
 

Rotations versus perturbative expansions for calculating neutrino oscillation
probabilities in matter

Peter B. Denton*

Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute,
Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Stephen J. Parke†

Theoretical Physics Department, Fermi National Accelerator Laboratory,
P. O. Box 500, Batavia, Illinois 60510, USA

Xining Zhang‡

Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

(Received 8 June 2018; published 13 August 2018)

We further develop a simple and compact technique for calculating the three flavor neutrino oscillation
probabilities in uniform matter density. By performing additional rotations instead of implementing a
perturbative expansion we significantly decrease the scale of the perturbing Hamiltonian and therefore
improve the accuracy of zeroth order. We explore the relationship between implementing additional
rotations and that of performing a perturbative expansion. Based on our analysis, independent of the size of
the matter potential, we find that the first order perturbation expansion can be replaced by two additional
rotations and a second order perturbative expansion can be replaced by one more rotation. Numerical tests
have been applied and all the exceptional features of our analysis have been verified.
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I. INTRODUCTION

After Wolfenstein showed that neutrino oscillations are
altered in matter, [1] exact analytic solutions for three
flavors were calculated under the assumption of uniform
matter density [2,3]. However, the exact solutions are too
complex to understand in practice leading to an interest in
alternative approaches including perturbative expansions.
One possible expansion parameter is sin θ13 [4–6], but we
now know that sin θ13 ¼ 0.13 [7,8] is not as small as was
anticipated making these expansions very lengthy in order
to reach acceptable levels of precision. Moreover, when
expanding around sin θ13 ¼ 0, two of the eigenvalues cross
at an energy around E ∼ 10 GeV for Earth density, thus a
perturbative expansion will not converge near the atmos-
pheric resonance. The only other available choice of an
expansion parameter is Δm2

⊙=Δm2
⊕ ≃ 0.03, for arbitrary

size of the matter potential, but this choice also has a similar

issue of crossing eigenvalues at the solar resonance, near
E ∼ 140 MeV for Earth density, and thus such a perturba-
tive expansion will not converge near the solar resonance
[4,9–12]. For a perturbative expansion to be effective for all
values of the matter potential, one has to deal with these
two level crossings in a nonperturbative manner first. This
is achieved by performing rotations in the (1-3) and (1-2)
sectors so that diagonal values of the Hamiltonian do not
cross for any value of the matter potential. This was first
performed in [13,14]. When performing the (1-3) rotation,
it is very natural to absorb part of the sub-leading terms into
the zeroth order by using

Δm2
ee ≡ cos2θ12Δm2

31 þ sin2θ12Δm2
32

¼ Δm2
31 − sin2θ12Δm2

21; ð1Þ

instead of Δm2
31, see [12]. This is the atmospheric Δm2

measured in a νe disappearance experiment [15,16].
After both the (1-3) and (1-2) rotations, given in [14], the

expansion parameter for the perturbing Hamiltonian is

ϵ0 ≡ ϵ sinðθ̃13 − θ13Þ sin θ12 cos θ12;
where

ϵ≡ Δm2
21=Δm2

ee ≃ 0.03; ð2Þ
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and θ̃13 is the value of the mixing angle, θ13, in matter. Thus
the magnitude of the expansion parameter is never larger
than 0.015 and vanishes in vacuum. After these two two-
flavor rotations, the perturbative expansion is well behaved
for all values of the matter potential and zeroth, first and
second order perturbative results are all given in [14].
In this paper, we further develop the method in [14].

We will perform additional rotations such that the scale of
the perturbing Hamiltonian will be significantly decreased.
Accordingly, the accuracy of the zeroth order Hamiltonian
will be improved. The advantages of the former works are
inherited, i.e., the additional rotations defined here continue
to be valid for all channels, any terrestrial or solar matter
potential, and the new rotation matrices return to the
identity in vacuum. It is reasonable that if the perturbing
Hamiltonian is small enough, in another word the zeroth
order Hamiltonian is sufficiently accurate, the zeroth order
expressions are already a good enough approximation such
that perturbation theory is no longer required. We prove
that two additional rotations can take the place of a first
order perturbation theory and a second order perturbation
theory can be replaced by three additional rotations. In
principle, performing additional rotations can be chosen to
be equivalent to any order of the perturbation expansion,
although unnecessary for the expected precision of any
future oscillation experiment.
The structure of this paper is listed following. In Sec. II,

we briefly review the method developed in [14]. The
general principles to perform additional rotations are
enumerated. Section III includes the main results of this
paper. We provide details to determine sequence of the
addition rotations and values of the rotation angles; the
zeroth order eigenvalues and eigenstates after the rotations.
We also compare the additional rotations with the pertur-
bation theories and prove the equivalence order by order in
this section. In Sec. IV we calculate the corrected mixing
angles and CP phase in matter. Finally the conclusion is in
Sec. V. All other remarks and supplementary materials we
believe necessary can be found in the Appendices.

II. ZEROTH ORDER APPROXIMATION OF
NEUTRINO PROPAGATION IN MATTER

This section reviews [14] through zeroth order. The
Schrödinger equation governing neutrino evolution in
matter is

i
∂
∂x jνi ¼ Hjνi: ð3Þ

In the flavor basis jνi ¼ ðνe; νμ; ντÞT , the Hamiltonian is

H ¼ 1

2E
½UPMNSdiagð0;Δm2

21;Δm2
31ÞU†

PMNS

þ diagðaðxÞ; 0; 0Þ�: ð4Þ

The lepton mixing matrix in vacuum UPMNS [17,18] is
defined by the product of a sequence of rotation matrices in
23, 13, and 12 plane, i.e., UPMNS ≡U23ðθ23; δÞU13ðθ13Þ×
U12ðθ12Þ, in which the U23 rotation is a complex rotation
with a complex phase δ, the PDG form of UPMNS can be
obtained from our UPMNS by multiplying the 3rd row by eiδ

and the 3rd column by e−iδ. The matter potential is assumed
to be a constant aðxÞ ¼ a≡ 2

ffiffiffi
2

p
GFNeE.

Equation (3) still holds if both sides are multiplied by
some constant unitary matrix U† simultaneously, and since
UU† is the identity matrix we are free to insert it betweenH
and jνi on the right-hand side. The transformed neutrino
basis is

jν̌i ¼ U†jνi; ð5Þ

and in this basis the Hamiltonian is

Ȟ ¼ U†HU; ð6Þ

where some appropriate unitary matrix U such that the
transformed Hamiltonian Ȟ satisfies the following three
properties:

(i) The diagonal elements are good approximations to
the exact eigenvalues.

(ii) The off-diagonal elements are small.
(iii) Ȟ is identical to diagð0;Δm2

21;Δm2
31Þ in vacuum.

Thus the diagonal elements of Ȟ are zeroth order approx-
imations to the eigenvalues. If the unitary matrix U can
also be written as the product of a sequence of rotations
matrices as UPMNS, i.e., U ¼ U23ðθ̃23; δ̃ÞU13ðθ̃13ÞU12ðθ̃12Þ,
the angles fθ̃23; θ̃13; θ̃12g are zeroth order approximations
to the three mixing angles in matter, and δ̃ is the zeroth
order CP phase in matter. The calculation process of these
zeroth order values are summarized in Appendix A, more
details can be found in [14]. Here we just cite the results.
The zeroth order approximation of the (2-3) mixing

angle and the CP phase in matter are

θ̃23 ¼ θ23; ð7Þ

δ̃ ¼ δ: ð8Þ

The (1-3) mixing angle in matter is determined by

tan 2θ̃13 ¼
s2θ13Δm

2
ee

c2θ13Δm
2
ee − a

; θ̃13 ∈ ½0; π=2�: ð9Þ

The (1-2) mixing angle in matter is determined by

tan 2θ̃12 ¼
ϵcðθ̃13−θ13Þs2θ12Δm

2
ee

λ0 − λ−
; θ̃12 ∈ ½0; π=2�; ð10Þ

where
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λ0 − λ− ¼ ϵc2θ12Δm
2
ee −

1

2

h
aþ Δm2

ee − signðΔm2
eeÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2θ13Δm2

ee − aÞ2 þ ðs2θ13Δm2
eeÞ2

q i
: ð11Þ

Finally Ȟ can be expressed as

Ȟ ¼ 1

2E

0
B@

λ1

λ2

λ3

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ȟ0

þ ϵ0
Δm2

ee

2E

0
B@

−s̃12
c̃12

−s̃12 c̃12

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ȟ1

;

ð12Þ

where

ϵ0 ≡ ϵsðθ̃13−θ13Þs12c12; jϵ0j < 0.015; ð13Þ

and s̃ij, c̃ij represent sin θ̃ij, cos θ̃ij, respectively. λi are the
diagonal elements of the Hamiltonian after the U12ðθ̃12Þ
rotation, they are also the zeroth order approximations to
the eigenvalues in matter, their values can be found in
Eq. (A8), Appendix A. Ȟ0 is the zeroth order Hamiltonian
and Ȟ1 is the perturbing term and ϵ0 ¼ 0 in vacuum. The
numerical values of the zeroth order eigenvalues and
mixing angles are plotted in Fig. 1.

III. ADDITIONAL ROTATIONS

Reference [14] presented a general principle to enhance
zeroth order accuracy by performing a rotation diagonal-
izing the sector with leading order off-diagonal entries.
Therefore at the point of Eq. (12), we can perform addi-
tional rotations to further improve the zeroth order. This
idea is initialized in [19].
Since Ȟ0 is diagonal, to determine the leading order off-

diagonal entries we just need to study Ȟ1, more specifically,

FIG. 1. The upper two figures show the eigenvalues to zeroth order in matter as functions of the matter potential. The upper-left plot is
for normal mass ordering and the upper-right plot is for inverted mass order. The lower plot shows the mixing angles sin2 θ̃12, sin2 θ̃13 to
zeroth order in matter, and the solid (dashed) curves are for normal (inverted) mass ordering. For sin2 θ̃12, the curves of both mass orders
overlap but are not identical.
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we compare s̃12 and c̃12. The red curve in the lower panel of
Fig. 1 shows how s̃12 depends on the matter potential. For
large matter effect we have that js̃12j≫jc̃12jwhen YeρE≫0
and js̃12j ≪ jc̃12j when YeρE ≪ 0. However, when the
matter potential is weak we must be more careful since s̃12
and c̃12 are close in this case. We find that js̃12j ¼ jc̃12j ¼
1=

ffiffiffi
2

p
when YeρE ≃ 0.2 g cm−3GeV where we have taken

s212 ≃ 0.3 [20]. This critical point is applicable to both
normal and inverted mass orderings. When the matter effect
is weak, θ̃13 ≃ θ13 so sðθ̃13−θ13Þ ≃ 0 so ϵ0 ≃ 0. Then Ȟ1 will
be a higher order perturbation which is small. Therefore the
convenience of additional rotations depends only on the
sign of YeρE, i.e., the case of neutrinos or anti-neutrinos.
In general, the diagonalizing angle is given by the simple

expression

tan 2θ ¼ 2λx
λb − λa

; ð14Þ

where λx is the off-diagonal part and λa (λb) is the first
(second) row diagonal element in the 2 × 2 submatrix to be
diagonalized. The two new eigenvalues are

λσ ¼ c2θλa þ s2θλb − 2sθcθλx;

λρ ¼ s2θλa þ c2θλb þ 2sθcθλx; ð15Þ

and the third eigenvalue remains the same. For
jλxj ≪ jΔλbaj, θ is small, so we can expand this to get

λσ ≃ λa −
λ2x

Δλba

�
1þO

��
λx

Δλba

�
2
�	

;

λρ ≃ λb þ
λ2x

Δλba

�
1þO

��
λx

Δλba

�
2
�	

; ð16Þ

where Δλij ¼ λi − λj. More details can be found in
Appendix A.1 in [14].
It is clear from Eq. (15) that performing a rotation leaves

the trace (sum of eigenvalues) unchanged, and therefore,
the trace remains unchanged through first order in the
smallness parameter as shown in Eq. (16).

A. Neutrino case

In the case of neutrinos, YeρE is positive, which means
js̃12j≳ jc̃12j. Thus we will rotate in (1-3) sector first. We
will then show that after the first rotation in (1-3) sector, the
second and third rotations will be in (2-3) and (1-2) sectors,
respectively.

1. U13 rotation

Define α13 to be the next rotation angle. The Hamiltonian
after the U13ðα13Þ rotation is defined as

Ȟ0 ≡U†
13ðα13ÞȞU13ðα13Þ: ð17Þ

Detailed formula of Ȟ0 can be found in Eqs. (B1) and (B2),
Appendix B. The rotation angle diagonalizing the (1-3)
sector is

α13 ¼ −
1

2
arctan

2ϵ0Δm2
ees̃12

Δλ31

≃ −
ϵ0Δm2

ees̃12
Δλ31

þOðϵ03Þ: ð18Þ

Since Δλ31 ≳ Δm2
ee, α13 is at least first order in ϵ0. The

diagonal elements, λ0i, are the new zeroth order eigenvalues.
They are

λ01 ¼ c2α13λ1 þ s2α13λ3 þ 2sα13cα13 s̃12ϵ
0Δm2

ee

≃ λ1 − ðϵ0Δm2
eeÞ2

s̃212
Δλ31

þOðϵ04Þ;

λ02 ¼ λ2;

λ03 ¼ s2α13λ1 þ c2α13λ3 − 2sα13cα13 s̃12ϵ
0Δm2

ee

≃ λ3 þ ðϵ0Δm2
eeÞ2

s̃212
Δλ31

þOðϵ04Þ: ð19Þ

It is remarkable to notice that the additional rotation
U13ðα13Þ does not make first order (in ϵ0) corrections to the
eigenvalues. This conclusion agrees with a first order
perturbation theory. It is known that in perturbation theories
first order corrections to eigenvalues are just the diagonal
elements of the perturbing Hamiltonian. Since all diagonal
entries of Ȟ1 vanish, the first order corrections are zero.
This equivalence indicates a close relation between the
additional rotations and perturbation theory discussed in
further detail in Sec. III D.

2. U23 rotation

Since α13 is small, the leading order off-diagonal entries
in the Hamiltonian are proportional to c̃12cα13 so the next
rotation should diagonalize the (2-3) sector with a new
angle α23. The rotated Hamiltonian is

Ȟ00 ≡U†
23ðα23ÞU†

13ðα13ÞȞU13ðα13ÞU23ðα23Þ; ð20Þ

detailed formula can be found in Eqs. (B4) and (B5) in
Appendix B. The rotation angle is

α23¼
1

2
arctan

2ϵ0Δm2
eecα13 c̃12

Δλ032
≃
ϵ0Δm2

eec̃12
Δλ32

þOðϵ03Þ: ð21Þ

As with α31, α32 is also at least first order in ϵ0 since
Δλ32 ≳ Δm2

ee. The new eigenvalues are
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λ001 ¼ λ01 ≃ λ1 − ðϵ0Δm2
eeÞ2

s̃212
Δλ31

þOðϵ04Þ;

λ002 ¼ c2α23λ
0
2 þ s2α23λ

0
3 − 2sα23cα23cα13 c̃12ϵ

0Δm2
ee

≃ λ2 − ðϵ0Δm2
eeÞ2

c̃212
Δλ32

þOðϵ04Þ;

λ003 ¼ s2α23λ
0
2 þ c2α23λ

0
3 þ 2sα23cα23cα13 c̃12ϵ

0Δm2
ee

≃ λ3 þ ðϵ0Δm2
eeÞ2

�
s̃212
Δλ31

þ c̃212
Δλ32

�
þOðϵ04Þ: ð22Þ

3. U12 rotation

Again α23 is small so it is evident that after the U23ðα23Þ
rotation the leading order off-diagonal entries, which
proportional to sα13cα23 c̃12, are in the (1-2) sector, and an
additional rotation U12ðα12Þ can diagonalize it. The final
rotated Hamiltonian is

Ȟ000 ≡ U†
12ðα12ÞU†

23ðα23ÞU†
13ðα13Þ

× ȞU13ðα13ÞU23ðα23ÞU12ðα12Þ:

Again details of Ȟ000 can be found in Eqs. (B7) and (B8) in
Appendix B. It can be solved that

α12 ¼ −
1

2
arctan

2ϵ0Δm2
eecα23sα13 c̃12
Δλ0021

≃
ðϵ0Δm2

eeÞ2s̃12c̃12
Δλ21Δλ31

þOðϵ04Þ: ð23Þ

The zeroth order eigenvalues, after the (1-2) rotation are

λ0001 ¼ c2α12λ
00
1 þ s2α12λ

00
2 þ 2sα12cα12cα23sα13 c̃12ϵ

0Δm2
ee

≃ λ1 − ðϵ0Δm2
eeÞ2

s̃212
Δλ31

þOðϵ04Þ;

λ0002 ¼ s2α12λ
00
1 þ c2α12λ

00
2 − 2sα12cα12cα23sα13 c̃12ϵ

0Δm2
ee

≃ λ2 − ðϵ0Δm2
eeÞ2

c̃212
Δλ32

þOðϵ04Þ;

λ0003 ¼ λ003 ≃ λ3 þ ðϵ0Δm2
eeÞ2

�
s̃212
Δλ31

þ c̃212
Δλ32

�
þOðϵ04Þ:

ð24Þ

It is noteworthy that λ000i and λ00i are identical to at least
second order. To understand this observation, we need to
study the perturbative Hamiltonians after each rotation. It is
known that in a perturbative expansion, leading order
corrections to the eigenvalues are the diagonal elements
of the perturbative Hamiltonian. In Appendix B, we shall
demonstrate that after the first two additional rotations, the
perturbative Hamiltonian whose diagonal entries are all
zero, is in second order; thus errors of λ00i are already

controlled to fourth order. After the third rotation U12ðα12Þ,
the perturbative Hamiltonian (still with vanishing diagonal
entries) is in third order; thus errors of λ000i are further
diminished to sixth order. Therefore, it is not unexpected
that λ00i and λ000i are identical to second order.
Terms of order ϵ03 are no larger than 3 × 10−6. In

principle, we can continue performing rotations to control
the off-diagonal entries to any precision. Considering the
precision of the experimental uncertainties ∼1% [21–25],
stopping at U12ðα12Þ is more than enough. Later we will
show that it is equal to second order (in ϵ0) perturbation
theory when considering eigenstates.

B. Antineutrino case

In the case where YeρE≲ 0, js̃12j≲ jc̃12j in Ȟ1 of
Eq. (12), so we will rotate (2-3) sector before (1-3), and
the third additional rotation will still be in (1-2) sector as
for neutrinos. The calculation process will be quite similar
to the first case. The results for this case are listed below.
The (2-3) rotation angle is

ᾱ23 ¼
1

2
arctan

2ϵ0Δm2
eec̃12

Δλ32
≃
ϵ0Δm2

eec̃12
Δλ32

þOðϵ03Þ: ð25Þ

Compared with Eq. (21), it is evident that α23 ≃ ᾱ23 to
first order. After the (2-3) rotation, the zeroth order
eigenvalues are

λ̄01 ¼ λ1;

λ̄02 ¼ c2ᾱ23λ2 þ s2ᾱ23λ3 − 2sᾱ23cᾱ23 c̃12ϵ
0Δm2

ee

≃ λ2 − ðϵ0Δm2
eeÞ2

c̃212
Δλ32

þOðϵ04Þ;

λ̄03 ¼ s2ᾱ23λ2 þ c2ᾱ23λ3 þ 2sᾱ23cᾱ23 c̃12ϵ
0Δm2

ee

≃ λ3 þ ðϵ0Δm2
eeÞ2

c̃212
Δλ32

þOðϵ04Þ: ð26Þ

Before performing the next additional rotation in (1-3)
sector, there are some comments on the aboveU23 rotation.
In some former works, e.g., [13], a similar approach was
followed with a rotation in the (2-3) sector as above,
although there the rotation was used for both neutrinos and
antineutrinos. In additional, later in this paper (Sec. III D
and Fig. 2), we shall demonstrate that one additional
rotation does not improve the accuracy of the approximated
eigenstates. More specifically, if jν̌im is the exact eigen-
states in matter, errors of the initial zeroth order eigenstates
are estimated as jν̌im − jν̌i ≃Oðϵ0Þ. After the U23 rotation,
the eigenstates are corrected to be U†

23jν̌i, which still have
first order errors, i.e., jν̌im −U†

23jν̌i ≃Oðϵ0Þ still holds.
This indicates that to achieve better accuracy, we must
perform an additional rotation.
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The following (1-3) rotation angle is

ᾱ13 ¼ −
1

2
arctan

2ϵ0Δm2
eecᾱ23 s̃12

Δλ̄031

≃ −
ϵ0Δm2

ees̃12
Δλ31

þOðϵ03Þ: ð27Þ

Again, compared with Eq. (18), α13 ≃ ᾱ13 to first order.
After the (1-3) rotation, the zeroth order eigenvalues are

λ̄001 ¼ c2ᾱ13 λ̄
0
1 þ s2ᾱ13 λ̄

0
3 þ 2sᾱ13cᾱ13cᾱ23 s̃12ϵ

0Δm2
ee

≃ λ1 − ðϵ0Δm2
eeÞ2

s̃212
Δλ31

þOðϵ03Þ;

λ̄002 ¼ λ̄02 ≃ λ2 − ðϵ0Δm2
eeÞ2

c̃212
Δλ32

þOðϵ03Þ;

λ̄003 ¼ s2ᾱ13 λ̄
0
1 þ c2ᾱ13 λ̄

0
3 − 2sᾱ13cᾱ13cᾱ23 s̃12ϵ

0Δm2
ee

≃ λ3 þ ðϵ0Δm2
eeÞ2

�
s̃212
Δλ31

þ c̃212
Δλ32

�
þOðϵ03Þ: ð28Þ

It is easy to see that compared with Eq. (22), λ00i ≃ λ̄00i to
second order. Finally the (1-2) rotation angle is

ᾱ12 ¼
1

2
arctan

2ϵ0Δm2
eesᾱ23cᾱ13 s̃12
Δλ̄0021

≃
ðϵ0Δm2

eeÞ2s̃12c̃12
Δλ21Δλ32

þOðϵ04Þ: ð29Þ

Compared with Eq. (23), now even to the leading order
α12 ≠ ᾱ12. Later we will see that this inequality is necessary
for the equivalence of the eigenstates for neutrino and
antineutrino cases. After the U12 rotation, the corrected
eigenvalues are

λ̄0001 ¼ c2ᾱ12 λ̄
00
1 þ s2ᾱ12 λ̄

00
2 − 2sᾱ12cᾱ12cᾱ13sᾱ23 s̃12ϵ

0Δm2
ee

≃ λ1 − ðϵ0Δm2
eeÞ2

s̃212
Δλ31

þOðϵ03Þ;

λ̄0002 ¼ s2ᾱ12 λ̄
00
1 þ c2α̌12 λ̄

00
2 þ 2sᾱ12cᾱ12cᾱ13sᾱ23 s̃12ϵ

0Δm2
ee

≃ λ2 − ðϵ0Δm2
eeÞ2

c̃212
Δλ32

þOðϵ03Þ;

λ̄0003 ¼ λ̄003 ≃ λ3 þ ðϵ0Δm2
eeÞ2

�
s̃212
Δλ31

þ c̃212
Δλ32

�
þOðϵ03Þ:

ð30Þ

By comparing the above eigenvalues after three additional
rotations with the ones in the case of neutrinos, we find
that λ000i and λ̄000i are identical to second order in ϵ0.

C. Rotated eigenstates

The zeroth order energy eigenstates jν̌i before the
additional rotations are defined in Eq. (5). If

W ¼
�
U13ðα13ÞU23ðα23ÞU12ðα12Þ for neutrinos

U23ðᾱ23ÞU13ðᾱ13ÞU12ðᾱ12Þ for antineutrinos
;

ð31Þ

then the eigenstates after the rotations are

jν̌iW ¼ W†jν̌i; ð32Þ

and Um
PMNS from Appendix A and Ref. [14] is corrected

to be

V ¼ Um
PMNSW: ð33Þ

In the case of neutrinos, with Eqs. (18), (21), and (23) it is
easy to verify that U13ðα13ÞU23ðα23ÞU12ðα12Þ can be
expanded through second order to

FIG. 2. The equivalences between the additional rotations
(circles) and the perturbative expansions of the eigenvalues
and eigenvectors (triangles). Performing one additional rotation
is not equal to any perturbation expansion; performing two
additional rotations in (1-3) and (2-3) (exchange the two for
antineutrinos) sectors is equal to a first order perturbation
expansion; performing one more additional rotation in (1-2)
sector is equal to a second order perturbation expansion. The
steps shown in green, red, and blue refer to Refs. [12,14], and this
work respectively. Another possible perturbative branch (in blue)
is that if we implement a first order perturbative expansion after
the U13ðα13Þ and U23ðα23Þ (or U23ðᾱ23Þ and U13ðᾱ13Þ for anti-
neutrinos) rotations, the eigenvalues and eigenstates also will be
corrected to Oðϵ02Þ accuracy, see Appendix C 2.
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U13ðα13ÞU23ðα23ÞU12ðα12Þ ≃ 1þ ϵ0Δm2
ee

0
BBB@

− s̃12
Δλ31
c̃12
Δλ32

s̃12
Δλ31

− c̃12
Δλ32

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W1

−
ðϵ0Δm2

eeÞ2
2

0
BBB@

ð s̃12
Δλ31

Þ2 − 2s̃12c̃12
Δλ32Δλ21

0

2s̃12c̃12
Δλ31Δλ21

ð c̃12
Δλ32

Þ2 0

0 0 ð s̃12
Δλ31

Þ2 þ ð c̃12
Δλ32

Þ2

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W2

: ð34Þ

This expression still holds if we perform the (2-3)
rotation before the (1-3) since it can be demonstrated that

U13ðα13ÞU23ðα23ÞU12ðα12Þ
¼ U23ðᾱ23ÞU13ðᾱ13ÞU12ðᾱ12Þ þOðϵ03Þ: ð35Þ

Several remarkable observations in Eq. (34) are listed
below.

(i) Both U13ðα13Þ and U23ðα23Þ contribute to the first
order term W1. For example, if α13 ¼ 0, ðW1Þ13 and
ðW1Þ31 equal zero; and if α23¼0, ðW1Þ23 and
ðW1Þ32 vanish.

(ii) Since α12 contributes only at second order, if we
just perform the first two additional rotations, i.e.,
α12 ¼ 0, the first order W1 will not be affected.

(iii) U12ðα12Þ does contribute to the second order term
W2. For example, ðW2Þ21 ¼ 0 if α12 ¼ 0. That is,
although the eigenvalues after two and three addi-
tional rotations, i.e., λ00i and λ000i are identical to
second order, the eigenstates are not.

These observations are necessary to the following discus-
sions about the relations between the additional rotations
and perturbation theory.

D. Comparison with perturbation theory

The normal approach to calculate the energy eigenvalues,
eigenstates and oscillation probabilities in matter has been
via a series expansion in some small parameter. For example,
in [14], a three rotation approach was adopted, i.e., perform-
ing one constant rotation U23ðθ23; δÞ followed by two
rotations U13ðθ̃13Þ and U12ðθ̃12Þ. Then perturbation theory
was applied wherein the eigenvalues and eigenvectors were
perturbatively expanded to successive orders in ϵ0.
With the perturbing Hamiltonian Ȟ1, we assume that by

perturbation theory, the eigenstates are corrected to be

jν̌iWP ¼ WP†jν̌i: ð36Þ

Since Ȟ1 is order ϵ0, we can expand WP in a series of ϵ0,

WP ¼ 1þWP
1 þWP

2 þ � � � ; ð37Þ

and the corrected eigenvalues can also be expanded as

λPi ¼ λi þ λPð1Þi þ λPð2Þi þ � � � ; ð38Þ

where WP
n and λPðnÞi are proportional to ϵ0n, their full

expressions can be found in Appendix C 1. Comparing the
results from the perturbation theory and the additional
rotations, we find the following equivalences

W1 ¼ WP
1 ; W2 ¼ WP

2 ; ð39Þ

and

λ00i ≃ λi þ λPð1Þi þOðϵ02Þ ≃ λi þ λPð1Þi þ λPð2Þi þOðϵ03Þ;
λ000i ≃ λi þ λPð1Þi þ λPð2Þi þOðϵ03Þ: ð40Þ

From Eq. (39) and the observations at the end of Sec. III C,
we can make the following conclusions of the eigenstates

(i) After performing one additional rotation (U13ðα13Þ
for neutrinos and U23ðᾱ23Þ for antineutrinos), the
accuracy of the rotated eigenstates is not improved
compared with the initial zeroth order jν̌i, i.e., errors
of the eigenstates are still in Oðϵ0Þ.

(ii) For neutrinos (antineutrinos), after performing two
additional rotations in (1-3) and then (2-3) sectors
((2-3) and then (1-3) sectors), errors of the rotated
eigenstates are diminished to Oðϵ02Þ. Thus the
eigenstates are equivalent to the ones of a first order
perturbation theory through Oðϵ0Þ terms.

(iii) Errors of the eigenstates will be further diminished
to Oðϵ03Þ by performing just one more rotation in
(1-2) sector. Now the eigenstates have the same
accuracy as the ones from a second order perturba-
tion theory.

From Eq. (40), we can make the following conclusions of
the eigenvalues
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(i) Errors of the eigenvalues after the first two addi-
tional rotations are already lower than Oðϵ03Þ (that
is, the eigenvalues are correct through Oðϵ02Þ). To
reconcile with the conclusions of the eigenstates, we
say that the eigenvalues after the first two additional
rotations have at least the accuracy of the first order
perturbation theory.

(ii) Errors of the eigenvalues after the three additional
rotations are even smaller, so of course lower than
Oðϵ03Þ. Again to reconcile with the conclusions of
the eigenstates, we say that their accuracy is at least
equivalent to the ones corrected by a second order
perturbation theory.

Now we combine the conclusions of the eigenvalues and
the eigenstates. We find two equivalences between the
additional rotations and the perturbation theory.

(i) By performing two additional rotations in (1-3) and
(2-3) sector (the order is exchanged for anti-
neutrinos), we can improve the eigenstates and
eigenvalues to be as precise as the ones from first
order perturbation theory.

(ii) By performing three additional rotations, we can
improve the eigenstates and eigenvalues to be as
precise as the ones from a second order perturbation
theory.

All the conclusions are also summarized in Fig. 2.

IV. CORRECTIONS TO THE MIXING ANGLES
AND THE CP PHASE

After the three additional rotations, the corrected PMNS
matrix in matter is V ¼ Um

PMNSW. Since W is a real special
orthogonal matrix, V can be written as

V ¼ eiAU23ðθ̃023; δ̃0ÞU13ðθ̃013ÞU12ðθ̃012ÞeiB
¼ U23ðθ̃23; δ̃ÞU13ðθ̃13ÞU12ðθ̃12ÞW; ð41Þ

Here A and B are some real diagonal matrices. In general, A
and B are necessary to get real solutions of θ̃0ij and δ̃0. Since
both A and B are real and diagonal, they only add some
additional complex phases to the eigenstates, which will
not change any physics.
We can expand θ̃0ij as

θ̃0ij ≃ θ̃ij þ θ̃ð1Þij þ θ̃ð2Þij þ � � � ; ð42Þ

where θ̃ðnÞij is proportional to ϵ0n.
To first order,W¼U13ðα13ÞU23ðα23Þ¼1þW1þOðϵ02Þ.

Details of W1 can be found in Eq. (34). We give the final
results here. The first order corrections to the mixing angles
and CP phase are

θ̃ð1Þ13 ¼ ϵ0Δm2
ees̃12c̃12

�
1

Δλ32
−

1

Δλ31

�
;

θ̃ð1Þ12 ¼ −ϵ0Δm2
ee
s̃13
c̃13

�
s̃212
Δλ31

þ c̃212
Δλ32

�
;

θ̃ð1Þ23 ¼ ϵ0Δm2
ee

c̃δ
c̃13

�
s̃212
Δλ31

þ c̃212
Δλ32

�
;

δ̃ð1Þ ¼ −ϵ0Δm2
ee

2c2θ̃23 s̃δ
s2θ̃23 c̃13

�
s̃212
Δλ31

þ c̃212
Δλ32

�
: ð43Þ

Please note that since eipW1e−ip ¼ W1 for any real
number p, it is free to set one of the diagonal elements of A

FIG. 3. The absolute accuracy of the approximations of the mixing angles and CP phase in matter in this paper to first order (left) and
second order (right) for the normal mass ordering. The black dashed curves in the left and right plots are jϵ02j and jϵ03j, respectively. It is
evident that the error of sin2 of each mixing angle and phase at first (second) order is about ϵ02 (ϵ03).
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or B to be zero. All the corrections to the mixing angles and
the CP phase are invariants under a transformation of
exchanging λ1, λ2 and θ̃12 ⇒ θ̃12 � π

2
. This is easy to verify

in the above equations. More details can be found in
Appendix E.
To second order, W ¼ U13ðα13ÞU23ðα23ÞU12ðα12Þ ¼

1þW1 þW2 þOðϵ03Þ, combining with the first order
results the second order perturbations can be solved.
Details of the second order results are listed in
Appendix D. The corrected mixing angles and CP phase
through second order are

s̃013 ≃ s̃13 þ ϵ0Δm2
ees̃12c̃12c̃13

�
1

Δλ32
−

1

Δλ31

�
þ fð2Þ13 ;

s̃012 ≃ s̃12 − ϵ0Δm2
ee
s̃13c̃12
c̃13

�
s̃212
Δλ31

þ c̃212
Δλ32

�
þ fð2Þ12 ;

s̃023 ≃ s̃23 þ ϵ0Δm2
ee
c̃δc̃23
c̃13

�
s̃212
Δλ31

þ c̃212
Δλ32

�
þ fð2Þ23 ;

s̃0δ ≃ s̃δ − ϵ0Δm2
ee

c2θ̃23s2δ̃
s2θ̃23 c̃13

�
s̃212
Δλ31

þ c̃212
Δλ32

�
þ fð2Þδ : ð44Þ

Functions of the second order terms fð2Þ, which are
proportional to ϵ02, can be found in the Appendix D.

A. Numerical tests

Neutrino propagation in constant density matter has been
analytically studied, the accurate mixing angles and CP
phase can be found in [2,3]. Our formulas have second
order accuracy so it is expected that the differences between
the analytical solutions and our approximations are sig-
nificantly below ϵ02 and even to first order there are precise
to >10−3. We show the precision of the angles to first
and second order in Fig. 3 for the normal mass ordering.
It is evident that the approximated values achieve the
expected accuracy.

V. CONCLUSIONS

We have significantly improved the accuracy and under-
standing of the recent perturbative framework for neutrino
propagations in uniform matter in [14]. This has been
achieved by performing additional rotations which diago-
nalize the sectors with leading order off-diagonal elements
of the Hamiltonian. The primary advantage of this
approach is that the zeroth order Hamiltonian is applicable
to the whole range of matter potential a, whereas pertur-
bation expansions are most reliable for weak matter effect.
By studying orders of the off-diagonal elements of the
perturbing Hamiltonian, we determine the sequence of
the additional rotations. For neutrinos the sequence is
U13 ⇒ U23 ⇒ U12, and for anti-neutrinos U13, U23 are
exchanged. The additional rotation angles are solved to
diagonalize the corresponding sectors. The first two

rotation angles in (1-3) and (2-3) sectors have first order
(in ϵ0) whereas the third angle in (1-2) sector is second
order. The diagonal elements of the rotated Hamiltonian,
which are the approximations to the eigenvalues, are
calculated to second order.
We compare the eigenvalues and eigenstates derived by

the additional rotations and perturbation theories and reveal
the equivalences. Performing two successive additional
rotations in (1-3) and (2-3) sectors is equal to a first order
perturbation theory. Performing three successive additional
rotations in (1-3), (2-3) and (1-2) sectors is equal to a
second order perturbative expansion.
Finally, we derive first order approximation formulas of

the mixing angles and CP phase in matter and compare
them with the exact solutions. Numerical tests show that
regardless the scale of matter potential, errors of the first
order approximation formulas are controlled to be no more
than 10−5, achieving the expected accuracy with a signifi-
cant computational speed improvement as well [25]. More
precise approximations to second order are given in
Appendix D.
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APPENDIX A: ZEROTH ORDER EIGENVALUES
AND MIXING ANGLES

The derivation process of the mixing angles and Eq. (12)
is presented in this Appendix.

1. U23ðθ̃23; δ̃Þ rotation
Define

H̃ ≡U†
23ðθ̃23; δ̃ÞHU23ðθ̃23; δ̃Þ: ðA1Þ

Now H̃ is real and does not depend on θ23 and δ.
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H̃ ¼ 1

2E

0
B@

λa s13c13Δm2
ee

λb

s13c13Δm2
ee λc

1
CA

þ ϵs12c12
Δm2

ee

2E

0
B@

c13
c13 −s13

−s13

1
CA; ðA2Þ

where

λa ¼ aþ ðs213 þ ϵs212ÞΔm2
ee;

λb ¼ ϵc212Δm2
ee;

λc ¼ ðc213 þ ϵs212ÞΔm2
ee: ðA3Þ

2. U13ðθ̃13Þ rotation
Observe the entries of H̃, it’s easy to see that the (1-3)

sector contributes the leading order off-diagonal entries.
Therefore it’s reasonable to make U13ðθ̃13Þ diagonalize this
sector. After this rotation

Ĥ ≡U†
13ðθ̃13ÞH̃U13ðθ̃13Þ

¼ 1

2E

0
B@

λ−

λ0

λþ

1
CAþ ϵs12c12

Δm2
ee

2E

×

0
B@

cðθ̃13−θ13Þ
cðθ̃13−θ13Þ sðθ̃13−θ13Þ

sðθ̃13−θ13Þ

1
CA; ðA4Þ

where

λ� ¼ 1

2

h
ðλa þ λcÞ � signðΔm2

eeÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλa − λcÞ2 þ 4ðs13c13Δm2

eeÞ2
q i

;

λ0 ¼ ϵc212Δm2
ee: ðA5Þ

With the diagonal elements above, θ̃13 can be deter-
mined by

sin2θ̃13 ¼
λþ − λc
λþ − λ−

; θ̃13 ∈ ½0; π=2�: ðA6Þ

3. U12ðθ̃12Þ rotation
For any long baseline experiment the largest off diagonal

terms are in the (1-2) sector (see subsection 3 a below for a
caveat). Now U12ðθ̃12Þ is required to diagonalize the (1-2)
sector of Ĥ, and Ȟ is obtained after is rotation.

Ȟ ¼ U†
12ðθ̃12ÞĤU12ðθ̃12Þ

¼ 1

2E

0
B@

λ1

λ2

λ3

1
CA

þ ϵsðθ̃13−θ13Þs12c12
Δm2

ee

2E

0
B@

−s̃12
c̃12

−s̃12 c̃12

1
CA;

ðA7Þ

where

λ1;2 ¼
1

2

h
ðλ0 þ λ−Þ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ0 − λ−Þ2 þ 4ðϵcðθ̃13−θ13Þs12c12Δm2

eeÞ2
q i

;

λ3 ¼ λþ; ðA8Þ

and

sin2θ̃12 ¼
λ2 − λ0
λ2 − λ1

; θ̃12 ∈ ½0; π=2�: ðA9Þ

Alternative ways to write these expressions can be found
in [26].

a. θ̃12 vs ´θ23

After the ðθ̃23; δ̃Þ and θ̃13 rotations, the Hamiltonian is
given by Eq. (A4).
If we follow the simplest prescription of rotating away

the largest off diagonal elements as we have for the
previous steps, we perform the rotation in the (1-2) sector,
which also removes the solar level crossing and returns
the PMNS order. This is the largest off-diagonal terms
when cðθ̃13−θ13Þ > sðθ̃13−θ13Þ which is valid for neutrinos with
E < 11.5 GeV (a < Δm2

ee=c2θ13)
1 and for all anti-neutrinos

in the NO. Thus in the NO for the neutrinos above the
atmospheric resonance (or antineutrinos above the atmos-
pheric resonance in the IO) it is better to diagonalize the
(2-3) sector next. While this does not address the level-
crossing at the solar resonance, it is immaterial since we are
focusing on neutrinos with E > 11.5 GeV.
For the case E > 11.5 GeV, the new mixing angle

denoted ´θ23 is given by

tan 2 ´θ23 ¼
2ϵs12c12sðθ̃13−θ13ÞΔm

2
ee

Δλþ0

; ðA10Þ

and the eigenvalues λx;y;z are

1Note that the threshold is slightly higher than the atmospheric
resonance at a ¼ Δm2

eec2θ13 .

DENTON, PARKE, and ZHANG PHYS. REV. D 98, 033001 (2018)

033001-10



λx ¼ λ−;

λy ¼ c2´θ23
λ0 þ s2´θ23

λþ − 2ϵs ´θ23
c ´θ23

s12c12sðθ̃13−θ13ÞΔm
2
ee;

λz ¼ s2´θ23
λ0 þ c2´θ23

λþ þ 2ϵs ´θ23
c ´θ23

s12c12sðθ̃13−θ13ÞΔm
2
ee:

ðA11Þ

The new perturbing Hamiltonian is

ϵcðθ̃13−θ13Þs12c12Δm
2
ee

0
BB@

c ´θ23
−s ´θ23

c ´θ23

−s ´θ23

1
CCA: ðA12Þ

In general we will assume that E < 11.5 GeV and use the
θ̃12 rotation since it also addresses the level crossing and
matches the PMNS order. In addition, the difference
between cðθ̃13−θ13Þ and sðθ̃13−θ13Þ is small until well past
the atmospheric resonance.

APPENDIX B: HAMILTONIANS AFTER THE
ADDITIONAL ROTATIONS

In the case of neutrinos, after the U13ðα13Þ rotation, the
Hamiltonian becomes Ȟ0 ¼ Ȟ0

0 þ Ȟ0
1 where

2EðȞ0
0Þ11 ¼ c2α13λ1 þ s2α13λ3 þ 2sα13cα13 s̃12ϵ

0Δm2
ee;

2EðȞ0
0Þ12 ¼ 0;

2EðȞ0
0Þ13 ¼ −sα13cα13Δλ31 þ ðs2α13 − c2α13Þs̃12ϵ0Δm2

ee;

2EðȞ0
0Þ22 ¼ λ2;

2EðȞ0
0Þ23 ¼ 0;

2EðȞ0
0Þ33 ¼ s2α13λ1 þ c2α13λ3 − 2sα13cα13 s̃12ϵ

0Δm2
ee; ðB1Þ

and ðȞ0
0Þij ¼ ðȞ0

0Þji, and

Ȟ0
1 ¼

ϵ0Δm2
eec̃12

2E

0
BB@

−sα13
−sα13 cα13

cα13

1
CA ðB2Þ

We require the (1-3) sector to be diagonalized, i.e., α13 must
satisfy an equation:

−sα13cα13Δλ31 þ ðs2α13 − c2α13Þs̃12ϵ0Δm2
ee ¼ 0: ðB3Þ

The solution is Eq. (18).
After the U23ðα23Þ rotation, the Hamiltonian is

Ȟ00 ¼ Ȟ00
0 þ Ȟ00

1 , where

2EðȞ00
0Þ11 ¼ λ01;

2EðȞ00
0Þ12 ¼ 0;

2EðȞ00
0Þ13 ¼ 0;

2EðȞ00
0Þ22 ¼ c2α23λ

0
2 þ s2α23λ

0
3 − 2sα23cα23cα13 c̃12ϵ

0Δm2
ee;

2EðȞ00
0Þ23 ¼ −sα23cα23Δλ

0
32 − ðs2α23 − c2α23Þcα13 c̃12ϵ0Δm2

ee;

2EðȞ00
0Þ33 ¼ s2α23λ

0
2 þ c2α23λ

0
3 þ 2sα23cα23cα13 c̃12ϵ

0Δm2
ee

ðB4Þ

and ðȞ00
0Þij ¼ ðȞ00

0Þji, and

Ȟ00
1 ¼ −

ϵ0Δm2
eec̃12sα13
2E

0
B@

cα23 sα23
cα23
sα23

1
CA: ðB5Þ

Now the (2-3) sector must be diagonalized, i.e., α23 must
satisfy

−sα23cα23Δλ
0
32 − ðs2α23 − c2α23Þcα13 c̃12ϵ0Δm2

ee ¼ 0: ðB6Þ

The solution is Eq. (21). Since α13 is a first order (in ϵ0)
term, it is evident that Ȟ00

1 is in second order.
After the U12ðα12Þ rotation, the Hamiltonian is

Ȟ000 ¼ Ȟ000
0 þ Ȟ000

1 , where

2EðȞ000
0 Þ11¼c2α12λ

00
1þs2α12λ

00
2þ2sα12cα12cα23sα13 c̃12ϵ

0Δm2
ee;

2EðȞ000
0 Þ12¼−sα12cα12Δλ

00
21þðs2α12 −c2α12Þcα23sα13 c̃12ϵ0Δm2

ee;

2EðȞ000
0 Þ13¼0;

2EðȞ000
0 Þ22¼ s2α12λ

00
1þc2α12λ

00
2−2sα12cα12cα23sα13 c̃12ϵ

0Δm2
ee;

2EðȞ000
0 Þ23¼0;

2EðȞ000
0 Þ33¼ λ003; ðB7Þ

and ðȞ000
0 Þij ¼ ðȞ000

0 Þji, and

Ȟ000
1 ¼ −

ϵ0Δm2
eec̃12sα13sα23
2E

0
B@

cα12
sα12

cα12 sα12

1
CA: ðB8Þ

It is easy to verify that Ȟ000
1 is already a third order term in ϵ0

and α12 must diagonalize the (1-2) sector, i.e.,

−sα12cα12Δλ
00
21 þ ðs2α12 − c2α12Þcα23sα13 c̃12ϵ0Δm2

ee ¼ 0: ðB9Þ

The solution is Eq. (23).
The approach for antineutrinos is quite similar so we will

not provide the detailed procedure. Alternatively we
simply describe it by citing Eq. (15). The first additional
rotation diagonalizes the (2-3) submatrix with θ ¼ ᾱ23,
and λx ¼ c̃12ϵ0Δm2

ee; the second additional rotation
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diagonalizes the (1-3) submatrix with θ ¼ ᾱ13, and
λx ¼ −cᾱ23 s̃12ϵ

0Δm2
ee; the third additional rotation diago-

nalizes the (1-2) submatrix with θ ¼ ᾱ12, and λx ¼
cᾱ13sᾱ23 s̃12ϵ

0Δm2
ee.

For both cases of neutrino and antineutrino, the
Hamiltonian after each rotation is summarized in Table I.

APPENDIX C: PERTURBATION EXPANSIONS

1. The perturbative expansion of DMP

Here we describe the perturbative expansions calculated
from the initial zeroth order expressions from DMP [14].
By the first order perturbation theory, since all diagonal
elements of Ȟ1 vanish the diagonal elements of WP

1 also
vanish. The nondiagonal elements are

ðWP
1 Þij ¼ −

2EðȞ1Þij
Δλij

; ðC1Þ

and from Eq. (12) it is easy to get

WP
1 ¼ ϵ0Δm2

ee

0
BB@

− s̃12
Δλ31
c̃12
Δλ32

s̃12
Δλ31

− c̃12
Δλ32

1
CCA: ðC2Þ

By the second order perturbation theory

ðWP
2 Þij ¼

8>><
>>:

− 1
2

P
k≠i

½2EðȞ1Þik�2
ðΔλikÞ2 i ¼ j

1
Δλij

P
k≠i;k≠j

2EðȞ1Þik2EðȞ1Þkj
Δλkj

i ≠ j
; ðC3Þ

then

WP
2 ¼−

ðϵ0Δm2
eeÞ2

2

0
BBB@

ð s̃12
Δλ31

Þ2 − 2s̃12c̃12
Δλ32Δλ21

0

2s̃12c̃12
Δλ31Δλ21

ð c̃12
Δλ32

Þ2 0

0 0 ð s̃12
Δλ31

Þ2þð c̃12
Δλ32

Þ2

1
CCCA:

ðC4Þ

First order corrections to the eigenvalues given by the
perturbation theory is

λPð1Þi ¼ 2EðȞ1Þii ¼ 0; ðC5Þ

and second order corrections are

λPð2Þi ¼
X
k≠i

½2EðȞÞik�2
Δλik

: ðC6Þ

With Eq. (12) it is easy to get

TABLE I. Entries of the Hamiltonian after each rotation for neutrinos and anti-neutrinos are presented. N in the
last column is a normalization factor. For each row,N is equal to the product of all elements on and above this line.
The first three rows are identical for neutrinos and antineutrinos.

Neutrinos

Rotation angles 2EH0 2EðH1Þ12=N 2EðH1Þ13=N 2EðH1Þ23=N N

ðλa; λb; λcÞ c13s12c12ϵ s13c13 s13s12c12ϵ Δm2
ee

θ̃13 ðλ−; λ0; λþÞ cðθ̃13−θ13Þ 0 sðθ̃13−θ13Þ ×s12c12ϵ
θ̃12 ðλ1; λ2; λ3Þ 0 −s̃12 c̃12 ×sðθ̃13−θ13Þ
α13 ðλ01; λ02; λ03Þ −sα13 0 cα13 ×c̃12
α23 ðλ001 ; λ002 ; λ003Þ cα23 sα23 0 ×ð−sα13Þ
α12 ðλ0001 ; λ0002 ; λ0003 Þ 0 cα12 sα12 ×sα23

Antineutrinos

Rotation angles 2EH0 2EðH1Þ12=N 2EðH1Þ13=N 2EðH1Þ23=N N

ðλa; λb; λcÞ c13s12c12ϵ s13c13 s13s12c12ϵ Δm2
ee

θ̃13 ðλ−; λ0; λþÞ cðθ̃13−θ13Þ 0 sðθ̃13−θ13Þ ×s12c12ϵ
θ̃12 ðλ1; λ2; λ3Þ 0 −s̃12 c̃12 ×sðθ̃13−θ13Þ
ᾱ23 ðλ̄01; λ̄02; λ̄03Þ −sᾱ23 cᾱ23 0 ×ð−s̃12Þ
ᾱ13 ðλ̄001 ; λ̄002 ; λ̄003Þ cᾱ13 0 sᾱ13 ×ð−sᾱ23Þ
ᾱ12 ðλ̄0001 ; λ̄0002 ; λ̄0003 Þ 0 −sᾱ12 cᾱ12 ×sᾱ13
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λPð2Þ1 ¼ −ðϵ0Δm2
eeÞ2

s̃212
Δλ31

;

λPð2Þ2 ¼ −ðϵ0Δm2
eeÞ2

c̃212
Δλ32

;

λPð2Þ3 ¼ ðϵ0Δm2
eeÞ2

�
s̃212
Δλ31

þ c̃212
Δλ32

�
: ðC7Þ

2. Perturbative expansion after the first
two additional rotations

After the first two additional rotations, we can implement
a first order perturbative expansion to achieve second order
accuracy for all eigenvalues and eigenstates.2

For the eigenvalues this is evident. After the first two
additional rotations, the eigenvalues λ00i (λ̄00i ) already have
the second order accuracy. Since diagonal entries of the
perturbative Hamiltonian are always zero, a first order
expansion will not give any corrections to the eigenvalues
so the accuracy will be kept.
It is more complicated to test the eigenstates. In the

following calculation we are assuming a case of neutrinos.
We define

ðWP00
1 Þij ≡ −

2EðȞ00
1Þij

λ00ij
; ðC8Þ

and all the diagonal elements of WP00
1 vanish. By Eqs. (B5)

and (18) it can be figured out that

WP00
1 ¼ ϵ0Δm2

eec̃12sα13

0
BBBBBB@

−
cα23
Δλ0021

−
sα23
Δλ0031

cα23
Δλ0021
sα23
Δλ0031

1
CCCCCCA

≃ −ðϵ0Δm2
eeÞ2

c̃12s̃12
Δλ31

0
BB@

−
1

Δλ21
1

Δλ21

1
CCAþOðϵ03Þ:

ðC9Þ
Compared with Eq. (34), we can get that

U13ðα13ÞU23ðα23Þð1þWP00
1 Þ

≃U13ðα13ÞU23ðα23ÞU12ðα12Þ þOðϵ03Þ: ðC10Þ
So the eigenstates are corrected to second order accuracy.

For the case of antineutrinos, the perturbative Hamiltonian
Ȟ00

i will be different, so we need to re-calculate WP00
1

according to Table I. Moreover, in Eq. (C10)
U13ðα13ÞU23ðα23Þ will be replaced by U23ðᾱ23ÞU13ðᾱ13Þ
and α12 will be replaced by ᾱ12.

APPENDIX D: SECOND ORDER CORRECTIONS
TO THE MIXING ANGLES AND CP PHASE

The second order corrections to the mixing angles and
CP phase, as defined in Eq. (42) are

θ̃ð2Þ13 ¼ −
s̃13
2c̃13

½ðW0
1Þ23�2;

θ̃ð2Þ12 ¼ ðW0
2Þ12 −

s̃213
c̃213

ðW0
1Þ13ðW0

1Þ23;

θ̃ð2Þ23 ¼ c̃δs̃13
c̃213

ðW0
1Þ13ðW0

1Þ23 þ
c2θ̃23 s̃

2
δ

s2θ̃23 c̃
2
13

½ðW0
1Þ23�2;

δ̃ð2Þ ¼ −
2c2θ̃23 s̃δs̃13
s2θ̃23 c̃

2
13

ðW0
1Þ13ðW0

1Þ23

þ
2ð1þ c2

2θ̃23
Þs̃δc̃δ

c̃213s
2
2θ̃23

½ðW1Þ023�2; ðD1Þ

where in our case

ðW0
1Þ13 ¼ ϵ0Δm2

ees̃12c̃12

�
1

Δλ32
−

1

Δλ31

�
; ðD2Þ

ðW0
1Þ23 ¼ ϵ0Δm2

ee

�
s̃212
Δλ31

þ c̃212
Δλ32

�
; ðD3Þ

and

ðW0
2Þ12 ¼

�
ϵ0Δm2

eeÞ2s̃12c̃12
�

c̃212
Δλ32Δλ21

þ s̃212
Δλ31Δλ21

−
1

2

�
c̃212

ðΔλ32Þ2
−

s̃212
ðΔλ31Þ2

�	
: ðD4Þ

Actually ðW0
1Þij and ðW0

2Þij are elements of rotatedW1 and

W2 by U12ðθ̃12Þ, i.e.,

W0
1 ≡U12ðθ̃12ÞW1U

†
12ðθ̃12Þ;

W0
2 ≡U12ðθ̃12ÞW2U

†
12ðθ̃12Þ; ðD5Þ

and they are invariants of a λ1 ⇔ λ2 symmetry which will
be explained in detail Appendix E.
Detailed formulas of the second order terms in

Eq. (44) are

2If we implement a perturbative expansion after only one
additional rotation, it can be shown that one is required to do a
second order expansion to achieveOðϵ02Þ accuracy. Thus, starting
the perturbative expansion one rotation earlier, as was done in
[14], or performing an additional rotation before going to the
perturbative expansion, as demonstrated in this Appendix, is
more computationally efficient.
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fð2Þ13 ¼ −
s̃13
2

½ðW0
1Þ213 þ ðW0

1Þ223�

fð2Þ12 ¼ −
s̃213
c̃213

ðW0
1Þ23

�
s̃12
2

ðW0
1Þ23 þ c̃12ðW0

1Þ13
�

þ c̃12ðW0
2Þ12

fð2Þ23 ¼ 1

c̃213
ðW0

1Þ23
�
c2θ̃23 s̃

2
δ − s̃223c̃

2
δ

2s̃23
ðW0

1Þ23

þ c̃δs̃13c̃23ðW0
1Þ13

�

fð2Þδ ¼ 2s̃δ
s2θ̃23 c̃

2
13

ðW0
1Þ23

�c̃2δð1þ c2
2θ̃23

Þ − s̃2δc
2
2θ̃23

s2θ̃23
ðW0

1Þ23

− c2θ̃23 c̃δs̃13ðW0
1Þ13

�
ðD6Þ

The precision of the mixing angles through second order
is shown in Fig. 3. It is evident that the approximated values
achieve the expected accuracy.

APPENDIX E: λ1 ⇔ λ2 SYMMETRY

If we exchange λ1 and λ2 and θ̃12 is translated to θ̃12 � π
2
,

the Hamiltonian in basis of flavor eigenstates will keep
unchanged because

�
c̃12 s̃12
−s̃12 c̃12

��
λ1

λ2

��
c̃12 −s̃12
s̃12 c̃12

�

¼
� cðθ̃12�π

2
Þ sðθ̃12�π

2
Þ

−sðθ̃12�π
2
Þ cðθ̃12�π

2
Þ

��
λ2

λ1

�

×

� cðθ̃12�π
2
Þ −sðθ̃12�π

2
Þ

sðθ̃12�π
2
Þ cðθ̃12�π

2
Þ

�
: ðE1Þ

Under this discrete transformation

λ1 ⇔ λ2; s̃12 ⇒ −c̃12; c̃12 ⇒ s̃12: ðE2Þ

To the leading order

α13 ⇔ α23; ðE3Þ

which can be verified by Eqs. (18) and (21). θ̃23, δ̃ and θ̃13
and their perturbing terms should be all invariants. Since it
is a translation of θ̃12, the perturbation of θ̃12 should also be
an invariant. Thus an implicit reason for introducing W0

1

andW0
2 can be revealed. It is easy to see in Eqs. (D2)–(D4)

that W0
1 and W0

2 are also invariants under the transforma-
tion. Then the perturbing terms are just combinations of
some λ1 ⇔ λ2 invariant functions.

APPENDIX F: SOME IDENTITIES

In matter the corrected mixing angles, CP phase and
eigenvalues must satisfy the Naumov-Harrison-Scott iden-
tity [27,28], to second order, it is

s12c12s13c213s23c23sδ
Y
i>j

Δm2
ij ≃ s̃012c̃

0
12s̃

0
13c̃

02
13s̃

0
23c̃

0
23s̃

0
δ

×
Y
i>j

Δλ000ij þOðϵ03Þ: ðF1Þ

A simpler identity is known as the Toshev identity [29],
again to second order it is

s2θ23sδ ≃ s0
2θ̃23

s̃0δ þOðϵ03Þ: ðF2Þ

Combining the above two identities a third identity can be
derived [30]

s12c12s13c213

Q
i>jΔm2

ijQ
i>jΔλ000ij

≃ s̃012c̃
0
12s̃

0
13c̃

02
13 þOðϵ03Þ: ðF3Þ

If we define

Jr ≡ s12c12s13c213;

Jmr ≡ s̃012c̃
0
12s̃

0
13c̃

02
13; ðF4Þ

where Jr is a reduced Jarlskog factor and similarly for the
matter values, the third identity can be rewritten as

Jr

Q
i>jΔm2

ijQ
i>jΔλ000ij

≃ Jmr þOðϵ03Þ: ðF5Þ

FIG. 4. This figure shows ΔJmr ≡ s̃012c̃
0
12s̃

0
13c̃

02
13 − s12c12s13c213×Q

i>j
Δm2

ijQ
i>j

Δλ000ij
through second order (red curve) for the normal mass

ordering. The black dashed line is ϵ03.
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For the third identity shown in Eq. (F5), analytical
verification is complicated. An alternative numerical
test is provided here. We define an error function as

ΔJmr ≡ Jmr − Jr

Q
i>j

Δm2
ijQ

i>j
Δλ000ij

to quantify the error in calculating

the CP violating term using our expressions. We have
shown the precision of this expression in Fig. 4, in which
we can see that the third identity holds to even better than
third order in ϵ0.
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