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In the Hamiltonian formulation of general relativity, Einstein’s equation is replaced by a set of four
constraints. Classically, the constraints can be identified with the generators of the hypersurface-
deformation Lie algebroid (HDA) that belongs to the groupoid of finite evolutions in space-time. Taken
over to deformed general relativity, this connection allows one to study possible Drinfeld twists of space-
time diffeomorphisms with Hopf-algebra techniques. After a review of noncommutative differential
structures, two cases—twisted diffeomorphisms with standard action and deformed (or ⋆-) diffeo-
morphisms with deformed action—are considered in this paper. The HDA of twisted diffeomorphisms
agrees with the classical one, while the HDA obtained from deformed diffeomorphisms is modified due to
the explicit presence of ⋆-products in the brackets. The results allow one to distinguish between twisted and
deformed symmetries, and they indicate that the latter should be regarded as the relevant symmetry
transformations for noncommutative manifolds. The algebroid brackets maintain the same general structure
regardless of space-time noncommutativity, but they still show important consequences of nonlocality.
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I. INTRODUCTION

Thanks to general relativity (GR), gravitational inter-
actions are understood as purely geometric phenomena
which can be described in terms of a metric, an affine
connection, and a curvature defined on a (pseudo-)
Riemannian manifold. The symmetry of general covariance
is an important governing principle which determines
possible dynamical theories. Accordingly, one may attempt
to quantize gravity by analyzing possible quantum space-
time symmetries which determine the structure of the
geometry of the system. As shown in Refs. [1–14], the
concept of absolutely sharp points, one of the cornerstones
of Riemannian geometry, should then be expected to
break down.
A general mathematical structure that can make sense

of such a space-time is provided by noncommutative

geometry [15–22]. The approach pioneered by Connes
starts by recognizing the tight relation between the geo-
metrical properties of space and the algebra of continuous
functions on it. For commutative algebras, the theorem of
Gelfand and Neimark guarantees that there is an equiv-
alence between compact Hausdorff spaces and C�-algebras.
The main idea is then to extend this equivalence to
noncommutative algebras. Although one cannot recon-
struct the space from a noncommutative algebra, it is still
possible to introduce generalized versions of the metric and
a related differential calculus by means of the Dirac
operator acting on functions of the algebra [23–25].
A different implementation of noncommutative geom-

etry involves a notion of deformed symmetries often
referred to as quantum groups [26,27]. For more than
twenty years now, the study of possible quantum defor-
mations of relativistic symmetries has been intensely
pursued [28–36], and supersymmetric extensions have
been considered as well [37–39]. The present understand-
ing is that, even with noncommutativity, it is still possible
to have a ten-dimensional local symmetry group (replacing
classical Poincaré transformations) by means of what is
known as a “Drinfeld twist” [40–42].
In the case of flat space-time, twists allow one to interpret

noncommutative versions of Minkowski spacetime as
objects which are, in a certain sense, dual to suitable
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deformations of the Poincaré algebra. Identifying the
dimensionful deformation parameter λ (or κ ∼ 1=λ) with
the Planck length lPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
(Planck mass mPl ¼ffiffiffiffiffiffiffiffiffiffiffiffi

cℏ=G
p

), these models provide a mathematical realization
of the proposal of doubly (or deformed) special relativity
[43,44], which argues that Planck-scale effects should
necessitate a description of space-time physics in terms
of two relativistic invariants: λ or κ in addition to the
speed of light c. In spite of this success, the extension of
noncommutativity to curved manifolds remains an open
issue, which is of particular importance because one of the
main applications of quantum groups and the associated
space-time noncommutativity is the characterization of
Planck-scale physics. They should therefore have the
potential to be a candidate theory of quantum gravity
(QG), which has to include curved space-time solutions.
Attempts to quantize 3-dimensional gravity have met

with more success [45–54], but much work remains to be
done to generalize these results to the 4-dimensional theory
of physical interest. Understanding how to quantize GR or,
even more generally, the class of all possible covariant
theories remains center stage in the research program of
noncommutative geometry and the associated deformation
of gauge groups. Another important stimulus to study the
deformation of diffeomorphisms groups, which can be
regarded as the gauge symmetries of GR, comes from string
theory. In this context, it has been shown that coordinates
obey canonical noncommutativity if a background tensor
field (or B-field in short) is present [55–59].
In the last two decades, the study of Hopf algebras

from a physical perspective has given rise to a rather sizable
literature on quantum Minkowski spacetimes [60–63].
These zero-curvature models are often considered toy
models for the flat limit of a (still to be found) QG theory.
In some very rare cases, they have even proved useful for
phenomenological proposals [64]. The main idea is to
promote coordinates xμ to noncommuting operators X̂μ

with non-trivial commutators of the form ½X̂μ; X̂ν� ¼
iθμνðX̂Þ ¼ iθμν þ iΘμν

ρ X̂ρ. Thanks to Weyl-Moyal maps,
which had been first introduced to study the phase space of
quantum mechanics, one can trade operator-valued coor-
dinates for functions living on a classical manifold but
equipped with a nonstandard multiplication rule. This
procedure introduces a noncommutative ⋆-product, whose
main feature is nonlocality. Such quantum deformations of
coordinate spaces based on algebraic relations have been
extensively studied since the seminal paper by Snyder [65].
The best known examples are given by θ (or Moyal)
canonical space [66], κ-Minkowski spacetime invariant
under the κ-Poincaré algebra [67,68], q-deformations of
Lie groups [69–71], and the fuzzy sphere [20,72].
All this literature mainly focused on the construction

of noncommutative Minkowski space-times but did not
contemplate extensions to curved versions. Some progress
has been made in the quantization of symmetry-reduced

GR solutions such as de Sitter [73], anti-deSitter [74],
and Friedmann-Robertson-Walker [75] backgrounds.
Nevertheless, the situation for the quantization of the full
group of diffeomorphisms remains unclear and the relevant
literature is fragmented. The main obstacle seems to be
the proper definition of coordinate transformations and a
self-consistent calculus once coordinates have been pro-
moted to noncommuting objects. It is not difficult to realize
that noncommutativity introduces a preferred frame (or
coordinate choice) and thus is not compatible with the
standard symmetries. For instance, if we assume that
½X̂ρ; X̂σ� ¼ iθρσ, as it is the case for the canonical or
Moyal-Weyl noncommutative spacetime, then the trans-

formed coordinates bX0
μ ¼ X̂μ þ ξ̂μ, with a vector field ξ̂μ

depending linearly on X̂μ (as required for rotations and
boosts), do not obey the original commutation relation

½ bX0
ρ; bX0

σ� ≠ iθρσ. To avoid this, as we briefly hinted above,
one needs to quantize (or deform) the symmetry group in a
specific way. Such a deformation theory in complete form
is not available for diffeomorphism groups. For this reason,
we do not yet have a widely accepted noncommutative
theory of gravity.
A possible way out, proposed in Ref. [76], lies in

restricting the group of diffeomorphisms to those trans-
formations that preserve coordinate noncommutativity.
It has been recognized [76] that, in the case of canonical
space, this proposal corresponds to a restriction to volume-
preserving diffeomorphisms. One therefore obtains a
connection with unimodular gravity [77,78]. Another
possibility, explored in Ref. [79], is a generalization of
the Seiberg-Witten map [55] to GR by gauging the Lorentz
group. A drawback of such an approach is that it forces
one to use a complex metric structure [79]. An alternative
perspective on the interplay between gravity and non-
commutative geometry is offered for instance by
Refs. [80,81], where matrix models of Yang-Mills type
are developed. In this case (see [81] for a review), there is
no space-time manifold and space-time coordinates are
replaced by a set of (noncommutative) matrices used to
embed different geometries depending on their algebra.
The notion of Riemannian geometry should then emerge
from a path integral over matrix configurations correspond-
ing to different topologies. The most notable example of
quantum geometry realized in terms of a matrix model is
given by the fuzzy sphere [20,82–84]. A recent approach
using twisted bundles has been developed in [85,86].
Perhaps one of the most promising paths proposed so far

is that of twisted diffeomorphisms [87,88]. The main idea is
to replace the diffeomorphism invariance of GR by its
twisted version. This is done by deforming the Hopf
algebra structure of the universal enveloping algebra of
the Lie algebra of vector fields by twisting the coproduct by
means of Drinfeld twists [87,88]. The action of diffeo-
morphisms on single fields then stays unmodified while the
Leibniz rule (which provides the action on two or more
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fields) is changed. As a result, the ⋆-product of two (or
more) fields is covariant under twisted diffeomorphisms.
Finally, one can write down a modification of the Einstein-
Hilbert action which is invariant under twisted diffeo-
morphisms thanks to an appropriate ⋆-product. Given
the potential of such an approach, Ref. [89] explored
whether such a (twisted) noncommutative gravity can be
obtained from closed strings with an external B-field in the
Seiberg-Witten limit. Unfortunately, there has been no way
of matching this limit of string theory with the gravity
model of Ref. [87]. Moreover, as already pointed out in
Refs. [89,90], we stress that twisted symmetries are not
genuine deformations of classical symmetries but rather
mappings of the classical symmetries on spaces with
noncommutative ⋆-products. Following what has been
done for other gauge groups [17–19], one should properly
deform also the action on single fields in order to have a
definition of ⋆ (or deformed) diffeomorphisms. To our
knowledge, no such formulation is currently available in
the literature. The introduction of deformed diffeomor-
phisms, as opposed to twisted diffeomorphisms, represents
one of the main objectives of the present work.
In addition, we propose a new line of inquiry and ask

whether diffeomorphisms can be consistently quantized in
the sense of a deformation theory in analogy to what has
been already done for the special relativistic (SR) group of
Poincaré symmetries. We therefore provide candidate
structures for any deformed general relativistic theory,
without using specific actions or dynamical equations. In
contrast to most previous studies of noncommutative
geometry, we follow a canonical approach. Along the lines
of the classical analysis of Dirac [91] and Arnowitt-Deser-
Misner (ADM) [92], it should be possible to perform a
3þ 1-splitting of the action of Ref. [87]. Poisson brackets
of the resulting scalar and momentum constraints would
then lead to the corresponding hypersurface-deformation
algebroid (HDA) or Dirac spacetime algebra [91,93,94].
Unfortunately, however, the full ADM machinery turns out
to be rather involved when it is applied to gravitational
actions on noncommutative manifolds.
As we point out in this paper, there is a shortcut that can

provide us with general (that is, action-independent) hints
for hypersurface deformations or diffeomorphisms on such
manifolds. It therefore leads us to a notion of deformed
general covariance. The shortcut is motivated by recent
results of Ref. [95] for classical smooth manifolds, further
developed in Ref. [96] under weaker assumptions that
allow one to bring in some quantum-gravity effects. For our
purposes here, the main achievement is the recognition that
the symmetry structure of hypersurface deformations
(which is usually described as a “Lie algebra with structure
functions” in the physics literature) is that of a Lie
algebroid which can be derived from a groupoid of finite
evolutions between spacelike hypersurfaces in Lorentzian
manifolds. (A similar Euclidean version also exists.)

In particular, the rather complicated Poisson brackets
between the gravitational constraints of canonical gravity
are reproduced by the tangential and normal components of
Lie brackets between suitable (Gaussian) space-time vector
fields. In order to inspect the HDA for noncommutative
spacetimes, it is then not necessary to know the explicit
expressions of constraints as phase-space functions, which
in fact would not be available for noncommutative gravity.
It is sufficient to introduce a suitable differential calculus
and apply it to such a noncommutative version of a
tangential-normal decomposition by following the steps
of recent analyses [95,96], observing certain consistency
conditions extracted from [95].
We will start by modifying general coordinate trans-

formations of commuting variables into diffeomorphisms
of noncommuting functions. Moyal-Weyl maps allow us to
treat operator-valued objects as standard functions, but
multiplied with a noncommutative ⋆-product. (That is, to
introduce noncommutativity we do not need to change the
classical function space, but only the product in the algebra
of functions.) At the classical level, infinitesimal diffeo-
morphisms form a Lie algebra with an extension of their
action from vector fields to tensor fields because the
standard Leibniz rule applies. We deform this structure
by using Drinfeld twists and, thus, define a deformed
differential geometry. When we analyze the case of twisted
diffeomorphisms, the algebra remains unchanged while the
comultiplication changes, confirming the suggestions made
in Refs. [87,88]. Twisted diffeomorphisms are opposed to
deformed (or ⋆-) diffeomorphisms which we introduce and
discuss for the first time.
In the definition of the action on single fields we follow

established results in the literature, while we explore two
possibilities regarding the comultiplication rule or coalgebra
sector of ⋆-diffeomorphisms. We will first try to mimic
the situation of UðNÞ noncommutative gauge theories
[17,19,21,97–101] and work with trivial coproducts. (The
standard Leibniz rule then applies.) We will note several
drawbacks of retaining the standard Leibniz rule, which
leads us to propose a suitable deformation of comultiplica-
tion. In both cases we are able to compute the HDA brackets
and show that, as opposed to the twisted case, there are ⋆-
product deformations in the algebra which distinguish
deformed from twisted diffeomorphisms. Sharing the con-
cerns raised in Ref. [89], we expect that ⋆-diffeomorphisms,
rather than twisted ones, should be chosen as the symmetries
of a noncommutative theory of gravitation.
Together with previously established results in the

literature on noncommutative gravity, our work provides
general results about possible formulations of a deformed
gravity theory, defined with a deformed differential geom-
etry on noncommutative hypersurfaces. The closed brack-
ets of hypersurface-deformation generators with star
products found here can be used to test the covariance
of existing proposals for noncommutative gravity theories,
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but they may also prove useful in the construction of new
such models or in a classification of all possible deforma-
tions of classically covariant theories.
To some extent, noncommutative gravity represents an

independent approach to QG. However, we wish to stress
that, besides the aforementioned seminal papers [55–57]
showing the appearance of noncommutativity in string
theory due to the presence of external fields, additional
support to a possible role for spacetime noncommutativity in
string theory has been recently claimed in Refs. [102–104]:
There, it has been shown that the target space of closed
strings is noncommutative regardless of the specific features
of the background. Additional motivation for our work
comes from the recent interest in modifications and/or
generalizations of the HDA found in the QG literature
[105–113], including a possible way to ascribe Minkowski
spacetime quantization and Poincaré symmetry deformation
to loop quantum gravity corrections [114–121]. General
deformations of the HDA have also been studied recently in
Ref. [122], where the authors found a (partial) no-go
theorem forbidding specific modifications of the scalar
constraint in a general covariant theory. It is possible to
regard our work as an explicit example showing that the
assumptions of such a theorem can be weakened so as to
evade the original conclusions.
Our paper is organized as follows. In Sec. II, we first

review the definitions of Lie algebroids and rederive the
classical HDA starting from the Lie brackets of a suitable
class of space-time vector fields. Then, we remind the
reader of the notions of Hopf algebras and introduce a dif-
ferential calculus on noncommutative manifolds. Vectors,
differential forms, tensors, ⋆-Lie derivatives, inner prod-
ucts, and index contraction are all defined. Two different
notions of brackets are introduced—Moyal and ⋆-Lie
brackets—together with a discussion of their differences.
Section III is dedicated to the analysis of hypersurface
deformations generated by twisted diffeomorphisms with
the Moyal ⋆-product. After defining a proper modification
of the classical condition on space-time vector fields, we
compute the Lie brackets between them and then decom-
pose the result into normal and tangential parts, thereby
obtaining a twisted version of the HDA. Confirming the
expectations of Refs. [87,88], we find that the HDA is
unmodified. This result also ensures that twisted gravity
possesses the same degrees of freedom (d.o.f.) as classical
GR. In Sec. IV, we focus on deformed diffeomorphisms.
Two different possibilities for the coalgebra sector are
considered before an analysis analogous to the previous
case is carried out. The resulting HDA is deformed due to
the presence of explicit ⋆-product contributions. Finally,
we draw our conclusions and sketch an outlook in Sec. V.

II. MATHEMATICAL PRELIMINARIES

The main mathematical tools used here, Lie algebroids
and Hopf algebras, are reviewed in this section.

A. Lie algebroids

We closely follow [95,96] but similar content can also be
found, for instance, in [123]. A Lie algebroid is a vector
bundle A over a smooth base manifoldB together with a Lie
bracket ½·; ·�A on the set ΓðAÞ of sections of A and a bundle
map ρ∶ΓðAÞ → ΓðTBÞ, called the anchor, provided that the
following two properties are satisfied:

(i) ρ∶ ðΓðAÞ; ½·; ·�AÞ → ðΓðTBÞ; ½·; ·�Þ is a Lie-algebra
homomorphism: for any ξ; η ∈ ΓðAÞ, we have
ρð½ξ; η�AÞ ¼ ½ρðξÞ; ρðηÞ� (the Lie bracket of vector
fields in ΓðTBÞ).

(ii) For any ξ; η ∈ ΓðAÞ and f ∈ C∞ðBÞ, the Leibniz
rule ½ξ; fη�A ¼ f½ξ; η�A þ ðρðξÞfÞη holds.

If the base manifold B is a point, the Lie algebroid is
a Lie algebra. Let us also mention that, in the case of Lie
algebroids, one needs to generalize the notion of Lie
algebra morphisms if one desires to identify classes of
equivalence. However, morphisms between algebroids will
not play any role in our analysis. We refer the interested
reader to Ref. [123] and references therein.
We are primarily interested in the specific Lie algebroid

of hypersurface-deformations, which provides a
mathematical formulation of the Poisson brackets of
gravitational constraints [91–93]. Gauge transformations
generated by the constraints are equivalent to space-time
diffeomorphisms. In a canonical formulation, invariance
under these transformations ensures that observables of
the theory are independent of the particular embedding
of spatial hypersurfaces in space-time. An explicit
derivation of hypersurface-deformation brackets can make
use of coordinate choices to simplify calculations. The
closure of the brackets in the form of a Lie algebroid
then ensures that they are covariant under changes of
the embedding.
A convenient choice turns out to be given by Gaussian

embeddings, which are defined such that the space-time
metric gμν assumes a Gaussian form:

ds2 ¼ −dt2 þ qabdxadxb: ð1Þ

Thus, for the components of gμν one has

gμν ¼ −nμnν þ qabXa
μXb

ν ð2Þ

with the spatial metric qab. We have written the metric in a
basis dual to ðnμ; Xμ

aÞ, where nμ is the unit normal to a
family of space-like hypersurfaces Σt (at constant t), while
Xμ
a form a basis of TΣt. With these conditions, we have the

orthonormality relations gμνnμnν ¼ −1 and gμνnμXν
a ¼ 0.

Following the ADM treatment of canonical gravity [92], we
then decompose the time-evolution vector field τμ by
τμ ¼ Nnμ þMaXμ

a, where N is the lapse function and
Ma the shift vector field.
A foliation which is Gaussian for one embedding

is, in general, not Gaussian for a different embedding.
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Gaussianity is therefore not preserved by general coordi-
nate transformations. We can, however, restrict the class of
transformations to diffeomorphisms generated byGaussian
vector fields vμ obeying

inLvg ¼ 0; ð3Þ

or, in components,

nμLvgμν ¼ 0: ð4Þ
Here (and throughout the paper) iw stands for the internal
product (or contraction) with a vector field w. The normal
components of the metric remain invariant under trans-
formations along the direction of such a vμ, preserving the
Gaussian form. Choosing a Gaussian embedding corre-
sponds to fixing a representative in each equivalence class
of hypersurface embeddings, in which the subset of
Gaussian vμ furnishes the remaining coordinate freedom.
Expanding the Lie derivative, the Gaussian condition can

be rewritten as

nμvρ∂ρgμν þ nμð∂μvρÞgρν þ nμð∂νvρÞgρμ ¼ 0; ð5Þ
resulting in

vρdnρν þ ∂νðvρgρμnμÞ þ gμν½n; v�μ ¼ 0: ð6Þ
We used the Cartan identity, the definition of the Lie
bracket, and ðdnÞμν ¼ ∂μnν − ∂νnμ. Due to the Gaussian
from of the metric (2), we have dn ¼ 0 because n ¼ dt is
closed. Decomposing the Gaussian vector in the basis
chosen above—that is, writing vμ ¼ Nnμ þMaXμ

a—we
then have

−∂νN þ gμνðnμnρ∂ρN þ ½n;M�μÞ ¼ 0; ð7Þ
where we have used the orthogonality of the basis.
(Although we use the same notation for components N
and Ma of a Gaussian vector field and the time-evolution
vector field, the former are more general since they refer to
a coordinate change.) Projecting this expression along
normal and tangential directions, respectively, we find

∂νN ¼ 0 and ½n;M�a ¼ qab∂bN: ð8Þ
Here, qab is the inverse of the spatial metric. (The bracket
½n;M�μ does not have a normal component thanks to the
geodesic property of nμ for a Gaussian system; see [96] for
details.)
We can now compute the HDA by calculating the Lie

bracket between two Gaussian vector fields:

½v1;v2�μ¼vρ1∂ρv
μ
2−vρ2∂ρv

μ
1 ð9Þ

¼ðN1LnN2−N2LnN1þLM1
N2−LM2

N1Þnμ ð10Þ

þ½M1;M2�μ þ N1½n;M2�μ − N2½n;M1�μ ð11Þ

¼ ðLM1
N2 − LM2

N1Þnμ ð12Þ

þ½M1;M2�μ þ qμbðN1∂bN2 − N2∂bN1Þ; ð13Þ

where we decomposed both v1 and v2 in the basis ðn; XÞ,
and then used the Eq. (8). The terms of the type LnN ¼
nρ∂ρN are all zero due to the first equality in (8). In order to
obtain the HDA, we have to extract normal and tangential
contributions: If N1 ¼ N2 ¼ 0,

½v1; v2�μ ¼ ½M1;M2�μ; ð14Þ

if Ma
1 ¼ 0 and N2 ¼ 0,

½v1; v2�μ ¼ −nμLM2
N1; ð15Þ

and if Ma
1 ¼ 0 ¼ Ma

2 ,

½v1; v2�μ ¼ qμbðN1∂bN2 − N2∂bN1Þ: ð16Þ

Finally, we view the pairs ðN;MaÞ as fibers of a Lie
algebroid over the space of spatial metrics, and interpret the
three cases of ½v1; v2�μ as Lie-algebroid brackets

½ð0;Ma
1Þ; ð0;Mb

2Þ� ¼ ð0;LM1
M2Þ; ð17Þ

½ðN; 0Þ; ð0;MaÞ� ¼ ð−LMN; 0Þ; ð18Þ

½ðN1; 0Þ; ðN2; 0Þ� ¼ ð0; ðN1∂bN2 − N2∂bN1ÞqabÞ: ð19Þ

(The anchor map is given by the Lie derivative of the metric
along τμ ¼ Nnμ þMaXμ

a; see [95].) With these brackets,
pairs ðN;MaÞ form the hypersurface-deformation Lie
algebroid over the space of spatial metrics. Spatial diffeo-
morphisms form a subalgebroid which is also a Lie algebra,
while the brackets involving only normal deformations
depend on the inverse-metric components as coordinates on
the base manifold (the “structure functions”). (We note that
the base manifold can be extended to the full phase space of
general relativity, given by spatial metrics and extrinsic
curvature, or linear combinations of the latter components.
While this extension is not necessary in the classical
algebroid, it may be required for some quantum effects
as we will see later in this paper.)
The derivation presented here has several advantages

over the usual ones in canonical gravity. It is much shorter
and minimizes the amount of technical calculations.
Moreover, it utilizes space-time tensor calculus and imple-
ments the 3þ 1-split only by decomposing vector fields. It
is therefore ideal for an application to nonclassical space-
time structures in which some versions of tensor calculus
exist. The rest of our work is dedicated to an application of
these methods to the deformation theory of this algebroid in
order to have a notion of (deformed) general covariance for
noncommutative manifolds. We will focus on the brackets
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and not discuss the anchor. As shown in [123], the latter is
not subject to deformations.
One question to be discussed in more detail is the

definition of Gaussian systems in nonclassical space-times.
The Gaussian nature, by itself, is not relevant because it just
constitutes a choice of gauge fixing. However, the Gaussian
system simplifies the classical derivation, and it makes it
easier to check two important consistency conditions which
we emphasize here: (i) The derivation of the hypersurface-
deformation brackets requires us to extend the fields N and
Ma from a given hypersurface into a space-time neighbor-
hood. Only such an extension makes it possible to compute
the space-time Lie derivative of two vector fields in (9) and
then decompose the result into normal and spatial compo-
nents. In the classical derivation, such an extension is
possible thanks to the form of the differential equation (8),
which are well-posed with N and Ma as initial conditions
on one hypersurface. (ii) The resulting hypersurface-
deformation brackets (17) depend only on spatial data,
given by the fields N and Ma together with the spatial
metric qab. It is therefore possible to interpret them as Lie-
algebroid relations over the space of metrics. There is no
dependence on properties of the embedding of a hyper-
surface in space-time.
In our new derivations below, we will take a pragmatic

approach and look for a generalization of the Gaussian
condition such that these two consistency conditions are
still satisfied. From this perspective, the main advantage of
the Gaussian system turns out to be that it leads to a normal
vector nμ with coordinate-independent components.

B. Hopf algebras and noncommutative calculus

We now introduce the basic notion of Hopf algebras and
the associated noncommutative calculus [87]. We will
define only those objects that will be necessary for our
analysis.

1. Hopf algebras

Let us start by introducing the vector space K of smooth
real or complex vector fields on our classical (commutative)
differentiable manifoldM. One can always equip K with a
Lie bracket ½u; v� which obeys the Jacobi identity. The pair
A ≔ ðK; ½·; ·�Þ is the Lie algebra of classical infinitesimal
diffeomorphisms on M. Infinitesimal transformations of
tensors under diffeomorphisms are provided by the Lie
derivative Lv which obeys Lv ∘Lu − Lu ∘Lv ¼ L½v;u�
where ∘ stands for composition.
The Lie derivative of a tensor produces a tensor of

the same type and weight. We shall see in Sec. IV that
⋆-diffeomorphisms obeying the standard Leibniz rule do
not satisfy such a condition. We will therefore be led to a
suitable modification of comultiplication. Classically,
infinitesimal diffeomorphisms act on tensor products of
tensor fields, τ ⊗ τ0, by means of the Leibniz formula
Lvðτ ⊗ τ0Þ ¼ ðLvτÞ ⊗ τ0 þ τ ⊗ ðLvτ

0Þ. This equation can

be interpreted as using the representation v ↦ Lv of vector
fields as Lie derivatives after applying comultiplication
v ↦ v ⊗ 1þ 1 ⊗ v. Moreover, one can define inverse
infinitesimal diffeomorphisms by v → −v and interpret
the complex unit 1 ∈ K⊗0 as a neutral element which acts
by L1 ≡ 1.
These are the ingredients which can be generalized to a

Hopf algebra. To this end, for an abstract Lie algebra
ðK; ½·; ·�Þ, one constructs the universal enveloping algebra
UK (also denoted as U½A�) as the quotient F=I , where F
is the free algebra generated by ðK;⊗Þ and I ⊂ F the
subspace containing all elements of the form u ⊗ v − v ⊗
u − ½u; v�. The Leibniz rule is then related to a coalgebra
structure. In the example of infinitesimal diffeomorphisms,
the Leibniz rule gives us the action ofA on tensor products
of functions on M. Abstractly, we can write this action as
the result of a coproduct on U½A�, given by an algebra
homomorphism Δ∶U½A� ↦ U½A� ⊗ U½A�. The universal
enveloping algebra of a Lie algebra A has a trivial
coproduct given by Δv ¼ v ⊗ 1þ 1 ⊗ v for any v ∈ K.
If U½A� is instead equipped with a different coproduct, it is
called a Hopf algebra, or quantum Lie algebra, provided
that the following conditions hold: (i) Comultiplication is
coassociative: ðΔ ⊗ 1Þ ∘Δ ¼ ð1 ⊗ ΔÞ ∘ Δ. (ii) There is
an inversion map or antipode S∶U½A� → U½A� which is an
antihomomorphism. (iii) The unit (or neutral) element I ∈
U½A� is complemented by a co-unit ϵ∶U½A� ↦ C which is
a homomorphism. (iv) These maps are compatible with the
multiplication map μ∶U½A� ⊗ U½A� → U½A� in the sense
that μ ∘ ðS ⊗ 1Þ ∘Δ ¼ μ ∘ ð1 ⊗ SÞ ∘Δ ¼ Iϵ. If these con-
ditions are satisfied, the quintuple H ¼ ðU½A�; μ;Δ; ϵ; SÞ
constitutes a Hopf algebra. For the universal enveloping
algebra of a Lie algebra, for instance, we have SðvÞ ¼ −v
and ϵðvÞ ¼ 0 for v ∈ A, as well as SðIÞ ¼ I and ϵðIÞ ¼ 1.
It is possible to construct a Hopf algebra from a Lie

algebra by using Drinfeld twists [40,41]. The Hopf algebra
of 4-dimensional diffeomorphisms has been studied in
Refs. [87,88]. In the present work we are interested in
deriving the deformation theory of the hypersurface Lie
algebroid generating (3þ 1)-dimensional diffeomor-
phisms, as reviewed in the preceeding section for classical
differential calculus. To this end, we derive the Hopf-
algebra relations of 4-dimensional diffeomorphisms explic-
itly for the specific case of the Moyal-Weyl noncommu-
tative spacetime (or θ-canonical space).

2. Noncommutative calculus

Suppose that space-time coordinates (locally) obey a
Heisenberg-like commutation relation, such that the com-
mutator between coordinates is analogous to the commu-
tation relation between configuration and momentum
variables in quantum mechanics:

½x̂μ; x̂ν� ¼ iθμν: ð20Þ
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We restrict our attention to the case in which θμν ¼ −θνμ is
constant and real. (It is an antisymmetric matrix of numbers
and does not depend on coordinate operators.) This is the
so-called Moyal-Weyl spacetime [124]. As a result of
assuming such a nontrivial commutator, the multiplication
between functions no longer enjoys the commutativity
property:

Fðx̂ÞGðx̂Þ ≠ Gðx̂ÞFðx̂Þ: ð21Þ

By means of a Moyal-Weyl map Ω [124], it is possible to
establish a correspondence between the object Fðx̂ÞGðx̂Þ
and a suitably modified multiplication rule fðxÞ ⋆ gðxÞ
between functions of coordinates,

Fðx̂ÞGðx̂Þ≕ΩðfðxÞ ⋆ gðxÞÞ: ð22Þ

One can show that there are infinitely many possible
choices for Ω that reproduce standard expressions in the
appropriate limit. Thus, given a noncommutative algebra
there is no unique Weyl map.
For the constant-θ case, the most straightforward

choice is

fðxÞ ⋆ gðxÞ ¼ fðxÞe−1
2
i∂⃖αθαβ ∂⃗βgðxÞ: ð23Þ

We follow the usual quantum-group notation and introduce
the twist element F ¼ fα ⊗ fα ≔ e

1
2
iθαβ∂α⊗∂β ∈ U½A� ⊗

U½A� and its inverse, F−1 ¼ f̄α ⊗ f̄α ≔ e−
1
2
iθαβ∂α⊗∂β .

Here, α is used as a multi-index as shown by an expansion
of the exponential function:

F ¼ 1þ 1

2
iθαβ∂α ⊗ ∂β −

1

8
θα1β1θα2β2∂α1∂α2 ⊗ ∂β1∂β2 þ � � �

þ 1

n!
ði=2Þnθα1β1 � � �θαnβn∂α1 � � �∂αn ⊗ ∂β1 � � �∂βn þ � � � :

We can then write

fα ¼
X∞
n¼0

ði=2Þn=2ffiffiffiffiffi
n!

p ∂α1 � � � ∂αn ; ð24Þ

raise the multi-index using θα1β1 � � � θαnβn , and write more
compactly

fðxÞ ⋆ gðxÞ≕ f̄αðfðxÞÞf̄αðgðxÞÞ: ð25Þ

Thus, the identity or neutral element of the tensor product
of algebras, U½A� ⊗ U½A�, is given by 1 ⊗ 1 ¼ F−1F ¼
f̄βfα ⊗ f̄βfα. In this notation, when we omit the right (or

left) arrow over partial derivatives ∂⃗α (or ∂⃖α), the derivative
on the left-hand side of a tensor product acts to the left
while the derivative on the right-hand side acts on functions
standing to the right of the star.

The ⋆-product allows one to map the product of
operator-valued functions to a modified product between
functions. The product is noncommutative but still obeys
associativity:

ðf ⋆ gÞ ⋆ h ¼ f ⋆ ðg ⋆ hÞ: ð26Þ

In terms of the twist and the coproduct, the associative
property can be expressed as

F 12ðΔ ⊗ 1ÞF ¼ F 23ð1 ⊗ ΔÞF ; ð27Þ

or equivalently

fβfα1 ⊗ fβfα2 ⊗ fα ¼ fα ⊗ f1αfβ ⊗ fβf2α: ð28Þ

In the former equation we have used F 12 ¼ F ⊗ 1 ¼
fα ⊗ fα ⊗ 1 ∈ U½A� ⊗ U½A� ⊗ U½A� and F 23 ¼ 1 ⊗
F ¼ 1 ⊗ fα ⊗ fα ∈ U½A� ⊗ U½A� ⊗ U½A�. An analo-
gous property holds for the inverse twist element. (These
identities can be confirmed by using the explicit expression
for the twist F¼e

i
2
θαβ∂α⊗∂β and its inverse F−1 ¼

e−
i
2
θαβ∂α⊗∂β .) A second property which F has to satisfy is

ðϵ ⊗ 1Þ ∘F ¼ 1 ¼ ð1 ⊗ ϵÞ ∘F : ð29Þ

We now wish to define a commutator element in
U½A� ⊗ U½A�, which is called the R-matrix and allows
us to make a permutation of the functions we are (star)
multiplying. We define

f ⋆ g≕ R̄αðgÞ ⋆ R̄αðfÞ; ð30Þ

where R−1 ¼ R̄α ⊗ R̄α. In order to find the R-matrix in
explicit form, we write

f ⋆ g ¼ f̄αðfÞf̄αðgÞ ¼ f̄βfγf̄αðfÞf̄βfγf̄αðgÞ
¼ f̄βðfγf̄αðgÞÞf̄βðfγf̄αðfÞÞ
¼ f̄βðR̄αðgÞÞf̄βðR̄αðfÞÞ ¼ R̄αðgÞ ⋆ R̄αðfÞ; ð31Þ

with R̄α ⊗ R̄α ≔ fγf̄α ⊗ fγf̄α. Here we used only the
representation of the identity in the second step. As a
result, the R-matrix is given by R ¼ Rα ⊗ Rα ¼
fγf̄α ⊗ fγf̄α. In particular, for the Moyal-Weyl spacetime
we are considering here, one can verify

R ¼ eiθ
αβ∂α⊗∂β ; R−1 ¼ e−iθ

αβ∂α⊗∂β : ð32Þ

Using twist properties, the Yang-Baxter equation
R12R13R23 ¼ R23R13R12 follows.
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3. Twisted and deformed diffeomorphisms

Before turning to diffeomorphisms, we introduce the
notion of a Lie bracket. We define two different general-
izations of standard brackets between two fields: the ⋆-Lie
bracket ½; �⋆ and the Moyal bracket ½;⋆�. In the next sections,
we will define the action of twisted and deformed diffeo-
morphisms on single fields by using these two brackets.
The ⋆-Lie bracket between two generic vector fields, v1
and v2, is defined as

½v1; v2�⋆ ≔ v1 ⋆ v2 − R̄αðv2Þ ⋆ R̄αðv1Þ: ð33Þ

In components,

½v1; v2�μ⋆ ¼ vρ1 ⋆ ∂ρv
μ
2 − fγf̄αv

ρ
2 ⋆ ∂ρfγf̄αv

μ
1: ð34Þ

Given this definition we can show that

½v1; v2�⋆ ¼ ½fαðv1Þ; fαðv2Þ�; ð35Þ

where on the right-hand side we have the classical Lie
bracket: We compute

½v1; v2�⋆ ¼ v1 ⋆ v2 − R̄αðv2Þ ⋆ R̄αðv1Þ
¼ fαðv1Þf̄αðv2Þ − fγf̄αf̄βðv2Þfγf̄αf̄βðv1Þ
¼ fαðv1Þf̄αðv2Þ − f̄αðv2Þf̄αðv1Þ
¼ ½fαðv1Þ; f̄αðv2Þ�: ð36Þ

This ⋆-Lie bracket satisfies the following modification of
the Jacobi identity

½v1; ½v2; v3�⋆�⋆ ¼ ½½v1; v2�⋆; v3�⋆ þ ½R̄αðv2Þ; ½R̄αðv1Þ; v3�⋆�⋆:
ð37Þ

Alternatively, we can define what we call the Moyal
bracket:

½v1 ;⋆v2� ≔ v1 ⋆ v2 − v2 ⋆ v1: ð38Þ

It obeys the usual Jacobi identity

½v1 ;⋆½v2 ;⋆v3�� ¼ ½½v1 ;⋆v2�;⋆v3� þ ½v2 ;⋆½v1 ;⋆v3��; ð39Þ

in contrast to ⋆-Lie brackets. Indeed, it is immediate to
notice that ½v1; v2�⋆ ≠ ½v1 ;⋆v2�. This result will be at the root
of the difference between twisted diffeomorphisms and
deformed diffeomorphisms. We anticipate that the former
do not change the action on single fields but have a
modified Leibniz rule, while the latter retain the Leibniz
rule but act on single fields in a nonstandard way. As
mentioned, to have a consistent differential structure, we
will then have to change the definition of deformed
diffeomorphisms in such a way that there is a deformation

not only of the action but also of the Leibniz rule. We also
mention that the Moyal bracket allows us to map Eq. (20)
into ½xμ ;⋆xν� ¼ iθμν. Thus, this bracket is needed to provide
a representation of Eq. (20) on manifolds equipped with the
nonstandard product of Eq. (23).
Another property which we will extensively use is

∂μ ⋆ f ¼ ∂μf, which is a direct consequence of
Eq. (23) with constant θ, and, consequently, ∂μðf ⋆ gÞ ¼
ð∂μfÞ ⋆ g þ f ⋆ ð∂μgÞ. Finally, as first discussed for
instance in Ref. [87], the ⋆-tensor product of tensors,
which is needed to have a noncommutative differential
calculus together with the generalizations of Lie brackets
defined above, is given by

τ ⊗⋆ τ0 ¼ f̄αðτÞ ⊗ f̄αðτ0Þ: ð40Þ

The tensor product is therefore twisted just as the pointwise
product of functions.
Let us now discuss the two different paths to treating

diffeomorphisms onA, that is twisted and deformed (or ⋆-)
diffeomorphisms. As already stressed, for the latter, which
we here study for the first time, we will consider two
different candidates: either with trivial or nontrivial cop-
roduct. The general idea consists in finding a meaningful
generalization of general covariance to noncommutative
manifolds, where noncommutative manifolds are quantiza-
tions of classical smooth manifolds in the sense that the
product of fields evaluated at a spacetime point is non-
commutative and is given by the ⋆-product.

III. TWISTED DIFFEOMORPHISMS

We return to the derivation of hypersurface-deformation
brackets, but now in a generalization to noncommutative
calculus.

A. Lie derivative

We start by analyzing twisted diffeomorphisms, which
have already been introduced, for instance in Ref. [87], in
their 4-dimensional form. Here, we will focus on their
3þ 1-dimensional version. We shall see that most of the
statements made in Ref. [87] apply also for the twisting of
hypersurface-deformation brackets.
Consider a generic tensor u. On a commutative space, it

transforms as u0 ¼ uþ δvu ¼ uþ Lvu under infinitesimal
diffeomorphisms generated by the vector field v ¼ vμ∂μ.
As usual, Lvu is the Lie derivative of u along v. It is
possible to represent standard diffeomorphisms on A by
means of twisting. For a function u, we write

δvu ¼ Lvu ¼ vρ∂ρu ¼ fβf̄αðvρ∂ρÞfβf̄αðuÞ
¼ ðfβðvρ∂ρÞfβÞ ⋆ u ¼ Lv⋆ ⊳ u ð41Þ

We have inserted the representation of the identity in terms
of the twist and its inverse, and defined
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v⋆ ≔ fβðvÞfβ ¼
X
n

�
−
i
2

�
n 1

n!
θμ1ν1…θμnνn

× ð∂μ1…∂μnv
ρÞ∂ν1…∂νn∂ρ ð42Þ

as an element of U½A�. The application of Lv⋆ is what we
call an infinitesimal twisted diffeomorphism.
For a vector field uμ, we proceed in a similar way and

write

Lvuμ ¼ vρ∂ρuμ − ð∂ρvμÞuρ
¼ fβðvρ∂ρÞfβ ⋆ uμ − ∂ρðfβðvμÞfβÞ ⋆ uρ

¼ ðvρ∂ρÞ⋆ ⋆ uμ − ð∂ρv⋆Þμ ⋆ uρ; ð43Þ

always keeping v to the left of u. In the second term, we
may change the ordering by applying the R-matrix,

Lvuμ ¼ v⋆ ⋆ uμ − R̄αðuρÞ ⋆ ∂ρR̄αðv⋆Þμ ð44Þ

¼ ½v⋆; u�⋆; ð45Þ

in order to derive a relationship with Eq. (33). However,
this notation has to be treated with some care because ðv⋆Þμ
is not a function but acts to the left on uρ in the second term
of the commutator.
The same procedure can be used to derive the Lie

derivative of an arbitrary tensor (density), rewriting the
classical relationships in such a way that components of v
(the vector field along which we take the Lie derivative)
always stay on the left. For instance, for the metric tensor
gμν, we have

Lvgμν ¼ v⋆ ⋆ gμν þ ð∂μv⋆ρÞ ⋆ gρν þ ð∂νv⋆ρÞ ⋆ gμρ: ð46Þ

B. Twisted Gaussian system

With these preparations, we can introduce the notion of a
noncommutative Gaussian system for twisted diffeomor-
phisms. From the point of view of hypersurface deforma-
tions, the main property of a Gaussian system should be
that it leads to constant components g0μ of the metric. In
this way, the lapse function and shift vector in the back-
ground metric are fixed, and it becomes possible to isolate
the role of lapse and shift as generators of hypersurface
deformations. The simplest choice of constant background
lapse and shift that is compatible with a non-degenerate
metric of Lorentzian signature is g00 ¼ −1 and g0i ¼ 0
for i ≠ 0.
We need to show that there is a choice of coordinates on

a noncommutative manifold such that the metric is
Gaussian in the specified sense. We do so by assuming
the classical Gaussian system under the standard product of
functions or coordinates, and showing that there is a frame
in which the required properties are satisfied also for a

noncommutative product and twisted diffeomorphisms. In
particular, the classical system provides us with a time
coordinate t such that n ¼ dt is the co-normal to spatial
hypersurfaces t ¼ constant. The same 1-form is a conormal
on a noncommutative manifold with twisted diffeomor-
phisms: For a vector field X tangential to a spatial hyper-
surface and n ¼ dt, we have

Xμ ⋆ nμ ¼ iX⋆ ⋆ dn ¼ LX⋆ ⊳ t ¼ Xμ∂μt ¼ 0: ð47Þ

The Lie derivative along X⋆ is equal to the classical Lie
derivative because all higher-derivative terms in (42) vanish
when acting on a linear function such as t. In a Gaussian
frame, the co-normal therefore has constant components,
and so does the normal nμ ¼ gμν ⋆ nμ ¼ gμνnμ because
higher derivatives in the star product vanish when applied
to a constant nμ. Here we introduced the inverse metric
gνα ⋆ gαμ ¼ δαμ, defining the inverse metric by its action
from the left (alternatively one can define the inverse by-
the-right) [87].
The normal is therefore normalized with respect to the

noncommutative system, in the following sense:

in⋆ ⋆g⋆ in¼n⋆μ ⋆gμν ⋆nν¼fαnμfα ⋆ gμν ⋆nν ð48Þ

¼ nμgμν ⋆ nν ¼ nν ⋆ nν ¼ nνnν ¼ −1: ð49Þ

In a classical Gaussian system, we have nμ∇μnν ¼ 0
because worldlines normal to spatial hypersurfaces are
geodesics. In a Gaussian frame, all contributions from
connection components in this equation are zero because
the only relevant ones,

Γ0
0μ ¼

1

2
g0αð∂μg0α þ ∂0gμα − ∂αg0μÞ ¼ 0; ð50Þ

vanish identically for a Gaussian metric. The equation
nμ∇μnν ¼ 0 is therefore equivalent to nμ∂μnν ¼ 0 in a
Gaussian system. The same equation is true in the form
nμ ⋆ ∂μnν ¼ 0 for a noncommutative Gaussian system
because, as we just showed, the components of nμ are
still constant. From this equation, we can derive nμ ⋆ ∇μ ⋆
nν ¼ 0 using the definition of the noncommutative
Christoffel connection from [87], which gives

Γ0
0μ ¼

1

2
g0α ⋆ ð∂μg0α þ ∂0gμα − ∂αg0μÞ ð51Þ

¼ 1

2
g0α ⋆ ∂0gμα ¼ 0; ð52Þ

for the relevant connection components.
It will be convenient to do calculations of the

hypersurface-deformation brackets in a Gaussian frame.
However, whenever possible, we will not make explicit
use of the fact that normal components are constant in
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order to display all relevant star products. In particular, in
order to be as general as possible, we will derive
differential equations for the normal and tangential
components of a Gaussian vector field without using
constant components of the normal. We will see that a
counterterm is then required in the classical Gaussian
condition. We then analyze these differential equations
using all the properties of a Gaussian frame, including
the constant nature of components of the normal. This
step will allow us to show that there is a well-posed
initial-value problem and a set of algebroid brackets
which depend only on hypersurface data.

C. Gaussian condition

We are interested in deriving properties of hypersurface
deformations in noncommutative space-time, with pos-
sible modifications of the action of twisted diffeomor-
phisms. We modify the classical expression used to
define a Gaussian vector field as follows: Instead of
inLvg ¼ 0, we require that

ðLv⋆ ⊳ gÞ ⋆ in ¼ 0: ð53Þ

We act with in from the right in order to make sure that it
stands next to the metric, without components of v⋆ in
between. Classically, we say that v is Gaussian if a
diffeomorphism of the metric along the direction given
by v does not have a normal component. We have
generalized this statement by saying that the twisted
infinitesimal diffeomorphism of g, generated by v, gives
zero if we ⋆-contract the result with the normal n. Since
the normal components are constant, (53) is equivalent to
the classical condition on Gaussian vector fields, and it is
therefore consistent with the metric form of a Gaussian
system.
We have that inLvg ¼ nμðLvgÞμν, and analogously we

can write the twisted version in components as
ðLv⋆ ⊳ gÞμν ⋆ nμ, where the Lie derivative of the metric
is given in (46) in terms of twisted diffeomorphisms. We
rewrite star products using (25), for instance ðvρÞ⋆ ⋆ ∂ρg ¼
f̄αððvρÞ⋆∂ρÞf̄αðgÞ in the first term, and therefore obtain the
Gaussian condition for v as

ðLf̄αðv⋆Þf̄αgÞ ⋆ in ¼ 0: ð54Þ

The next step is to try and obtain relations for the normal
and tangential components of the ⋆-Lie bracket between
the normal n and the Gaussian vector field v. In doing that,
we will try to follow as close as possible the steps of the
derivation for the commutative case.
First, we would like to compute Lf̄αðv⋆Þf̄αðg ⋆ inÞ, or the

action of the twisted Lie derivative on the ⋆-product of two
fields:

f̄αðv⋆Þf̄αðg ⋆ inÞ ¼ f̄αðv⋆Þf̄αðf̄βðgÞf̄βðinÞÞ
¼ f̄αðv⋆Þf̄1αf̄βðgÞf̄2αf̄βðinÞ
¼ f̄αðvμÞ⋆f̄1αf̄βð∂μgσνÞf̄2αf̄βðnσÞ
þ f̄αð∂νvμÞ⋆f̄1αf̄βðgσμÞf̄2αf̄βðnσÞ
þ f̄αðvμÞ⋆f̄1αf̄βðgÞf̄2αf̄βði∂μnÞ: ð55Þ

Adding and subtracting the term f̄αð∂σvμÞ⋆f̄1αf̄βðgνμÞ×
f̄2αf̄βðnσÞ, we obtain

f̄αðvμÞ⋆f̄1αf̄βð∂μgσνÞf̄2αf̄βðnσÞ
þ f̄αð∂νvμÞ⋆f̄1αf̄βðgσμÞf̄2αf̄βðnσÞ
þ f̄αð∂σvμÞ⋆f̄1αf̄βðgνμÞf̄2αf̄βðnσÞ
− f̄αð∂σvμÞ⋆f̄1αf̄βðgνμÞf̄2αf̄βðnσÞ
þ f̄αðvμÞ⋆f̄1αf̄βðgÞf̄2αf̄βði∂μnÞ: ð56Þ

Using both (28) and (30), for the first three terms we have

f̄αðvμÞ⋆f̄1αf̄βð∂μgσνÞf̄2αf̄βðnσÞ
þ f̄αð∂νvμÞ⋆f̄1αf̄βðgσμÞf̄2αf̄βðnσÞ
þ f̄αð∂σvμÞ⋆f̄1αf̄βðgνμÞf̄2αf̄βðnσÞ

¼ f̄α1f̄
βðvμÞ⋆f̄α2f̄βð∂μgÞf̄αðinÞ

þ f̄α1f̄
βð∂νvμÞ⋆f̄α2f̄βðgσμÞf̄αðnσÞ

þ f̄βf̄α1ð∂σvμÞ⋆f̄α2f̄βðgνμÞf̄αðnσÞ
¼ ðLf̄αðv⋆Þf̄αgÞ ⋆ in: ð57Þ

We write the last two terms of (56) as

f̄αðvμÞ⋆f̄1αf̄βðgÞf̄2αf̄βði∂μnÞ
− f̄αð∂σvμÞ⋆f̄1αf̄βðgνμÞf̄2αf̄βðnσÞ

¼ f̄αðR̄γðgÞÞf̄1αf̄βR̄γðvμÞ⋆Þf̄βf̄2αði∂μnÞ
− f̄αðR̄γðgνμÞÞf̄1αf̄βR̄γð∂σvμÞ⋆f̄2αf̄βðnσÞ

¼ f̄αðR̄γðgÞÞf̄αðR̄γððvμÞ⋆∂μÞ ⋆ inÞ
− f̄αðR̄γðgνμÞÞf̄αðR̄γð∂σvμÞ⋆ ⋆ ðnσÞÞ

¼ R̄γðgÞ ⋆ ðiLR̄γ ðf̄βðv⋆Þf̄βÞn
Þ; ð58Þ

and arrive at

Lf̄αðv⋆Þf̄αðg⋆ inÞ¼ ðLf̄αðv⋆Þf̄αgÞ⋆ inþ R̄αðgÞ⋆ ðiLR̄αðf̄βðv⋆Þf̄βÞn
Þ:

ð59Þ
We see that, as a direct consequence of loss of commu-
tativity of the ⋆-product, the Leibniz rule does not apply. It
is modified through the action of the R-matrix, as one could
have anticipated. Using the above expressions we can
rewrite Eq. (54) as
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ðLf̄αðv⋆Þf̄αgÞ ⋆ in ¼ Lf̄αðv⋆Þf̄αðg ⋆ inÞ
− R̄αðgÞ ⋆ ðiLR̄αðf̄βðv⋆Þf̄βÞn

Þ ¼ 0: ð60Þ

The next step is an application of the Cartan identity. The
validity of such an identity is usually required as an axiom,
or assumed (see for instance [125]), but it is possible to
prove it in the following manner. Let us make indices
explicit in

Lf̄αðv⋆Þf̄αðg ⋆ inÞ
¼ f̄αðvρ∂ρÞ⋆f̄αðgμν ⋆ nμÞ
¼ ðvρÞ⋆ ⋆ ∂ρðgμν ⋆ nμÞ þ ∂νðvρÞ⋆ ⋆ ðgρμ ⋆ nμÞ
¼ ðvρÞ⋆ ⋆ ∂ρðgμν ⋆ nμÞ þ ∂νðvρÞ⋆ ⋆ ðgρμ ⋆ nμÞ
þ ðvρÞ⋆ ⋆ ∂νðgρμ ⋆ nμÞ − ðvρÞ⋆ ⋆ ∂νðgρμ ⋆ nμÞ

¼ ∂νððvρÞ⋆ ⋆ gρμ ⋆ nμÞ þ ðvρÞ⋆ ⋆ ðdnÞρν; ð61Þ

where we defined the two-form ðdnÞρν ≔ ∂ρðgμν ⋆ nμÞ−
∂νðgμρ ⋆ nμÞ. Thus, we derived

L⋆
v ⊳ ðg ⋆ inÞ ¼ iv⋆ ⋆ dðg ⋆ inÞ þ dðiv⋆ ⋆ g ⋆ inÞ; ð62Þ

commonly known as the Cartan identity.
With this result, we have

Lf̄αðv⋆Þf̄αðg ⋆ inÞ − R̄αðgÞ ⋆ ðiLR̄αðf̄βðv⋆Þf̄βÞn
Þ

¼ iv⋆ ⋆ dðg ⋆ inÞ þ dðiv⋆ ⋆ g ⋆ inÞ
− R̄αðgÞ ⋆ ðiLR̄αðf̄βðv⋆Þf̄βÞn

Þ ¼ 0: ð63Þ

Now we use dn ¼ dðg ⋆ inÞ ¼ 0 and obtain

R̄αðgÞ ⋆ ðiLR̄αðf̄βðv⋆Þf̄βÞn
Þ ¼ dðiv⋆ ⋆ g ⋆ inÞ: ð64Þ

D. Decomposition

Decomposing v⋆ into components normal and tangen-
tial to hypersurfaces, v⋆ ¼ ðN⋆ ⋆ nÞ⋆ þ ðM⋆ ⋆ XÞ⋆ (with
N⋆ ≔ fαðNÞfα and M⋆ ≔ fαðMÞfα), we write

R̄αðgÞ ⋆ ðiLR̄αðf̄βðN⋆⋆nÞ⋆ f̄βÞn
Þ

þ R̄αðgÞ ⋆ ðiLR̄αðf̄βðM⋆⋆XÞ⋆ f̄βÞn
Þ ¼ −dN⋆; ð65Þ

where we have used the relations

in⋆ ⋆ g ⋆ in ¼ −1 iX⋆ ⋆ g ⋆ in ¼ 0; ð66Þ

see (48).

Writing indices explicitly,

R̄αðgνμÞ ⋆ ½R̄αf̄βðN⋆ ⋆ nρÞ⋆f̄βð∂ρnμÞ
− R̄αf̄β∂ρðN⋆ ⋆ nμÞ⋆f̄βðnρÞ
þ R̄αf̄βðM⋆ ⋆ XρÞ⋆f̄βð∂ρnμÞ
− R̄αf̄β∂ρðM⋆ ⋆ XμÞ⋆f̄βðnρÞ� ¼ −∂νN⋆; ð67Þ

where we left implicit only the internal index a in
M ⋆ Xμ ≡Ma ⋆ Xμ

a. Using Eq. (30), we have

R̄αðgνμÞ ⋆ ½R̄αf̄βðN⋆ ⋆ nρ∂ρÞ⋆f̄βðnμÞ
− f̄βðR̄γðnρ∂ρÞÞf̄βðR̄αR̄γðN⋆ ⋆ nμÞ⋆Þ
þ R̄αf̄βðM⋆ ⋆ Xρ∂ρÞ⋆f̄βðnμÞ
− f̄βðR̄αR̄γðnρ∂ρÞÞf̄βðR̄γðM⋆ ⋆ XμÞ⋆Þ� ¼ −∂νN⋆;

and finally, recalling Eq. (33),

R̄αðgνμÞ ⋆ ð½R̄αðN⋆ ⋆ nÞ⋆; n�μ⋆
þ ½R̄αðM⋆ ⋆ XÞ⋆; n�μ⋆Þ ¼ −∂νN⋆: ð68Þ

So far, following Refs. [87,88], we have defined twisted
(four) diffeomorphisms by a representation of the infini-
tesimal diffeomorphisms of classical differential manifolds
on noncommutative manifolds or, rather, on manifolds
equipped with a non-trivial ⋆-multiplication rule (23). As a
consequence, they have an undeformed action on single
fields or tensors but, due to the Moyal ⋆-product, act
nontrivially on products of two or more objects. Thus,
twisting diffeomorphisms corresponds to mapping them to
the Moyal space (or, more generally, to a manifold with
noncommutative products). In order to find formulas
relating the lapse function and shift vector components,
it will be more useful to rewrite the relation (68) as one on
the commutative classical manifold in an intermediate step.
We will then represent the final hypersurface-deformation
brackets on the Moyal space in order to obtain a twisted
version of the HDA.
Using the definition of the R-matrix as well as that of the

⋆-Lie bracket, we rewrite Eq. (68) as

−∂νN⋆ ¼ ðNnρgνμÞ ⋆ ∂ρnμ − ð∂ρðNnμÞgνμÞ ⋆ nρ

þ ðMρgνμÞ ⋆ ∂ρnμ − ð∂ρMμgνμÞ ⋆ nρ

¼ g⋆μν ⋆ N⋆ ⋆ ðnρ ⋆ ∂ρnμ − ð∂ρnμÞ ⋆ nρÞ
− g⋆μν ⋆ nμ ⋆ ∂ρN⋆ ⋆ nρ

þ g⋆νμ ⋆ Mρ ⋆ ∂ρnμ − g⋆νμ ⋆ ∂ρMμ ⋆ nρ:

We can now use the constant nature of nμ in a Gaussian
frame, so that nρ star-commutes with any function and the
partial gradient ∂ρnμ ¼ 0 vanishes. Multiplying both sides
of (69) by nν, we have
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−nν ⋆ ∂νN⋆−∂νN⋆ ⋆nν ¼−nν ⋆ g⋆νμ ⋆ ∂ρMμ ⋆ nρ; ð69Þ

where we also used nμ ⋆ nμ ¼ −1. Applying the product
rule in

0¼nρ⋆∂ρðnμ ⋆MμÞ¼ðnρ⋆∂ρnμÞ⋆Mμþnμ ⋆ ðnρ⋆∂ρMμÞ
þðnμ ⋆nρ−nρ⋆nμÞ⋆∂ρMμ; ð70Þ

and using nν ⋆ Xν ¼ 0 as well as the vanishing star
commutator nμ ⋆ nρ − nρ ⋆ nμ ¼ 0 of the constant nμ,
implies that nρ ⋆ ∂ρMμ ¼ 0. Thus, we finally obtain

0 ¼ −nν ⋆ ∂νN⋆ − ∂νN⋆ ⋆ nν ¼ −2nν∂νN⋆ ¼ −2nν∂νN:

ð71Þ
In the last step, we have mapped the expression back to the
commutative space and, therefore, multiplication is the
usual commutative rule.
The tangential projection of Eq. (68) is made in a similar

way. By ⋆-multiplying with qab, we have

½n;M�a⋆ ¼ qab ⋆ ∂bN⋆: ð72Þ
Lapse N and shiftMa are subject to the same type of partial
differential equations as in the classical derivation.
Therefore, they are extendable to a space-time neighbor-
hood of a spatial hypersurface and can be used in the Lie
brackets of Gaussian space-time vector fields.

E. Brackets

We are now ready to evaluate the ⋆-Lie bracket of space-
time vector fields. We calculate the ⋆-product between the
⋆-Lie bracket ½v⋆1 ; v⋆2 �μ⋆ and an arbitrary scalar function f for
twisted diffeomorphisms,

½v⋆1 ;v⋆2 �μ⋆ ⋆f¼ððvρ1Þ⋆⋆∂ρðvμ2Þ⋆−R̄αðvρ2Þ⋆⋆ R̄αð∂ρv
μ
1Þ⋆Þ⋆∂μf

¼vρ1∂ρv
μ
2∂μf−∂ρv

μ
1v

ρ
2∂μf

¼ðN1nρþMρ
1Þ∂ρðN2nμþMμ

2Þ∂μf

−∂ρðN1nμþMμ
1ÞðN2nρþMρ

2Þ∂μf

¼ðN1nρ∂ρN2−∂ρN1N2nρÞnμ∂μf

þðLM1
N2−LM2

N1Þnμ∂μf

þ½M1;M2�μ∂μfþN1½n;M2�μ∂μf

−N2½n;M1�μ∂μf;

and extract normal and tangential terms and using the
above relations for ½n;M�:

½ð0;Ma
1Þ; ð0;Mb

2Þ� ¼ ð0;LM1
M2Þ; ð73Þ

½ðN; 0Þ; ð0;MaÞ� ¼ ð−LMN; 0Þ; ð74Þ
½ðN1; 0Þ; ðN2; 0Þ� ¼ ð0; ðN1∂bN2 − N2∂bN1ÞqabÞ: ð75Þ

The fact that this result coincides with Eq. (17) confirms
the claim [87] that twisted noncommutative gravity with the
Moyal product has the same symmetry algebra as classical
GR. Thus, the only deformations of symmetries are encoded
in the coalgebraic sector where, due to the nonstandard
multiplication, the Leibniz rule does not apply. Having a
closed and consistent set of brackets also ensures that
noncommutative gravity possesses the same number of
d.o.f. as GR, as one should expect. We shall see that this
statement remains true also for deformed diffeomorphism
symmetries, in which case the HDA does receive ⋆-product
deformations.
Once one has obtained the Poisson brackets for general

coordinate transformations, it is of interest to study their
Minkowski (or flat) limit. In this way, one restricts the set of
diffeomorphisms and only allows a subset of coordinate
transformations, which are the isometries of Minkowski
spacetime. In terms of hypersurface deformations, this
restriction can be implemented by using the Euclidean
spatial metric and requiring lapse and shift to be linear in
space coordinates, of the form N ¼ αþ αixi and Ma ¼
βa þ Ra

bx
b (Rab being a matrix of rotations in space). The

interested reader can take a look at Refs. [93,115,119] for the
Minkowski limit of the HDA and its deformations. Here, as
expected, we find that the twisted HDA has no deformations
compared with the standard version of GR. It is then not
difficult to show that, after the specified restrictions, the
resulting Poincaré algebra is also unmodified. On the other
hand, one can expect that the action of Poincaré generators
on products of functions will be nontrivial as a result of the
presence of a noncommutative multiplication rule. This is
consistent with the known fact that the symmetry algebra
dual to the Moyal-Weyl space-time is the so-called θ-
Poincaré algebra with standard commutators but deformed
coproducts [126].

IV. DEFORMED DIFFEOMORPHISMS

We first perform the Gaussian analysis for the derivation
of brackets by defining ⋆-diffeomorphisms (or, equiva-
lently, deformed diffeomorphisms) with a deformed action
on single tensors but still respecting the Leibniz rule. This
is done in an attempt to reproduce what has been studied for
noncommutative quantum field theories [17–19,21,97–99],
where the relevant ⋆-action is invariant under ⋆ -Uð1Þ
symmetries obeying the Leibniz rule. Some rather encour-
aging results are achieved but we will explain later on
why there is a strong reason for abandoning the Leibniz
rule and then working with deformed diffeomorphisms
with deformed comultiplication.

A. Deformed diffeomorphisms with trivial coalgebra

We define a deformed diffeomorphism by its infinitesi-
mal action
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Lv ⊳ u ≔ vρ ⋆ ∂ρ ⋆ u ¼ vρ ⋆ ∂ρu; ð76Þ

on functions. In the last step we used the fact that, for
the constant-θ case, the action of the derivative is not
modified, that is ∂μ ⋆f≡∂μf. Deformed diffeomorphisms
are different from twisted ones because vρ ⋆ ∂ρu ≠ δvu
defined in (41).
A deformed Gaussian system can be defined analogously

to a twisted one. The first place where we used the Lie
derivative in the construction of a twisted Gaussian system
was in Eq. (47). Because it acts on a linear coordinate
function t, it remains true if we use the Lie derivative (76)
corresponding to deformed rather than twisted diffeomor-
phisms. The second place, the introduction of a condition
on Gaussian vector fields, will be discussed soon. But first,
we have to insert a warning about a violation of the
standard Leibniz rule for the Lie derivative of deformed
diffeomorphisms as defined so far.
In some sense, one could consider deformed diffeo-

morphisms the most natural definition of diffeomorphisms
on A. According to Eq. (23), we can obtain diffeomor-
phisms onA thanks to the mapping given by the ⋆-product.
Using a Weyl map, we have

δ̂VFðx̂Þ ¼ Vðx̂Þ ⊳ Fðx̂Þ ↦ vðxÞ ⋆ fðxÞ ¼ vρðxÞ ⋆ ∂ρfðxÞ;
ð77Þ

where the last expression gives us exactly the definition we
proposed for deformed diffeomorphisms, (76).
However, an extension to vector fields and tensors is

nontrivial if we want to preserve the Leibniz rule. For
instance, if we attempt such an extension by postulating
that the ⋆-Lie derivative should agree with the Moyal
bracket (38),

Lv1 ⊳ v2 ¼ ½v1 ;⋆v2�; ð78Þ

for two vector fields v1 and v2, the Leibniz rule is in danger
when we apply the derivative to the product of a function u
and a vector field w:

Lv ⊳ ðu⋆wÞ¼ vρ ⋆∂ρðu⋆wμÞ−u⋆wρ ⋆∂ρvμ

¼ðLv ⊳ uÞ⋆wμþu⋆ ðLv ⊳wÞ
þðvρ ⋆u−u⋆ vρÞ⋆ ∂ρwμ:

The last ⋆-commutator violates the Leibniz rule, but it
vanishes when u is a constant, such as a normal component
in our deformed Gaussian system. We may therefore
postpone a detailed discussion of the Leibniz rule and first
return to hypersurface deformations.
At this point, we have the necessary ingredients to

develop the Gaussian analysis for deformed diffeomor-
phisms, with our general aim of deriving the hypersurface-
deformation brackets they imply. Due to the ⋆-modification

of the action of these symmetries, it is then natural to expect
modifications of the HDA and, thus, a deformed or
⋆-modification of general covariance.

B. Modified Gaussian condition

Recall that we are not interested in the Gaussian system
in its own right, but rather have to make sure that the gauge
choice leads to brackets of space-time vector fields which
depend only on hypersurface data. The latter can then be
reinterpreted as Lie-algebroid brackets. The original
Gaussian condition for the metric reads

nμ ⋆ Lv ⋆ gμν ¼ 0: ð79Þ
However, it does not lead to a well-defined Lie-algebroid
structure for deformed diffeomorphisms. We modify it by
subtracting a term which will lead to consistent relations:

nμ ⋆Lv ⋆ gμν−∂γðvρ ⋆nμ ⋆ gρμÞ⋆ gγα ⋆nβ ⋆ gαβ ⋆nν¼ 0;

ð80Þ

is the new ⋆-modified Gaussian condition. In abstract
notation, the commutative analog of the new condition reads

inLvg ¼ ðindðivingÞÞn; ð81Þ

or, in components,

nμLvgμν ¼ nρ∂ρðgδγnγvδÞnν: ð82Þ

The difference with respect to the usual Gaussian condition
is that the variation of the metric g under a diffeomorphism
along the direction identified by v is nonzero. We are
therefore choosing a different gauge where, instead of being
zero, the normal contribution to Lvg is fixed to another
specific value. Since the structure of hypersurface deforma-
tions should be gauge independent, we expect the new
condition (82) to imply the same hypersurface-deformation
brackets as derived in [95] when applied to the ordinary
product. In the Appendix, we confirm that this modification
indeed does not change the result of the classical calculation
for commutative theories. As a brief argument, we can see
that the classical condition can be modified by our counter-
term because the latter is zero when the conditions for lapse
and shift that follow from the original condition are satisfied,
in particular when 0 ¼ nρ∂ρðN2Þ ¼ indðivingÞ. (The coun-
terterm vanishes “on shell”).
Using the Cartan identity, we write the modified

Gaussian condition as

iv ⋆ dnþ dðiv ⋆ in ⋆ gÞ þ i½n;⋆v� ⋆ g

þ ðdðiv ⋆ in ⋆ gÞ ⋆ i⃖nÞ ⋆ n ¼ 0; ð83Þ

where i⃖n highlights the fact that the normal vector is
⋆-contracted with the tensor on the left of the product,
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dðiv ⋆ in ⋆ gÞ. Decomposing v ¼ N ⋆ nþM ⋆ X and
using dn ¼ 0 as well as the orthogonality conditions

in ⋆ g ⋆ in ¼ −1 iX ⋆ in ⋆ g ¼ 0; ð84Þ

we find

½n;⋆N ⋆n�⋆ gþ½n;⋆M ⋆X�⋆ g¼ dNþðdN ⋆ inÞ⋆n ð85Þ

or

in ⋆dN ⋆nμ ⋆gμνþ½n;⋆M⋆X�μ ⋆gμν¼∂νNþ∂γN ⋆nγ ⋆nν:
ð86Þ

We extract the tangential part by ⋆-multiplying both sides
of the equation by gνα ⋆ qaα from the right

½n;⋆M ⋆ X�a ¼ ∂νN ⋆ gνα ⋆ qaα; ð87Þ

and the normal part by ⋆-multiplying both sides of the
equation by nν from the right

−nρ ⋆ ∂ρN þ ½n;⋆M ⋆ X�μ ⋆ gμν ⋆ nν ¼ 0: ð88Þ

The commutator term is equal to

½n;⋆M ⋆ X�μ ⋆ gμν ⋆ nν ¼ nρ ⋆ ∂ρðM ⋆ XÞμ ⋆ gμν ⋆ nν

− ðM ⋆ XÞρ ⋆ ð∂ρnμÞ ⋆ gμν ⋆ nν:

ð89Þ

In our Gaussian frame, nα is normalized, geodesic, and has
constant components. The commutator is therefore zero
and we have

nν ⋆ ∂νN ¼ 0: ð90Þ

Since the components nν are constant, the ⋆-product does
not imply higher derivatives in this equation. Therefore, we
still have a well-posed initial-value problem for lapseN and
shift Ma.
Using a decomposition as in (73), we now obtain

½ðN1; 0Þ;⋆ðN2; 0Þ� ¼ ð0; ðN1 ⋆ ∂bN2 − N2 ⋆ ∂bN1Þ ⋆ qabÞ:
ð91Þ

For brackets involving tangential vector fields, we have

½ð0;Ma
1Þ;⋆ð0;Ma

2Þ� ¼ ð0; ½M1 ⋆ X;⋆M2 ⋆ X�α ⋆ qaαÞ ð92Þ

and

½ðN; 0Þ;⋆ð0;MaÞ� ¼ ð−LM⋆X ⊳ N; 0Þ: ð93Þ

Therefore, we are able to derive a well-defined HDA in
our modified Gaussian frame. It has the form of the

classical version without any correction term other than
a generalization to Moyal space. This means that we find
for the ⋆-HDA the same form of the classical HDA but with
the usual point product replaced by the ⋆-product. Note,
however, that the ⋆-product implies higher time derivatives
which affect the interpretation of the HDA. We will
comment on this implication in more detail in Sec. IV D.
We now have a possible candidate for a ⋆-HDA.

According to Ref. [17], for instance, once the deformation
of infinitesimal diffeomorphisms has been introduced, the
action for gravity should be written with the requirement of
invariance under these ⋆-symmetries. In particular, the
deformed Einstein–Hilbert action should be formulated in
terms of star-products. However, in order to make sure that
there is a fully covariant tensor calculus, we have to return
to a discussion of the Leibniz rule.

C. Modified Leibniz rule

The demonstration that an action for noncommutative
gravity, such as the one introduced in Ref. [87], is covariant
requires an application of the Leibniz rule. In particular,
inserting the Lie derivative δvL in the Lagrangian density
L ¼ E ⋆ R in an action

S⋆ ¼
Z

d4xL ¼
Z

d4xE ⋆ R; ð94Þ

where d4xE is a suitably deformed measure and R is the
⋆-Ricci scalar, should result in a boundary term. (See, for
instance, [87] for details and explicit expressions.)
Assuming the Leibniz rule, the infinitesimal variation of

the Lagrangian density under deformed diffeomorphisms
would be given by

δvL ¼ Lv ⊳ ðE ⋆ RÞ ¼ ðLv ⊳ EÞ ⋆ Rþ E ⋆ Lv ⊳ R

¼ ðvρ ⋆ ∂ρEþ ∂ρvρ ⋆ EÞ ⋆ Rþ E ⋆ vρ ⋆ ∂ρR

¼ ∂ρðvρ ⋆ E ⋆ RÞ þ E ⋆ vρ ⋆ ∂ρR − vρ ⋆ E ⋆ ∂ρR;

which differs from a total derivative by the nonzero star
commutator ðE ⋆ vρ − vρ ⋆ EÞ ⋆ ∂ρR. However, foregoing
the Leibniz rule at this point and applying the Lie derivative
directly to the density E ⋆ R does give us a total derivative:

Lv ⊳ ðE⋆RÞ¼ vρ ⋆ ∂ρðE⋆RÞþð∂ρvρ ⋆ÞðE⋆RÞ ð95Þ

¼ ∂ρðvρ ⋆ E ⋆ RÞ: ð96Þ

The action would then be invariant but the Lie derivative
does not agree with (95).
We therefore have to refine our notion of deformed

diffeomorphisms, in contrast to the situation in noncom-
mutative field theories [17,18], for which there are
⋆-actions invariant under both twisted UðNÞ transforma-
tions with non-trivial coproducts and deformed UðNÞ
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transformations with standard Leibniz rule [21]. The main
reason why we tried to define ⋆-diffeomorphisms with
trivial co-multiplication was the desire to mimic what
happens in noncommutative quantum field theories, but
we now see that there is a pronounced difference between
noncommutative gravity and other noncommutative sys-
tems at a fundamental level.
In our example of a density times the Ricci scalar, the

defect in the Leibniz rule was given by a star commutator of
components. We can therefore try to modify the Leibniz
rule by rearranging different factors. We now define

Lv ⊳ ðu⋆wÞ≔ ðLv ⊳ uÞ⋆wþ R̄ðuÞ⋆ ðLR̄ðvÞ ⊳wÞ; ð97Þ

where R̄ is defined in (30). Together with this deformed
Leibniz rule, we also change the ordering in the action of
⋆-diffeomorphisms on vectors to obtain the new Lie
derivative

Lv ⊳ uμ ≔ vρ ⋆ ∂ρuμ − ∂ρvμ ⋆ uρ: ð98Þ

Now we can prove that uμ ⋆ uμ transforms as a scalar
under deformed diffeomorphisms: We have

ðLv ⊳ uμÞ ⋆ uμþ R̄ðuμÞ ⋆ ðLR̄ðvÞ ⊳ uμÞ
¼ ðvρ ⋆ ∂ρuμ− ∂ρvμ ⋆ uρÞ ⋆ uμþ R̄ðuμÞ ⋆ ðR̄ðvρÞ ⋆ ∂ρuμ

þ R̄ð∂μvρÞ ⋆ uρÞ ¼ vρ ⋆ ∂ρuμ ⋆ uμ

− ∂ρvμ ⋆ uρ ⋆ uμþvρ ⋆ uμ ⋆ ∂ρuμþ ∂μvρ ⋆ uμ ⋆ uρ:

ð99Þ

The second and the fourth terms in the last line cancel out,
and we have

ðLv⊳uμÞ⋆uμþR̄ðuμÞ⋆ðLR̄ðvÞ⊳uμÞ
¼vρ⋆∂ρuμ⋆uμþvρ⋆uμ⋆∂ρuμ¼Lv⊳ðuμ⋆uμÞ: ð100Þ

In order to prove that the new Leibniz rule implies a
consistent extension of the deformed Lie derivative to
tensors, we start with the ⋆ product of two vector fields,
uμ1 ⋆ uν2:

Lv ⊳ ðuμ1 ⋆ uν2Þ¼ ðLv ⊳ uμ1Þ⋆ uν2þ R̄ðuμ1Þ⋆ ðLR̄ðvÞ ⊳uν2Þ
¼ vρ ⋆∂ρu

μ
1 ⋆uν2−∂ρvμ ⋆ uρ1 ⋆ uν2

þvρ ⋆ uμ1 ⋆ ∂ρuν2−∂ρvν ⋆ uμ1 ⋆ uρ2

¼ vρ ⋆∂ρðuμ1 ⋆ uν2Þ−∂ρvμ ⋆uρ1 ⋆uν2
−∂ρvν ⋆ uμ1 ⋆ uρ2¼Lv ⊳Tμν

with the contravariant 2-tensor Tμν ≔ uμ1 ⋆ uν2. By induc-
tion, the claim then follows for arbitrary tensors:

Lv ⊳ ðuμ11 ⋆ uμ22 ⋆… ⋆ uμnn ⋆w1
ν1 ⋆… ⋆wn

νnÞ
¼ ðLv ⊳ uμ11 Þ ⋆ ðuμ22 ⋆… ⋆ uμnn ⋆w1

ν1 ⋆… ⋆wn
νnÞ

þ R̄1ðuμ11 Þ ⋆ ðLR̄1ðvÞ ⊳ ðuμ22 ⋆… ⋆ uμnn ⋆w1
ν1 ⋆… ⋆wn

νnÞÞ
¼ ðvρ ⋆ ∂ρu

μ1
1 Þ ⋆ ðuμ22 ⋆… ⋆ uμnn ⋆w1

ν1 ⋆… ⋆wn
νnÞ

− ð∂ρvμ1 ⋆ uρ1Þ ⋆ ðuμ22 ⋆… ⋆ uμnn ⋆w1
ν1 ⋆… ⋆wn

νnÞ
þvρ ⋆ uμ1 ⋆ ∂ρu

μ2
2 ⋆ uμ33 ⋆… ⋆ uμnn ⋆w1

ν1 ⋆… ⋆wn
νn

− ∂ρvμ2 ⋆ uμ11 ⋆ uρ2 ⋆ uμ33 ⋆… ⋆ uμnn ⋆w1
ν1 ⋆… ⋆wn

νn

þ R̄1ðuμ11 Þ ⋆ R̄2ðuμ22 Þ ⋆ ðLR̄2R̄1ðvÞ ⊳ ðuμ33 ⋆… ⋆ uμnn

⋆w1
ν1 ⋆… ⋆wn

νnÞÞ ¼ � � � ¼Lv ⊳ ðTμ1μ2…μn
ν1ν2…νn Þ

with Tμ1μ2…μn
ν1ν2…νn ≔ uμ11 ⋆ uμ22 ⋆ … ⋆ uμnn ⋆ w1

ν1 ⋆ … ⋆ wn
νn .

D. Deformed diffeomorphisms
with deformed Leibniz rule

We have clarified the reason why the Leibniz rule has
to be modified when we adopt a noncommutative multi-
plication rule, and provided a new definition to resolve
the problem. With this result, we can now focus on the
derivation of the hypersurface-deformation brackets for
deformed diffeomorphisms with deformed Leibniz rule as
in Eq. (97).
Combining the lessons from our previous derivation with

the standard Leibniz rule as well as the new Lie derivative,
we now introduce a modified Gaussian condition by
requiring

R̄ðnμÞ ⋆ ðLR̄ðvÞ ⊳ gμνÞ
¼ −∂ρðvρ ⋆ nν ⋆ gμρÞ ⋆ nγ ⋆ nρ ⋆ gγν ð101Þ

for space-time vector fields v. Using the modified Leibniz
rule we can rewrite this equation as

Lv ⊳ ðnμ ⋆ gμνÞ − ðLv ⊳ nμÞ ⋆ gμν

¼ −∂ρðvρ ⋆ nν ⋆ gμρÞ ⋆ nγ ⋆ nρ ⋆ gγν; ð102Þ

and thanks to the Cartan identity, obtain

∂νðvρ ⋆ nμ ⋆ gμρÞ þ vρ ⋆ ðdnÞρν − ½v; n�μ⋆ ⋆ gμν

¼ −∂ρðvρ ⋆ nν ⋆ gμρÞ ⋆ nγ ⋆ nρ ⋆ gγν: ð103Þ

Here ðdnÞρν≡∂ρðnμ ⋆gμνÞ−∂νðnμ ⋆gμρÞ vanishes as
before. Decomposing vμ ¼ N ⋆ nμ þMa ⋆ Xμ

a, we find

− ∂νN − ½N ⋆ n; n�μ⋆ ⋆ gμν − ½M ⋆ X; n�μ⋆ ⋆ gμν

¼ ∂ρN ⋆ nγ ⋆ nρ ⋆ gγν: ð104Þ
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Projection implies the normal part

− ∂νN ⋆ gνα ⋆ nβ ⋆ gαβ − ½N ⋆ n; n�α⋆ ⋆ nβ ⋆ gαβ

− ½M ⋆ X; n�α⋆ ⋆ nβ ⋆ gαβ

¼ ∂ρN ⋆ nγ ⋆ nρ ⋆ gγν ⋆ gνα ⋆ nβ ⋆ gαβ;

or

− ∂νN ⋆ nν − N ⋆ nρ ⋆ ∂ρnα ⋆ nβ ⋆ gαβ

þ ∂ρðN ⋆ nαÞ ⋆ nρ ⋆ nβ ⋆ gαβ

− ½M ⋆ X; n�α⋆ ⋆ nβ ⋆ gαβ

¼ ∂ρN ⋆ nα ⋆ nρ ⋆ nβ ⋆ gαβ:

We now use nρ ⋆ ∂ρnμ ¼ 0, cancel out
∂ρN ⋆ nα ⋆ nρ ⋆ nβ ⋆ gαβ, and obtain

−∂νN ⋆ nν ¼ ½M ⋆ X; n�α⋆ ⋆ nβ ⋆ gαβ: ð105Þ
The commutator on the right is equal to

½M⋆X;n�α⋆ ⋆nβ⋆gαβ¼ðM⋆XÞγ ⋆ð∂γnαÞ⋆nβ⋆gαβ
−nγ ⋆∂γðM⋆XÞα⋆nβ⋆gαβ: ð106Þ

If we now use the properties of our Gaussian frame, in
particular that nα is normalized, geodesic, and has constant
components, the commutator is zero and we arrive at

−∂νN ⋆ nν ¼ 0: ð107Þ
The tangential part of (104) is

− ∂νN ⋆ gνα ⋆ qαb − ½M ⋆ X;n�α⋆ ⋆ qαb − ½N ⋆ n;n�α⋆ ⋆ qαb

¼ −∂bN − ½M ⋆ X;n�α⋆ ⋆ qαb −N ⋆ nρ ⋆ ∂ρnα ⋆ qαb

− ∂ρN ⋆ nα ⋆ nρ ⋆ qαb

¼ ∂ρN ⋆ nα ⋆ nρ ⋆ qαb;

which is equivalent to

½M ⋆ X; n�a⋆ ¼ −∂bN ⋆ qab: ð108Þ
As before, the equations for lapse and shift provide a well-
posed initial-value problem.
We can now compute the bracket

½v1;v2�μ⋆ ¼ ½N1 ⋆ n;N2 ⋆ n�μ⋆þ ½N1 ⋆ n;M2 ⋆X�μ⋆
þ½M1 ⋆X;N2 ⋆ n�μ⋆þ½M1 ⋆X;M2 ⋆X�μ⋆

¼N1 ⋆ nρ ⋆ ∂ρðN2 ⋆ nμÞ− ∂ρðN1 ⋆ nμÞ ⋆N2 ⋆ nρ

þN1 ⋆ nρ ⋆ ∂ρðM2 ⋆XμÞ
− ∂ρðN1 ⋆ nμÞ ⋆M2 ⋆Xρ

þM1 ⋆Xρ ⋆ ∂ρðN2 ⋆ nμÞ
− ∂ρðM1 ⋆XμÞ ⋆N2 ⋆ nρ

þ½M1 ⋆X;M2 ⋆X�b⋆ ⋆Xa
b:

Choosing Gaussian vector fields with either zero lapse N or
shiftMa functions we can decompose the above brackets as
a set of three distinct commutators ½ð0;M1Þ; ð0;M2Þ�⋆,
½ð0;M1Þ; ðN2; 0Þ�⋆ and ½ðN1; 0Þ; ðN2; 0Þ�⋆. If both lapse
functions are zero, we find

½ð0;M1Þ; ð0;M2Þ�⋆ ¼ ð0; ½M1 ⋆ X;M2 ⋆ X�a⋆Þ: ð109Þ

For both shift vector fields equal to zero, we obtain

½ðN1;0Þ;ðN2;0Þ�⋆¼ð0;N1 ⋆qab ⋆∂bN2−∂bN1 ⋆N2 ⋆qabÞ:
ð110Þ

The remaining bracket reads

½ð0;MÞ; ðN; 0Þ�⋆ ¼ ðLM⋆X ⊳ N; 0Þ: ð111Þ

It is perhaps surprising that the overall structure of the
bracket between N and Ma is preserved despite the non-
commutativity of coordinates. In this regard, one can note
that the ⋆-Lie bracket between two tangential deformations
still gives us a tangential hypersurface deformation, the one
involving a normal and a tangential deformations gives a
normal displacement, and the bracket between two normal
deformations results in a spatial shift. The only type of
modifications that appear with respect to the standard
hypersurface brackets are higher derivative terms. Those
terms are implicit in the above expressions, but it is clear
that such terms appear as soon as we expand the Moyal star
product by powers of θ.
Although the brackets bear a formal resemblance with

the classical ones, their detailed form is markedly different.
The main reason is the nonlocality of the ⋆-product, which
includes higher derivatives in space-time. In the non-
commutative HDA brackets as written, we therefore have
time derivatives ofN,Ma and the inverse spatial metric qab,
which, unlike those of the constant nμ, are in general
nonzero. Since the brackets cannot contain space-time data,
we should interpret the ⋆-products in them as follows:
Working in the Gaussian frame, time derivatives of N and
Ma can be replaced by spatial derivatives using the
Eqs. (107) and (108). Any first-order time derivative
of qab can be expressed as a linear combination of
extrinsic-curvature components Kab, while higher-order
time derivatives of qab are related to higher-order momenta
in the Ostrogradsky treatment of a canonical higher-
derivative theory. Without a specific noncommutative
action, we cannot write these terms explicitly, but rather
leave the brackets in the form (110) with implicit higher-
derivative terms.
We conclude that the base manifold of the noncommu-

tative HDA should contain not only the spatial metric but
the entire phase space of a higher-derivative metric theory.
The presence of extrinsic curvature among these variables
is reminiscent of holonomy modifications in models of
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loop quantum gravity, but the explicit dependence is, in
general, different (see e.g., [105,106]).

V. CONCLUSIONS

We have studied infinitesimal diffeomorphisms on
noncommutative manifolds equipped with a nonstandard
multiplication rule in terms of ⋆-products. Previous studies
on noncommutative formulations of gravity (in particular
[87,88]) succeeded in twisting the group of 4-dimensional
diffeomorphisms, thereby achieving a deformation of GR
symmetries in the sense of Drinfeld twists [40,41].
Nonetheless, as already pointed out in the literature and
further stressed in this work, it remains unclear whether
diffeomorphisms on noncommutative spaces should be
introduced by means of twisting or explicitly deforming
their action, as it is the case for ⋆-gauge transformations in
noncommutative extensions of quantum field theories.
The study of the algebra of hypersurface deformations,

generating diffeomorphisms if we make a 3þ 1 splitting of
the 4-manifold, can provide additional insights into general
covariance in noncommutative gravity as well as on the
counting of physical d.o.f. of the theory. Our analysis is one
of only a few in the context of canonical formulations of
noncommutative gravity. In addition to shedding some
light on long-standing questions in noncommutative
gravity, it might also help in making contact with other
recently proposed modifications of the HDA [105–112].
One possible point of contact is the presence of extrinsic
curvature as one of the coordinates on the base manifold of
a noncommutative HDA.
By using a recently developed approach to the derivation

of the HDA [95], we have shown a constructive method to
derive the brackets between spatial and time components of
Gaussian vector fields when functions and tensors are
multiplied with a noncommutative ⋆-product. This appli-
cation is conceptually different from the derivation in
classical general relativity given in [95] because we cannot
take for granted that there is a covariant theory with a well-
defined HDA on noncommutative manifolds. We therefore
had to demonstrate that the frame of a Gaussian system,
used in [95], can be suitably generalized to specific types of
noncommutativity. After doing this, we derive well-defined
HDAs, which implies that there are infinitesimal space-time
transformations that allow us to change the frame. In this
sense, we have demonstrated the covariance of such
theories, even though we did not use an explicit action
principle.
In particular, we have studied both the HDA encoding

twisted diffeomorphisms and the deformations of the HDA
produced by what we call deformed or ⋆-diffeomorphisms.
In the former case, we have found, not surprisingly, that the
brackets are unmodified compared with the classical
algebra of GR gravitational constraints. This result con-
firms some of the previous statements that appeared in the
literature on twisted gravity [87].

In the analysis of the latter case—deformed
diffeomorphisms—we did not have any guidance from
established results. Thus, building on the analogy with
⋆−Uð1Þ [or in general ⋆−UðNÞ] gauge theories, we first
defined deformed diffeomorphisms with a suitably deformed
action on single fields but retaining the Leibniz rule in their
action on the ⋆-product of two or more functions. We were
able to overcome the technical challenges represented by the
correction terms to the HDA brackets, but eventually
recognized a major obstacle to the implementation of a
consistent noncommutative differential calculus where dif-
feomorphism transformations have a trivial coalgebra. This
forced us to deform the coproducts of ⋆-diffeomorphisms.
As a result, we have reached a meaningful deformation of
the HDA for deformed diffeomorphisms without pathologi-
cal correction terms and with a consistent differential
calculus suitably adapted to ⋆-products.
While formally similar to the classical HDA, noncom-

mutative HDAs based on deformed diffeomorphisms show
crucial differences in their structure owing to nonlocality
(in particular in time) of ⋆-products. We hope that this
result may serve as a base for an alternative formulation of
noncommutative gravity in terms of the deformed diffeo-
morphisms put forward here, instead of relying on the
symmetry principle of twisting as done so far. The path we
followed here provides a simplified way to get insight into
how general covariance might be affected by ⋆-products or
other possible deformations.
For twisted diffeomorphisms we have also been able to

discuss straightforwardly the flat-spacetime (or Minkowski)
limit since we had no deformations of the HDA. On the
contrary, the study of the Minkowski regime of the deformed
HDA encoding ⋆-diffeomorphisms remains an open chal-
lenge which should be of particular interest both from the
perspective of relating ⋆-product corrections to the nonlinear
Poincaré transformations of noncommutative spacetimes
[67,68] and also to have a better understanding of what
general modifications of the HDA should affect the
Poincaré algebra.
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APPENDIX: MODIFIED GAUSSIAN CONDITION:
CLASSICAL CASE

In this Appendix, we show that a suitable modification
(82) of the Gaussian system still results in the usual
classical HDA. We begin with
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nμLvgμν ¼ nρ∂ρðgδγnγvδÞnν: ðA1Þ

and write the Lie derivative explicitly:

nμvσ∂σgμν þ nμgμσ∂νvσ þ nμgσν∂μvσ ¼ nρ∂ρðgδγnγvδÞnν;
or, equivalently,

∂νðgμσnμvσÞ − vσ∂νðgμσnμÞ þ vσ∂σðgμνnμÞ
− vσgμν∂σnμ þ nμgσν∂μvσ

¼ nρ∂ρðgδγnγvδÞnν:
Using ðdnÞσν ≔ ∂σðgμνnμÞ − ∂νðgμσnμÞ and ½n; v�μ ¼
nρ∂ρvμ − vρ∂ρnμ, we obtain

∂νðgμσnμvσÞ þ vσðdnÞσν þ ½n; v�μgμν ¼ nρ∂ρðgδγnγvδÞnν:
ðA2Þ

If we choose the metric such that

ds2 ¼ −dt2 þ qabdxadxb; ðA3Þ
we have dn ¼ d2t ¼ 0. Although our Gaussian condition
has been modified, the metric (A3) is consistent with the
gauge choice as shown by the final result, in particular
Eq. (A7). Moreover,

∂νðgμσnμvσÞ þ ½n; v�μgμν ¼ nρ∂ρðgδγnγvδÞnν: ðA4Þ
Decomposing v as vμ ¼ Nnμ þMμ we obtain

−∂νN þ ½n;M�μgμν ¼ −nρ∂ρNnν: ðA5Þ
Let us now find the normal and tangential components of

the above equality. For the normal we have

−nν∂νN þ ½n;M�νnν ¼ nρ∂ρN; ðA6Þ

and thus

nν∂νN ¼ 0 ðA7Þ

because ½n;M� does not have a normal component. For the
tangential part, we obtain

½n;M�a ¼ qab∂bN: ðA8Þ

We are now ready to compute the bracket between two
vector fields:

½v1; v2�μ ¼ ðN1LnN2 − N2LnN1 þ LM1
N2 − LM2

N1Þnμ
− N2½n;M1� þ N1½n;M2� þ ½M1;M2�μ

¼ ðN1nρ∂ρN2 − N2nρ∂ρN1 þMb
1∂bN2

−Mb
2∂bN1Þnμ

þ N1qab∂bN2 − N2qab∂bN1 þ ½M1;M2�a
¼ ðMb

1∂bN2 −Mb
2∂bN1Þnμ

þ qabðN1∂bN2 − N2∂bN1Þ;

where we used Eqs. (A7) and (A8). Finally, we can extract
the normal and tangential components of the brackets:

½ð0;M1Þ; ð0;M2Þ� ¼ ð0;LM1
M2Þ ðA9Þ

½ðN1; 0Þ; ð0;M2Þ� ¼ −ðLM2
N1; 0Þ ðA10Þ

½ðN1; 0Þ; ðN2; 0Þ� ¼ ð0; qabðN1∂bN2 − N2∂bN1ÞÞ: ðA11Þ

These are the brackets of Dirac’s hypersurface-deformation
algebroid.

[1] S. Doplicher, K. Fredenhagen, and J. E. Roberts, The
quantum structure of space-time at the Planck scale
and quantum fields, Commun. Math. Phys. 172, 187
(1995).

[2] S. Doplicher, K. Fredenhagen, and J. E. Roberts, Space-
time quantization induced by classical gravity, Phys. Lett.
B 331, 39 (1994).

[3] G. Veneziano, A stringy nature needs just two constants,
Europhys. Lett. 2, 199 (1986).

[4] T. Padmanabhan, Limitations on the operational definition
of spacetime events and quantum gravity, Classical Quan-
tum Gravity 4, L107 (1987).

[5] K. Konishi, G. Paffuti, and P. Provero, Minimum physical
length and the generalized uncertainty principle in string
theory, Phys. Lett. B 234, 276 (1990).

[6] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, String
theory modifies quantum mechanics, Phys. Lett. B 293, 37
(1992).

[7] L. J. Garay, Quantum gravity and minimum length, Int.
J. Mod. Phys. A 10, 145 (1995).

[8] D. V. Ahluwalia, Quantum measurements, gravitation, and
locality, Phys. Lett. B 339, 301 (1994).

[9] Y. J. Ng and H. Van Dam, Limit to space-time measure-
ment, Mod. Phys. Lett. A 09, 335 (1994).

[10] G. Amelino-Camelia, Limits on the measurability of
space-time distances in the semiclassical approximation
of quantum gravity, Mod. Phys. Lett. A 09, 3415 (1994).

[11] A. Kempf, G. Mangano, and R. B. Mann, Hilbert space
representation of the minimal length uncertainty relation,
Phys. Rev. D 52, 1108 (1995).

BOJOWALD, BRAHMA, BUYUKCAM, and RONCO PHYS. REV. D 98, 026031 (2018)

026031-18

https://doi.org/10.1007/BF02104515
https://doi.org/10.1007/BF02104515
https://doi.org/10.1016/0370-2693(94)90940-7
https://doi.org/10.1016/0370-2693(94)90940-7
https://doi.org/10.1209/0295-5075/2/3/006
https://doi.org/10.1088/0264-9381/4/4/007
https://doi.org/10.1088/0264-9381/4/4/007
https://doi.org/10.1016/0370-2693(90)91927-4
https://doi.org/10.1016/0370-2693(92)91478-R
https://doi.org/10.1016/0370-2693(92)91478-R
https://doi.org/10.1142/S0217751X95000085
https://doi.org/10.1142/S0217751X95000085
https://doi.org/10.1016/0370-2693(94)90622-X
https://doi.org/10.1142/S0217732394000356
https://doi.org/10.1142/S0217732394003245
https://doi.org/10.1103/PhysRevD.52.1108


[12] M. Maggiore, A generalized uncertainty principle in
quantum gravity, Phys. Lett. B 304, 65 (1993).

[13] G. Amelino-Camelia, G. Calcagni, and M. Ronco, Imprint
of quantum gravity in the dimension and fabric of
spacetime, Phys. Lett. B 774, 630 (2017).

[14] G. Calcagni and M. Ronco, Dimensional flow and
fuzziness in quantum gravity: Emergence of stochastic
spacetime, Nucl. Phys. B923, 144 (2017).

[15] A. Connes, Geometry and the quantum, arXiv:1703
.02470.

[16] A. Connes, M. R. Douglas, and A. S. Schwarz, Non-
commutative geometry and matrix theory: Compactifica-
tion on tori, J. High Energy Phys. 02 (1998) 003.

[17] R. J. Szabo, Quantum field theory on noncommutative
spaces, Phys. Rep. 378, 207 (2003).

[18] J. Ambjorn, Y. M. Makeenko, J. Nishimura, and R. J.
Szabo, Finite N matrix models of noncommutative gauge
theory, J. High Energy Phys. 11 (1999) 029.

[19] M. R. Douglas and C. M. Hull, D-branes and the non-
commutative torus, J. High Energy Phys. 02 (1998) 008.

[20] J. Madore, S. Schraml, and P. Schupp, and J. Wess, Gauge
theory on noncommutative spaces, Eur. Phys. J. C 16, 161
(2000).

[21] M. R. Douglas and N. A. Nekrasov, Noncommutative field
theory, Rev. Mod. Phys. 73, 977 (2001).

[22] S. Brahma, A. Marcianò, and M. Ronco, Quantum position
operator: Why space-time lattice is fuzzy, arXiv:1707
.05341.

[23] A. Connes, Noncommutative Geometry (Academic Press,
New York, 1994).

[24] A. Connes andM. Marcolli, Awalk in the noncommutative
garden, arXiv:math/0601054.

[25] G. Landi, An Introduction to Noncommutative Spaces and
Their Geometries, Lectures notes in physics (Springer-
Verlag, Berlin, Heidelberg, 1997).

[26] T. Brzezinski and S. Majid, Quantum group gauge
theory on quantum spaces, Commun. Math. Phys. 157,
591 (1993).

[27] M. Maggiore, Quantum groups, gravity and the general-
ized uncertainty principle, Phys. Rev. D 49, 5182
(1994).

[28] S. Majid, Quantum groups and noncommutative geometry,
J. Math. Phys. 41, 3892 (2000).

[29] R. Akhoury and Y. P. Yao, Minimal length uncertainty
relation and the hydrogen spectrum, Phys. Lett. B 572, 37
(2003).

[30] A. Agostini, G. Amelino-Camelia, and F. D’Andrea, Hopf
algebra description of noncommutative space-time
symmetries, Int. J. Mod. Phys. A 19, 5187 (2004).

[31] R. Oeckl, Braided quantum field theory, Commun. Math.
Phys. 217, 451 (2001).

[32] L. Jonke and S. Meljanac, Representations of noncommu-
tative quantum mechanics and symmetries, Eur. Phys. J. C
29, 433 (2003).

[33] M. Arzano and A. Marciano, Fock space, quantum fields
and κ-Poincare symmetries, Phys. Rev. D 76, 125005
(2007).

[34] S. L. Woronowicz, Differential calculus on compact matrix
pseudogroups (quantum groups), Commun. Math. Phys.
122, 125 (1989).

[35] X. Calmet, B. Jurco, P. Schupp, J. Wess, and M.
Wohlgenannt, The standard model on noncommutative
space-time, Eur. Phys. J. C 23, 363 (2002).

[36] F. Girelli, E. R. Livine, and D. Oriti, 4d deformed special
relativity from group field theories, Phys. Rev. D 81,
024015 (2010).

[37] S. Ferrara, M. A. Lledo, and O. Macia, Supersymmetry in
noncommutative superspaces, J. High Energy Phys. 09
(2003) 068.

[38] S. Terashima and J.-T. Yee, Comments on noncommutative
superspace, J. High Energy Phys. 12 (2003) 053.

[39] M. Ihl and C. Saemann, Drinfeld-twisted supersymmetry
and non-anticommutative superspace, J. High Energy
Phys. 01 (2006) 065.

[40] V. G. Drinfeld, Hopf algebras and the quantum Yang-
Baxter equation, Sov. Math. Dokl. 32, 254 (1985).

[41] V. G. Drinfeld, Quantum groups, J. Sov. Math. 41, 898
(1988).

[42] A. S. Cattaneo and G. Felder, Poisson sigma models and
deformation quantization, Mod. Phys. Lett. A 16, 179
(2001).

[43] G. Amelino-Camelia, Relativity in space-times with short
distance structure governed by an observer independent
(Planckian) length scale, Int. J. Mod. Phys. D 11, 35
(2002).

[44] G. Amelino-Camelia, Testable scenario for relativity with
minimum length, Phys. Lett. B 510, 255 (2001).

[45] L. Freidel and E. R. Livine, Effective 3-D Quantum
Gravity and Non-commutative Quantum Field Theory,
Phys. Rev. Lett. 96, 221301 (2006).

[46] H.-J. Matschull and M. Welling, Quantum mechanics of a
point particle in (2þ 1)-dimensional gravity, Classical
Quantum Gravity 15, 2981 (1998).

[47] F. A. Bais, N. M. Muller, and B. J. Schroers,
Quantum group symmetry and particle scattering in
(2þ 1)-dimensional quantum gravity, Nucl. Phys. B640,
3 (2002).

[48] G. Amelino-Camelia, L. Smolin, and A. Starodubtsev,
Quantum symmetry, the cosmological constant and Planck
scale phenomenology, Classical Quantum Gravity 21,
3095 (2004).

[49] A. Ballesteros, F. J. Herranz, and C. Meusburger, Three-
dimensional gravity and Drinfel’d doubles: spacetimes and
symmetries from quantum deformations, Phys. Lett. B
687, 375 (2010).

[50] A. Ballesteros, F. J. Herranz, and C. Meusburger, Drinfel’d
doubles for (2þ 1)-gravity, Classical Quantum Gravity 30,
155012 (2013).

[51] A. Ballesteros, F. J. Herranz, and C. Meusburger, A (2þ 1)
non-commutative Drinfel’d double spacetime with cosmo-
logical constant, Phys. Lett. B 732, 201 (2014).

[52] A. Ballesteros, C. Meusburger, and P. Naranjo, AdS
Poisson homogeneous spaces and Drinfel’d doubles,
J. Phys. A 50, 395202 (2017).

[53] A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo, and
F. J. Herranz, Curved momentum spaces from quantum
groups with cosmological constant, Phys. Lett. B 773, 47
(2017).

[54] G. Amelino-Camelia, M. Arzano, S. Bianco, and R. J.
Buonocore, The DSR-deformed relativistic symmetries

EXTENDING GENERAL COVARIANCE: MOYAL-TYPE … PHYS. REV. D 98, 026031 (2018)

026031-19

https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1016/j.physletb.2017.10.032
https://doi.org/10.1016/j.nuclphysb.2017.07.016
http://arXiv.org/abs/1703.02470
http://arXiv.org/abs/1703.02470
https://doi.org/10.1088/1126-6708/1998/02/003
https://doi.org/10.1016/S0370-1573(03)00059-0
https://doi.org/10.1088/1126-6708/1999/11/029
https://doi.org/10.1088/1126-6708/1998/02/008
https://doi.org/10.1007/s100520050012
https://doi.org/10.1007/s100520050012
https://doi.org/10.1103/RevModPhys.73.977
http://arXiv.org/abs/1707.05341
http://arXiv.org/abs/1707.05341
http://arXiv.org/abs/math/0601054
https://doi.org/10.1007/BF02096884
https://doi.org/10.1007/BF02096884
https://doi.org/10.1103/PhysRevD.49.5182
https://doi.org/10.1103/PhysRevD.49.5182
https://doi.org/10.1063/1.533331
https://doi.org/10.1016/j.physletb.2003.07.084
https://doi.org/10.1016/j.physletb.2003.07.084
https://doi.org/10.1142/S0217751X04020919
https://doi.org/10.1007/s002200100375
https://doi.org/10.1007/s002200100375
https://doi.org/10.1140/epjc/s2003-01205-6
https://doi.org/10.1140/epjc/s2003-01205-6
https://doi.org/10.1103/PhysRevD.76.125005
https://doi.org/10.1103/PhysRevD.76.125005
https://doi.org/10.1007/BF01221411
https://doi.org/10.1007/BF01221411
https://doi.org/10.1007/s100520100873
https://doi.org/10.1103/PhysRevD.81.024015
https://doi.org/10.1103/PhysRevD.81.024015
https://doi.org/10.1088/1126-6708/2003/09/068
https://doi.org/10.1088/1126-6708/2003/09/068
https://doi.org/10.1088/1126-6708/2003/12/053
https://doi.org/10.1088/1126-6708/2006/01/065
https://doi.org/10.1088/1126-6708/2006/01/065
https://doi.org/10.1007/BF01247086
https://doi.org/10.1007/BF01247086
https://doi.org/10.1142/S0217732301003255
https://doi.org/10.1142/S0217732301003255
https://doi.org/10.1142/S0218271802001330
https://doi.org/10.1142/S0218271802001330
https://doi.org/10.1016/S0370-2693(01)00506-8
https://doi.org/10.1103/PhysRevLett.96.221301
https://doi.org/10.1088/0264-9381/15/10/008
https://doi.org/10.1088/0264-9381/15/10/008
https://doi.org/10.1016/S0550-3213(02)00572-2
https://doi.org/10.1016/S0550-3213(02)00572-2
https://doi.org/10.1088/0264-9381/21/13/002
https://doi.org/10.1088/0264-9381/21/13/002
https://doi.org/10.1016/j.physletb.2010.03.043
https://doi.org/10.1016/j.physletb.2010.03.043
https://doi.org/10.1088/0264-9381/30/15/155012
https://doi.org/10.1088/0264-9381/30/15/155012
https://doi.org/10.1016/j.physletb.2014.03.036
https://doi.org/10.1088/1751-8121/aa858c
https://doi.org/10.1016/j.physletb.2017.08.008
https://doi.org/10.1016/j.physletb.2017.08.008


and the relative locality of 3D quantum gravity, Classical
Quantum Gravity 30, 065012 (2013).

[55] N. Seiberg and E. Witten, String theory and noncommu-
tative geometry, J. High Energy Phys. 09 (1999) 032.

[56] E. Witten, Noncommutative geometry and string field
theory, Nucl. Phys. B268, 253 (1986).

[57] E. Witten, Noncommutative tachyons and string field
theory, arXiv:hep-th/0006071.

[58] N. Seiberg, L. Susskind, and N. Toumbas, Space-time
noncommutativity and causality, J. High Energy Phys. 06
(2000) 044.

[59] J. de Boer, P. A. Grassi, and P. van Nieuwenhuizen,
Noncommutative superspace from string theory, Phys.
Lett. B 574, 98 (2003).

[60] A. Sitarz, Noncommutative differential calculus on the
κ-Minkowski space, Phys. Lett. B 349, 42 (1995).

[61] S. Meljanac, A. Samsarov, M. Stojic, and K. S. Gupta,
κ-Minkowski space-time and the star product realizations,
Eur. Phys. J. C 53, 295 (2008).

[62] P. Podles and S. L. Woronowicz, Quantum deformation of
Lorentz group, Commun. Math. Phys. 130, 381 (1990).

[63] V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schucker,
and J. C. Varilly, Moyal planes are spectral triples,
Commun. Math. Phys. 246, 569 (2004).

[64] G. Amelino-Camelia, Quantum-spacetime phenomenol-
ogy, Living Rev. Relativity 16, 5 (2013).

[65] H. S. Snyder, Quantized space-time, Phys. Rev. 71, 38
(1947).

[66] V. Schomerus, D-branes and deformation quantization,
J. High Energy Phys. 06 (1999) 030.

[67] S. Majid and H. Ruegg, Bicrossproduct structure of
κ-Poincare group and noncommutative geometry, Phys.
Lett. B 334, 348 (1994).

[68] J. Lukiersk, A. Nowicki, and H. Ruegg, New quantum
Poincare algebra and k deformed field theory, Phys. Lett. B
293, 344 (1992).

[69] J. Lukierski, H. Ruegg, A. Nowicki, and V. N. Tolstoi, Q
deformation of Poincare algebra, Phys. Lett. B 264, 331
(1991).

[70] S. Majid, Braided momentum in the Q Poincare group,
J. Math. Phys. 34, 2045 (1993).

[71] S. Giller, P. Kosinski, M. Majewski, P. Maslanka, and
J. Kunz, More about Q deformed Poincare algebra,
Phys. Lett. B 286, 57 (1992).

[72] A. P. Balachandran, S. Kurkcuoglu, and E. Rojas, The star
product on the fuzzy supersphere, J. High Energy Phys. 07
(2002) 056.

[73] A. Marciano, G. Amelino-Camelia, N. R. Bruno, G.
Gubitosi, G. Mandanici, and A. Melchiorri, Interplay
between curvature and Planck-scale effects in astrophysics
and cosmology, J. Cosmol. Astropart. Phys. 06 (2010) 030.

[74] A. Ballesteros, N. R. Bruno, and F. J. Herranz, A non-
commutative Minkowskian space-time from a quantum
AdS algebra, Phys. Lett. B 574, 276 (2003).

[75] G. Amelino-Camelia, A. Marciano, M. Matassa, and G.
Rosati, Deformed Lorentz symmetry and relative locality
in a curved/expanding spacetime, Phys. Rev. D 86, 124035
(2012).

[76] X. Calmet and A. Kobakhidze, Noncommutative general
relativity, Phys. Rev. D 72, 045010 (2005).

[77] L. Smolin, The quantization of unimodular gravity and the
cosmological constant problems, Phys. Rev. D 80, 084003
(2009).

[78] E. Álvarez, S. González-Martín, M. Herrero-Valea, and
C. P. Martín, Quantum corrections to unimodular gravity,
J. High Energy Phys. 08 (2015) 078.

[79] A. H. Chamseddine, G. Felder, and J. Frohlich, Gravity in
noncommutative geometry, Commun. Math. Phys. 155,
205 (1993).

[80] H. Steinacker, Emergent gravity from noncommutative
gauge theory, J. High Energy Phys. 12 (2007) 049.

[81] H. Steinacker, Emergent geometry and gravity from matrix
models: An introduction, Classical Quantum Gravity 27,
133001 (2010).

[82] J. Madore, The commutative limit of a matrix geometry,
J. Math. Phys. 32, 332 (1991).

[83] H. Grosse and J. Madore, A noncommutative version of
the Schwinger model, Phys. Lett. B 283, 218 (1992).

[84] A. P. Balachandran, S. Kurkcuoglu, and S. Vaidya, Lec-
tures on Fuzzy and Fuzzy SUSY Physics (World Scientific,
Singapore, 2007), p. 191.

[85] H. Steinacker, Emergent gravity on covariant quantum
spaces in the IKKT model, J. High Energy Phys. 12 (2016)
156.

[86] M. Sperling and H. Steinacker, Higher spin gauge theory
on fuzzy S4N, J. Phys. A 51, 075201 (2018).

[87] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P.
Schupp, and J. Wess, A gravity theory on noncommutative
spaces, Classical Quantum Gravity 22, 3511 (2005).

[88] P. Aschieri, M. Dimitrijevic, F. Meyer, and J. Wess,
Noncommutative geometry and gravity, Classical Quan-
tum Gravity 23, 1883 (2006).

[89] L. Alvarez-Gaume, F. Meyer, and M. A. Vazquez-Mozo,
Comments on noncommutative gravity, Nucl. Phys. B753,
92 (2006).

[90] A. Duenas-Vidal and M. A. Vazquez-Mozo, Twisted in-
variances of noncommutative gauge theories, Phys. Lett. B
668, 57 (2008).

[91] P. A. M. Dirac, The theory of gravitation in Hamiltonian
form, Proc. R. Soc. A 246, 333 (1958).

[92] R. L. Arnowitt, S. Deser, and C.W. Misner, The dynamics
of general relativity, Gen. Relativ. Gravit. 40, 1997 (2008).

[93] T. Regge and C. Teitelboim, Role of surface integrals in the
Hamiltonian formulation of general relativity, Ann. Phys.
(N.Y.) 88, 286 (1974).

[94] M. Bojowald, Canonical Gravity and Applications: Cos-
mology, Black Holes, and Quantum Gravity (Cambridge
University Press, Cambridge, England, 2010).

[95] C. Blohmann, M. C. B. Fernandes, and A. Weinstein,
Groupoid symmetry and constraints in general relativity,
Commun. Contemp. Math. 15, 1250061 (2013).

[96] M.Bojowald, S.Brahma,U.Buyukcam, andF.D’Ambrosio,
Hypersurface-deformation algebroids and effective space-
time models, Phys. Rev. D 94, 104032 (2016).

[97] S. Majid and R. Oeckl, Twisting of quantum differentials
and the Planck scale Hopf algebra, Commun. Math. Phys.
205, 617 (1999).

[98] E. Langmann, R. J. Szabo, and K. Zarembo, Exact solution
of quantum field theory on noncommutative phase spaces,
J. High Energy Phys. 01 (2004) 017.

BOJOWALD, BRAHMA, BUYUKCAM, and RONCO PHYS. REV. D 98, 026031 (2018)

026031-20

https://doi.org/10.1088/0264-9381/30/6/065012
https://doi.org/10.1088/0264-9381/30/6/065012
https://doi.org/10.1088/1126-6708/1999/09/032
https://doi.org/10.1016/0550-3213(86)90155-0
http://arXiv.org/abs/hep-th/0006071
https://doi.org/10.1088/1126-6708/2000/06/044
https://doi.org/10.1088/1126-6708/2000/06/044
https://doi.org/10.1016/j.physletb.2003.08.071
https://doi.org/10.1016/j.physletb.2003.08.071
https://doi.org/10.1016/0370-2693(95)00223-8
https://doi.org/10.1140/epjc/s10052-007-0450-0
https://doi.org/10.1007/BF02473358
https://doi.org/10.1007/s00220-004-1057-z
https://doi.org/10.12942/lrr-2013-5
https://doi.org/10.1103/PhysRev.71.38
https://doi.org/10.1103/PhysRev.71.38
https://doi.org/10.1088/1126-6708/1999/06/030
https://doi.org/10.1016/0370-2693(94)90699-8
https://doi.org/10.1016/0370-2693(94)90699-8
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1063/1.530154
https://doi.org/10.1016/0370-2693(92)90158-Z
https://doi.org/10.1088/1126-6708/2002/07/056
https://doi.org/10.1088/1126-6708/2002/07/056
https://doi.org/10.1088/1475-7516/2010/06/030
https://doi.org/10.1016/j.physletb.2003.09.014
https://doi.org/10.1103/PhysRevD.86.124035
https://doi.org/10.1103/PhysRevD.86.124035
https://doi.org/10.1103/PhysRevD.72.045010
https://doi.org/10.1103/PhysRevD.80.084003
https://doi.org/10.1103/PhysRevD.80.084003
https://doi.org/10.1007/JHEP08(2015)078
https://doi.org/10.1007/BF02100059
https://doi.org/10.1007/BF02100059
https://doi.org/10.1088/1126-6708/2007/12/049
https://doi.org/10.1088/0264-9381/27/13/133001
https://doi.org/10.1088/0264-9381/27/13/133001
https://doi.org/10.1063/1.529418
https://doi.org/10.1016/0370-2693(92)90011-R
https://doi.org/10.1007/JHEP12(2016)156
https://doi.org/10.1007/JHEP12(2016)156
https://doi.org/10.1088/1751-8121/aaa2ab
https://doi.org/10.1088/0264-9381/22/17/011
https://doi.org/10.1088/0264-9381/23/6/005
https://doi.org/10.1088/0264-9381/23/6/005
https://doi.org/10.1016/j.nuclphysb.2006.07.009
https://doi.org/10.1016/j.nuclphysb.2006.07.009
https://doi.org/10.1016/j.physletb.2008.07.102
https://doi.org/10.1016/j.physletb.2008.07.102
https://doi.org/10.1098/rspa.1958.0142
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1016/0003-4916(74)90404-7
https://doi.org/10.1016/0003-4916(74)90404-7
https://doi.org/10.1142/S0219199712500617
https://doi.org/10.1103/PhysRevD.94.104032
https://doi.org/10.1007/s002200050692
https://doi.org/10.1007/s002200050692
https://doi.org/10.1088/1126-6708/2004/01/017


[99] R. Britto, B. Feng, and S.-J. Rey, Non(anti)commutative
superspace, UV / IR mixing and open Wilson lines, J. High
Energy Phys. 08 (2003) 001.

[100] S. Ferrara, E. Ivanov, O. Lechtenfeld, E. Sokatchev, and B.
Zupnik, Non-anticommutative chiral singlet deformation
of N=(1,1) gauge theory, Nucl. Phys. B704, 154 (2005).

[101] A. Kempf, On noncommutative geometric regularization,
Phys. Rev. D 54, 5174 (1996); Erratum, Phys. Rev. D 55,
1114(E) (1997).

[102] L. Freidel, R. G. Leigh, and D. Minic, Intrinsic non-
commutativity of closed string theory, arXiv:1706.03305.

[103] L. Freidel, R. G. Leigh, and D. Minic, Noncommutativity
of closed string zero modes, Phys. Rev. D 96, 066003
(2017).

[104] L. Freidel, R. G. Leigh, and D. Minic, Metastring theory
and modular space-time, J. High Energy Phys. 06 (2015)
006.

[105] M. Bojowald and G. M. Paily, Deformed general relativity
and effective actions from loop quantum gravity, Phys.
Rev. D 86, 104018 (2012).

[106] M. Bojowald, S. Brahma, and J. D. Reyes, Covariance in
models of loop quantum gravity: Spherical symmetry,
Phys. Rev. D 92, 045043 (2015).

[107] M. Bojowald and S. Brahma, Covariance in models of loop
quantum gravity: Gowdy systems, Phys. Rev. D 92,
065002 (2015).

[108] A. Perez and D. Pranzetti, On the regularization of the
constraints algebra of quantum gravity in 2þ 1 dimen-
sions with non-vanishing cosmological constant, Classical
Quantum Gravity 27, 145009 (2010).

[109] A. Barrau, M. Bojowald, G. Calcagni, J. Grain, and M.
Kagan, Anomaly-free cosmological perturbations in ef-
fective canonical quantum gravity, J. Cosmol. Astropart.
Phys. 05 (2015) 051.

[110] C. Tomlin and M. Varadarajan, Towards an anomaly-free
quantum dynamics for a weak coupling limit of Euclidean
gravity, Phys. Rev. D 87, 044039 (2013).

[111] A. Henderson, A. Laddha, and C. Tomlin, Constraint
algebra in loop quantum gravity reloaded. I. Toy model
of a Uð1Þ3 gauge theory, Phys. Rev. D 88, 044028 (2013).

[112] G. Calcagni and M. Ronco, Deformed symmetries in
noncommutative and multifractional spacetimes, Phys.
Rev. D 95, 045001 (2017).

[113] G. Calcagni, Multifractional theories: An unconventional
review, J. High Energy Phys. 03 (2017) 138.

[114] M. Bojowald and G. M. Paily, Deformed general relativity,
Phys. Rev. D 87, 044044 (2013).

[115] G. Amelino-Camelia, M. M. da Silva, M. Ronco, L.
Cesarini, and O. M. Lecian, Spacetime-noncommutativity
regime of loop quantum gravity, Phys. Rev. D 95, 024028
(2017).

[116] F. Cianfrani, J. Kowalski-Glikman, D. Pranzetti, and G.
Rosati, Symmetries of quantum spacetime in three dimen-
sions, Phys. Rev. D 94, 084044 (2016).

[117] G. Amelino-Camelia, M. Arzano, M. M. Da Silva, and
D. H. Orozco-Borunda, Relativistic Planck-scale polymer,
arXiv:1707.05017.

[118] S. Brahma, M. Ronco, G. Amelino-Camelia, and A.
Marciano, Linking loop quantum gravity quantization
ambiguities with phenomenology, Phys. Rev. D 95,
044005 (2017).

[119] J. Mielczarek, Loop-deformed Poincare algebra,
Europhys. Lett. 108, 40003 (2014).

[120] M. Ronco, On the UV dimensions of loop quantum
gravity, Adv. High Energy Phys. 2016, 1 (2016).

[121] J. Mielczarek and T. Trześniewski, Spectral dimension
with deformed spacetime signature, Phys. Rev. D 96,
024012 (2017).

[122] H. Gomes and V. Shyam, Extending the rigidity of
general relativity, J. Math. Phys. (N.Y.) 57, 112503
(2016).

[123] P. Xu, Quantum groupoids, Commun. Math. Phys. 216,
539 (2001).

[124] J. E. Moyal, Quantum mechanics as a statistical theory,
Proc. Cambridge Philos. Soc. 45, 99 (1949).

[125] P. Schupp, Quantum groups, noncommutative differential
geometry and applications, arXiv:hep-th/9312075.

[126] F. Koch and E. Tsouchnika, Construction of θ-Poincare
algebras and their invariants on Mθ, Nucl. Phys. B717,
387 (2005).

EXTENDING GENERAL COVARIANCE: MOYAL-TYPE … PHYS. REV. D 98, 026031 (2018)

026031-21

https://doi.org/10.1088/1126-6708/2003/08/001
https://doi.org/10.1088/1126-6708/2003/08/001
https://doi.org/10.1016/j.nuclphysb.2004.10.038
https://doi.org/10.1103/PhysRevD.54.5174
https://doi.org/10.1103/PhysRevD.55.1114.2
https://doi.org/10.1103/PhysRevD.55.1114.2
http://arXiv.org/abs/1706.03305
https://doi.org/10.1103/PhysRevD.96.066003
https://doi.org/10.1103/PhysRevD.96.066003
https://doi.org/10.1007/JHEP06(2015)006
https://doi.org/10.1007/JHEP06(2015)006
https://doi.org/10.1103/PhysRevD.86.104018
https://doi.org/10.1103/PhysRevD.86.104018
https://doi.org/10.1103/PhysRevD.92.045043
https://doi.org/10.1103/PhysRevD.92.065002
https://doi.org/10.1103/PhysRevD.92.065002
https://doi.org/10.1088/0264-9381/27/14/145009
https://doi.org/10.1088/0264-9381/27/14/145009
https://doi.org/10.1088/1475-7516/2015/05/051
https://doi.org/10.1088/1475-7516/2015/05/051
https://doi.org/10.1103/PhysRevD.87.044039
https://doi.org/10.1103/PhysRevD.88.044028
https://doi.org/10.1103/PhysRevD.95.045001
https://doi.org/10.1103/PhysRevD.95.045001
https://doi.org/10.1007/JHEP03(2017)138
https://doi.org/10.1103/PhysRevD.87.044044
https://doi.org/10.1103/PhysRevD.95.024028
https://doi.org/10.1103/PhysRevD.95.024028
https://doi.org/10.1103/PhysRevD.94.084044
http://arXiv.org/abs/1707.05017
https://doi.org/10.1103/PhysRevD.95.044005
https://doi.org/10.1103/PhysRevD.95.044005
https://doi.org/10.1209/0295-5075/108/40003
https://doi.org/10.1155/2016/9897051
https://doi.org/10.1103/PhysRevD.96.024012
https://doi.org/10.1103/PhysRevD.96.024012
https://doi.org/10.1063/1.4967951
https://doi.org/10.1063/1.4967951
https://doi.org/10.1007/s002200000334
https://doi.org/10.1007/s002200000334
https://doi.org/10.1017/S0305004100000487
http://arXiv.org/abs/hep-th/9312075
https://doi.org/10.1016/j.nuclphysb.2005.04.019
https://doi.org/10.1016/j.nuclphysb.2005.04.019

