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Recently, it was observed that the first law of entanglement leads to the linearized Einstein equation. In
this paper, we point out that the gravity dual of an relative entropy expression is equivalent to the full
nonlinear Einstein equation. We also construct an entanglement vector field VE whose flux is the
entanglement entropy. The flow of the vector field looks like sewing two space regions along the interface.
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I. INTRODUCTION

One of the most inspiring ideas in the recent develop-
ment of string theory is the suggestion [1,2] that the
classical spacetime is a consequence of the quantum
entanglement without which two nearby regions of space-
time would come apart [1,2] and, moreover, that the
Einstein equation itself is coming from a relation of
entanglement entropy at least at the linearized level [3].
The latter is a consequence of connecting two different
descriptions of entanglement entropy (EE): one as the area
of the Ryu-Takayanagi surface [4] and the other as the
expectation value of the modular Hamiltonian [5]. Later, it
was pointed out [6] that such relationship between the
first law of EE and the linearized gravity equation are
connected through the off-shell Noether theorem formu-
lated by Wald [7–11].
Deriving the Einstein equation from the first lawis quite

similar to the activity of the 1990s led by the work of
Jacobson [12]: assuming the thermodynamic first law, he
derived the gravity equation. The difference in the recent
activity [3,6] is that the entanglement first law and its
gravity dual are derived from the conformal field theory
(CFT), although it gives only a linearized equation. That is,
recent activities aim to derive the Einstein equation of the
dual gravity of a CFTassuming the presence of holography.
In Ref. [13], the authors extended the program to the
nonlinear second order in the perturbative scheme. The

major efforts of Ref. [13] are devoted to deriving the
“gravity dual expression of the relative entropy” (GDERE)
starting from CFT up to second order.
While proving the GDERE from the CFT to all orders

is yet to be done, we can still ask “if we assume this part
is done, does it imply the full nonlinear Einstein
equation?” The goal of this paper is to prove that the
answer is “yes.” As we will see later, having the GDERE
gives the gravitational form of the generalized first law
of entanglement entropy and it is equivalent to the
Einstein equation.
The other goal of this paper is to construct a vector field

associated with the EE whose flux is the EE independent
of the surface over which the vector field is integrated.
The flux line, once the total flux is quantized, is analogous
to the microscopic wormhole and is concentrated along the
boundary of the entangled regions.

II. EINSTEIN EQUATION FROM
ENTANGLEMENT IN LINEAR ORDER

To set up notation, we start with a short review of
relevant concepts. Given a physical state given by a density
matrix ρ and a ball-like region B of radius R, one can
decompose the Hilbert space into tensor product H ¼
HB ⊗ HB̄, where HB is the Hilbert space of local fields
over B. The reduced density operator ρB ¼ TrHB̄

ρ. The
entanglement entropy is given by SB ¼ −TrρB ln ρB. From
now on, we delete the subscript B when there is no
confusion. The modular Hamiltonian H0 ¼ − log ρ0 for a
reference state ρ0 which is normalized by Trρ0 ¼ 1. If we
call the expectation value of the modular Hamiltonian for
the state ρ the “energy” of the state ρ, then we have
E ¼ hH0i ¼ −Trρ ln ρ0. Under finite variation of the state
from ρ0 to ρ, we have the following identity

ΔE − ΔS ¼ Sðρjρ0Þ; ð1Þ
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where ΔE ¼ −Trðρ − ρ0Þ ln ρ0; ð2Þ

ΔS ¼ −Trρ ln ρþ Trρ0 ln ρ0; ð3Þ

Sðρjρ0Þ ¼ Trρðln ρ − ln ρ0ÞÞ: ð4Þ

Three important remarks are in order. First, (1) and (4) can
be used as the definition and, as a result, interchangeably.
Second, ΔE is not a total variation while ΔS is, because the
relative entropy, Sðρjρ0Þ, cannot be so. Similar phenomena
will be observed in their gravitational versions. Finally, the
relative entropy is always positive [14], and this is the
origin of the entanglement first law: as a function of ρ,
Sðρjρ0Þ is minimal at the reference state. Such an extrem-
ality condition is the usual entanglement first law,

δE − δS ¼ 0; ð5Þ

where δf ¼ d
dλ fjλ¼0 for f, which is a one-parameter family

of λ ∈ ½0; ε�. The positivity of the relative entropy is also
related to the positivity of energy [15,16] and that of the
Fisher metric for information theory [17]. Both terms of the
first law can be calculated in gravitational languages using
the AdS/CFTand Ryu-Takayanagi formula, and it turns out
that the first law leads to the linearized Einstein equation as
we will review below.
Suppose the density operator depends on parameters

R1; R2;…; RM which we symbolically denote by a vector
R and let ρ0 ¼ ρðR0Þ and ρ ¼ ρðR1Þ for some R0, R1.
Introducing the modular potential V ¼ − ln ρ and the
modular force Fα ¼ −∇αV in the parameter space, we
can express the relative entropy as

Sðρjρ0Þ ¼
�Z

C
dR · F

�
; ð6Þ

which can be interpreted as the “work”, W, done on the
system by F to change the system from ρ0 to ρ. Notice that
it is independent of the path C connecting ρ0 and ρ of the
integration. Then the identity (1) itself, although in a finite
difference form, can be considered as a first law,

ΔE − ΔS ¼ W ¼ Sðρjρ0Þ; ð7Þ

which we call the “generalized entanglement first law.”
In fact, it has a gravity version. Our claim is that while we
get the linearized gravity equation by using (5), we will get
the full nonlinear equation if we use the gravity version
of (7).
For any CFT vacuum ρ0 ¼ j0ih0j, a conformal mapping

can be constructed which maps the causal development of
the ball B to a hyperbolic cylinder Hd−1 × Rτ and ρ0 to a
thermal density operator expð−2πRHτÞ of CFT on hyper-
bolic space. Namely, the vacuum state is mapped to a
thermal state of temperature T ¼ 1=2πR on the Hd−1 and

the modular Hamiltonian actually generates the time
evolution of CFT on the hyperbolic space. According to
the AdS=CFT, the thermal state onHd−1 can be represented
by a AdS black hole with temperature T ¼ 1=2πR and the
AdS-Rindler space, which can be figured as a patch of AdS
space with Poincare metric.
As described above, the Hamiltonian Hτ ¼

R
Hd−1 Ttt is

equal to the unitarily transformed modular Hamiltonian of
the original CFT in the flat space [5]: H0 ¼ 2πRUH̃τU−1.
Using this, the authors of [5] expressed the modular
Hamiltonian H0 in terms of the energy-momentum tensor
of CFT,

H0 ¼ 2π

Z
B
dd−1x

R2 − jx⃗j2
2R

Ttt ¼
Z
B
dσμζνBTμν; ð8Þ

where x⃗ ¼ 0 is located at the center of the ball of radius R,
and ζμB is the pullback of the Killing vector ∂

∂τ by the
mapping that maps the causal development of B to
the hyperbolic cylinder Hd−1 × Rτ. It can be considered
as the boundary restriction of a Killing vector ξ of AdS
which vanishes at B̃. More explicitly,

ξB ¼ π

R
½R2 − z2 − t2 − xixi�∂t −

2π

R
t½z∂z þ xi∂i�; ð9Þ

and ζB ¼ limz→0ξB. The entanglement energy EB is given
by EB ¼ R

B ζ
μ
BhTμνidσν. Now, the gravitational dual

of δEB is readily given since the AdS=CFT dictionary
gives the relation between the expectation value of the
energy-momentum tensor and the metric variation,
hTμνi ∼ zd−2δgμν. The gravitational dual of δSB can be
given using the Ryu-Takayanagi prescription SB ¼
Area½B̃�=4GN [4]. The crucial observation of [6] is that
there exists a d − 1 form χ in asymptotic AdSdþ1 such that

Z
B
χ ¼ δEgrav

B ; and
Z
B̃
χ ¼ δSgravB ; ð10Þ

based on the formalism of Iyer-Wald [8,9],

δEgrav
B − δSgravB ¼

Z
B−B̃

χ ¼
Z
Σ
dχ; ð11Þ

where Σ is the t ¼ 0 slice whose boundaries are B and B̃.
Since it turns out to be

dχ ¼ −2ξaBδEabϵb; ð12Þ

the entanglement first law implies the linearized Einstein
equation δEab ¼ 0.
Since understanding Wald’s formalism is essential for

later formalism, we describe it below shortly. Start from
the Lagrangian written in differentiable form notation:
L≡ L½ϕ�ϵ, where ϕ is a collective representation of the
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bulk fields including the metric and ϵ is the volume form.
The general variation of L can be written as

δL½ϕ� ¼ Eϕδϕþ dΘ½δϕ�; ð13Þ

where Eϕ denotes field equations and Θ, the symplectic
potential current that contains a Gibbons-Hawking term.
When the variation is a diffeomorphism generated by a
vector field ξ, δξL ¼ dðξ ·LÞ since δξ ¼ iξdþ diξ andL is
the top form. In terms of the Noether current codimension-
one form,

Jξ ¼ Θ½δξϕ� − ξ ·L; ð14Þ

Eq. (13) for the diffeomorphic variation is

dJξ ¼ −Eϕ · δξϕ; ð15Þ

so that J is the closed form for the fields at on-shell.
Therefore Jξ ¼ dQξ at on-shell. For off-shell, one can show
[6,9] that

Jξ ¼ dQξ þ ξaCa; ð16Þ

where Ca’s are constraints which vanish for the metric
satisfying the equation of motion [8]:

Q ¼ 1

16πGN
∇aξbϵab; Ca ¼ 2Eg

abϵ
b;

with Eg
ab ¼

1

8πGN

�
Rab −

1

2
gabR

�
− Tm

ab: ð17Þ

On the other hand, if we introduce ω, a two-form in
phase space but codimension-one form in spacetime, by

ωðϕ; δ1ϕ; δ2ϕÞ ¼ δ1Θðδ2ϕÞ − δ2Θðδ1ϕÞ; ð18Þ

we can express Jξ in terms of ω as follows:

δJξ ¼ ωðδϕ; δξϕÞ þ dðξ · ΘðδϕÞÞ − ξ ·Eϕδϕ: ð19Þ

Using Eqs. (16) and (19), we get an off-shell relation,

dχ ¼ ωðδϕ; δξϕÞ − ξ · ðδCþEϕδϕÞ;
with χ ¼ δQξ − ξ · ΘðδϕÞ: ð20Þ

So far δ is an infinitesimal variation defined by
δϕ ¼ d

dλ ϕðx; λÞjλ¼0. The point of Holland and Wald [11]
is that if we replace δ → d

dλ without setting λ ¼ 0 after the
derivative, all the steps above go through so that we now
have an all-orders relation in λ ∈ ½0; ε�. Then Eq. (20) can
be replaced by

dχ ¼ ω

�
d
dλ

ϕ; δξϕ

�
− ξ ·

�
d
dλ

Cþ Eϕ ·
d
dλ

ϕ

�
; with

χ ¼ d
dλ

Qξ − ξ · Θ
�
d
dλ

ϕ

�
: ð21Þ

An important remark is that we should work in the Holland-
Wald gauge [11], where the Ryu-Takayanagi surface and ξ
do not change their coordinate dependence for any metric
deformation gðx; λÞ with λ ∈ ½0; ε�, which gives the restric-
tion to the size of ε.
Notice also that, for the linear order, the canonical energy

term becomes ωðg0; δg; δξBg0Þ, and it vanishes for the AdS
metric g0 since δξBg0 ¼ 0. Notice also in Eq. (12), ξ ·Eg · δg
does not appear either, because the explicit form of the AdS
metric was already used to give E½g0� ¼ 0. However, for
nonlinearorder, onehas to consider a finitevariationgðεÞ and
consider the cotangent space of the space ofmetric at gðλÞ for
arbitrary λ between 0 and ε. In this case, neither of the two
vanish, and this fact provides the main source of the non-
triviality in getting the nonlinear gravity equation.

III. NONLINEAR EINSTEIN EQUATION
FROM ENTANGLEMENT

The issue of the full Einstein equation was discussed
earlier in [18–21] and most notably in [13], where the
program of getting gravity equations starting from CFT is
extended perturbatively to second order. An essential part
of the above paper is to derive the gravity expression of
relative entropy starting from the CFT up to the second
order. Similar efforts have been made in [20]. Given the fact
that completing this program to all orders is certainly
nontrivial, one may ask whether, if this part is assumed to
be proven to all orders, we can actually show that the full
nonlinear Einstein equation can be implied from there. This
question can be addressed purely in a gravitational context,
because as we will see shortly, the gravity expression of
relative entropy can be derived from the Holland-Wald
offshell identity by imposing the Einstein equation. One
can ask the reverse question, namely, can we derive the
Einstein equation from the relative entropy expression. We
will see that the answer is positive.
To simplify the setting, we consider only pure gravity so

that ϕðx; λÞ is replaced by the metric gðx; λÞ, and we choose
ξ as the Killing vector of AdS given in Eq. (9).
Integrating both sides of Eq. (20) over Σ, whose

boundary is B and B̃, we get Eqs. (11) and (12). By
integrating (21) over Σ, the region between B and B̃ at
the time slice t ¼ 0, we have [11,16]
Z
B
χ −

Z
B̃
χ ¼

Z
Σ
ω

�
gλ;

d
dλ

gλ; δξBgλ

�
þ
Z
Σ
ðÊþ ĈÞ;

where Ê ¼ −ξaBϵaE
g
bc½gλ�

d
dλ

gbc; Ĉ ¼ −ξaB
d
dλ

Ca½gλ�:
ð22Þ
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We first consider only physical metrics which satisfy
equations of motion, then Ê ¼ Ĉ ¼ 0, so that

Z
B
χ −

Z
B̃
χ ¼

Z
Σ
ω

�
gλ;

d
dλ

gλ; δξBgλ

�
: ð23Þ

Notice that the right-hand side is not zero since ξB is the
Killing vector of the background metric g0, not that of gλ.
One should also notice that the first term of (23) is not a
total variation as one can see in (21) and, therefore, cannot
be written, in general, as d

dλE
grav
B , while the second term is

always a total variation so that it can be written as d
dλS

grav
B .

Integrating Eq. (23) by
R
ε
0 dλ, we have

ΔEgrav
B − ΔSgravB ¼

Z
ε

0

dλ
Z
Σ
ω

�
g;

d
dλ

g; δξBg

�
; ð24Þ

where

ΔEgrav
B ¼

Z
ε

0

dλ
Z
B
χ; ΔSgravB ¼

Z
ε

0

dλ
Z
B̃
χ:

Since one can “define” the relative entropy as the difference
between ΔE and ΔS as we noted earlier, Eq. (24) can be
used to identify the gravity version of relative entropy [16],

Sgravðρjρ0Þ ¼
Z

ε

0

dλ
Z
Σ
ω

�
g;

d
dλ

g; δξBg

�
: ð25Þ

Then, Eq. (24) becomes

ΔEgrav
B − ΔSgravB ¼ Sgravðρjρ0Þ; ð26Þ

which is nothing but the gravity dual of the generalized first
law (7).
So far, we have seen that the on-shell expression of the

Holland-Wald identity gives the gravitational version
of the generalized first law. This has been discussed in
Refs. [13,16,17,22]. The authors of [13] proved the differ-
ential version of (24) from the CFT up to second order,
which enabled them to prove the Einstein equation to the
corresponding order.
What we want to do is the reverse direction: if a

metric satisfies the gravity version of the generalized
entanglement first law, it should satisfy the Einstein
equation. In other words, we want to prove that the gravity
expression of the relative entropy, Eq. (25), or its conse-
quence (24), is equivalent to the equation of motion. This is
not a tautology. Notice that deriving (25) from CFT is not
our goal.
Namely, we want to derive the full Einstein equation,

starting from Eq. (24). By integrating Eq. (22) into λ over
½0.ε�, we first rewrite it as

ΔEgrav
B − ΔSgravB − Sgravðρjρ0Þ ¼

Z
ε

0

dλ
Z
Σ
ðÊþ ĈÞ; ð27Þ

Now if we impose Eq. (24) or (26), which is the gravity
dual of the generalized first law of entanglement, the right-
hand side of the above equation vanishes. Taking the
derivative of the equation with respect to ε, we get

Ê½gðεÞ� þ Ĉ½gðεÞ� ¼ 0: ð28Þ

Using the explicit form of the constraint given in (17), we
have

ξbEcd½gðεÞ�g0ðεÞ þ 2ξaE0
ab½gðεÞ� ¼ 0; ð29Þ

where the prime denotes d
dε and we deleted the subscript/

superscript g, B from E to simplify the notation. We expand
the Eab½gðεÞ� and gabðεÞ in ε:

E½gðεÞ� ¼
X∞
n¼0

εnEðnÞ; and gðεÞ ¼
X∞
n¼0

εngðnÞ: ð30Þ

Then, Eq. (29) becomes

X∞
n¼1

εn−1
�
ξb

Xn
k¼1

kEðn−kÞ½g0� · gðkÞ þ 2ξanEðnÞ
ab

�
¼ 0; ð31Þ

where · is for the full contraction. Requesting the analy-
ticity in ε, each coefficient of above equation should be
zero. It is useful to write the first few terms explicitly to see
the structure,

ξbEð0Þ½g0�cdgð1Þcd þ 2ξaEð1Þ
ab ¼ 0;

ξbð2Eð0Þ · gð2Þ þ Eð1Þ · gð1ÞÞ þ 4ξaEð2Þ
ab ¼ 0;

ξbð3Eð0Þ · gð3Þ þ 2Eð1Þ · gð2Þ þ Eð2Þ · gð1ÞÞ þ 6ξaEð3Þ
ab ¼ 0;

� � � :
ð32Þ

Notice that this is the expansion around the AdS metric g0,
so that Eð0Þ½g0� ¼ 0, which implies Eð1Þ½g0� ¼ 0 by the
first equation, which in turn implies Eð2Þ½g0� ¼ 0 by the
second equation. In this way, all EðnÞ½g0� ¼ 0 by the lower
ones progressively, proving the whole nonlinear Einstein
equation,

E½gðεÞ� ¼ 0; ð33Þ
for all orders in ε.1 Therefore, the metric gðεÞ near g0
satisfies the full Einstein equation.

1It is worthwhile to notice that the same conclusion can be
derived in more complicated situation where the Eq. (29) is
modified to

Ê½gðεÞ�AðεÞ þ Ĉ½gðεÞ�BðεÞ ¼ 0; ð34Þ
if the objects A, B have expansion starting from ε0.
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Summarizing, the full Einstein equation holds if and only
if the generalized entanglement first law does, thanks to the
geometric identity Eq. (27). In other words, the metric g
dual to the state ρ compatible with the generalized first law
satisfies the nonlinear Einstein equation. Although (24) is
derived using the Einstein equation, it is special so that it
can imply the Einstein equation itself through the geometric
identity. What is the implication of all this? It just means
that the relative entropy (RE) expression or the generalized
entanglement entropy contains on-shell information. This
is clear from the linearized level. There, the first law implies
an on-shell condition. The same should be true here. In fact,
on the CFT side, the RE can be evaluated only for physical
configuration. Therefore, on-shell information is hidden in
the entanglement relationship. From the gravity side, the
Einstein equation is the criterion for judging whether a
given metric configuration is physical. Therefore, it is not
surprising that an expression of RE encodes the information
of on-shell-ness. After all, the essence of the holography is
that the quantum informations of the boundary theory can
be encoded by the “on-shell” gravity.
One important remark is that while χ is a total derivative

λ on B̃ due to the vanishing of ξ on B̃, it is not so on B.
Therefore, ΔSgrav is a total variation but ΔEgrav is not so in
general. This is exactly the same property of ΔE;ΔS on the
CFT side as we emphasized earlier. However, for an
integrable case where

R
Σ ξ · ω ¼ 0, the situation is better,

because there exists K and Wξ such that ξB · Θð ddλ gÞ ¼
d
dλ ðξB · KÞ andWξ ¼

R
B−B̃ðQ − ξ · KÞ, respectively [10], so

that we can rewrite (23) as [16,17,23]

d
dλ

Wξ ¼
Z
Σ
ω

�
g;

d
dλ

g; δξBg

�
: ð35Þ

This can be integrated over λ to give

ΔEgrav
B − ΔSgravB ¼ ΔWξ; ð36Þ

where Δ is a variation from ρ0 to ρ whose dual geometries
are g0, g, respectively. This means that, for an integrable
case, the relative entropy is a total variation, and it can be
interpreted as the work done on the system to change it
from ρ0 to ρ.
Our method can be easily generalized to the case with

inclusion of matter or higher derivatives. For the reference
states other than the AdS vacuum, the barrier is the proof of
the existence of the Killing vector and its Holland-Wald
gauge condition. We leave these matters to future works.

IV. ENTANGLEMENT VECTOR FIELD

In Ref. [24], the authors tried to reformulate entangle-
ment as the a flux of vector field v. Consider a surface B0 in
t ¼ 0 slice whose boundary is the same as that of B. Our
goal is to construct a vector field VE such that

Z
B0
Va
Edσa ¼

Z
B̃
Va
Edσa ¼ SB: ð37Þ

Such a vector field should be divergenceless in the sub-
space of the t ¼ 0 slice. Also, it must be a codimension-two
form to produce a one-form upon restriction. A natural
candidate is �Q restricted to the constant time slice, and we
start from the observation

Z
B̃
Q ¼ SB; dQ ¼ −ξ · ϵL ≠ 0; ð38Þ

on shell, where we used Eq. (16) and the fact that ξ is the
Killing vector of g. Now, we can construct a vector field V
by restricting the codimension-two form Q to the t ¼ 0
slice. Noticing that among the components of ξ, only ξt is
nonzero, we have

16πGNQ ¼ ∇aξbϵab ¼ −2∇aξ
t ffiffiffiffiffiffiffiffi

−gtt
p

ϵa ≔ Vaϵ
a: ð39Þ

In one-form notation, the Va is given by

V ¼ 4π

Rz

��
R2 − z2 − x⃗2

2z
þ z

�
dzþ xidxi

�
: ð40Þ

It is easy to check that
R
B̃ Vaϵ

a ¼ 4πArea½B̃�. Therefore, it
is tempting to call Va the entanglement vector field.
However, for a vector field to be interpreted as a flux, it
should be divergenceless so that the flux on the arbitrary
surface B0 is equal to SB. Unfortunately, V is not divergence
free. In fact, in the t ¼ 0 slice of AdSdþ1,

∇aVa ¼ 2πd
Rz

ðz2 þ x⃗2 − R2Þ ¼ ð−2dÞn · ξ; ð41Þ

where n is the normal vector of the hypersurface Σ.
Furthermore, while we expect that the entanglement vec-
tor’s flux is highly concentrated at the boundary of the
region B, the flux of V, as one can see in Fig. 1, is almost
uniformly distributed over B.
Therefore, we look for a balancing vector field V0 such

that ∇aðVa − Va
0Þ ¼ 0 and flux of V0 over B̃ is zero.

We take the ansatz V0 ¼ V0rdr and boundary condition

(a)
x

z

(b)

2 1 0 1 2
0.0

0.5

1.0

1.5

2.0

FIG. 1. (a) Entanglement wedge and flow of vector field ξ and
V. (b) Flow of vector field V within Σ. The red circle is the Ryu-
Takayanagi surface.
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V0rjr¼R ¼ 0. One remark is that when we take the
divergence of V, we should consider ξt as a scalar once
we restrict Q to the t ¼ 0 slice. In AdSdþ1, it can be
given by

V0 ¼
2πd
R

ðr − RÞ2
r2 cos3 θ

dr; ð42Þ

where r2 ¼ z2 þ x⃗2 and cos θ ¼ z=r. The final form of the
entanglement vector field is give by VE ¼ V − V0 whose
explicit form in the polar coordinate is

VE ¼ 2π

R

�
r2 þ R2

r2 cos θ
dr −

ðR2 − r2Þ
r

tan θ
cos θ

dθ
�
− V0; ð43Þ

which is a divergence-free vector field whose flux over any
B0 is SB if B0 is homologous to B. One can easily verify that
VE satisfies Eq. (37), and for AdS3 the flux of each vector
field is

Z
B
Vaϵa ¼

c
9

R2

ϵ2
;

Z
B
V0aϵa ¼

c
9

R2

ϵ2
−
c
3
ln
2R
ϵ
; ð44Þ

where ϵ is the UV cutoff of z and c ¼ 3L
2GN

with L the AdS
radius and c the central charge of the dual CFT2.
Our goal here is to explicitly construct the thread vector

of Ref. [24], where the authors suggested replacing the
minimal surface by a divergenceless vector. Notice, how-
ever, the flux line in Fig. 15 of Ref. [19] similar to our
vector field V in Fig. 1 which is not divergenceless. If we
impose a zero divergence condition, the resulting vector
field VE has the flux lines concentrated at the boundary of
the two regions, which reveals an interesting phenomenon:
entanglement is done mostly at the boundary of the two
entangled regions. As a consequence, the flux of VE, as one
can see in Fig. 2, looks like sewing the two regions B and B̄
along their interface through the holographic direction,

which is an anticipated feature for the entanglement
entropy vector field but was not expected from the general
argument of Ref. [24].

V. DISCUSSION

We have shown that the generalized entanglement
first law implies the full Einstein equation. It would be
interesting to study the case in the presence of matter fields
or a higher curvature term. We also constructed a vector
field V in AdS space whose flux on the arbitrary surface
homologous to B is equal to the entanglement entropy.
It would be interesting to utilize the entanglement vector
flow to discuss the black hole information problem.
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