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The gravitational form factors for a hadron, the form factors for the hadron matrix element of the QCD
energy-momentum tensor, not only describe the coupling of the hadron with a graviton, but also serve as
unique quantities for describing the shape inside the hadron reflecting dynamics of quarks and gluons, such
as the internal shear forces acting on the quarks/gluons and their pressure distributions. We consider the
quark contribution to the gravitational form factors for a (pseudo)scalar hadron, and derive and clarify the
relations satisfied by them as direct consequences of the symmetries and the equations of motion in QCD,
and connections to the generalized parton distributions. Our results reveal the connections between the
gravitational form factors and the higher-twist quark-gluon correlation effects inside the hadrons.
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I. INTRODUCTION

The gravitational form factors of hadrons have received
considerable attention recently [1–4]. They represent the
form factors for the matrix element of the QCD energy-
momentum tensor with the one-hadron states receiving a
certain momentum transfer [5,6], and are recognized as
playing unique roles in describing the shape deep inside the
hadrons reflecting dynamics of quarks and gluons, such as
the pressure distributions inside the hadrons [7–9]. Although
it is impractical to detect those gravitational form factors
directly through the coupling of the hadrons with a graviton,
it is now realistic to determine the gravitational form factors
for the nucleon based on the behaviors of the generalized
parton distributions (GPDs) [1] obtained by experiments like
deeply virtual Compton scattering (DVCS) [8–13], deeply
virtual meson production [14,15], meson-induced Drell-Yan
production [16–18], etc. (For the present status of the
experimental data, see, e.g., references in [1].)
The gravitational form factors for spinless particles allow

a simpler theoretical formulation without spin structures
compared with those for the nucleon [5]. Among them, the
gravitational form factors of the pion are particularly
interesting quantities, because their behaviors could reflect
nontrivial nature as a Nambu-Goldstone boson and could
be compared with the predictions of nonperturbative
approaches, a variety of which have been devised and

proposed. Their empirical information was considered to be
severely restricted because the pion target for measuring its
GPDs is unavailable. Recently, however, it has been
demonstrated [19] that the behaviors of the gravitational
form factors for the pion could be extracted through the
determination of the generalized distribution amplitudes
(GDAs) [8,20–22] using the Belle data on γ�γ → π0π0.
Thus, the investigation of the gravitational form factors for
the pion as well as for the nucleon is a hot topic.
In view of this, an urgent task from the theory side is to

clarify a maximal set of (exact and approximate) relations
satisfied by the gravitational form factors. The purpose of
this paper is to give a contribution in this direction. We
discuss the relations which hold for the gravitational form
factors for a spin-0 particle such as a pion. We clarify how
those relations are derived as direct consequences of
constraints (symmetries and equations of motion) in
QCD, applied to the gauge-invariant operator correspond-
ing to the quark contribution for the energy-momentum
tensor. In our calculation, we retain all the quark-mass
effects as well as the terms associated with the hadron mass,
and this allows us to obtain exact results up to twist four.
Those results involve the relations between the gravita-
tional form factors and the matrix elements of the higher
twist operators in QCD, in particular, those associated with
the moments of the twist-three as well as twist-four GPDs
for the spin-0 hadron. Furthermore, in addition to those
exact relations, approximate relations using an approach
based on the light-cone gauge fixing linked with partonic
interpretations in the infinite momentum frame are obtained
and the result suggests that the gravitational form factor
associated with the so-called “D-term” corresponds to the
twist-three quark-gluon interaction effects. Some of our
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results are immediately extended to the corresponding
relations for the gravitational form factors of the nucleon.

II. ENERGY-MOMENTUM TENSOR AND THE
GRAVITATIONAL FORM FACTORS

In this paper, jpi denotes a spin-0 hadron state with the
4-momentum p as p2 ¼ m2

h. We consider matrix elements
of the energy-momentum tensor Tμν in QCD, hp0jTμνjpi,
for a hadron which may be a scalar meson, or a pseudo-
scalar meson such as a pion. We shall keep all the
contributions of quark masses as well as the hadron mass
mh, and the implications in the chiral limit are also
mentioned. We denote the independent 4-momenta as

P̄ ¼ pþ p0

2
; Δ ¼ p0 − p; ð1Þ

and we have the relevant invariants,

Δ2 ¼ t; P̄2 ¼ m2
h −

t
4
; ð2Þ

for the target of mass mh, such that p2 ¼ p02 ¼ m2
h. The

(Belinfante-improved) energy-momentum tensor in QCD is
given as [6] (see also the article by Jackiw in [23])

TμνðxÞ ¼
X

q¼u;d;s;…

Tμν
q ðxÞ þ Tμν

g ðxÞ; ð3Þ

with the quark part for each separate quark flavor as

Tμν
q ðxÞ≡ 1

2
q̄ðxÞγðμiD↔νÞqðxÞ

¼ 1

4
ðq̄ðxÞγμiD↔νqðxÞ þ q̄ðxÞγνiD↔μqðxÞÞ; ð4Þ

where qðxÞ is the quark field of flavor q, D
↔

μ ≡ −D⃖μ þ D⃗μ

with D⃗μ ¼ ∂⃗μ − igAμ, D⃖μ ¼ ∂⃖μ þ igAμ being the covariant
derivative, and ðμνÞ denotes symmetrization with respect to
μ, ν indices.1 The gluon part is given as

Tμν
g ðxÞ≡ −Fμρ

a ðxÞFν
aρðxÞ þ

gμν

4
Fλρ
a ðxÞFaλρðxÞ; ð5Þ

with Fμν ¼ Fμν
a ta being the gluon field strength tensor.2

The matrix element of the quark part of the energy-
momentum tensor (4) is parametrized as

hp0jTμν
q jpi≡ hp0jTμν

q ðx ¼ 0Þjpi

¼ 1

2
Θ1qðtÞðtgμν − ΔμΔνÞ

þ 1

2
Θ2qðtÞP̄μP̄ν þ Λ2C̄qðtÞgμν; ð6Þ

where Λ denotes a nonperturbative mass scale in QCD,
and the matrix element of the gluon part (5) is given
by the similar parametrization with q → g. The dimension-
less Lorentz-invariant coefficients, Θ1qðtÞ, Θ2qðtÞ, C̄qðtÞ,
Θ1gðtÞ, Θ2gðtÞ, C̄gðtÞ, are the gravitational form factors.
Based on parity (P) invariance combined with time-reversal
(T) invariance, we can show

hp0jTμν
q;gjpi ¼ hp0jTμν

q;gjpi� ¼ hpjTμν
q;gjp0i; ð7Þ

and, therefore, the gravitational form factors are real
quantities, and (6) is the most general form satisfying
the symmetry constraints. We also note that the divergence-
less property of (3), ∂μTμνðxÞ ¼ 0, implies

X
q¼u;d;s;…

C̄qðtÞ þ C̄gðtÞ ¼ 0: ð8Þ

An example of the other frequently used notations for the
form factors is given as [3]

1

2
Θ2qðtÞ ¼ 2AqðtÞ;

1

2
Θ1qðtÞ ¼ −

1

2
DqðtÞ;

Λ2C̄qðtÞ ¼ m2
hc̄qðtÞ; ð9Þ

and similarly for the gluonic contributions.

III. CONSTRAINTS FROM QCD EQUATIONS
OF MOTION

We investigate the constraints on the contribution of the
quark part, (6), using the QCD equations of motion. The
contraction of the lhs of (6) with Δν ¼ ðp0 − pÞν yields

Δνhp0jTμν
q jpi ¼ ðp0 − pÞν

1

4
hp0jð−q̄iD⃖νγμq − q̄iD⃖μγνq

þ q̄γμiD⃗νqþ q̄γνiD⃗μqÞjpi

¼ 1

4
hp0j½P̂ν;−q̄iD⃖

νγμq − q̄iD⃖μγνq

þ q̄γμiD⃗νqþ q̄γνiD⃗μq�jpi

¼ −
1

4
hp0ji∂νf−q̄iD⃖νγμq − q̄iD⃖μγνq

þ q̄γμiD⃗νqþ q̄γνiD⃗μqgjpi; ð10Þ

where we used the Heisenberg equations for the field
operators with the 4-momentum operator P̂μ of QCD, with

1In the rhs of (4), we have also the term

−gμνq̄ðxÞði
2
D
↔
−mÞqðxÞ according to the canonical definition

of the energy-momentum tensor, but this term vanishes by the use
of the equations of motion and is omitted here and in what
follows.

2There is an ambiguity to separating Tμν into the quark and
gluon parts. We consider the gauge-invariant decomposition by Ji
[24] here.
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P̂μ ¼
Z

d3xTμ0ðxÞ; P̂μjpi ¼ pμjpi; ð11Þ

and we introduced a shorthand notation for the derivative
over the total translation as

∂αf−q̄ðxÞiD⃖νγμqðxÞg≡ ∂
∂yαf− q̄ðxþyÞiD⃖νγμqðxþyÞg

���
y→0

;

ð12Þ

and so on, and the corresponding total derivative is
evaluated as

− i∂νf−q̄iD⃖νγμqg
¼ q̄iD⃖νði∂⃖ν þ i∂⃗νÞγμq
¼ −q̄D⃖νD⃖αðγνγα þ iσναÞγμqþ q̄iD⃖νiD⃗νγ

μq

¼ −mq̄ðiD⃖þm −mÞγμq −
1

2
q̄½D⃖ν; D⃖α�iσναγμq

þ q̄iD⃖νiD⃗νγ
μqþ EOM

¼ −
1

2
q̄gFνασ

ναγμqþm2q̄γμqþ q̄iD⃖νiD⃗νγ
μqþ EOM;

ð13Þ

using ½D⃖μ; D⃖ν� ¼ ½∂⃖μ þ igAμ; ∂⃖ν þ igAν� ¼ −igFμν. Here,
“EOM” denotes the operators that vanish by the use of the

equations of motion, q̄ðiD⃖þmÞ ¼ 0. Combining this with
the other terms of (10) evaluated similarly, we eventually
obtain the significantly compact formula [25,26]

Δνhp0jTμν
q jpi ¼ hp0jq̄igFμνγνqjpi; ð14Þ

and, using (6), we find

ΔμΛ2C̄qðtÞ ¼ hp0jq̄igFμνγνqjpi; ð15Þ

which shows that Λ2C̄qðtÞ is related to quark-gluon
interactions corresponding to twist four and higher.
Combined with (8), this also allows us to obtain

ΔμΛ2C̄gðtÞ ¼ −
X
q

ΔμΛ2C̄qðtÞ ¼ −
X
q

hp0jq̄igFμνγνqjpi

¼ hp0jigFμν
a

�
−
X
q

q̄ taγνq

�
jpi

¼ hp0jFμν
a iDρ

abF
b
ρνjpi ð16Þ

using the QCD EOM for the gluon, ½Dμ; Fμν� ¼
−gta

P
q0 q̄

0taγνq0.
We may contract this with Δμ further and perform the

manipulations similarly as above, using the QCD EOM.
This yields

tΛ2C̄qðtÞ ¼ Δμhp0jq̄igFμνγνqjpi ¼ hp0j∂μðq̄gFμνγνqÞjpi
¼ −hp0jg2q̄taγνq

X
q0
q̄0taγνq0jpi

þ hp0jðq̄D⃖μgFμνγνqþ q̄gFμνγνD⃗μqÞjpi; ð17Þ

which represents t × Λ2C̄qðtÞ as matrix elements of the
four-quark correlation and quark-gluon correlation effects
of twist six. Note that the PT invariance implies

hp0jq̄gFμνγνD⃗μqjpi ¼ hp0jq̄gFμνγνD⃗μqjpi�
¼ hpjq̄D⃖μgFμνγνqjp0i; ð18Þ

therefore, the last two terms in (17) are unlikely to cancel or
vanish.
On the other hand, contracting both sides of (6) with the

metric tensor gμν yields

1

4
hp0jð−q̄iD⃖ · γq − q̄iD⃖ · γqþ q̄γ · iD⃗qþ q̄γ · iD⃗qÞjpi

¼ 1

2
Θ1qðtÞ × 3tþ 1

2
Θ2qðtÞP̄2 þ 4Λ2C̄qðtÞ; ð19Þ

and, using the QCD equations of motion, q̄ðiD⃖þmÞ ¼
ðiD⃗ −mÞq ¼ 0, we obtain

hp0jmq̄qjpi ¼ 3t
2
Θ1qðtÞ þ 4Λ2C̄qðtÞ

þ 1

2
Θ2qðtÞ

�
m2

h −
t
4

�
; ð20Þ

but the lhs corresponds to the trace of the energy-
momentum tensor and its flavor singlet part is modified
by the trace anomaly [27,28], which eventually leads to the
relation

3t
2

�X
q

Θ1qðtÞþΘ1gðtÞ
�

þ1

2

�
m2

h−
t
4

��X
q

Θ2qðtÞþΘ2gðtÞ
�

¼
X
q

ð1þ γmÞhp0jmq̄qjpiþhp0jβðgÞ
2g

Fμν
a Faμνjpi; ð21Þ

using (8), where γm is the anomalous dimension of the mass
operator, and βðgÞ is the β function of QCD. This relation
for the sum over all partons could serve as a consistency
check of the results. For example, taking the t → 0 limit of
this relation and using the sum rule in the forward limit,

X
q

Θ2qð0Þ þ Θ2gð0Þ ¼ 4; ð22Þ
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due to the fact that hpjTμνjpi ¼ 2pμpν holds for (3),
representing the total energy-momentum [29], we get,

1

2

�X
q

Θ2qð0Þ þ Θ2gð0Þ
�
m2

h ¼ 2m2
h

¼ hpj
�X

q

ð1þ γmÞmq̄qþ βðgÞ
2g

Fμν
a Faμν

�
jpi; ð23Þ

which reproduces the well-known result for the mass
composition (see, e.g., [30]); therefore, (21) corresponds
to an off-forward generalization of (23).
Before ending this section, we note an important exact

operator identity,

1

2
q̄ð0Þγ½μD↔α�qð0Þ ¼ 1

4
ϵμαρνi∂ρfq̄ð0Þγνγ5qð0Þg þ EOM;

ð24Þ

and its consequence on matrix elements relevant for the
investigation of the gravitational form factor. Here, ½μα�
implies the antisymmetrization for the indices μ, α as

1

2
q̄γ½μD

↔
α�q ¼ 1

4
q̄ðγμD↔α − γαD

↔μÞq: ð25Þ

Actually, this identity has been mentioned repeatedly in
many previous papers and can be derived directly perform-
ing the relevant gamma matrix algebra,

1

2
q̄γ½μD

↔
α�q ¼ 1

8
q̄ðγμγαD↔ −D

↔
γμγαÞq

¼ i
8
q̄ðσμαD⃖þ D⃗σμαÞq −

i
8
q̄ðσμαD⃗þ D⃖σμαÞq;

ð26Þ
and, noting that the last term equals the EOM operators plus
the quark mass term, we get

1

2
q̄γ½μD

↔
α�q ¼ i

8
q̄ðσμαD⃖þ D⃗σμαÞqþ i

8
q̄ðσμαD⃗þ D⃖σμαÞq

− 2 ×
i
8
q̄ðσμαD⃗þ D⃖σμαÞq

¼ i
8
∂νfq̄ðσμαγν þ γνσμαÞqg

−
i
4
q̄ðσμαD⃗þ D⃖σμαÞq; ð27Þ

whose last two terms cancel out using the EOM, even
when including the quark mass effect, and thus we obtain
the exact identity (24).3 As a consequence of this identity,
we find

hp0j1
2
q̄γ½μD

↔
α�qjpi¼ 1

4
ϵμαρνð−ΔρÞhp0jq̄γνγ5qjpi¼ 0; ð28Þ

because the matrix element of the local axial-vector current
vanishes for a spin-0 hadron.

IV. TWIST-THREE AND TWIST-FOUR
GPDs FOR SPIN-0 HADRON

The twist-two GPD for a spin-0 hadron h is defined
as [32,33]

Z
∞

−∞

dy−

4π
eixP̄

þy−hp0jq̄ð−y=2Þγþqðy=2Þjpi
����
yþ¼y⃗⊥¼0

¼
Z

∞

−∞

dλ
4π

eixλhp0jq̄ð−λn=2Þ=nqðλn=2Þjpi ¼ Hq
2ðx; η; tÞ;

ð29Þ

for each separate quark flavor. Here, x denotes the average
longitudinal momentum fraction, and Hq

2ðx; η; tÞ is usually
denoted simply as Hqðx; η; tÞ. For convenience, we have
introduced lightlike vectors nμ ¼ gμ−n− and ñμ ¼ gμþñþ,
satisfying

n2 ¼ ñ2 ¼ 0; n · ñ ¼ 1; ð30Þ

such that y− ¼ λn− with P̄þn− ¼ 1, and skewness is
defined as

η ¼ −Δ · n
2P̄ · n

; ð31Þ

and we have the decompositions of the relevant momenta
into the light cone and the perpendicular components as

P̄μ ¼ ñμ þ
1

2

�
m2

h −
t
4

�
nμ;

Δμ ¼ −2ηñμ þ η

�
m2

h −
t
4

�
nμ þ Δ⊥μ; ð32Þ

yielding

Δ2⊥ ¼ −Δ2⊥ ¼ ð1 − η2Þtþ 4η2m2
h: ð33Þ

Because we now have three independent 4-vectors, ñμ,
Δ⊥μ, and nμ, (29) may be generalized as

Z
∞

−∞

dλ
4π

eixλhp0jq̄ð−λn=2Þγμqðλn=2Þjpi

¼ ñμHq
2ðx; η; tÞ þ Δμ

⊥H
q
3ðx; η; tÞ þ nμHq

4ðx; η; tÞ; ð34Þ

i.e.,
3Alternatively, this can be derived by Taylor expanding the

corresponding nonlocal operator identity obtained in [31].
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hp0jq̄ð−λn=2Þ
�
−
λn
2
;
λn
2

�
γμqðλn=2Þjpi

¼2ñμ
Z

1

−1
dxe−ixλHq

2ðx;η;tÞ

þ2Δμ
⊥
Z

1

−1
dxe−ixλHq

3ðx;η;tÞþ2nμ
Z

1

−1
dxe−ixλHq

4ðx;η;tÞ;

ð35Þ

with the path-ordered gauge factor along the straight line
connecting points x and y,

½x; y� ¼ Pexp

�
ig
Z

1

0

dtðx − yÞμAμðtxþ ð1 − tÞyÞ
�
; ð36Þ

being shown explicitly in between the bilocal quark fields
on the lhs. Here, the formal counting of twist forHq

3ðx; η; tÞ
and Hq

4ðx; η; tÞ are twist three and four, respectively. This
definition for the twist-three GPD Hq

3ðx; η; tÞ corresponds
to Eq. (5.69) in [9] or Eq. (13) in [34] (see also [35,36]). It is

straightforward to see that these GPDs are constrained from
the PT invariance, implying

hp0jq̄ð−λn=2Þ
�
−
λn
2
;
λn
2

�
γμqðλn=2Þjpi

¼ hp0jq̄ðλn=2Þ
�
λn
2
;−

λn
2

�
γμqð−λn=2Þjpi

�

¼ hpjq̄ð−λn=2Þ
�
−
λn
2
;
λn
2

�
γμqðλn=2Þjp0i; ð37Þ

which shows thatHq
2ðx; η; tÞ,Hq

3ðx; η; tÞ, andHq
4ðx; η; tÞ are

real functions, satisfying the symmetry properties as

Hq
2ðx; η; tÞ ¼ Hq

2ðx;−η; tÞ; Hq
4ðx; η; tÞ ¼ Hq

4ðx;−η; tÞ;
Hq

3ðx; η; tÞ ¼ −Hq
3ðx;−η; tÞ: ð38Þ

Now, Taylor expanding both sides of (35) about λ ¼ 0, we
obtain

hp0jq̄ð0Þγμqð0Þjpi þ λ

2
nνhp0jq̄ð0ÞγμD↔νqð0Þjpi þ � � �

¼ 2ñμ
Z

1

−1
dxHq

2ðx; η; tÞ þ 2Δμ
⊥
Z

1

−1
dxHq

3ðx; η; tÞ þ 2nμ
Z

1

−1
dxHq

4ðx; η; tÞ

− iλ

�
2ñμ

Z
1

−1
dxxHq

2ðx; η; tÞ þ 2Δμ
⊥
Z

1

−1
dxxHq

3ðx; η; tÞ þ 2nμ
Z

1

−1
dxxHq

4ðx; η; tÞ
�
þ � � � ; ð39Þ

so that

hp0jq̄ð0Þγμqð0Þjpi ¼ 2ñμ
Z

1

−1
dxHq

2ðx; η; tÞ þ 2Δμ
⊥
Z

1

−1
dxHq

3ðx; η; tÞ þ 2nμ
Z

1

−1
dxHq

4ðx; η; tÞ; ð40Þ

nνhp0j 1
2
q̄ð0ÞγμiD↔νqð0Þjpi ¼ 2ñμ

Z
1

−1
dxxHq

2ðx; η; tÞ þ 2Δμ
⊥
Z

1

−1
dxxHq

3ðx; η; tÞ þ 2nμ
Z

1

−1
dxxHq

4ðx; η; tÞ; ð41Þ

and similarly for higher moments. Denoting the quark contribution to the vector form factor of the spin-0 hadron asF vðΔ2Þ
and substituting (32), the lhs of (40) is expressed as

hp0jq̄γμqjpi ¼ 2F vðtÞP̄μ ¼ 2F vðtÞ
�
ñμ þ

1

2

�
m2

h −
t
4

�
nμ

�
; ð42Þ

therefore, we find

2

Z
1

−1
dxHq

2ðx; η; tÞ ¼ 2F vðtÞ;
Z

1

−1
dxHq

3ðx; η; tÞ ¼ 0; 2

Z
1

−1
dxHq

4ðx; η; tÞ ¼
�
m2

h −
t
4

�
F vðtÞ: ð43Þ

For the operator in the lhs of (41), we note, using (4), that

1

2
q̄ð0ÞγμiD↔νqð0Þ ¼ 1

2
ðq̄ð0ÞγðμiD↔νÞqð0Þ þ q̄ð0Þγ½μiD↔ν�qð0ÞÞ ¼ Tμν

q ð0Þ þ 1

2
q̄ð0Þγ½μiD↔ν�qð0Þ; ð44Þ

and, combined with (28), we obtain
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nνhp0jTμν
q ð0Þjpi ¼ 2ñμ

Z
1

−1
dxxHq

2ðx; η; tÞ þ 2Δμ
⊥
Z

1

−1
dxxHq

3ðx; η; tÞ þ 2nμ
Z

1

−1
dxxHq

4ðx; η; tÞ: ð45Þ

Substituting the formula (6) in terms of the gravitational form factors into the lhs and using (31), (32), we obtain

nνhp0jTμν
q ð0Þjpi¼ ðtnμþ2ηΔμÞ1

2
Θ1qþ P̄μ1

2
Θ2qþnμΛ2C̄q

¼ ñμ
�
1

2
Θ2q−2η2Θ1q

�
þΔμ

⊥ηΘ1qþnμ
��

t
2
þ
�
m2

h−
t
4

�
η2
�
Θ1qþ

1

4

�
m2

h−
t
4

�
Θ2qþΛ2C̄q

�
; ð46Þ

which leads to

2

Z
1

−1
dxxHq

2ðx;η;tÞ¼
1

2
Θ2qðtÞ−2η2Θ1qðtÞ;

2

Z
1

−1
dxxHq

3ðx;η;tÞ¼ηΘ1qðtÞ;

2

Z
1

−1
dxxHq

4ðx;η;tÞ¼
�
t
2
þ
�
m2

h−
t
4

�
η2
�
Θ1qðtÞ

þ1

4

�
m2

h−
t
4

�
Θ2qðtÞþΛ2C̄qðtÞ: ð47Þ

Here, the first formula for Hq
2ðx; η; tÞ is the analogue of the

following formulas for the usual GPDs H and E for the
nucleon (N), which we denote as HðNÞq and EðNÞq,
respectively:

Z
1

−1
dxxHðNÞqðx; η; tÞ ¼ AðNÞ

q ðtÞ þ η2DðNÞ
q ðtÞ;

Z
1

−1
dxxEðNÞqðx; η; tÞ ¼ BðNÞ

q ðtÞ − η2DðNÞ
q ðtÞ; ð48Þ

where AðNÞ
q ðtÞ, BðNÞ

q ðtÞ, DðNÞ
q ðtÞ are the gravitational form

factors for the nucleon, defined as matrix elements of the
energy-momentum tensor (4) in terms of the nucleon state
jNðp; SÞi with momentum p, mass mN , and spin S (see,
e.g., [3,6,37]),

hNðp0; S0ÞjTμν
q;gð0ÞjNðp; SÞi

¼ ūðp0; S0Þ
�
AðNÞ
q;g ðtÞγðμP̄νÞ þ BðNÞ

q;g ðtÞ P̄
ðμiσνÞαΔα

2mN

þDðNÞ
q;g ðtÞΔ

μΔν − gμνΔ2

4mN
þ c̄ðNÞ

q;g ðtÞmNgμν
�
uðp; SÞ:

ð49Þ

It is worth noting that the moment relations (43) and (47)
have forms consistent with the symmetry properties (38).
We also note that (43) and (47) satisfy the relations

Z
1

−1
dxHq

3ðx; η; tÞ ¼ 0 ¼ −
1

2

∂
∂η

Z
1

−1
dxHq

2ðx; η; tÞ;Z
1

−1
dxxHq

3ðx; η; tÞ ¼ −
1

4

∂
∂η

Z
1

−1
dxxHq

2ðx; η; tÞ; ð50Þ

which are pointed out in [36] (see also [9]).
It is remarkable that the formulas in (47) provide the

exact relations between the three independent gravitational
form factors arising in (6) and the second moment of the
three GPDs which form a complete set of GPDs associated
with the nonlocal quark-antiquark vector operator. In
particular, the second moment of the twist-three GPD
Hq

3 completely determines the gravitational form factor
Θ1qðtÞ. On the other hand, the last formula in (47), as well
as the last formula in (43), reflects the fact that, in general,
parts of the twist-four contributions are given by the lower-
twist quantities multiplied by the kinematic invariants like
(2) associated with the hadron states, while the remaining
parts correspond to the “dynamical (genuine)” twist-four
contributions.4

In the chiral limit (m → 0, m2
h → 0), some of the

relations at the level of twist four are simplified, and the
last formula of (43) and that of (47) reduce to

2

Z
1

−1
dxHq

4ðx;η;tÞ→−
t
4
F vðtÞ;

2

Z
1

−1
dxxHq

4ðx;η;tÞ→
t
4
ð2−η2ÞΘ1qðtÞ−

t
16

Θ2qðtÞþΛ2C̄qðtÞ

¼Λ2C̄qð0ÞþOðtÞ; ð51Þ

respectively, where, in the second formula we also display
the leading term in the forward limit, using the fact that
Θ1qðt ¼ 0Þ should be finite. It is also worth mentioning a
particular property relevant for pions [32]: applying the soft
pion theorem for t → 0 allows us to obtain

Θ1qðtÞ ¼ Pq þOðtÞ þOðm2
hÞ; ð52Þ

4A systematic method to identify and resum the former parts
(“kinematic” contributions) for all moments (all Lorentz spins of
operators) is developed and is applied to obtain all kinematic
twist-four corrections to the DVCS; see [38–40].
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with

Pq ¼ 1

4
Θ2qð0Þ; ð53Þ

being the average momentum fraction carried by the quark
of flavor q [see (22)] and the correction [OðtÞ, Oðm2

hÞ]
terms receive the chiral logarithms [41,42]. Comparing this
result with (47), one obtains [36] (see also [9]).

Z
1

−1
dxxHq

3ðx; η; tÞ ¼
1

2
ηPq þOðtÞ þOðm2

hÞ: ð54Þ

V. UNRAVELLING IN THE
LIGHT-CONE GAUGE FIXING

Exact gauge-invariant manipulations discussed above,
utilizing symmetries, EOM, and the relation with the
GPDs, allow us to obtain several constraints on the
gravitational form factors in (6) as well as the explicit
operator content of the form factor C̄q;gðtÞ, as (15)–(17).
However, this approach is not helpful for revealing direct
information on the form factor Θ1qðtÞ corresponding to the
D term. To try to assess the operator content of Θ1qðtÞ
particular to the off-forward matrix element, we employ
gauge fixing to allow us to treat each term of the covariant
derivative separately and identify the physical degrees of
freedom. We take the light-cone gauge, nμAμ ¼ n−Aþ ¼ 0,
anticipating manipulations linked with the partonic inter-
pretations appropriate in the infinite momentum frame; in
this gauge, the gluon field in the covariant derivative can be
expressed by the field strength tensor as [43,44]

AμðλnÞ ¼ 1

2

Z
∞

−∞
dλ0sgnðλ0 − λÞFμαðλ0nÞnα; ð55Þ

where sgnðλÞ ¼ θðλÞ − θð−λÞ, corresponding to the anti-
periodic boundary condition for AμðyÞ at jy−j → ∞, may be
replaced with 1

2
sgnðλÞ → �θð�λÞ for other choices of

boundary conditions. The matrix element of the quark part
of the energy-momentum tensor (4) reads

hp0jTμν
q ðy ¼ 0Þjpi≡ hp0jTμν

q jpi

¼ 1

4
hp0jq̄ð−i∂⃖μ þ i∂⃗μ þ 2gAμÞγνqjpi

þ ðμ ↔ νÞ; ð56Þ

substituting the explicit form of the covariant derivatives.
Here, the derivative terms are handled, using the Heisenberg
equations for the quark and antiquark field operators, as

hp0jq̄ð−i∂⃖μþ i∂⃗μÞγνqjpi
¼ hp0jðq̄γν½q;P̂μ�− ½q̄;P̂μ�γνqÞjpi
¼ hp0jðq̄γνqP̂μþ P̂μq̄γνq−2q̄P̂μγνqÞjpi
¼ 2P̄μhp0jq̄γνqjpi−2hp0jq̄P̂μγνqjpi; ð57Þ

with the 4-momentum operator P̂μ in the light-cone quan-
tization of QCD,

P̂μ ¼
Z

dx−d2x⊥TμþðxÞ; P̂μjpi ¼ pμjpi; ð58Þ

and the matrix element in the second term is evaluated by
inserting a complete set of the light-cone Fock states,P

rjprihprj ¼ 1, as

hp0jq̄P̂μγνqjpi ¼
X
r

pμ
rhp0jq̄jprihprjγνqjpi

≡ hpμ
rihp0jq̄γνqjpi; ð59Þ

where hpμ
ri denotes the value of pμ

r averaged over inter-
mediate states; this average value would depend in general
on t. Because pr equals p − kq where kq denotes the 4-
momentumof the quark removed from the initial state jpi by
the action of the field operator q, we may express this matrix
element as

hp0jq̄P̂μγνqjpi≡ hpμ − kμqihp0jq̄γνqjpi
¼ ðpμ − hkμqiÞhp0jq̄γνqjpi: ð60Þ

Noting that kμq ¼ xP̄μ − Δμ

2
in the parton language relevant

for the GPD formulation, which is considered to be
appropriate for kμq with μ ¼ þ and ⊥ when taking (the
light-cone quantization in) the light-cone gauge, and assum-
ing that this identification is accurate in the averaging for
hkμqi in (60), we obtain

pμ − hkμqi ≃ pμ −
	
xP̄μ −

Δμ

2



¼ P̄μ − hxiP̄μ; ð61Þ

using p ¼ P̄ − Δ
2
. Combining this with the above for-

mula (57), we get

hp0jq̄ð−i∂⃖μ þ i∂⃗μÞγνqjpi ≃ 2hxiP̄μhp0jq̄γνqjpi; ð62Þ

for μ ¼ þ, ⊥. Substituting this into (56), we obtain

hp0jTμν
q jpi ≃ 1

4
ð2hxiP̄μhp0jq̄γνqjpi þ hp0jq̄2gAμγνqjpiÞ

þ ðμ ↔ νÞ
¼ 2hxiF vðtÞP̄μP̄ν

þ 1

2
hp0jðq̄gAμγνqþ q̄gAνγμqÞjpi; ð63Þ
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wherewe substituted the definition of the quark contribution
of the vector form factor, (42). Here, hxi is the “average
value” of the quarkmomentum fraction; using (59) and (61),
it is formally given as

X
r

pþ
r

P̄þ hp0jq̄jprihprjγνqjpi ≃ ð1 − hxiÞhp0jq̄γνqjpi; ð64Þ

and the resulting value of hxi in general depends on t. Now,
comparing (63) with (6), we obtain

1

2
Θ1qðtÞðtgμν−ΔμΔνÞþ1

2
Θ2qðtÞP̄μP̄νþΛ2C̄qðtÞgμν

≃2hxiF vðtÞP̄μP̄νþ1

2
hp0jðq̄gAμγνqþ q̄gAνγμqÞjpi; ð65Þ

for μ ¼ þ and ⊥, with (55) to be substituted for Aμ. The
μ ¼ ν ¼ þ component of this formula leads to

1

2
Θ2qðtÞ − 2η2Θ1qðtÞ ≃ 2hxiF vðtÞ; ð66Þ

and, similarly, taking the componentwithμ ¼ ⊥ and ν ¼ þ,
we find

2ηΔμ
⊥Θ1qðtÞ

≃ hp0jq̄gAμ
⊥=nqjpi

¼ 1

2

Z
∞

−∞
dλsgnðλÞnαhp0jgFμα

a ðλnÞq̄ð0Þta=nqð0Þjpi: ð67Þ

This expression suggests that, in the parton language
appropriate for the infinite momentum frame, Θ1qðtÞ cor-
responds to a certain integral of the twist-three quark-gluon
correlation, in particular, the correlation between the quark
color-current-density and the gluon field strength. When
(67) is summed over the quark flavor q, the result yields

X
q

2ηΔμ
⊥Θ1qðtÞ ≃ −

1

2

Z
∞

−∞
dλsgnðλÞnαhp0jgFμα

a ðλnÞnν
X
q

ð−q̄ð0Þtaγνqð0ÞÞjpi

¼ −
1

2

Z
∞

−∞
dλsgnðλÞnαhp0jFμα

a ðλnÞDab
ρ Fρβ

b ð0Þnβjpi

¼ −
ðn−Þ2
2

Z
∞

−∞
dλsgnðλÞhp0jFμþðλnÞDjFjþð0Þjpi − ðn−Þ2

2

Z
∞

−∞
dλsgnðλÞhp0jFμþðλnÞDþF−þð0Þjpi;

ð68Þ

using the gluon EOM, where j is summed over the
transverse components, and the final form is given as an
integral of the twist-three bilocal gluon correlation which
could be eventually re-expressed by the gluonic three-body
operators using the technique as in [37,45–47].
The results (67) and (68) originate from the quark-

gluon coupling contained in the covariant derivative of
the quark part of the energy-momentum tensor of (4). In
this connection, we note the following point: in the
canonical formalism, it is not obvious from the outset
whether the quark-gluon coupling terms should be
organized as a quark part or not, because the correspond-
ing terms do not exist in the (nonsymmetric) canonical
energy-momentum tensor, but those terms are generated
as contributions due to the Belinfante improvement for
the gluon part of the canonical energy-momentum tensor
(see, e.g., article by Jackiw in [23]). The final forms of
the above results, corresponding to the current-gluon
correlation (67) or the gluon-gluon correlation (68), are
not surprising in view of this fact.
We note that other components of (65) with μ ¼ ⊥,

ν ¼ ⊥, and μ ¼ þ, ν ¼ − would give the contribution at
twist four, but the applicability of the partonic relation kq ¼
xP̄ − Δ

2
in the present context would be less obvious for

such components.

The t ¼ 0 limit of (66) reduces to

1

2
Θ2qð0Þ − 2η2Θ1qð0Þ ≃ 2hxijt¼0; ð69Þ

because F vð0Þ ¼ 1, and this result is consistent with the
general result (53). On the other hand, the relation of (67)
with the soft-pion result (52) is not obvious at present,
because it is not straightforward to extract the t → 0
behavior of the QCD matrix element in (67).
If one makes the replacement, x → hxi, under the inte-

gration in the lhs of the first formula in (47) and combining
the result with (43), we obtain the result formally similar to
our formula (66); it is indeed straightforward to see that the
value hxi of (64) can be identified as the average value using
the x dependence of the corresponding GPD, based on the
operator definition (35) of the GPDs. On the other hand, a
similar logic is not applicable to the second formula in (47),
because (43) indicates that a simple average procedure using
the x dependence of Hq

3ðx; η; tÞ would not be useful. This
fact suggests the nontrivial nature of our result (67) for
Θ1qðtÞ. Indeed, for the large t behavior of the form factors,
our results (66), (67) suggest that Θ2qðtÞ should obey the
dimensional counting rule [48–50] which is same as the
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vector form factor F vðtÞ, while Θ1qðtÞ would receive an
additional 1=t suppression due to the counting for the
three-body Fock state.5 Namely, because F vðt→∞Þ∼1=t
as in [48–50], we expect the large t behavior as

Θ2qðtÞ ∼
1

t
; Θ1qðtÞ ∼

1

t2
: ð70Þ

It is also worth noting somewhat tricky points concerning
the twist counting of the form factors: according to the
definition (6), Θ2qðtÞ is given by the matrix element of the
twist-two operator and is thus identified as a twist-two
quantity. Similarly, F vðtÞ should be a twist-two quantity as
matrix element of the twist-two operator; see (42).
Combined with (67), which indicates that Θ1qðtÞ is of twist
three, the relation (66) implies thatΘ2qðtÞ as well asF vðtÞ is
contaminated by the twist-three contributions. This mis-
match in the twist counting is caused by the mismatch
between the light-cone “plus” direction defined by referring
to the average nucleon momentum, P̄ ¼ pþp0

2
, and the

direction collinear to the initial (final) nucleon momentum,
p ¼ P̄ − Δ

2
(p0 ¼ P̄þ Δ

2
); namely, a light-cone vector along

ñ has the “transverse components”∝ Δ⊥, whenviewed from
the initial and final nucleons,which have themomentap and
p0, respectively.

VI. EXTENSIONS TO THE NUCLEON
GRAVITATIONAL FORM FACTORS

Some of our results discussed above are immediately
extended to the corresponding relations for the gravita-
tional form factors of the nucleon. We first note that
the exact relations similar to (15), (16) hold for the
nucleon as

Δμūðp0; S0Þuðp; SÞmNc̄
ðNÞ
q ðtÞ

¼ hNðp0; S0Þjq̄igFμνγνqjNðp; SÞi;
Δμūðp0; S0Þuðp; SÞmNc̄

ðNÞ
g ðtÞ

¼ −
X
q

Δμūðp0; S0Þuðp; SÞmNc̄
ðNÞ
q ðtÞ

¼ hNðp0; S0ÞjFμν
a iDρ

abF
b
ρνjNðp; SÞi: ð71Þ

We also apply the logic used in (56)–(63) to the nucleon
case associated with (49): corresponding to (63), we now
obtain

hNðp0;S0ÞjTμν
q jNðp;SÞi

≃
1

2
ðhxiP̄μhNðp0;S0Þjq̄γνqjNðp;SÞi

þhNðp0;S0Þjq̄gAμγνqjNðp;SÞiÞþðμ↔νÞ

¼ ūðp0;S0Þ
�
hxiFq

1ðtÞP̄ðμγνÞ þhxiFq
2ðtÞ

P̄ðμiσνÞαΔα

2mN

�
uðp;SÞ

þ1

2
hNðp0;S0Þjðq̄gAμγνqþ q̄gAνγμqÞjNðp;SÞi; ð72Þ

where hxi is the “average value” of the quark momentum
fraction as in (64), and Fq

1;2ðtÞ are the usual Dirac and Pauli
form factors for the nucleon. Comparing this with (49), we
obtain

ūðp0; S0Þ
�
AðNÞ
q ðtÞ P̄

μP̄ν

mN
þ ðAðNÞ

q ðtÞ þ BðNÞ
q ðtÞÞ P̄

ðμiσνÞαΔα

2mN

þDðNÞ
q ðtÞΔ

μΔν − gμνΔ2

4mN
þ c̄ðNÞ

q ðtÞmNgμν
�
uðp;SÞ

≃ ūðp0; S0Þ
�
hxiFq

1ðtÞ
P̄μP̄ν

mN
þ ðhxiFq

1ðtÞ

þ hxiFq
2ðtÞÞ

P̄ðμiσνÞαΔα

2mN

�
uðp; SÞ

þ 1

2
hNðp0; S0Þjðq̄gAμγνqþ q̄gAνγμqÞjNðp; SÞi: ð73Þ

The μ ¼ ν ¼ þ component of this formula leads to the two
relations,

AðNÞ
q ðtÞ þ η2DðNÞ

q ðtÞ ≃ hxiFq
1ðtÞ;

BðNÞ
q ðtÞ − η2DðNÞ

q ðtÞ ≃ hxiFq
2ðtÞ; ð74Þ

and, similarly, taking the component with μ ¼ ⊥ and ν ¼ þ
and combining with (74), we find

−
ηΔμ

⊥ūðp0; S0Þuðp; SÞ
mN

DðNÞ
q ðtÞ

≃ hNðp0; S0Þjq̄gAμ
⊥=nqjNðp; SÞi

¼ 1

2

Z
∞

−∞
dλsgnðλÞnα

× hNðp0; S0ÞjgFμα
a ðλnÞq̄ð0Þta=nqð0ÞjNðp; SÞi; ð75Þ

where (55) is substituted for the gluon field. This expression

suggests thatDðNÞ
q ðtÞ corresponds to an integral of the twist-

three quark-gluon correlation, in particular, the correlation
between the quark color-current density and the gluon field
strength; the flavor singlet part can be re-expressed similarly
as (68). These results indicate, for the behaviors of the form

factors at large t, that AðNÞ
q ðtÞ should obey the quark

counting, which is same as the vector form factor Fq
1ðtÞ,

5The derivation of the counting rule of [50] with “automodel-
ism hypothesis” suggests that a different counting could be
caused only by the different number of the constituents in the
participating hadrons.
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while DðNÞ
q ðtÞ should receive an additional 1=t suppression

due to the counting for the three-body Fock state. Namely,
because Fq

1ðt → ∞Þ ∼ 1=t2 as in [48–50], we expect the
large t behavior to be

AðNÞ
q ðtÞ ∼ 1

t2
; DðNÞ

q ðtÞ ∼ 1

t3
: ð76Þ

VII. CONCLUSIONS

We have discussed the QCD constraints on the gravita-
tional form factors for a spin-0 hadron. Our results are
based not only on the gauge-invariant local operator
manipulations, but also on an approach with light-cone
gauge fixing which is linked with the partonic interpreta-
tions in the infinite momentum frame; for a massless

Nambu-Goldstone boson, the infinite momentum frame
is likely to be an appropriate frame of reference, where the
roles of the physical degrees of freedom can be interpreted
straightforwardly. Our results for the explicit operator
forms for each Lorentz structure of the quark contribution
to the form factors indicate that the form factor correspond-
ing to the D term as well as the form factor associated with
the metric tensor gμν is due to the higher twist multipartonic
correlation effects. Further development of the present
approach and the applications of the present results will
be discussed elsewhere.
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