eq. (46) with the replacement Vg?iK - V(C'Qi'“K. Using
these results, we can estimate the sensitivities of the 4°Ca*t
experiment [26] to the nonrelativistic coefficients.
Table XIII displays these sensitivities. In deriving them,
we take (|p|>) ~ 107! GeV? and (|p|*) ~ 1072 GeV*. We
also suppose the experimental reach is 0.03 Hz. With
sufficient stability and data collection over a long time

TABLE XII. The quantities V"¢ for 5 < d < 8.

V(C‘Qijl oods Combination

Ve — 2 (a, "™ + 20,5

v Y (gt 425" a )

Ve W o™ Heet )

e R T

V&)é _u 3angJTTKK " zaeéﬁynrn)

vijin B30, + 200,37

v g o it
VI 8(a QT 0 GITHY) 1 gq
Vgl)ﬁj'h]m 10 aeggu NN +45”1ae§2"’2’3’4)
Ve B ae T 4 e T

V(Ca)u s _%ﬂ(zceggnrn,h 4o, (8 )TTTTTJZ)
vl (e 4 20 T
V(CS){‘J'JZ —24(c eéff)JTTTJ]JZ+5ulce$f)rrnz1<1<)_24 egf&f)JTJIJZKK
V(Ca),j TaTsTs Y egngJlthh _ 280 Cegf)rrmhh)
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TABLE XIII. Potential sensitivities to coefficients in the Sun-
centered frame from sidereal variations in entangled “°Ca* ions.
Coefficient Sensitivity
|aehom|s 1€, 1071 GeV~!
|aehosls [Cehon 1073 Gev—3
|l |s |coigy 1073 GeV~?

period, constraints could also be placed on coefficients for
Lorentz violation associated with the annual variation
signal predicted by Eq. (67).

Related experiments have been proposed using Zeeman
transitions of the F7 , state in Yb™ [55]. Experiments using a
dynamical decoupling technique have also been proposed for
a broad class of trapped ions and lattice clocks [102]. All are

expected to permit significant improvements over existing

constraints on the coefficients cf,? . The energy shift produced

by these minimal-SME coefficients can be generalized to
incorporate also the contributions from the nonminimal
coefficients V)% in the nonrelativistic limit. The proposed
experiments can therefore be expected to yield substantial
improvements over the estimated sensitivities to the coef-
ficients a %, and ¢, )% given in Table XIIL

D. Antimatter clocks

In this final section on applications, we offer some
comments about the prospects for spectroscopic experiments
using antimatter. Comparisons of the properties of matter and
antimatter are of particular interest for testing the CPT
symmetry of quantum field theory. The line of reasoning
outlined in the Introduction reveals that effective field theory
also provides the general model-independent framework for
analyzing antimatter systems, so the results of experiments
testing CPT symmetry can be expressed in a model-
independent way as constraints on SME coefficients.

A diverse set of such constraints has already been
obtained via precision spectroscopy of positrons and
antiprotons confined in a Penning trap [45-47,103-105].
Studying antimatter instead of antiparticles offers advan-
tages in searches for CPT violation [43,106], and several
collaborations are developing techniques for the precision
spectroscopy of antihydrogen. Recently, the Antihydrogen
Laser Physics Apparatus (ALPHA) Collaboration has
measured the antihydrogen ground-state hyperfine transi-
tions [107] and the 1S-2§ transition [108], heralding
an era of precision antimatter spectroscopy. Other collab-
orations pursuing this goal include the Atomic Spectro-
scopy and Collisions Using Slow Antiprotons (ASACUSA)
Collaboration [109,110], and the Antihydrogen Trap
(ATRAP) Collaboration [111]. Experiments investigating
the gravitational response of antihydrogen are also
being developed, including the Antihydrogen Experi-
ment: Gravity, Interferometry, Spectroscopy (AEGIS)

Collaboration [112], the ALPHA Collaboration [113],
and the Gravitational Behavior of Antihydrogen at Rest
(GBAR) Collaboration [114], and the corresponding tech-
niques may also enhance future spectroscopic studies of
antihydrogen.

One signal for nonzero CPT violation would be a
measured difference AD;qg = v 55 — V1505 between the
resonance frequency vgg of the 1S-2S transition in
hydrogen and the analogous resonance frequency 7g»g
in antihydrogen. Performing a general analysis in the
context of effective field theory [43] reveals that
CPT-violating effects contributing to a nonzero value of
ADygp5 can be classified as spin independent or spin
dependent and as isotropic or anisotropic, and they can
exhibit time variations induced by the noninertial nature of
the experimental laboratory. It turns out that the spin-
dependent effects are more readily studied using ground-
state hyperfine transitions, while the time variations are
better explored by directly studying modulations of 7;g,s.
However, the difference Av;g,g is particularly sensitive to

isotropic, spin-independent, and time constant CPT viola-

ONR ©NR oNR
tion controlled by the coefficients ae 2, ed»> dpo, pa. A

explicit expression for A7, in terms of these coefficients
is given by Eq. (86) of Ref. [43], with the correction 8§ — 16
in the denominator. Note that these nonrelativistic coef-
ficients incorporate effects from CPT-violating operators
of arbitrary mass dimension [35].

Based on an analysis that assumes no spin-, geometry-, or
time-dependent CPT violation, the ALPHA Collaboration
reported agreement between the 15-2S resonance frequen-
cies of hydrogen and antihydrogen at a precision of 2 x 10712
[108]. We can therefore deduce the constraint

o o 67 o
Qo3+ dps + 1 (am 2 (a0] + api)| < 1x 107 Gev,

(68)

where a is the fine-structure constant and m,. is the reduced
mass of hydrogen. The result (68) represents the first
constraint on SME coefficients extracted from antihydrogen
spectroscopy. Table XIV lists the corresponding maximal
sensitivities obtained by taking each coefficient to be nonzero
in turn, following the standard procedure in the literature [3].
Note that several factors currently limit the precision of the
measurement of gy, including the comparatively smaller

TABLE XIV. Constraints on electron and proton nonrelativistic
coefficients determined from 1S5-2S hydrogen and antihydrogen
spectroscopy.

Coefficient Constraint
°NR, |°NR
laes|, |a,s] 1 x 1072 GeV~!
oNR SR

,,4| 14 GeV—3
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number and higher temperature of atoms in antihydrogen
experiments relative to hydrogen ones. However, there is
every reason to expect improvements in the future. One
proposal along these lines is to trap the ultracold antiatoms
from the GBAR antihydrogen beam in an optical lattice
[115], which could enable measurements of the 1S-2§
transition in antihydrogen at a level approaching the pre-
cision of 4.2 x 10~ already obtained with hydrogen [116].

Other signals for CPT violation can appear in compar-
isons of the hyperfine structure of hydrogen and antihy-
drogen [43,106]. High-precision measurements of the
hyperfine transition of hydrogen can be obtained using a
hydrogen maser [117], but these methods are impractical
for antihydrogen due, for example, to collisions with the
walls in the maser bulb. One different approach already
realized by the ALPHA Collaboration is to perform hyper-
fine spectroscopy on trapped antihydrogen [107]. An
alternative option being pursued by the ASACUSA
Collaboration involves using instead an antihydrogen beam
[110]. Testing the latter method with hydrogen has dem-
onstrated a precision only 3 orders of magnitude below that
achieved via the hydrogen maser. The prospects are
excellent for further substantial improvements in hyperfine
spectroscopy using advanced tools such as ultracold anti-
hydrogen beams, and perhaps ultimately adapting tech-
niques similar to those used for atomic fountain clocks.

In the longer term, antiatom spectroscopy could con-
ceivably evolve to include also experiments with heavier
antiatoms. The simplest candidate system is antideuterium,
which has the antideuteron as its nucleus. Unlike antipro-
tonic deuterium, antideuterium is expected to be stable and
is therefore in principle a candidate for precision spectros-
copy and hence for CPT tests. Deuterium spectroscopy is
known to be many orders of magnitude more sensitive than
hydrogen spectroscopy to certain kinds of Lorentz and
CPT violation [43], and the same arguments hold for the
comparative sensitivities of antideuterium and antihydro-
gen spectroscopy. The production of a single heavier
antiion is also of real interest, as it could in principle be
confined in an ion trap and repeatedly interrogated to
perform high-precision spectroscopy.

Whatever the future of antimatter experiments with
heavier systems than antihydrogen, the theoretical treat-
ments presented in Sec. II and in Ref. [43] can readily be
adapted to antiatoms and antiions. In particular, the
expression for the shift in an energy level of an antiatom
or antiion can be obtained from the corresponding expres-
sion for an atom or ion by implementing the substitutions

NR NR NR NR
aijm - _awjkm’ Cijm - Cijm’
NR(sB) NR(sB) NR(sB) NR(sB)
Hijm - _Hijm ’ w jkm = 9w jkm (69)

for the SME coefficients. For example, an expression for
the frequency shift Sy of the nL-n'L’ transition in
antideuterium due to isotropic Lorentz and CPT violation

can be obtained from the corresponding expression for the
shift évp in deuterium given as Eq. (103) of Ref. [43],
yielding the result

2rbvp = —= (e, — &) [Vezoo (Vplz\ﬂ?) + Vo)

: w

@) 7,2+ 75|

2m? [ , 8n’ ,( 8n
T r [6"'<2L’+ I _3> _€"<2L+ 1 _3”
(Ve400 (me) + Vn400)> (70)

where VWk m = ka im T awk s e is the reduced mass of
antideuterium, &, = —a’m,/2n?, and (p}%7 ) = 10* MeV2.

IV. SUMMARY

This work studies Lorentz and CPT violation in clock-
comparison experiments by incorporating effects on elec-
tron and nucleon propagators arising from SME operators
of arbitrary mass dimension d. It begins with a discussion
of theoretical issues in Sec. II. The general Lagrange
density (1) for a fermion propagating in the presence of
arbitrary Lorentz and CPT violation implies the perturba-
tive result (2) for the corresponding nonrelativistic one-
particle Hamiltonian. Combining the expressions for the
constituent particles yields the Hamiltonian (6) for an atom
or ion, which is the basis for our analysis of clock-
comparison experiments.

The experimental observables are transition frequencies in
atoms or ions. The Lorentz- and CPT-violating signals in
these frequencies can be calculated from the perturbative
shifts (8) in energy levels. These shifts involve products of
Clebsch-Gordan coefficients with expectation values of the
perturbative Hamiltonian. The symmetries of the system
imply that contributions to the energy shifts can arise only
from specific nonrelativistic spherical coefficients for Lorentz
violation, as listed in Table I. Explicit computation of the
expectation values requires modeling the electronic and
nuclear states. Our approach for electrons adopts the inde-
pendent-particle model described in Sec. II C, while for the
nucleus we use the Schmidt model as discussed in Sec. I D.

A laboratory on the surface of the Earth or on an orbiting
satellite typically represents a noninertial frame. As a result,
most SME coefficients measurable in the laboratory acquire
a dependence on time due to the laboratory rotation and
boost relative to the canonical Sun-centered frame, which is
an approximately inertial frame over the experimental
timescale. Determining the time dependence induced by
the rotation of the Earth is the subject of Sec. II E. This
treatment is extended in Sec. I F to include effects at linear
order in the Earth’s boost as it orbits the Sun. The time
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dependence in a space-based laboratory arising from the
orbital motion of a satellite is also discussed.

The application of our results to the analysis of clock-
comparison experiments is described in Sec. III. We first
consider fountain clocks, deriving expressions for the
frequency shift in terms of coefficients expressed in the
Sun-centered frame. At zeroth boost order the frequency
shift is given in Table III, while at linear boost order it is
given by Eq. (44) and the entries in Table IV. Estimates for
attainable sensitivities to SME coefficients using existing
devices are provided in Table V. The discussion covers both
133Cs and ®'Rb fountain clocks, and it is also applicable to
clocks located on a space-based platform. The primary
sensitivity in these systems is to coefficients for Lorentz
violation in the proton sector.

We next consider the prospects for using comagnetom-
eters to search for nonminimal violations of Lorentz and
CPT symmetry. The methodology developed in Sec. II is
well suited for application to investigations using '?*Xe and
He atoms as comagnetometers. Within the nuclear model
adopted here, the Lorentz- and CPT-violating signals are
affected predominantly by SME coefficients in the neutron
sector. In Sec. IIIB, we determine the shift in the
experimental frequency observable at zeroth boost order
and extract the bound (54) by extending to arbitrary d the
known results for the minimal SME. This leads to the
constraints on neutron nonrelativistic coefficients listed in
Table VI. We also establish the Lorentz- and CPT-violating
shift at linear boost order, using existing data to place
constraints on neutron effective Cartesian coefficients in
Table IX. Other comagnetometers can also place competi-
tive limits on the neutron sector of the SME. We derive a
partial map from known minimal-SME bounds to non-
minimal coefficients, which permits using data from a
2INe-Rb-K comagnetometer to place the additional con-
straints on the neutron sector given in Table X. All these
constraints on neutron coefficients for Lorentz violation are
the first of their kind reported in the literature.

As another application, we consider the attainable reach in
clock-comparison experiments using trapped ions and lattice
clocks. In this case, interesting sensitivities are in principle
attainable to coefficients for Lorentz violation in the electron
sector. Various transitions are considered for a range of atoms
and ions. The expression (64) is found to describe the annual
and sidereal modulations of the frequency difference
between two clocks, including ones located in distinct
laboratories. In this section, we also consider tests of
Lorentz and CPT symmetry based on studying the time
evolution of an entangled state. The shift in the experimental
frequency observable is determined at both zeroth and first
boost order and is used to estimate attainable sensitivities to
electron nonrelativistic coefficients, as listed in Table XIII.

Our final application considers the prospects for experi-
ments using antimatter. Signals for Lorentz and CPT
violation in antihydrogen have previously been investigated

theoretically both in the minimal SME [106] and allowing for
nonminimal terms of arbitrary mass dimension [43]. These
treatments are combined with recent spectroscopic measure-
ments of the 15-2S transition in antihydrogen to extract first
constraints on SME coefficients from this system, summa-
rized in Table XIV. We also propose that in the long term it
may become feasible to perform experiments with heavier
antiatoms and antiions, with options possibly including the
precision spectroscopy of antideuterium or of trapped anti-
ions. A technique is presented to convert theoretical results
for frequency shifts in atoms or ions to the corresponding
ones in antiatoms or antiions.

The two appendices following the present summary collect
some results that are useful in handling coefficients for
Lorentz violation. Appendix A includes relations connecting
spherical and Cartesian coefficients and provides explicit
expressions between them for the cases 3 <d <8.
Appendix B discusses the transformation between the labo-
ratory frame and the Sun-centered frame and tabulates explicit
results connecting Cartesian coefficients in the two frames for
the cases 3 < d < 8. The results in these appendices are
generally applicable and so have implications extending
outside the analysis of clock-comparison experiments.

Throughout this work, we have noted possibilities for
pursuing investigations that go beyond our present scope
while remaining within the context of Lorentz- and CPT-
violating corrections to the propagators of the constituents of
atoms and ions. In principle, our scope could also be
extended by incorporating effects arising from other SME
sectors. For instance, the Maxwell equations acquire mod-
ifications due to Lorentz and CPT violation in the pure-
photon sector. Including these might further enhance the
reach of clock-comparison experiments, though in practice
most relevant photon-sector coefficients are already tightly
bounded from analyses of other systems [3,118,119]. Effects
involving U(1)-covariant Lorentz- and CPT-violating cou-
plings between photons and fermions are of interest as well,
with only a few SME coefficients currently constrained by
experiment [3,45,120]. One could also envisage the inclusion
of SME effects arising in the strong, electroweak, or
gravitational sectors, although some of these are expected
either to be suppressed or to be more readily studied by other
means. An exception might be countershaded Lorentz and
CPT violation [121], for which unexpectedly large effects
can appear in the context of special measurements. For
example, sensitivity to countershaded coefficients has been
demonstrated using atom interferometry, which can be
interpreted in terms of clock comparisons [122].

Overall, the content of this paper provides a broad
methodology for exploring Lorentz and CPT symmetry
using clock-comparison experiments. While our treatment
has yielded many first constraints, numerous coefficients
for Lorentz violation are unmeasured to date. The striking
potential sensitivities attainable either from reanalysis of
existing data or in future searches suggest that further work
with clock-comparison experiments remains one of the
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most interesting prospects for uncovering these novel
physical effects in nature.

ACKNOWLEDGMENTS

This work was supported in part by the United States
Department of Energy under Grant No. DE-SC0010120
and by the Indiana University Center for Spacetime
Symmetries.

APPENDIX A: RELATION BETWEEN
SPHERICAL AND CARTESIAN COEFFICIENTS

This Appendix presents relationships between spherical
coefficients and effective Cartesian coefficients and tabu-
lates explicit results for d < 8. We focus on spherical
coefficients for Lorentz violation with even k and

m = 0, which are centrally relevant to analyses of clock-

1E)

comparison experiments. The coefficients T,girs control-

ling spin-dependent operators of the E type are disregarded
here as they leave unaffected the energy shifts. As else-
where in this work, we follow Ref. [35] in using the symbol
V with appropriate subscripts and superscripts to indicate
the difference of c¢- and a-type coefficients and 7 to
indicate the difference of ¢g- and H-type coefficients.

For instance, V,(:Ji.fn represents the difference V,i’jfn =

,(szn - ag{‘ﬁn. The spherical coefficients are assigned indices

kjO, while ¢, x, y, z are used for specific index values on the
effective Cartesian coefficients in a chosen frame. Dummy

spatial Cartesian indices are represented by [, m, n, and

1
repeated Cartesian indices are summed. For example, céff)

represents the sum cgf)” = gf) + céff)} Y+ céffm.

The single-particle Hamiltonian can be decomposed in
either the spherical or the Cartesian bases. The connection
between these decompositions is presented in Sec. IV of
Ref. [35]. Consider first the spin-independent component
of the Hamiltonian. The corresponding match between the
Cartesian and spherical bases is fixed by

c

M(d)u _ Hayay...aq3
Vett Py = Veff PuPa,Pay-+-Pay_,

= > EEHplrY () V- (A1)

kjm
where p, = (E,—p). Using the orthogonality of the
spherical harmonics, the connection between the

Cartesian and spherical terms can be written as

d=2 (@)
= Z Eg_z_k Ip |kvkjm’

k=j

« rayd
[ a0, )95, (a2)
where dQ is the differential element of solid angle in
momentum space. The upper and lower bounds for the

summation index k are determined by the spherical-index
relations listed in Table III of Ref. [35].

Using Eq. (A2), we can extract explicit expressions for
the spin-independent spherical coefficients in terms of
effective Cartesian coefficients. Table XV contains the
results for spherical coefficients with 3 <d <8, m =0,
even values of j in the range 0 < j < k, and even values of k
in the range 0 < k < d — 2. The table consists of two pairs
of columns. In each pair, the first entry in a given row lists a
spherical coefficient, while the second entry provides its
equivalent as a linear combination of effective Cartesian
coefficients.

Next, we consider the spin-dependent part of the single-
particle Hamlltoman For the component involving only the
coefficients 7% kjm 5) , the relation between the Cartesian and
spherical terms is

Z(d)ut =(d g
Teff py = Tf(;ff)ﬂmlaz ad 3p;4p(1|paz pad 3

= STESH I k+ 1Y, 0) TN,

kjm

(A3)

Using orthonormality of the spherical harmonics then
yields

Z Ed—3 klp|k+1(k+ )quzn( B)

k=j—1

/ dQij (ﬁ)Teff py
(A4)

between effective Cartesian coefficients and spherical
coefficients. This result permits the extraction of explicit
expressions for the spin-dependent spherical coefficients
T (D(0B)

kjm
coefficients. Table XVI contains these expressions for
) with 3<d<8, m=0,
odd values of j in the range 0 < j<k-+1, and even
values of & in the range 0 < k < d — 3. The structure of this
table parallels that of Table XV.

Determining the spherical coefficients 7, jmw) in terms

of effective Cartesian coefficients requires more work

because the relation containing T (‘%13)

. We find

as linear combinations of effective Cartesian

spherical coefficients T,i%o

also incorporates

the coefficients T
/dQTeff]yé+pu1Y* (ﬁ)
a-2
1
= 5 st (U g
k=j—1 2

+ Tk]mlB) + lTl(ci})'}ElE)> ’ (AS)

where €, = (9 + z(i)) /+/2. This result links three types of
spherical coefficients with the effective Cartesian coeffi-
cients. It can be disentangled first by eliminating the
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TABLE XV. Relations between spherical coefficients V,E% and effective Cartesian coefficients for 3 < d < 8.
Spherical Cartesian Spherical Cartesian
b o o b
a(()%)o \/Zﬁagf)’” Cgﬁz)o 4\/_ (3¢ eff”Z~ E:?fnmm)
o5 Var" TN O
& Ba =3 I . e
3 i WVl
ok 0 Vi Sy s
oy N N
“(272)0 3V5r(3 effmZZ - ett 7y 0(6?))0 7 mci?nnll'nnl
oy VR - o) S 2/EREG -y
aé(lzl)o JW (7a gf)tzzzz effm l) + ;‘ efftmm” Cﬁ)o 2 \/_( e?fm”ZZ - Cgf)””mm)
) e B RV -y
g vl B TRl g
) ae - ) I e St
T Virey" oy sy
g Nl L g - 3
TABLE XVI.  Relations between spherical coefficients 7, d) (%) and effective Cartesian coefficients for 3 < d < 8.
Spherical Cartesian Spherical Cartesian
HO e CENCTE
" S G
HE e s A S
Y e N N . T
iy G S
N N T R
Hg 1)(OB) 2 2 \/3r(4 H(7)tmmll' i H(7)lelmm) A(ﬁ)o(OB) 3n( 4gggtmtmllz n gggrztllmm)
N . e
N . RN T
-5 A G R e
HOM R RORG 2R N e

7 (T)tmmllz 77 (7)tzmmll
+ % \/%(4Heff ) + Heff : )

_ 8 mg()mmzzz
15 V/ Tl et

Yetr + Jegr )

(4~(8 tmtmll” ~(8)tztmmll
(8)trtrzzz
Getf

Vi
5 \/Tifler
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TABLE XVII. Relations between spherical coefficients 7° g()) (1) and effective Cartesian coefficients for 3 <d<8
Spherical Cartesian Spherical Cartesian
M RO - G 4 G A g 5 A
Hgl)o“B) 4\/%T(Hefftztfnn _H(7)”1ttm +4\/ZHeffmtttn A(g)()(lB) %\/%(ggf)mllmm _ggf)tmrmllz) +2\/§§£§2mmm”
Hf])()(lB) 24_5 3ﬂ(g£7)tznnn _i 7)tnnllz) 4\/7Heﬁnztnll gél)o(lB) %\/gggggmzmnnll
I N R N s

3 G 4 B [ agiymms . gty

+% \/67(H§2’""”Z e +2 \/7(g£ff)tmtmlh _ gSymmity
g0 Ve I VT )
g%w) 4ﬂ(~eff[ inn_ e?f)mm ) + V37 effnzttn g)o(lm % \/5(3 é?f)mzm 222z _ zgggmzmuzz)

i 21_1 \/%ggf)mmunn

IR e
sl )
T,(CL;Z,EOB) via Eq. (A4) and then by grouping the remaining ~ coefficients with 4 <d <8, m = 0, odd values of j in the

terms according to powers of the momentum magnitude.
The point is that the E-type and B-type coefficients are
proportional to distinct powers of the momentum when j is
fixed. For example, if j is odd then the terms involving
B-type and E-type coefficients can only contain even and
odd powers of the momentum magnitude, respectively.

For the particular case with m = 0, the spherical coef-
ficients and the spin-weighted harmonics are all real
numbers. It is therefore useful to separate the real and
imaginary parts of Eq. (AS). The real part is

Z(d)jvyj N
/ dQTeffj &p,, on ()
d-2

0 . d)(0 d)(1
= > B+ DT + V2T,

: (A6)

and it contains only B-type coefficients. The imaginary part
of Eq. (AS) is given by

d-2
X (d)ju A N _n_
/ AT oY o(B) = V2 B HpFT )
k=j
(A7)

and contains only E-type coefficients. By combining
Egs. (A2) and (AO6), we can extract explicit expressions
(1B)

kjm
components. Table XVII contains the results for spherical

for the coefficients T in terms of effective Cartesian

range 0 < j <k —1, and even values of k in the range
0 < k < d — 2. The structure of this table again follows that
of Table XV.

APPENDIX B: TRANSFORMATIONS
TO THE SUN-CENTERED FRAME

Constraints on the coefficients for Lorentz violation are
commonly reported in the Sun-centered frame [3]. This
Appendix describes the conversion of coefficients for
Lorentz violation in a laboratory frame into combinations
of coefficients in the Sun-centered frame, including effects at
zeroth and linear boost order. The primary focus here is on
effective Cartesian coefficients, which are better suited for
boost analyses. We use Greek indices to denote spacetime
indices and Latin indices to represent spatial components.
Generic indices in the laboratory frame are represented by
lowercase letters, while indices in the Sun-centered frame are
represented by uppercase ones. For definiteness, we label
Cartesian components in the laboratory frame by 0,1,2,3 and
assume that the Lorentz transformation is given by Eq. (29)
with R3; = B’. Cartesian components in the Sun-centered
frame are denoted by 7, X, Y, Z, and contractions of spatial
uppercase indices imply summation over components in the
Sun-centered frame.

Consider first the effective Cartesian coefficients asso-
ciated with spin-independent Lorentz and CPT violation.
The expressions for these effective Cartesian coefficients in
the laboratory frame in terms of effective Cartesian coef-
ficients in the Sun-centered frame can be reconstructed at
linear boost order from the information contained in
Table XVIII. The table limits attention to coefficients in
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TABLE XVIII. Relations between spin-independent Cartesian coefficients in laboratory and Sun-centered frames for 3 < d < 8.

aborato actor un-centere: aborator actor un-centere:
Laboratory Fact S tered Laboratory Fact S tered
3)0 3T 6)0000 6)TTTT
aéff) ! ax(eff) Céfg ! Cifg
-y (3)J —487 (6)TTTJ
p Aot p Ceff
(5)000 1 (5)TTT (6)00; 1 (6)TTJJ
eff Aeff Ceff Ceff
—34/ (5)TTJ —2p4/ (6)TTTJ
p Aefp 4 Ceff
(5)0jj 1 (5)TKK —2p7 (6)TKK]
Aeff Aefr 4 Cetf
_2p4/ 5)TTJT 6)0033 Y 6)TTJ,J
2 iff) Ciff) BB Ciff) o
B (5)KKJ —2BI B’ (6)TJ,J5J
p Aegp p Cerf
(5)033 N (5)TJ,J, 22BN B . (6)TTTJ,
eff BB Aefp p Ceff
_B B (5)J, 4, (6))jkk 1 (6)KKLL
P Aeff Cetf Cetf
22BN B . (5)TTJ, —4p7 (6)TKKJ
b Aegp b Ceff
7)00000 NTTTTT 6)33,j Y 6)KKJ,J
aéff) ! aifg Céfg o BB Cifg o
—58/ (NTTTTJ —2BI g’ (6)TJ,J,J
p oy p Cett
(7)000,j 1 a(7)TTTKK 2B B ] OTKKY,
eff eff eff
204/ (NTTTTJ (6)3333 B B2 I3 Rla (6)J1J2J3J4
4 Aefp Ceff B1B2B7B Ceff
34/ 7TTKKJ _ABRN BRI . 6)TJ,J,J
3p aéﬁ? 4B"'"B>B"B - f Ciﬁ? 11273
7)00033 U NTTTJ,J, 8)000000 8)TTTTTT
gft} BB e(:tf) " Ciflf) ! ¢ e(:tf)
33BN B/ NTTI ]y 68/ 8)TTTTTJ
3BTB2p aiff) o op Ciff)
2B B . p (I)TTTTJ, (8)0000,j 1 (8)TTTTKK
Aefp Ceff Cetf
(7)0jjkk 1 (7)TKKLL —Zﬂf (8)TTTTTI
eff eff Ceff
—447 7)TTKKJ —447 8)TTTKKJ
4p a£f2 4p C£f2
-y 7)KKLLJ 8)000033 w1 RJ 8)TTTTJ,J
p ifg Cifg BB ciff) o
7)0/j33 D) DI 7TKKJ,J. —Ap’ B g2 8)TTTJJ\J
éff) BB aifr? o BB Céft? o
_opli gl TTI\J2J _2phB. 8)TTTTTJ
2B’ B2 f3 aiff) 12 2B'B-f Ciff) I
2B B . p (1) TTKKJ, (8)00jjkk 1 (8)TTKKLL
eff Cerf eff
_BN BI85 TVKKJ J,J —487 8)TTTKKJ
BUB=p agft? o 4 Ciﬂ?
7)03333 BBy Rl B NI, J2J5] _ap/ 8)TKKLLJ
£f2 B BB B aift? e 2y Cift?
—BI BRI Blagl ()1 I o T3 s (8)0033 D1 fa (8)TTKKJ,J,
p Aefp Cetf BB Ceff
—4B" BBB - (TT1, 1215 —24' B’ B’ (8)TTTJJ\J,
Aefp Cetf
(4)00 1 arr _251311 B (8)TKKJ,J,J
eff Ceff Cetf
—2p/ C(thf)TJ —2B""'B-p C(?f)TTTKKJI
€ €
(4)jj 1 (4)KK (8)003333 A1 B2 B3 s (8)TTJJyd3 4
Ceff Cetf Cetf B1B2B7B Cerf
2’ AT —2B) BB BIpl ROLURYY
eff eff
(4)33 Dy DI, (4,7, —4BN' BB B - (8)TKKJ,J,J5
eff BB Cetf p Ceff
2B B . (417,
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the laboratory frame that contribute to the spherical
coefficients with 3 < d <8 discussed in Appendix A,
which are the ones relevant to the clock-comparison
experiments analyzed in this work. The table contains
two triplets of columns. In each triplet, the first column lists
the Cartesian components of interest in the laboratory
frame. Entries in the second column are factors involving
the boost —f’ and the direction B’ of the magnetic field.
The third column lists the relevant Cartesian components in
the Sun-centered frame. The expression converting a given
coefficient from the laboratory frame to the Sun-centered
frame is obtained by multiplying the entries in the second
and third columns and adding the associated rows. For
example, the first two rows of the table generate the
equation agf)t = agff ﬂJ eff . Using the contents of this
table and the results in Appendix A, it is straightforward to
convert spin-independent spherical coefficients in the
laboratory frame to effective Cartesian coefficients in the
Sun-centered frame at linear boost order.

To analyze the experiments discussed in this work,
it is useful to find analogous expressions converting
the nonrelativistic coefficients for Lorentz violation to the
Sun-centered frame. The nonrelativistic coefficients are
combinations of spherical coefficients for Lorentz violation
of arbitrary mass dimension, as illustrated in Egs. (111) and
(112) of Ref. [35]. All the spherical coefficients contrib-
uting to a particular nonrelativistic coefficient behave the
same way under rotations, so at zeroth boost order the
conversion between frames is given by the comparatively
simple result (25). However, the spherical coefficients
transform differently under boosts, so converting non-
relativistic coefficients at linear boost order becomes
involved. In contrast, the effective Cartesian coefficients
have comparatively simple transformations under boosts
and so are better suited for studying boost effects.

To circumvent this issue, we limit attention here
to terms involving effective Cartesian coefficients that
contribute at zeroth order in |p|/m,, which yields the
dominant contributions at linear boost order and suffices
for the experimental analyses of interest. With this
assumption, the spin-independent nonrelativistic coefficients
YRR im in the laboratory frame are expressed in terms of

spherical coefficients as

_3— d
kjm ~ Zml[lil ’ kvlgj;)'n' (Bl)

d

The spherical coefficients can then be translated into effective
Cartesian coefficients in the laboratory frame using the
results in Appendix A. To perform the conversion between
the laboratory frame and the Sun-centered frame, we note
that any nonrelativistic coefficient NN m can be expanded to
linear boost order as

NR

0 kjm
Iijm ~ }ijm‘ﬂj =0 + <Tﬁ (BZ)

J»
p'=0

For all coefficients, the zeroth-order term is given by Eq. (25).

At linear boost order, we are interested in the contribu-
tion V; ]O(O(ﬂ)) to the nonrelativistic spin-independent
coefficients with m = 0. Decomposing this contribution
as a polynomial in the unit vector B’ along the magnetic

field yields the result
VI(O(8) = )
=0

dr 8 (d)J
_ d—k=3 ZV J a7
2+ 1" L_g u b

aﬂf
8 A A
+ Z V](;)lejzﬂJBll B

d)JJJ,J3J. N - A
+ dz: V/(cj) 11273 4ﬂJBJ‘ 312813314] ) (B3)
=7

The quantities V,(CC;)JJ“"J” with d — 3 — k < 0 vanish. For

3 <d <8, Table XIX provides explicit expressions for

(d)JJ,...J

many nonvanishing V' y " in terms of combinations of

effective Cartesian coefficients in the Sun-centered frame.

TABLE XIX. The quantities V,i‘;)JK"'M for 5<d <8

V,(C‘]{)JK“‘M Combination

v -

V(2%)J 4e i?f)TTTJ | 4e é?f)TKKJ

vy S a4 3T

Vé%)] 10¢ (?f)TTTTT! 1 20¢ gf)TTTKKJ

V‘(J,) ; gf)LLKKJ 4agf)rr1<1<1

Vik(%))] 6CSf)TLLKKJ 1 12¢ Sf)TTTKKJ

g S35 - 65a

‘/(262)”[12 12 Sf)ru Va4 gt e ( )TTTJ2

Véz)u'h —30a etfTTJJ A 2051]1 ()TTTTJ2

V(;;)”'Jz 6OC£§fTTTJJ,JZ +305111CeffTTTTTJZ

v (a4

_ 37_0 a(DLLII

ng;)ulj2 TO( Sit)TTTJJ T Cézzgrkku,h)
@ 5 (Sf)TTTKK12

Vﬂﬂhhhh 5(6”' TTLJJ4 4 gf)JJlszgh)

Vﬁ)m]ﬂm 6051 C(?TTTJZAJ‘, n 30e BT 102754
€]
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TABLE XX. Relations between spin-dependent Cartesian coefficients in laboratory and Sun-centered frames for 3 < d < 6.

Laboratory Factor Sun-centered Laboratory Factor Sun-centered
=~ (3)03 »J = (3)TJ ~(6)03000 J ~(6)TJ,TTT
H B Hg ™! Gerr B et
B g FI(?QJ‘J Y B ~(?f)Jl(TTTJ)
€ €l
=~ (5)0300 A = (S)TJ,TT ~(6)0,j03 A ~(6)TKTKJ
H eff) B Heg ™' giff> ™ B iff> ]
Y = (5)J,(TTJ) Iy pl ~(6)JTTTJ,
3B B H B7p ff
€l €
Flgf) 730, B I'_“ISBKJ, TK 2 B gi?gl((JTK)J,
2B g I:ISf)J] JnT B. B ~$f)KTTTK
Iy gl = (5)J,KKJ ~(6)030/j 7 ~(6)TJ, TKK
BUp H <<eff> l ggfg o B iff> l
B B I:I(?f)TKTK ZBJlﬂJ ,.((f?J,TTTJ
€ €l
Flgf)oj'ﬁ B I‘_“Igf)TKKJ] 2l§JlﬂJ gi?f)J, (TT)KK
Ay gl = (5)JTTJ ~(6)7300j 7 ~(6)KJ,TTK
BB H iff> l giff” ! B giff> ]
BN g I:I(if)KJKJI 2B g ~(?f)J| KTJK
€ €
B. B FI(%}KTKT BN B g(?gj,(n)rr
€ €l
I:Igf)mjj B I:ISf)TJIKK B B g‘i?f)TKTTK
Uy = (5)J,TTJ ~(6)j3jkk J ~(6)JJ,JKK
2B7p H éff> ] ggff)] ! B ggff) l
B g H(?EJIJKK 4R g ~(?2], (KTKJ)
€ €l
I:ISQ(B% BI BB I':IS)TJ]JQJS B. B ~$f)TKKLL
Ay )y R = (5)J,TTJ ~(6)03033 DIy R ~(6)TT, TJyJ
2BIBZB.ﬂ Hiff)l 2 géff) B/tB2B/3 giff) 144243
B BB B i_'l(?f)JIJJZJI 2B B . B g(?f)J,TTTJZ
€l €
- ngo B fyn, T 2B Bl Bl B ~$211 (TJ) 25
Ayl ~(4)J,(TT) (61333 By 132 B ~(6)KJ,KJ,J
2B ]ﬂ eff : efg ! BUBB® eff e
g(éftf)j}j B g(zftf)KJ,K 3B BB P g(?f)K(JITJZ)K
S €l €
Zgjlﬁl g(‘&)h (1) 2B/ szgf,%ﬁf g(?f)fl (T)J275
S S
&l o

The other quantities of relevance can be obtained from
entries in this table using the relations

(d)J

d)J
Va :_V<20>’ Vi :_7‘/40 ,
a7 3 @y AJIT d)JI\ T,
Vz(m) :7‘/4(10) ’ Vz(m) = _Vz(tz) 7 (B4)

With the above results for spin-independent coefficients
in hand, we next consider spin-dependent effects. The
relations connecting the sets of spin-dependent effective
Cartesian coefficients in the laboratory frame and the Sun-
centered frame up to linear boost order can be found using
the information in Tables XX and XXI. These tables restrict

attention to coefficients with 3 <d <6 and 7<d <8,
respectively, which are the ones of relevance to our analysis
of clock-comparison experiments. Each table contains two
triplets of columns, and each triplet has the same structure
as that of Table XVIII. Taking products of the second and
third entries in a row and summing over rows relevant to the
chosen laboratory-frame coefficient yields the desired
equation converting the effective Cartesian coefficients
from the laboratory to the Sun-centered frame, as before.

In parallel with the above discussion for spin-indepen-
dent effects, the analysis of experiments is facilitated by
translating nonrelativistic coefficients for Lorentz violation
in the laboratory frame to expressions involving effective
Cartesian coefficients in the Sun-centered frame. Adopting
the assumptions leading to Eq. (B1), the spin-dependent

036003-31



V. ALAN KOSTELECKY and ARNALDO J. VARGAS

PHYS. REV. D 98, 036003 (2018)

TABLE XXI. Relations between spin-dependent Cartesian coefficients in laboratory and Sun-centered frames for 7 < d < 8.
Laboratory Factor Sun-centered Laboratory Factor Sun-centered
7(7)030000 iJ = (DTHTTTT ~(8)0300000 B ~(8)TJ,TTTTT
H e B Hep ™ Geft B err
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2B lﬁ Heff ] B ﬂ eff
Bl Hgf)JlKJKLL 4BN g ~£§f)J1(JTKK)TT
gl (1), KTTKJ D pl ~(8)J,KTJKLL
2Bp Héff) ' 2B ot
B 7 (1 TKTKJJ ~(8)030;jkk B ~(8)TJ,TKKJJ
B-p H e et B err
Flggomkk BN I':Igf)TJ,KKLL 4B g ,.Sf)JlTTTJKK
Bl Hgf)JIJLLKK 287 ~£§f)11 (JT)LLKK
BJi gl 7 (1) TTIKK ~(8)0,0jkk3 B ~(8)TKTKLLJ
4B p Héfg | gifg O B g® |
£(7)0ijkk3 B g TKKII, B-p _(8)KTTTKLL
eff eff eff
B Hgf)LJLKK!, 287 ggf)K(JT)KLLJI
_3pNip ~ (1\T(KKJ)J,T _3pNg’ ~(8)T(KKJ)TTJ
3B7p H ] 3B7p Geft I
2 7 (T)KTTKLL ~(8)/300,33 Y ~(8)KJ, TTKJ,J
B-p Hiff) ggfr?j ! BLbmp e(:tf) .
(71030033 B R FDTHTT] s 2B BRBR g(S)JlKleKJ3
eff eff eff
33BN BJZBJ3ﬂj ﬁgf)h (JTT)JJ5 3B BB -p NSf)K(JlJzT)TTK
28" BB B Flggjlrrrnz 281 BB ~ggj.(JT)TTJZJ3
I:I(Zf) 730733 B BB H(zf)lu,nazj3 g(§20j0j333 BRI BB ~(§f)TKTKJIJZJ3
€ [& [& [&

2N BB
BJI BJZBJ3ﬂJ
_3311 BJZB . ﬁ

i_‘lgf)h (JT)TJyJ;5

i7(7)
Heff

J1KIKJ>J,

(7)K(TJ,J,)TK
HOKI)

3B\ BB - p
BIBBp
2B BRI

~(8)KTTTKJ J,
eff
~(8)JTTTJ JyJ5
eff
~(8)K(JT)KJ J2J;3
eff
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TABLE XXI. (Continued)

Laboratory Factor Sun-centered Laboratory Factor Sun-centered
7(7)0/7333 By Bl Bl (7 TKKJ,J,J; ~(8)030/33 BRI B ~(8)TJ, TKKJ,J
Heff BBB Heff e eff B1B7B eff ] o
3BIBB B Hgf)KTTKJIJQ 2B BB - giffsf)J,TTleKK
B BB Hgt)JTT] A 28BN B2 gSQJ,TTTthJ
B BB HggKJKjllzlg 2B BRBE ~i§f)1, (JT)J,J5KK
7(7)0333 BRI R 7 (1)TJ, KKJ,J ~(8)0300033 UL ~(8)T\ TTTJ,J;
Heff B1B7B Heff I o eff B1B7B eff I o
2B BB B Hgf)JITTJZKK 4B BB ~£§2J|(TTTJ)JZJ3
2B BB Hgf)J,Tlezh 2B BB ~£§f)1,TTTTT12
By B> Bl gl 71 JKKJ,J ~(8)0303333 B R R Bl s ~(8)TT T, 03,
B/'B Bzﬂ Heffl 3 it B/ 'B2B/3 B4 B Tort 11J2J3J4J5

~(8)J1(JT)J2T3]4J5
eff
~(8)J\TTTJ,J3 ]y
eff

2B BB BB B
4B BB BB -

nonrelativistic coefficients can be approximated in terms of
spherical coefficients as

NR 0B)

k]m ~ Zmd Ik k+ )Tl(cp)15 >’

NR(1B) d-3—k )(1B) JU 4+ 1), (a)08)
k]m sz < kjm + TTkjm :

(BS)

The spherical coefficients can then in turn be converted to
effective Cartesian coefficients using the results in
Appendix A. The conversion can be implemented to linear
boost order via Eq. (B2), where the zeroth-order term is
again given by Eq. (25).

At linear boost order, the relevant spin-dependent non-
relativistic  coefficients TkNRO(qB)((’)(ﬂ)) have m =0.
Expanding them in powers of the unit vector B’ along
the magnetic field, we obtain

)
B'=0

NR(¢B)
7 o) - (Z
_ A 3{ZT 0
2j+1 j+1

kjO aﬂj
+ZTSBJJ JZJSﬂJBLBJzBJg

VI J2d3 4 ST1 DT> DI DI4 D
+§ :TsBkj 24344 SﬂJBJIBJZBJ3BJABJ5:|’

(B6)

(d )“l " with d —3 — k < 0 vanish,

Explicit expressions for nonvamshmg T(()B)le 7

of effective Cartesian coefficients in the Sun-centered
frame can be found in the first two columns of
Table XXII and by using the relations

where the quantities T

" in terms

)] 77 77 14 (s
TE)B),23] = _T(<)B)211’ T(()B) L= ?TE)B)M]’

T(d)JJIJzJ3

A5, S ()
@520, _ r@i S qia,

(d)J T, J5J-
—Topas " 0845 ~ g 0B4 (B7)

The nonvanishing quantities T(] B) Z‘ -

second pair of columns of Table XXII.

In working with these results, the reader is cautioned that
the coefficients T and 7 ; m( B with j = k+1 are
linearly dependent at Zeroth order in |p|,,/m,, because the

"®) Vanish for j=k+1. One

implication of this, for instance, is the existence of the
relationships

" are compiled in the

spherical coefficients T\ kjm

k+2 (au,

ey
2(k—|- 1) 0B.k(k+1)°

1B.k(k+1) —

k+2 (d)J 1723

T(d)”ﬂzfa _
Z(k—l— 1) 0B.k(k+1)°

1Bk(k+1) —

k+2 (d)J1J 3745

T(d)lejzhfds _
2(k+ 1) 0B.k(k+1)

1B k(k+1) (B8)

that link the quantities with subscripts OB and 1B.
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TABLE XXIL The quantities T4y " and 709% " for 3 <d <8,
Té‘gif' M Combination Tg‘é)’if' M Combination
= ()] = (5)J,(JTT) = (G)T(JI)T
T(%){)Jl' —Hg' T@Z‘ — L (150" +2Hg !
i 2" HOEID 2R
B € € €
= (5)J,(JTT -
T 3 A5,
6)JJ ~(6)J,(JTTT 6)J7 6)J,(JTTT ~(6)T(J,J)TT
i s i 005 T 125
T(()7B) {) Jll -5 Hgf)JI(JTTTT) n 48g(?121,(rmk) 187 (“) (WJT)K
[ e
8)JJ ~(8)J,(JTTTTT ~(6)TKTTK
Topor 6ga " +2155" " "6,5,)
(7)J1(TTTTJ) (NT(J,J)TTT
i VORGP 4 o i o
+2H$f)TKTK5” ) +30H£ff)Jl(TTJKK) _ 12Héff)K(TTJJ|)K
T(6)JJ[ _% (3§é?gJ(J|KK) + 4~éff)T(J )TT +8i]<7>TKTTTK5 )
0B.21 eff JJ,
37 (;f)T(JlKK)J I zg(?f)TKTTK 517 T(Izjg)szl, (30~<§f \(JTTTTT) 487 f;f)T(JIJ)TTTT
E €] 1 B C e
aos 6 (3H J(J,KK)TT I 6 T KKITI 8~(8 \(TTTJKK) 20@ K(JJTTT)K
0B,21 5 eff eff Yett eff
= (DT J)TTT ~ (1) TKTTTK ~(8)TKTTTTK
+ARGTITT o) 851,) +938 851,)
8)J(J,KK)TTT ~(8)T(J,KK)TTJ ~(7)J,(JTTKK 7)K(JJ,)KLL
i 2T oy i & (ORI gy R
147 Sf)T(J \TTTT n 2~£ff)TKTTTTK6H ) +15Hgf)J](JLLKK I SHeff T(JJ,LL)T
T(();).ZJII (16H(7)T(J11KK) n 5H(7)J(J, KKLL) +161:1(Zf TKKLLT gy, )
B (&
14 [:'I(Zf)TKKLLT 510.) T(Sg)ﬁ] ( 8~(ff§f) \(JTKKLL) g(?f)K(JJ \T)KLL
€ 1 5 C €l
T(()i)i]]‘ _%(16§§§2T(J|JKK)TT + Sggf)l(llKKLL)T 48 S:r)T(KKJ WJ)TT + 42~( _) \(JLLTTT)
8
~(8)T(J,KKLL)J ~(8)TKKLLTT ~(8)TKKLLTT
+5 gff> v Y14 gff) 851,) +9 gff) &)
T(s)u AN Hgf” I3y oIl H( VTJ2TT5 T(l;).{é] {5‘ (15 Heff \(JKKTT)
T(()?JZJSIJZ[; 6(9(?211(””2!* 5 (6)T1213TT) 2H£“)K(JJ1)KLL + SHggll(JLLKK)
€
JI(JTT)J,J TI,J3TTT NT(JJ,LL ~ (1) TKKLLT
Tl BT g G T 2
8)J,(JTKKLL
T((E;)Jzé 1125 40“(8) 1(JTTT)J 205 T(Ea),{é] \/_(12 o

(1)JJ172J03
TOB,43

T 87711275
Top43

T 12T304s
0B.45

O] 120345
0B.45

206111ff(8)T(12J3)TTTT
% (Sl:'lgf)T(Jlllzh)T + SI:Igf)JU‘““Km
+125”1H( T2 KKT T

18,43
8 JJJrJ
_10 (8 éﬂ) ( 172 3)

5~§1§f) (J1J2J5KK)T " 5~e§f)r(1,12131<1()J

J2J3KK)TT
+125]!] ) (V273 ) )
(1)JJ1J2d30 4T 5 77, 77(NTJ2J3J4JsT
H; + 6 H iy
(8)JJ1J2J3JydsT | ~(8)TJ1J5J304d5] (810,27
N h h - 14293
=5(Gerr + Getr Tipa

44877 géffif)”zlm]sn)

~(8)K(JJ,T)KLL 8)T(KKJ,J)TT
+6 eff 8g£ff) 1
~(8)J,(JLLTTT) | ~(8)TKKLLTT
+18 éff> )+ géff) 57)

V6 (12H£tf> (I J203)K

+5H 7)/(1 J,J5KK) 27[:1(7f)JI(JTT)JZJ3

()T(JJ1J2J3)T
4Heff ’

+126"1 Hyg,
4368/ H(7)K(1213TT)K)

~(8)K(JJ J,J3T)K
\/'(]Oeff< 20

8g§f)T(]J V2T _ g Sf)/, (JKKT)J,J3
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