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We compute the homogeneous limit of nonhydrodynamic quasinormal modes (QNMs) of a phenom-
enologically realistic Einstein-Maxwell-Dilaton (EMD) holographic model for the quark-gluon plasma
(QGP) that is able to i) quantitatively describe state-of-the-art lattice results for the QCD equation of state
and higher-order baryon susceptibilities with 2þ 1 flavors and physical quark masses up to the highest
values of the baryon chemical potential currently reached in lattice simulations, ii) describe the nearly
perfect fluidity of the strongly coupled QGP produced in ultrarelativistic heavy-ion collisions, and iii) give
a very good description of the bulk viscosity extracted via some recent Bayesian analyses of
hydrodynamical descriptions of heavy-ion experimental data. This EMD model has been recently used
to predict the location of the QCD critical point in the QCD phase diagram, which was found to be within
the reach of upcoming low-energy heavy-ion collisions. The lowest quasinormal modes of the SOð3Þ
rotationally invariant quintuplet, triplet, and singlet channels evaluated in the present work provide upper
bounds for characteristic equilibration times describing how fast the dense medium returns to thermal
equilibrium after being subjected to small disturbances. We find that the equilibration times in the different
channels approach each other at high temperatures, but they are well separated at the critical point.
Moreover, in most cases, these equilibration times decrease with increasing baryon chemical potential
while keeping the temperature fixed.
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I. INTRODUCTION

For more than a decade ultrarelativistic heavy-ion
collisions [1–5] have been used to probe many different
aspects of QCD under extreme conditions that defy a
complete description from first principles or even from a
single effective model or theoretical framework. In fact, the
spacetime evolution of the rapidly expanding fireball
produced in such collisions involves out-of-equilibrium
real-time phenomena in a strongly coupled nonconformal
quark-gluon plasma (QGP) [6–8], a crossover transition
towards a hadron-dominated phase [9,10], and finally the
subsequent freeze-out and hadronic decay stages.

The QGP formed in these collisions possesses a small
shear-viscosity to entropy-density ratio (η=s) and a non-
trivial profile for the bulk-viscosity to entropy-density
ratio (ζ=s) [11–20], while the relationship between the
local energy density and pressure of this rapidly out-of-
equilibrium evolving system is well described in practice
(see, e.g., Refs. [21–23]) by lattice QCD results computed in
equilibrium. These three key ingredients are present in the
bottom-up Einstein-Maxwell-Dilaton (EMD) holographic
model of Ref. [24], which has been recently employed to
provide a phenomenologically plausible prediction for the
location of the long-sought QCD critical end point (CEP)
[25–28]. Indeed, the EMD model of Ref. [24] is uniquely
able to simultaneously achieve the following [24,29]1:
(1) Predict and match at the quantitative level state-of-

the-art lattice results [31,32] for the QCD equation
of state and higher-order baryon susceptibilities with
2þ 1 flavors and physical quark masses at finite
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1The hydrodynamic viscosities predicted by the refined EMD
model of Ref. [24] are close to the results already published in
Ref. [29], which used the previous version [30] of the model’s
parameters.
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baryon density up to the highest values of baryon
chemical potential (μB ∼ 600 MeV) currently reached
in lattice simulations.

(2) Describe the nearly perfect fluidity of the strongly
coupled QGP encoded in the small value of η=s
[16,17].2

(3) Describe the dynamical effects associated with the
nonconformal nature of the QGP encoded in a
nontrivial ζ=s profile which peaks in the crossover
region [18,19], in accordance with phenomenologi-
cal expectations [34,35].

The CEP location in the plane of temperature and baryon
chemical potential was estimated to lie at ðTCEP; μCEPB Þ∼
ð89; 724Þ MeV. Moreover, in Ref. [24] a chemical freeze-
out analysis was also pursued providing the following
estimate for the CEP location in terms of the center-of-mass
energy of the collisions:

ffiffiffiffiffiffiffiffiffi
sCEPNN

p
∼ 2.5–4.1 GeV. This pre-

diction will soon be tested in upcoming low-energy heavy-
ion collisions, such as the fixed-target experiments at RHIC
[36] and later theCompressedBaryonicMatter experiment at
FAIR/GSI [37].
By disturbing the equilibrated charged black hole back-

grounds which are static solutions of the EMD holographic
model, and solving the linearized equations of motion for
the corresponding perturbations with some adequate
Dirichlet boundary conditions, one obtains the spectra of
quasinormal modes (QNMs) of the theory associated with
the response of the medium to these disturbances [38,39].
In more general situations comprising far-from-equilibrium
dynamics, the QNMs describe the linear part of the
decaying perturbations of the medium as it approaches
thermal equilibrium. Consequently, as discussed, e.g., in
Ref. [40], the longest-lived nonhydrodynamic QNMs3 with
the lowest imaginary part (in absolute value) provide upper
bounds for characteristic equilibration times of the late
linear stage of the full nonlinear evolution of the medium.
In fact, it has been explicitly shown, e.g., in Ref. [41] that
the lowest QNMs of a top-down conformal holographic
plasma with a critical point quantitatively describe the late-
time behavior of the full nonlinear far-from-equilibrium
evolution of the system. On the other hand, earlier non-
linear stages are beyond the scope of these characteristic
equilibration times extracted from the QNM analysis and,
thus, in general one cannot read, e.g., the isotropization and
thermalization times of the medium without performing
numerical simulations and following the full nonlinear
evolution of the system.

Herewe initiate the study of how the presence of a critical
point affects the nonequilibrium behavior of strongly
coupled (nonconformal) baryon-dense holographic models.
In this work, we investigate the behavior of the lowest,
homogeneous nonhydrodynamic QNMs of the bottom-up
EMDmodel of Ref. [24] up to the critical region, fromwhich
we extract upper bounds for characteristic equilibration
times of the hot and baryon-dense QGP specifically in the
regime of linearized homogeneous perturbations. As will be
shown throughout this paper, these equilibration times of
the plasma in different channels are generally reduced by
increasing the baryon chemical potential while keeping the
temperature fixed.
We also remark that, as will be discussed in more detail

in the conclusions, the dynamical universality class [42] of
large-Nc theories, like the present holographic model, is
likely to be of type B [43], while QCD is expected to be in
the type H dynamical universality class [44]. Therefore,
one must be careful and keep this distinction in mind when
applying holographic models to obtain insights for dynami-
cal critical phenomena in real QCD.
In this paper, we use a mostly plus metric signature and

natural units, i.e., ℏ ¼ c ¼ kB ¼ 1.

II. EMD HOLOGRAPHY AND
THERMODYNAMICS

In this section we give a very brief review of the basic
properties of the EMD holographic model of Ref. [24] and
its main thermodynamic results. For detailed discussions
including technical details on numerics we refer the
interested reader to the aforementioned work.
The construction of bottom-up dilatonic holographic

models seeded with some phenomenological inputs in
order to mimic the behavior of the QGP at finite temper-
ature was originally proposed in the seminal work of
Ref. [45] and extended to nonzero baryon densities in
Refs. [46,47]. The dilaton field is used to dynamically
break conformal symmetry in a very specific way dictated
by the phenomenological inputs used to engineer the
holographic model. Gauge/gravity [48–51] models con-
structed in this way may then be used to provide estimates
for a large variety of physical observables in the QGP
[24,29,30,46,47,52–59].
The bulk action of the EMD model is given by

S¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R−

ð∂μϕÞ2
2

−VðϕÞ−fðϕÞF2
μν

4

�
; ð1Þ

where κ25 ≡ 8πG5 is the five-dimensional Newton’s con-
stant. The action (1) is accompanied by some boundary
terms which will play no role in the calculations carried out
here and, therefore, we omit them. In Eq. (1), the dilaton
potential VðϕÞ and the Maxwell-dilaton coupling fðϕÞ
are free functions of the bottom-up EMD construction.

2This point is the only feature shared with other holographic
models as it stems from the general result derived in Ref. [33].

3Nonhydrodynamic QNMs correspond to collective excitation
modes of the system that possess nonzero frequencies even in the
homogeneous regime of perturbations with zero wave number.
Those are very different from the so-called hydrodynamic modes,
such as a sound wave, whose excitation frequency satisfies the
condition limk→0ωsoundðkÞ ¼ 0.

ROUGEMONT, CRITELLI, and NORONHA PHYS. REV. D 98, 034028 (2018)

034028-2



There are also two free parameters given by the gravita-
tional constant κ25 and the radius L of the five-dimensional
asymptotically anti–de Sitter (AdS) spacetime. Without any
loss of generality, we set L ¼ 1 and consider instead a
scaling factor Λ corresponding to a fixed energy scale
employed to convert observables with mass dimension p
evaluated on the gravity side of the holographic duality,
which are naturally computed in units of L−p, to physical
units of MeVp on the gauge theory side of the holographic
correspondence.
The free functions and parameters of the bottom-up

EMD model were dynamically fixed in Ref. [24] by
matching the holographic equation of state and second-
order baryon susceptibility evaluated at μB ¼ 0 to the
corresponding QCD results obtained in state-of-the-art
lattice simulations [32,60,61],

VðϕÞ ¼ −12 coshð0.63ϕÞ þ 0.65ϕ2 − 0.05ϕ4 þ 0.003ϕ6;

κ25 ¼ 8πG5 ¼ 8πð0.46Þ; Λ ¼ 1058.83 MeV;

fðϕÞ ¼ sechð−0.27ϕþ 0.4ϕ2Þ þ 1.7sechð100ϕÞ
2.7

: ð2Þ

We remark that results for any other observable, apart from
the ones used to fix the EMD parameters in Eq. (2), follow
as legitimate predictions of the EMD holographic model.
The static and homogeneous charged black hole back-

grounds describing isotropic and translationally invariant
thermal states at finite density in the gauge theory are
obtained by numerically solving the EMD equations of
motion, where the ansatz for the EMD fields may be written
as follows [46]:

ds2 ¼ e2AðrÞ½−hðrÞdt2 þ dx⃗2� þ dr2

hðrÞ ;

ϕ ¼ ϕðrÞ; A ¼ Aμdxμ ¼ ΦðrÞdt: ð3Þ

The black hole horizon is located at the value of the radial
coordinate corresponding to the largest zero of hðrHÞ ¼ 0,

while the boundary of the asymptotically AdS5 spacetime
lies at r → ∞. The set of coupled second-order differential
equations of motion for the EMD fields may be numerically
solved following the method discussed in Ref. [24] by
choosing values for a pair of initial conditions correspond-
ing to the value of the dilaton field at the horizon (ϕ0) and
the value of the derivative of the Maxwell field at the
horizon (Φ1). Each value chosen for the pair of initial
conditions ðϕ0;Φ1Þ generates a numerical charged black
hole background associated with a definite thermal state at
finite baryon density in the gauge theory. By constructing
an ensemble of charged black holes, one populates the
ðT; μBÞ phase diagram and may then proceed to evaluate a
wealth of different physical observables.
In Fig. 1 we show compare the holographic EMD

predictions for the sixth- and eighth-order baryon suscep-
tibilities [24] and the very recent lattice QCD results of
Ref. [62].4 One notes that the EMD predictions are in good
quantitative agreement with first-principle lattice QCD
results. As far as we know, when it comes to the baryon
susceptibilities, the only other model currently available in
the literature which has also achieved a high level of
quantitative agreement with lattice results is the cluster
expansion model of Ref. [63]. Moreover, in Ref. [24] the
EMD predictions for the pressure and the baryon charge
density at finite temperature and baryon chemical potential
were compared to the lattice results of Ref. [31], where
excellent quantitative agreement with state-of-the-art lattice
QCD simulations was obtained.
By analyzing the behavior of the baryon susceptibilities

in the EMD model beyond the region of the phase
diagram currently probed by lattice simulations, in
Ref. [24] we predicted the QCD CEP to be located at
ðTCEP; μCEPB Þ ∼ ð89; 724Þ MeV. As mentioned in Sec. I, a

FIG. 1. Sixth- and eighth-order dimensionless baryon susceptibilities χn ≡ ∂nðP=T4Þ=∂ðμB=TÞn predicted by the EMD model in
Ref. [24] compared to the very recent lattice QCD results from Ref. [62].

4Even though the lattice simulations of Ref. [62] are done with
2þ 1þ 1 flavors, in the range of temperatures considered in
Fig. 1 the results agree with lattice QCD simulations with 2þ 1
flavors [10].
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chemical freeze-out analysiswas also carried out inRef. [24]
and the following window for the critical region in terms of
the center-of-mass energy of the collisions was found:ffiffiffiffiffiffiffiffiffi
sCEPNN

p
∼ 2.5–4.1 GeV. Though these values of

ffiffiffiffiffiffiffiffi
sNN

p
are

lower than the upcoming Beam Energy Scan II at RHIC,
planned fixed-target experiments also at RHIC [36] and
future low-energy heavy-ion collisions at FAIR/GSI [37]
should be able to investigate the baryon-rich system formed
at these low energies.
We close this section by remarking that our motivation

here to use the bottom-up EMD holographic model of
Ref. [24] is that it provides a very practical way to estimate
how a strongly coupled QGP at finite temperature behaves
at moderately large baryon density in and out of equilib-
rium. This is still beyond the scope of first-principle lattice
QCD calculations and, thus, our knowledge about the QGP
in this regime must rely on effective models that display
some of the QGP’s well-known essential features, such as
its nearly perfect fluidity in the crossover region. Moreover,
in this type of framework, it is mandatory to have at least
the thermodynamics of the system (in the regime amenable
to the lattice) under investigation properly described, a
nontrivial feature displayed by the model of Ref. [24] as
discussed above. Also, we note that we are assuming that in
the range of the ðT; μBÞ plane we are interested in the
system is still sufficiently strongly coupled and behaves as
a nearly perfect fluid. This is clearly not the case at very
large temperatures (where a weakly coupled description
must hold [64]) or at very low temperatures in the hadron-
dominated phase.
Furthermore, we also remember that, as discussed in

detail in Refs. [24,30,45–47,52], in the kind of bottom-up
EMD holographic model used here, the flavor dynamics at
the boundary is effectively encoded in the bulk dilaton
potential VðϕÞ and Maxwell-dilaton coupling function
fðϕÞ. The phenomenological applicability of such an
approach must then be empirically checked by comparing
the predictions of the EMD model with the corresponding
phenomenology intended to be described. In what regards
thermodynamics and hydrodynamics of the strongly
coupled QGP with 2þ 1 flavors and physical quark
masses, as emphasized by items 1–3 of Sec. I, the EMD
model of Ref. [24] has so far an unmatched degree of
simultaneous quantitative agreement with many different
QCD results, providing strong empirical evidence of the
phenomenological applicability of this kind of effective
holographic approach.

III. QUASINORMAL MODES AND
EQUILIBRATION TIMES

Quasinormal modes [38–40,65–67] in some nonconfor-
mal dilatonic holographic models have been analyzed, for
instance, in Refs. [68–74]. In the context of EMD holog-
raphy at finite baryon chemical potential, some results for

the SOð3Þ quintuplet channel (to be discussed below) but
still far from the critical regime have been discussed by
some of us in Ref. [30] using a previous version of the
EMD model.
As discussed in detail in Ref. [47], for an EMD model at

finite temperature and chemical potential in the homo-
geneous regime of zero-wave-number disturbances, the
physically relevant gauge and diffeomorphism-invariant
linearized perturbations of the system are organized into
different representations of the SOð3Þ rotational symmetry:
the quintuplet, triplet, and singlet channels. By considering
a wave-plane profile for these perturbations, one can derive
linearized equations of motion, whose solutions expanded
asymptotically close to the boundary typically possess a
leading non-normalizable mode and a subleading normal-
izable mode for each perturbation. According to the holo-
graphic dictionary, the leading modes act as sources for
local gauge-invariant operators of the dual quantum field
theory (QFT) at the boundary (e.g., the energy-momentum
tensor, vector currents, and scalar fields), while the sub-
leading modes are related to the expectation values of these
operators. By setting the subleading modes to zero as a
boundary condition and by also imposing the causal in-
falling wave condition at the black hole horizon in the
interior of the bulk, one obtains particular solutions of the
linearized equations of motion for the perturbations of
the bulk fields. By plugging them back into the action one
can calculate the thermal two-point retarded correlators of
the dual QFT. Kubo formulas relating these thermal
retarded correlators to transport coefficients of the dual
QFT may be derived using linear response theory within
the framework of the gradient expansion of the dual QFT
operators in terms of the hydrodynamic variables of the
system (e.g., the local energy and charge densities and the
local fluid flow velocity), as done, for instance, in Ref. [75].
Also according to the holographic dictionary [76], the

thermal two-point retarded correlators of the dual QFT may
be written as (minus) the ratio between the subleading and
the leading modes subjected to the in-falling wave con-
dition at the horizon. Consequently, if one now sets the
leading modes to zero as a boundary condition, one obtains
the poles of these thermal retarded correlators, which
correspond to physical collective excitations in the dual
QFT. But taking the leading modes to zero as a boundary
condition, implying that the (in-falling) perturbations must
vanish at the boundary, is exactly what defines the
eigenvalue problem for the quasinormal modes in asymp-
totically AdS geometries [38]. Therefore, by means of the
holographic dictionary, the quasinormal modes of black
holes in the bulk correspond to poles of thermal retarded
correlators of the dual QFT at the boundary.
We remark that in the in-falling Eddington-Finkelstein

(EF) coordinates, which we shall use in this section, the
causal condition for obtaining in-falling modes at the black
hole horizon is simply expressed by requiring that the
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solutions are regular at the horizon. In this case, one may
evaluate the shear viscosity by making use of a Kubo
formula that relates this transport coefficient to the retarded
two-point Green’s function of the non-normalizable per-
turbation in the SOð3Þ quintuplet channel [47]. Similarly,
by working with the perturbations of the SOð3Þ triplet and
singlet channels, one may obtain through the use of Kubo
formulas the baryon conductivity [47,55] and the bulk
viscosity [29,47] of the medium, respectively.
The spectra of QNMs of the theory is obtained by

solving the linearized equations of motion for the pertur-
bations requiring regularity at the horizon while imposing
the Dirichlet condition that these perturbations vanish at
the boundary. This means that such equations will admit
solutions only for a discrete set of complex eigenfrequen-
cies ω, which are the QNMs of the theory. In general, the
QNMs ω depend on the wave number k of the perturbations
and also on the properties of the black hole background,
with the latter translating into a dependence on T and μB. In
the present work we are only interested in analyzing the
upper bounds for characteristic equilibration times of the
medium in the regime of linear perturbations and, for this
sake, it suffices to consider only the lowest nonhydrody-
namic QNMs in the homogeneous regime with k ¼ 0,
which we will explore in this section.
We remember that the hydrodynamic QNMs may be

used to obtain the hydrodynamic transport coefficients
of the system in an alternative way to the more direct
and straightforward method of Kubo formulas previously
mentioned. This has been discussed, for instance, in
Refs. [70,77–79].
On the other hand, the nonhydrodynamic QNMs, as

discussed for instance in Ref. [40], may be used to obtain
upper bounds for characteristic equilibration times of the
linearly disturbed black holes. This is so since the lowest
nonhydrodynamic modes are the latest to be damped in the
homogeneous zero-wave-number limit. By the holographic
correspondence, these correspond to characteristic equili-
bration times of the dual plasma slightly driven out of
equilibrium.5 Moreover, as discussed in the seminal work
of Ref. [79], higher-order hydrodynamic transport coef-
ficients may be linked to the lowest nonhydrodynamic
QNMs of the system using a Borel resummation of the
asymptotic gradient expansion for hydrodynamics.
Consequently, the nonhydrodynamic QNMs, though not
describable within hydrodynamics, leave their fingerprints
in the behavior of high-order hydrodynamic transport
coefficients.
The gauge- and diffeomorphism-invariant EMD linear-

ized perturbations in the homogeneous regime of disturb-
ances with zero wave number, and their corresponding

equations of motion, were originally obtained in Ref. [47].
In the SOð3Þ quintuplet channel the relevant perturbation
is given by χ ≡ hij, where hμν is the perturbation of the
metric field and hij is any of the five traceless spatial
components of the graviton. This case will be analyzed in
Sec. III A. In the SOð3Þ triplet channel the relevant
perturbation a≡ ai represents any of the three spatial
components of the perturbation aμ of the Maxwell
field; this will be studied in Sec. III B. In the SOð3Þ
singlet channel the relevant perturbation is given by
S ≡ φ − ðϕ0=2A0Þ½ðhxx þ hyy þ hzzÞ=3�, where φ is the
perturbation of the dilaton field ϕ. We note that the
background dilaton field couples the dilaton perturba-
tion to the spatial trace of the graviton through this S
perturbation. The explicit form of the linearly perturbed
EMD fields reads as follows [47]:

ds2ðpertÞ ¼ ðgð0Þμν þ Re½e2AðrÞhμνðrÞe−iωt�Þdxμdxν;
ϕðpertÞ ¼ ϕðrÞ þ Re½φðrÞe−iωt�;
AðpertÞ ¼ AμðpertÞdxμ ¼ ΦðrÞdtþ Re½aμðrÞe−iωt�dxμ; ð4Þ

where gð0Þμν is the undisturbed background metric given
in Eq. (3).
Moreover, the S perturbation inherits the same ultra-

violet asymptotics of the background dilaton field
[41,47,70], which is the reason why in Ref. [41] it was
dubbed the “dilaton channel.” Furthermore, the SOð3Þ
quintuplet channel may also be called the “external scalar
channel” since its equation of motion (to be discussed in
what follows) equals that of a massless external scalar field
placed in the EMD backgrounds [30,47,80]. Similarly, the
SOð3Þ triplet channel may be also referred to as the “vector
diffusion” channel, since this channel is related to the
charge conductivity and the diffusion coefficient [47,55].
As discussed in Ref. [41], in a more general far-from-

equilibrium homogeneous (but highly anisotropic and
nonlinear) configuration, each of these channels are asso-
ciated with physical observables describing the full time
evolution of the medium, namely, the SOð3Þ quintuplet,
triplet, and singlet channels are associated with the pressure
anisotropy, the charge density, and the scalar condensate
(dual to the bulk dilaton field), respectively. Under fairly
general circumstances, the approach of each of these
observables toward thermal equilibrium may provide many
different characteristic relaxation time scales for themedium
[81]. The approach of the pressure anisotropy toward zero
gives us the so-called “isotropization time” of the system,
while the last equilibration time of the medium is to be
naturally identified as the actual “thermalization time” of the
system.
As explicitly shown in Ref. [41] for a top-down

conformal EMD model with a critical point describing
an N ¼ 4 super Yang-Mills plasma at finite density, the

5Far-from-equilibrium dynamics, in turn, requires the analysis
of the full nonlinear evolution of the system, which will not be
treated in the present work.
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late-time behavior of the pressure anisotropy is quantita-
tively described by linearized oscillations given by the
lowest QNM of the SOð3Þ quintuplet channel [80].
Moreover, in that case, the scalar condensate was found
to always be the last observable to equilibrate and, as such,
the thermalization time was associated with the approach of
the scalar condensate to its equilibrium value, which turned
out to be quantitatively described by the lowest QNM of the
SOð3Þ singlet channel. However, one must keep in mind
that the isotropization and thermalization times of the
system can only be computed by numerically simulating
the full nonlinear evolution of the medium, i.e., they cannot
be obtained by considering just the characteristic equili-
bration times associated with the late linear oscillations of
the system described in the QNM analysis.
In the present work, even though we are still not

investigating far-from-equilibrium properties of the phe-
nomenologically realistic EMD model of Ref. [24], from
previous considerations in the literature we expect that the
behavior of the lowest QNMs in the SOð3Þ quintuplet,
triplet, and singlet channels will provide correct descrip-
tions of the late-time dynamics of the pressure anisotropy,
baryon charge density, and the scalar condensate, respec-
tively. In this regard, the characteristic equilibration times
of the medium, which we shall obtain here by analyzing the
lowest homogeneous nonconformal QNMs of each channel
in the EMD model up to the critical region, should be more
properly seen as “lower bounds” for the full relaxation
times of the medium, since they do not take into account the
time spent by the system in earlier nonlinear stages. On the
other hand, when considering just small perturbations
around thermal equilibrium, the characteristic equilibration
times extracted from the QNM analysis indeed provide
upper bounds for how fast the disturbed system returns to
equilibrium.
Before we proceed to the evaluation of the QNMs in each

of the aforementioned channels, let us first specify the in-
falling EF coordinates by the relation

dv ¼ dtþ
ffiffiffiffiffiffiffiffiffiffi
−
grr
gtt

r
dr ¼ dtþ e−A

h
dr; ð5Þ

where v is the EF time. With this, one may easily translate
the equations of motion for the homogeneous EMD
perturbations derived in Ref. [47] in domain-wall coor-
dinates to the EF coordinates. This will be done in the
following subsections. Some technical details on the grids
employed to obtain the lowest QNMs in each channel are
deferred to the Appendix.

A. SO(3) quintuplet channel

The equation of motion for the χ perturbation of the
quintuplet channel in EF coordinates reads [30]

χ0ðrÞ
�
4A0ðrÞ − 2iωe−AðrÞ

hðrÞ þ h0ðrÞ
hðrÞ

�
−
3iωe−AðrÞχðrÞA0ðrÞ

hðrÞ
þ χ00ðrÞ ¼ 0: ð6Þ

This is a linear second-order differential equation which
must be solved with appropriate boundary conditions in
order to find the corresponding QNMs. As discussed before,
the boundary conditions to be imposed are that the solutions
must be regular at the black hole horizon and vanish at the
boundary.
In order to numerically integrate the equation of motion

(6) from the horizon up to the boundary6 we need to specify
the values of the χ perturbation and its derivative at the
horizon. One may simply set χðrHÞ ¼ 1, while the expres-
sion for its derivative may be obtained by Taylor expanding
the χ perturbation and the background around the horizon
and plugging these expansions back into Eq. (6), which
then becomes an algebraic equation for χ0ðrHÞ whose
solution is given by [30]

χ0ðrHÞ ¼ −
3A1ω

2ωþ i
; ð7Þ

where A1 is the value of the derivative of the background
field AðrÞ evaluated at the horizon [which is itself a
function of the initial conditions ðϕ0;Φ1Þ [24]].
Now that we have the initial conditions ðχðrHÞ; χ0ðrHÞÞ

required to initialize the numerical integration of Eq. (6),
we take the following steps [30]:

(i) We construct a grid of backgrounds on top of which
we shall obtain the QNMs as functions of ðT; μBÞ.
The background grid considered in this work is
discussed in the Appendix.

(ii) We construct at each point within the aforemen-
tioned background grid a rough grid of complex
frequencies ω which are seeded to the differential
equation (6) to be numerically integrated at each
point within this ω grid. The rough ω grid we
consider in this work has a numerical step size of
0.03 between consecutive points in both the real and
imaginary directions of the complex ω plane.

(iii) Once the previous step is accomplished, we apply
a shootingmethod upon theω grid generated for each
point of the background grid. In this shootingmethod
we begin by picking some value for jχj evaluated at
the boundary of the background spacetime and then
we lower its value until we can clearly identify
isolated clusters of complex eigenfrequencies with

6Equation (6) is expressed in the numerical coordinates
discussed in detail in Ref. [24]. As also discussed in that
reference, the final results are to be written in the standard
coordinates and, as shown in Ref. [56], the dimensionless
combination ω=ð2πTÞ expressed in the standard coordinates is
simply given by twice the value of the quasinormal eigenfre-
quency obtained in the numerical coordinates.
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small values of the perturbation at the boundary.
Since we are only interested in computing the lowest
nonhydrodynamic QNM ω0, we pay attention to the
cluster with the lowest imaginary part (in absolute
value) and keep decreasing the boundary value of jχj
until only one point remains within that cluster.

(iv) Next, we take these rough estimates of ω0 for each
background point as the centers of finer ω grids
constructed with a numerical step size of 0.002
between consecutive points in both the real and
imaginary directions of the complex ω plane. We
again solve Eq. (6) on top of these finer ω grids and,
for each point on the background grid, we store the
eigenfrequency associated with the lowest value of
jχj at the boundary.

In principle, one may repeat this process of ω-grid
refinement until the desired numerical accuracy is reached.
Moreover, by enlarging the ω-grid size one may also
identify excited QNMs besides the lowest one.7 The same

shooting method for obtaining the QNMs, which was
previously employed in Ref. [30], will also be used in
the next subsections.
The results for the lowest QNM ω0 of the quintuplet

channel up to the critical region are shown in Fig. 2, where
we also plot the results for the corresponding equilibration
time given by minus the inverse of the imaginary part ofω0.
As a basic consistency check of the numerics, we note that
at high T the real and imaginary parts of ω0 do return to the
correct ultraviolet conformal results [30,68]. One also
observes that at fixed temperatures the equilibration time
in this channel always decreases with increasing baryon
chemical potential.
From the bottom plot in Fig. 2 one can immediately read

some reference values for the equilibration time of the
quintuplet channel, e.g., at ðT; μBÞ ∼ fð400; 0Þ; ð145; 0Þ;
ð89; 724Þg MeV the corresponding equilibration times
are, respectively, τeq ∼ f0.06; 0.26; 0.33g fm=c, with the
last point corresponding to the equilibration time at the
CEP. By comparing this result with those from the next
two subsections, we shall see that the equilibration time
in the quintuplet channel is the shortest relaxation time of
the system.

FIG. 2. Absolute value of the real part of the lowest QNM in the SOð3Þ quintuplet channel (top left), the imaginary part of the lowest
QNM (top right), the dimensionless combination given by the temperature times the equilibration time (bottom left), and the
equilibration time measured in units of fm/c (bottom right) as functions of temperature for different values of the baryon chemical
potential. In the upper panels we plot both the calculated points and the interpolated curves between them.

7In this work, we use rough ω grids with the real part spanning
the interval ½−2; 2� and the imaginary part spanning the interval
[−2; 0.1].
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B. SO(3) triplet channel

The equation of motion for the a perturbation of the triplet channel in EF coordinates reads

a00ðrÞ þ a0ðrÞ
�
2A0ðrÞ þ h0ðrÞ − 2iωe−AðrÞ

hðrÞ þ f0ðϕÞϕ0ðrÞ
fðϕÞ

�

þ aðrÞe−2AðrÞð−f2ðϕÞΦ0ðrÞ2 − iωeAðrÞðfðϕÞA0ðrÞ þ f0ðϕÞϕ0ðrÞÞÞ
fðϕÞhðrÞ ¼ 0: ð8Þ

As before, one may simply set aðrHÞ ¼ 1 and work out its derivative at the horizon,

a0ðrHÞ ¼
�
170sechð100ϕ0Þ

�
−27ωðA1 − 100ϕ1 tanhð100ϕ0ÞÞ þ 20iΦ2

1sech

�
1

100
ð27 − 40ϕ0Þϕ0

��

þ sech

�
1

100
ð27 − 40ϕ0Þϕ0

��
−27ω

�
100A1 þ ð80ϕ0 − 27Þϕ1 tanh

�
1

100
ð27 − 40ϕ0Þϕ0

��

þ 1000iΦ2
1sech

�
1

100
ð27 − 40ϕ0Þϕ0

��
þ 2890iΦ2

1sech
2ð100ϕ0Þ

�.�
270ð2ωþ iÞ

�
17sechð100ϕ0Þ

þ 10sech

�
1

100
ð27 − 40ϕ0Þϕ0

���
; ð9Þ

FIG. 3. Absolute value of the real part of the lowest QNM in the SOð3Þ triplet channel (top left), the imaginary part of the lowest QNM
(top right), the dimensionless combination given by the temperature times the equilibration time (bottom left), and the equilibration time
measured in units of fm=c (bottom right) as functions of temperature for different values of the baryon chemical potential. In the upper
panels we plot both the calculated points and the interpolated curves between them.

ROUGEMONT, CRITELLI, and NORONHA PHYS. REV. D 98, 034028 (2018)

034028-8



where ϕ1 is the value of the derivative of the dilaton field
evaluated at the horizon [which is itself a function of the
initial conditions ðϕ0;Φ1Þ [24]]. The general steps used
to numerically obtain the QNMs are the same as those
discussed in the previous section.
In Fig. 3 we show the results for the lowest non-

hydrodynamical QNM in the triplet channel, as well as
the corresponding equilibration times. As a basic con-
sistency check of the numerics, one notes that at high T
the real and imaginary parts of ω0 go to their correct
ultraviolet conformal results, which are known analyti-
cally for the vector diffusion channel [38]. In the
present case, one notes that for T ≲ 215 MeV the
equilibration time is reduced by increasing the baryon
chemical potential at fixed temperature, but at T ∼
215 MeV all of the curves with different fixed μB meet
at the same crossing point, while for T ≳ 215 MeV the
equilibration time slightly increases with increasing
baryon chemical potential at fixed temperatures. This
is more clearly illustrated in Fig. 4, where we also plot

the results for the baryon DC conductivity in the
refined EMD model of Ref. [24].8 Intriguingly, we
observe that the baryon conductivity, which is the
transport coefficient extracted from the SOð3Þ triplet
channel, also displays a crossing point, although at a
lower temperature than the equilibration time of this
channel.
From Fig. 3 one reads some reference values for the

equilibration time in the triplet channel, e.g., at ðT; μBÞ ∼
fð400; 0Þ; ð145; 0Þ; ð89; 724Þg MeV the corresponding
equilibration times are, respectively, τeq ∼ f0.08; 1.00;
2.15g fm=c, with the last point corresponding to the
CEP. At ðT; μBÞ ∼ ð145; 0Þ MeV and at the CEP the
equilibration times of the triplet channel are the longest
in comparison with the results from the other two channels.

FIG. 4. In the upper panels we zoom in on the region containing the crossing point for the equilibration time in the SOð3Þ triplet
channel. In the bottom panel we plot the result for the baryon DC conductivity, which also displays a crossing point (although at a lower
temperature).

8This is very similar to the baryon conductivity calculated in
Ref. [55] using the previous version of the EMD model [30].
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C. SO(3) singlet channel

The equation of motion for the S perturbation of the singlet channel in EF coordinates reads

ðe−2AðrÞSðrÞð−18A0ðrÞ2f0ðϕÞ2Φ0ðrÞ2 þ fðϕÞð3A0ðrÞ2ð8e2AðrÞhðrÞϕ0ðrÞ2
− 6e2AðrÞV 00ðϕÞ þ 3f00ðϕÞΦ0ðrÞ2Þ þ 6A0ðrÞϕ0ðrÞðe2AðrÞðh0ðrÞϕ0ðrÞ − 2V 0ðϕÞÞ
þ f0ðϕÞΦ0ðrÞ2Þ − 54iωeAðrÞA0ðrÞ3 − e2AðrÞhðrÞϕ0ðrÞ4ÞÞÞ=ð18fðϕÞhðrÞA0ðrÞ2Þ

þ S0ðrÞð4hðrÞA0ðrÞ − 2iωe−AðrÞ þ h0ðrÞÞ
hðrÞ þ S00ðrÞ ¼ 0: ð10Þ

As in the previous sections, one may set SðrHÞ ¼ 1 and work out its derivative at the horizon,

S0ðrHÞ ¼
�
2430000iA1ω −

�
40ϕ1

�
2000Φ2

1ϕ0 tanh

�
1

100
ð27 − 40ϕ0Þϕ0

�
sech

�
1

100
ð27 − 40ϕ0Þϕ0

�

− 425000Φ2
1 tanhð100ϕ0Þsechð100ϕ0Þ − 675Φ2

1 tanh

�
1

100
ð27 − 40ϕ0Þϕ0

�
sech

�
1

100
ð27 − 40ϕ0Þϕ0

�

− 243ϕ5
0 þ 2700ϕ3

0 − 17550ϕ0 þ 6750ϕ1 þ 102060 sinh

�
63ϕ0

100

���
=ðA1Þ

þ 300Φ2
1ð17000 tanhð100ϕ0Þsechð100ϕ0Þ þ ð27 − 80ϕ0Þ tanhð 1

100
ð27 − 40ϕ0Þϕ0Þsechð 1

100
ð27 − 40ϕ0Þϕ0ÞÞ2

17sechð100ϕ0Þ þ 10sechð 1
100

ð27 − 40ϕ0Þϕ0Þ

− 15Φ2
1

�
85000000ðcoshð200ϕ0Þ − 3Þsech3ð100ϕ0Þ þ

1

2
sech3

�
1

100
ð27 − 40ϕ0Þϕ0

�
ð−3ð27 − 80ϕ0Þ2

þ 8000 sinh

�
1

50
ð27 − 40ϕ0Þϕ0

�
þ ð27 − 80ϕ0Þ2 cosh

�
1

50
ð27 − 40ϕ0Þϕ0

���

þ 324

�
25ð9ϕ4

0 − 60ϕ2
0 þ 130Þ − 11907 cosh

�
63ϕ0

100

���
=ð810000ð1 − 2iωÞÞ: ð11Þ

These are the initial conditions used to numerically
integrate the equation of motion (10) following the shoot-
ing procedure discussed before.
In Fig. 5 we display the results for the lowest

nonhydrodynamical QNM of the singlet channel and
the corresponding equilibration times. As discussed in
Refs. [41,47,70], the S perturbation inherits the same
ultraviolet asymptotics of the background dilaton field
and, therefore, the ultraviolet conformal behavior of the
QNMs in the dilaton channel depends on the scaling
dimension Δ of the gauge theory operator dual to the
dilaton. In the case of the top-down conformal EMD
model with finite chemical potential and a critical point
investigated in Ref. [41] Δ ¼ 2, while in the present
phenomenological EMD model at finite baryon density
Δ ≈ 2.73 [24]. Consequently, the conformal behavior
attained in the ultraviolet by QNMs in the dilaton channels
of both EMD models are different.
One notes from Fig. 5 that the equilibration time in the

dilaton channel generally decreases with increasing μB

at fixedT. Also from this figure one can read some reference
values for the equilibration time in the singlet channel,
e.g., at ðT;μBÞ∼fð400;0Þ;ð145;0Þ;ð89;724ÞgMeV the cor-
responding equilibration times are, respectively, τeq ∼
f0.11; 0.70; 1.26g fm=c, with the last point corresponding
to the CEP. By comparison with the other two channels, the
singlet channel gives the longest equilibration time of the
medium for the first point above.

IV. CONCLUSIONS AND OUTLOOK

In this work we investigated the homogeneous limit of
the lowest nonhydrodynamic QNMs of the EMD model of
Ref. [24] at finite temperature and baryon density up to the
critical region. We then computed the associated equili-
bration times in the SOð3Þ rotationally invariant quintuplet,
triplet, and singlet channels. The equilibration times in the
different channels approach each other at high temper-
atures, but they are well separated at the critical point. In
most cases, these equilibration times decrease with
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increasing baryon chemical potential while keeping tem-
perature fixed.
Some considerations on dynamic universality classes

[42] are in order here. As discussed in Ref. [43], in
holographic models defined in the large-Nc limit, one
expects the dynamical universality class to be of type B
due to the N2

c suppression of convective transport com-
pared to diffusive transport. This is different from what is
expected to take place in Nc ¼ 3 QCD, whose dynamical
universality class was argued to be of type H in Ref. [44].
In type H theories the convective transport is dominant
near criticality since it diverges with the correlation
length. On the other hand, within the landscape of
large-Nc theories, which holographic models belong to,
convective transport is a subleading effect in Nc and
cannot be seen in this limit. In particular, for type B
theories the shear and bulk viscosities and the conductiv-
ities remain finite at the critical point. This is exactly what
happens in the EMD model (see, for instance, the bottom
plot in Fig. 4 with the result for the baryon conductivity).
This is interesting on its own since, for instance, the
divergence of the shear viscosity at the critical point in
type H theories indicates that a hydrodynamic description

in such theories must break down at least close to the
critical region. On the other hand, this is not the case for
holographic models, where η=s ¼ 1=4π. And at least for
the characteristic equilibration times of spatially homo-
geneous QNMs in the EMD model, we have concluded
that no divergences appear at criticality.
Possible comparisons with critical slowing down [82]

would require an analysis of an inhomogeneous setting,
which is beyond the scope of the present work. However,
we draw attention to the fact that recently in Ref. [83], by
analyzing the Bjorken flow [84] of a conformal top-down
holographic model at finite temperature and chemical
potential, we concluded that the hydrodynamization time
of that system significantly increases as one approaches the
critical point of the model. It will be interesting to
investigate in the near future the Bjorken flow of the
present EMD model.
We note that even though the universality classes of

QCD and large-Nc theories may be different, since the
QGP produced in heavy-ion collisions has a very small size
and a very short lifetime the system cannot access the
divergence of the correlation length. This raises the ques-
tion to which extent type B and type H behaviors can

FIG. 5. Absolute value of the real part of the lowest QNM in the SOð3Þ singlet channel (top left), the imaginary part of the lowest
QNM (top right), the dimensionless combination given by the temperature times the equilibration time (bottom left), and the
equilibration time measured in units of fm/c (bottom right) as functions of temperature for different values of the baryon chemical
potential. In the upper panels we plot both the calculated points and the interpolated curves between them.
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actually be distinguished under experimental conditions, as
originally explored in Ref. [43].
We must also remark that, besides the aforementioned

points, the homogeneous QNMs evaluated in the present
work are not expected to give a precise description of
characteristic equilibration times of the QGP under the
conditions actually realized in heavy-ion collisions since
the latter corresponds to a medium that rapidly expands in
spatial directions and, in the present analysis, we consid-
ered a nonexpanding homogeneous plasma which is
slightly out of equilibrium.
The first sequel of the present work which we intend to

pursue in the near future comprises an investigation of the
far-from-equilibrium homogeneous isotropization dynam-
ics of the EMD model. This would allow us to check
whether the QNMs obtained here in the SOð3Þ quintuplet,
triplet, and singlet channels indeed describe the late-time
behavior of the pressure anisotropy, baryon charge density,
and the scalar condensate, respectively, of the full nonlinear
system of equations. Moreover, in this setting we shall also
be able to evaluate the homogeneous isotropization and
thermalization times of the EMD system near the critical
region.
Future projects also comprise numerical simulations in

the EMD model of more realistic expanding scenarios
involving, for instance, the holographic boost-invariant
Bjorken flow [83,85–89] and also collisions of holographic
shock waves [81,90–96]. The latter may provide new
insight into the complex interplay between the early-time
nonequilibrium dynamics and the late-time hydrodynamic
behavior of the strongly coupled baryon rich QGP near a
critical point, which could be formed in upcoming low-
energy heavy-ion collisions at RHIC and FAIR.
Another interesting question concerns the QNMs of

the anisotropic EMD model at finite temperature and
magnetic field proposed in Ref. [58], whose thermody-
namics is in excellent agreement with lattice QCD results.
This setup, in particular, may be of great relevance to high-
energy peripheral heavy-ion collisions where very intense

magnetic fields of order eB≲ 0.3 GeV2 may be produced
at the earliest stages of such noncentral collisions [97].
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APPENDIX: FURTHER DETAILS ABOUT THE
NUMERICAL WORK

In this appendix we give some further details about the
numerical evaluation of the nonhydrodynamic QNMs of
the EMD model carried out in the present work.
The grid of numerical black hole backgrounds we used to

compute the QNMs as functions of ðT; μBÞ is shown in
Fig. 6. This grid is almost regular in the ðT; μBÞ plane, except
for some “missing points” [e.g., ðT;μBÞ¼ ð100;700ÞMeV]
which were not generated in the irregular-shaped original
background grid9 [24] due to numerical difficulties we faced
in solving the coupled set of differential equations of motion
for theEMD fieldswith some initial conditions ðϕ0;Φ1Þ.We
took a dense grid of points in this original irregular-shaped
grid and applied a filtering process upon it to eliminate
unstable and metastable solutions close to the phase tran-
sition region corresponding to the CEP where competing
branches of black hole solutions exist.We selected the stable
solutions by looking at the backgrounds with maximum
entropy between the competing branches. Using these stable

FIG. 6. Grid of backgrounds generated in the plane of initial conditions (left) and in the ðT; μBÞ plane (right). The background
corresponding to the critical point in the phase diagram is highlighted by the red circle in both panels.

9By constructing a grid with regular shape in the plane of initial
conditions ðϕ0;Φ1Þ we obtain a grid with irregular shape in the
physical ðT; μBÞ plane and vice versa; see, e.g., Fig. 8 of Ref. [24].
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backgroundswe thenmanaged to invert themap ðϕ0;Φ1Þ →
ðT; μBÞ (which could not be inverted before the filtering
process due to the fact that this map is not one-to-one in the
presence of competing branches of black hole solutions) and
constructed the regular-shaped grid displayed in Fig. 6. We
further applied the Jacobian test of Ref. [46] to confirm that
no unstable solutions were present after the inversion
described above.

A final observation concerns the ω grid used in the
SOð3Þ singlet channel. For some backgrounds at low
temperatures we were not able to identify the isolated
clusters discussed in Sec. III A via the shooting tech-
nique. Therefore, no points were calculated in these
cases, which is the reason why some of the curves in
Fig. 5 end at different values of T coming from higher
temperatures.

[1] I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys.
A757, 1 (2005).

[2] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys.
A757, 184 (2005).

[3] B. B. Back et al., Nucl. Phys. A757, 28 (2005).
[4] J. Adams et al. (STAR Collaboration), Nucl. Phys. A757,

102 (2005).
[5] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.

11 (2013) 183.
[6] M. Gyulassy and L. McLerran, Nucl. Phys. A750, 30

(2005).
[7] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63,

123 (2013).
[8] E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017).
[9] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo,

Nature (London) 443, 675 (2006).
[10] S. Borsanyi et al., Nature (London) 539, 69 (2016).
[11] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett. 106,

042301 (2011).
[12] H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, Phys.

Rev. Lett. 106, 192301 (2011); 109, 139904(E) (2012).
[13] C.Gale, S. Jeon, B. Schenke, P. Tribedy, andR.Venugopalan,

Phys. Rev. Lett. 110, 012302 (2013).
[14] J. Noronha-Hostler, G. S. Denicol, J. Noronha, R. P. G.

Andrade, and F. Grassi, Phys. Rev. C 88, 044916 (2013).
[15] J. Noronha-Hostler, J. Noronha, and F. Grassi, Phys. Rev. C

90, 034907 (2014).
[16] S. Ryu, J. F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S.

Jeon, and C. Gale, Phys. Rev. Lett. 115, 132301 (2015).
[17] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U.

Heinz, Phys. Rev. C 94, 024907 (2016).
[18] J. E. Bernhard, J. S. Moreland, and S. A. Bass, Nucl. Phys.

A967, 293 (2017).
[19] J. E. Bernhard, Ph.D. thesis, Duke University, 2018,

arXiv:1804.06469.
[20] S. Ryu, J.-F. Paquet, C. Shen, G. Denicol, B. Schenke, S.

Jeon, and C. Gale, Phys. Rev. C 97, 034910 (2018).
[21] S. Pratt, E. Sangaline, P. Sorensen, and H. Wang, Phys. Rev.

Lett. 114, 202301 (2015).
[22] A. Monnai and J.-Y. Ollitrault, Phys. Rev. C 96, 044902

(2017).
[23] P. Alba, V. Mantovani Sarti, J. Noronha, J. Noronha-Hostler,

P. Parotto, I. P. Vazquez, and C. Ratti, arXiv:1711.05207.
[24] R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C.

Ratti, and R. Rougemont, Phys. Rev. D 96, 096026 (2017).

[25] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys.
Rev. Lett. 81, 4816 (1998).

[26] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys.
Rev. D 60, 114028 (1999).

[27] D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004).
[28] M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
[29] R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha,

and C. Ratti, Phys. Rev. D 96, 014032 (2017).
[30] R. Rougemont, A. Ficnar, S. Finazzo, and J. Noronha, J.

High Energy Phys. 04 (2016) 102.
[31] A. Bazavov et al., Phys. Rev. D 95, 054504 (2017).
[32] R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz, A. Pasztor,

C. Ratti, and K. K. Szabo, Phys. Rev. D 92, 114505 (2015).
[33] P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[34] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663,

217 (2008).
[35] J. Noronha-Hostler, J. Noronha, and C. Greiner, Phys. Rev.

Lett. 103, 172302 (2009).
[36] K. Meehan (STAR Collaboration), Nucl. Phys. A967, 808

(2017).
[37] T. Ablyazimov et al. (CBM Collaboration), Eur. Phys. J. A

53, 60 (2017).
[38] P. K. Kovtun and A. O. Starinets, Phys. Rev. D 72, 086009

(2005).
[39] E. Berti, V. Cardoso, and A. O. Starinets, Classical Quantum

Gravity 26, 163001 (2009).
[40] G. T. Horowitz and V. E. Hubeny, Phys. Rev. D 62, 024027

(2000).
[41] R. Critelli, R. Rougemont, and J. Noronha, J. High Energy

Phys. 12 (2017) 029.
[42] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,

435 (1977).
[43] M. Natsuume and T. Okamura, Phys. Rev. D 83, 046008

(2011).
[44] D. T. Son and M. A. Stephanov, Phys. Rev. D 70, 056001

(2004).
[45] S. S. Gubser and A. Nellore, Phys. Rev. D 78, 086007

(2008).
[46] O. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 83,

086005 (2011).
[47] O. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 84,

126014 (2011).
[48] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv.

Theor. Math. Phys. 2, 231 (1998).

NONHYDRODYNAMIC QUASINORMAL MODES AND … PHYS. REV. D 98, 034028 (2018)

034028-13

https://doi.org/10.1016/j.nuclphysa.2005.02.130
https://doi.org/10.1016/j.nuclphysa.2005.02.130
https://doi.org/10.1016/j.nuclphysa.2005.03.086
https://doi.org/10.1016/j.nuclphysa.2005.03.086
https://doi.org/10.1016/j.nuclphysa.2005.03.084
https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1007/JHEP11(2013)183
https://doi.org/10.1007/JHEP11(2013)183
https://doi.org/10.1016/j.nuclphysa.2004.10.034
https://doi.org/10.1016/j.nuclphysa.2004.10.034
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1103/RevModPhys.89.035001
https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature20115
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.106.192301
https://doi.org/10.1103/PhysRevLett.109.139904
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevC.88.044916
https://doi.org/10.1103/PhysRevC.90.034907
https://doi.org/10.1103/PhysRevC.90.034907
https://doi.org/10.1103/PhysRevLett.115.132301
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1016/j.nuclphysa.2017.05.037
https://doi.org/10.1016/j.nuclphysa.2017.05.037
http://arXiv.org/abs/1804.06469
https://doi.org/10.1103/PhysRevC.97.034910
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevLett.114.202301
https://doi.org/10.1103/PhysRevC.96.044902
https://doi.org/10.1103/PhysRevC.96.044902
http://arXiv.org/abs/1711.05207
https://doi.org/10.1103/PhysRevD.96.096026
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1103/PhysRevD.60.114028
https://doi.org/10.1016/j.ppnp.2003.09.002
https://doi.org/10.1103/PhysRevLett.107.052301
https://doi.org/10.1103/PhysRevD.96.014032
https://doi.org/10.1007/JHEP04(2016)102
https://doi.org/10.1007/JHEP04(2016)102
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1016/j.physletb.2008.01.080
https://doi.org/10.1016/j.physletb.2008.01.080
https://doi.org/10.1103/PhysRevLett.103.172302
https://doi.org/10.1103/PhysRevLett.103.172302
https://doi.org/10.1016/j.nuclphysa.2017.06.007
https://doi.org/10.1016/j.nuclphysa.2017.06.007
https://doi.org/10.1140/epja/i2017-12248-y
https://doi.org/10.1140/epja/i2017-12248-y
https://doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/PhysRevD.62.024027
https://doi.org/10.1103/PhysRevD.62.024027
https://doi.org/10.1007/JHEP12(2017)029
https://doi.org/10.1007/JHEP12(2017)029
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRevD.83.046008
https://doi.org/10.1103/PhysRevD.83.046008
https://doi.org/10.1103/PhysRevD.70.056001
https://doi.org/10.1103/PhysRevD.70.056001
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.84.126014
https://doi.org/10.1103/PhysRevD.84.126014
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1


[49] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.
Lett. B 428, 105 (1998).

[50] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[51] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[52] S. S. Gubser, A. Nellore, S. S. Pufu, and F. D. Rocha, Phys.

Rev. Lett. 101, 131601 (2008).
[53] S. I. Finazzo and J. Noronha, Phys. Rev. D 89, 106008

(2014).
[54] S. I. Finazzo, R. Rougemont, H. Marrochio, and J. Noronha,

J. High Energy Phys. 02 (2015) 051.
[55] R. Rougemont, J. Noronha, and J. Noronha-Hostler, Phys.

Rev. Lett. 115, 202301 (2015).
[56] S. I. Finazzo and R. Rougemont, Phys. Rev. D 93, 034017

(2016).
[57] R. Rougemont, R. Critelli, and J. Noronha, Phys. Rev. D 93,

045013 (2016).
[58] S. I. Finazzo, R. Critelli, R. Rougemont, and J. Noronha,

Phys. Rev. D 94, 054020 (2016); 96, 019903(E) (2017).
[59] R. Critelli, R. Rougemont, S. I. Finazzo, and J. Noronha,

Phys. Rev. D 94, 125019 (2016).
[60] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K.

Szabo, J. High Energy Phys. 01 (2012) 138.
[61] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg,

and K. K. Szabo, Phys. Lett. B 730, 99 (2014).
[62] S. Borsanyi, Z. Fodor, J. N. Guenther, S. K. Katz, K. K.

Szab, A. Pasztor, I. Portillo, and C. Ratti, arXiv:1805.04445.
[63] V. Vovchenko, J. Steinheimer, O. Philipsen, and H.

Stoecker, Phys. Rev. D 97, 114030 (2018).
[64] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G.

Mustafa, M. Strickland, and N. Su, J. High Energy Phys.
05 (2014) 027.

[65] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity 2,
2 (1999).

[66] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793
(2011).

[67] A. Buchel, M. P. Heller, and R. C. Myers, Phys. Rev. Lett.
114, 251601 (2015).

[68] R. A. Janik, G. Plewa, H. Soltanpanahi, and M. Spalinski,
Phys. Rev. D 91, 126013 (2015).

[69] R. A. Janik, J. Jankowski, and H. Soltanpanahi, Phys. Rev.
Lett. 117, 091603 (2016).

[70] R. A. Janik, J. Jankowski, and H. Soltanpanahi, J. High
Energy Phys. 06 (2016) 047.

[71] M. Attems, J. Casalderrey-Solana, D. Mateos, I.
Papadimitriou, D. Santos-Olivan, C. F. Sopuerta, M. Triana,
and M. Zilhao, J. High Energy Phys. 10 (2016) 155.

[72] U. Gursoy, A. Jansen, and W. van der Schee, Phys. Rev. D
94, 061901 (2016).

[73] T. Demircik and U. Gursoy, Nucl. Phys. B919, 384 (2017).
[74] P. Betzios, U. Gursoy, M. Jarvinen, and G. Policastro, Phys.

Rev. D 97, 081901 (2018).
[75] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and

M. A. Stephanov, J. High Energy Phys. 04 (2008) 100.
[76] D. T. Son and A. O. Starinets, J. High Energy Phys. 09

(2002) 042.
[77] G. Policastro, D. T. Son, and A. O. Starinets, J. High Energy

Phys. 09 (2002) 043.
[78] G. Policastro, D. T. Son, and A. O. Starinets, J. High Energy

Phys. 12 (2002) 054.
[79] M. P. Heller, R. A. Janik, and P. Witaszczyk, Phys. Rev.

Lett. 110, 211602 (2013).
[80] S. I. Finazzo, R. Rougemont, M. Zaniboni, R. Critelli, and

J. Noronha, J. High Energy Phys. 01 (2017) 137.
[81] M. Attems, J. Casalderrey-Solana, D. Mateos, D. Santos-

Olivn, C. F. Sopuerta, M. Triana, and M. Zilho, J. High
Energy Phys. 06 (2017) 154.

[82] M. Stephanov and Y. Yin, Phys. Rev. D 98, 036006 (2018).
[83] R.Critelli, R.Rougemont, and J.Noronha, arXiv:1805.00882.
[84] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[85] P. M. Chesler and L. G. Yaffe, Phys. Rev. D 82, 026006

(2010).
[86] M. P. Heller, R. A. Janik, and P. Witaszczyk, Phys. Rev.

Lett. 108, 201602 (2012).
[87] J. Jankowski, G. Plewa, and M. Spalinski, J. High Energy

Phys. 12 (2014) 105.
[88] P. Romatschke, Phys. Rev. Lett. 120, 012301 (2018).
[89] M. Spalinski, Phys. Lett. B 776, 468 (2018).
[90] P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett. 106, 021601

(2011).
[91] J. Casalderrey-Solana, M. P. Heller, D. Mateos, and W. van

der Schee, Phys. Rev. Lett. 111, 181601 (2013).
[92] W. van der Schee, P. Romatschke, and S. Pratt, Phys. Rev.

Lett. 111, 222302 (2013).
[93] P. M. Chesler, Phys. Rev. Lett. 115, 241602 (2015).
[94] P. M. Chesler, J. High Energy Phys. 03 (2016) 146.
[95] M. Attems, J. Casalderrey-Solana, D. Mateos, D. Santos-

Olivan, C. F. Sopuerta, M. Triana, and M. Zilhao, J. High
Energy Phys. 01 (2017) 026.

[96] J. Casalderrey-Solana, D. Mateos, W. van der Schee, and M.
Triana, J. High Energy Phys. 09 (2016) 108.

[97] V. Skokov, A. Yu. Illarionov, and V. Toneev, Int. J. Mod.
Phys. A 24, 5925 (2009).

ROUGEMONT, CRITELLI, and NORONHA PHYS. REV. D 98, 034028 (2018)

034028-14

https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1103/PhysRevD.89.106008
https://doi.org/10.1103/PhysRevD.89.106008
https://doi.org/10.1007/JHEP02(2015)051
https://doi.org/10.1103/PhysRevLett.115.202301
https://doi.org/10.1103/PhysRevLett.115.202301
https://doi.org/10.1103/PhysRevD.93.034017
https://doi.org/10.1103/PhysRevD.93.034017
https://doi.org/10.1103/PhysRevD.93.045013
https://doi.org/10.1103/PhysRevD.93.045013
https://doi.org/10.1103/PhysRevD.94.054020
https://doi.org/10.1103/PhysRevD.96.019903
https://doi.org/10.1103/PhysRevD.94.125019
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1016/j.physletb.2014.01.007
http://arXiv.org/abs/1805.04445
https://doi.org/10.1103/PhysRevD.97.114030
https://doi.org/10.1007/JHEP05(2014)027
https://doi.org/10.1007/JHEP05(2014)027
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/PhysRevLett.114.251601
https://doi.org/10.1103/PhysRevLett.114.251601
https://doi.org/10.1103/PhysRevD.91.126013
https://doi.org/10.1103/PhysRevLett.117.091603
https://doi.org/10.1103/PhysRevLett.117.091603
https://doi.org/10.1007/JHEP06(2016)047
https://doi.org/10.1007/JHEP06(2016)047
https://doi.org/10.1007/JHEP10(2016)155
https://doi.org/10.1103/PhysRevD.94.061901
https://doi.org/10.1103/PhysRevD.94.061901
https://doi.org/10.1016/j.nuclphysb.2017.03.020
https://doi.org/10.1103/PhysRevD.97.081901
https://doi.org/10.1103/PhysRevD.97.081901
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2002/09/042
https://doi.org/10.1088/1126-6708/2002/09/042
https://doi.org/10.1088/1126-6708/2002/09/043
https://doi.org/10.1088/1126-6708/2002/09/043
https://doi.org/10.1088/1126-6708/2002/12/054
https://doi.org/10.1088/1126-6708/2002/12/054
https://doi.org/10.1103/PhysRevLett.110.211602
https://doi.org/10.1103/PhysRevLett.110.211602
https://doi.org/10.1007/JHEP01(2017)137
https://doi.org/10.1007/JHEP06(2017)154
https://doi.org/10.1007/JHEP06(2017)154
https://doi.org/10.1103/PhysRevD.98.036006
http://arXiv.org/abs/1805.00882
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1007/JHEP12(2014)105
https://doi.org/10.1007/JHEP12(2014)105
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1016/j.physletb.2017.11.059
https://doi.org/10.1103/PhysRevLett.106.021601
https://doi.org/10.1103/PhysRevLett.106.021601
https://doi.org/10.1103/PhysRevLett.111.181601
https://doi.org/10.1103/PhysRevLett.111.222302
https://doi.org/10.1103/PhysRevLett.111.222302
https://doi.org/10.1103/PhysRevLett.115.241602
https://doi.org/10.1007/JHEP03(2016)146
https://doi.org/10.1007/JHEP01(2017)026
https://doi.org/10.1007/JHEP01(2017)026
https://doi.org/10.1007/JHEP09(2016)108
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570

